51
|
Lagneaux AS, Hénard S, Diancourt L, Stein E, Perez P, Mathieu P, Alauzet C, Lozniewski A. Clostridium haemolyticum Infection: A Cause of Hemolytic Anemia in a Patient with Bone Marrow Necrosis. Microorganisms 2021; 9:microorganisms9081568. [PMID: 34442646 PMCID: PMC8399981 DOI: 10.3390/microorganisms9081568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022] Open
Abstract
Clostridium haemolyticum is a sporulating Gram-positive anaerobic rod that is considered to be one of the most fastidious and oxygen-sensitive anaerobes. It is a well-known animal pathogen and the cause of bacillary hemoglobinuria primarily in cattle. To date, human infections caused by C. haemolyticum have been reported in three patients with malignant underlying diseases. We present herein the case of a 30-year-old obese woman with no significant past medical history who developed bacteremia caused by C. haemolyticum with massive intravascular hemolysis associated with bone marrow necrosis and acute renal failure. Because of subculture failure, the diagnosis was made on the basis of 16S rDNA sequencing and next-generation sequencing. The patient, who had been afebrile for 20 days after a 17-day-course of antibiotics, experienced a second bacteremic episode caused by C. haemolyticum. After having been successfully treated for 42 days with clindamycin and amoxicillin-clavulanic acid, the patient developed acute myeloid leukemia as a result of bone marrow regeneration. Although uncommon in humans, infections caused by C. haemolyticum are severe and should be considered in a febrile patient who has severe hemolytic anemia. This case also highlights the importance of using molecular techniques for the identification of this fastidious anaerobic organism.
Collapse
Affiliation(s)
- Anne Sophie Lagneaux
- Service de Microbiologie, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France; (A.S.L.); (C.A.)
| | - Sandrine Hénard
- Service des Maladies Infectieuses et Tropicales, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France;
| | - Laure Diancourt
- CNR Bactéries Anaérobies et Botulisme, Institut Pasteur, 75015 Paris, France;
| | - Emmanuelle Stein
- Laboratoire de Biologie Médicale, CH de Verdun–Saint Mihiel, 55100 Verdun, France; (E.S.); (P.M.)
| | - Pierre Perez
- Service de Médecine Intensive et Réanimation, Hôpitaux de Brabois, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France;
| | - Pierre Mathieu
- Laboratoire de Biologie Médicale, CH de Verdun–Saint Mihiel, 55100 Verdun, France; (E.S.); (P.M.)
| | - Corentine Alauzet
- Service de Microbiologie, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France; (A.S.L.); (C.A.)
- Laboratoire SIMPA Stress Immunité Pathogènes UR 7300, Service de Microbiologie, Université de Lorraine, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France
| | - Alain Lozniewski
- Service de Microbiologie, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France; (A.S.L.); (C.A.)
- Laboratoire SIMPA Stress Immunité Pathogènes UR 7300, Service de Microbiologie, Université de Lorraine, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France
- Correspondence:
| |
Collapse
|
52
|
Abstract
Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate and destroy target cells. Members of the LCT family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacteria have been isolated from the blood, organs, and wounds of diseased individuals, and LCTs have been implicated as the primary virulence factors in a variety of infections, including C. difficile infection and some cases of wound-associated gas gangrene. Clostridia express and secrete LCTs in response to various physiological signals. LCTs invade host cells by binding specific cell surface receptors, ultimately leading to internalization into acidified vesicles. Acidic pH promotes conformational changes within LCTs, which culminates in translocation of the N-terminal glycosyltransferase and cysteine protease domain across the endosomal membrane and into the cytosol, leading first to cytopathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs in infection and disease, the mechanism of LCT intoxication, with emphasis on recent structural work and toxin subtyping analysis, and the genomic discovery and characterization of LCT homologues. We provide a comprehensive review of these topics and offer our perspective on emerging questions and future research directions for this enigmatic family of toxins.
Collapse
|
53
|
Comparison of Sodium Nitrite and ‘Natural’ Nitrite on the Inhibition of Spore Germination and Outgrowth of Clostridium sporogenes in Low- and High-Fat Frankfurters. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the US, sodium and potassium nitrite are regulated food preservatives that prevent the germination of Clostridium spores in cured and processed meats. In recent years, the use of vegetable-derived nitrite (i.e., vegetable nitrate fermented to nitrite) has been designated as ‘natural nitrite’ to accommodate natural meats that cannot use artificial ingredients, and such meat products can be labelled as having ‘no added preservatives’. This new status and labelling allowance for microbially-modified nitrite provides for a ‘clean label’ application of nitrite against the stigma of chemical ingredients and has found increased use within the processed meat industry. The objectives of this study were to examine Clostridium sporogenes as a pathogen-surrogate challenge organism and the use of vegetable (celery) nitrite to prevent spore germination in cooked meat products. A three-strain spore crop of C. sporogenes ATCC 3584, ATCC 19404 and ATCC BAA-2695 was applied during ingredient formulation of low and high-fat hotdogs that were divided into three sub-batches (control without nitrite, hotdogs with sodium nitrite, hotdogs with celery nitrite). In both low and high-fat processes, sodium nitrite was compared to hotdogs made with comparable levels of celery nitrite (156 ppm). All treatments were performed with duplicate trial replication and triplicate sample testing within each trial. Comparisons were analyzed by repeated measures analysis of variance to determine significant difference (p < 0.05) of time course treatments. In shelf-life assays, growth was inhibited at both 5 °C and 15 °C, even if nitrite was absent; however, spore germination and growth readily occurred at 35 °C. Comparison of nitrite effects was best evaluated at 35 °C as a permissive condition to examine the effects of nitrite treatments. Celery nitrite showed no significant difference from sodium nitrite when used in both low and high-fat hotdogs, and spore outgrowth was only observed after 2–3 days at 35 °C compared to hotdogs without nitrite. Application of bacteriocin preparations in the formulation that were effective against Listeria monocytogenes, and moderately inhibitory towards the 3-strain spore mixture of C. sporogenes, were not effective in spore control in manufactured hotdogs. The nitrite validation hotdog trials described herein demonstrates that (celery or sodium) nitrite may prevent Clostridium spore germination for 24–48 h even under permissive conditions to help keep processed meat safe.
Collapse
|
54
|
Sulfated glycosaminoglycans and low-density lipoprotein receptor mediate the cellular entry of Clostridium novyi alpha-toxin. Cell Res 2021; 31:935-938. [PMID: 33972749 PMCID: PMC8107810 DOI: 10.1038/s41422-021-00510-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/10/2021] [Indexed: 11/13/2022] Open
|
55
|
Rapid Detection of Clostridium botulinum in Food Using Loop-Mediated Isothermal Amplification (LAMP). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094401. [PMID: 33919101 PMCID: PMC8122632 DOI: 10.3390/ijerph18094401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Botulinum neurotoxins are considered as one of the most potent toxins and are produced by Clostridium botulinum. It is crucial to have a rapid and sensitive method to detect the bacterium Clostridium botulinum in food. In this study, a rapid detection assay of C. botulinum in food using loop-mediated isothermal amplification (LAMP) technology was developed. The optimal primers were identified among three sets of primers designed specifically based on the partial ntnh gene encoding nontoxic-nonhaemagglutinin (NTNH) for rapid detection of the target DNA in plasmids. The optimal temperature and reaction time of the LAMP assay were determined to be 64 °C and 60 min, respectively. The chemical kit could be assembled based on these optimized reaction conditions for quick, initial high-throughput screening of C. botulinum in food samples. The established LAMP assay showed high specificity and sensitivity in detecting the target DNA with a limit of 0.0001 pg/ul (i.e., ten times more sensitive than that of the PCR method) and an accuracy rate of 100%. This study demonstrated a potentially rapid, cost-effective, and easy-operating method to detect C. botulinum in food and clinical samples based on LAMP technology.
Collapse
|
56
|
Voos K, Schönauer E, Alhayek A, Haupenthal J, Andreas A, Müller R, Hartmann RW, Brandstetter H, Hirsch AKH, Ducho C. Phosphonate as a Stable Zinc-Binding Group for "Pathoblocker" Inhibitors of Clostridial Collagenase H (ColH). ChemMedChem 2021; 16:1257-1267. [PMID: 33506625 PMCID: PMC8251769 DOI: 10.1002/cmdc.202000994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/05/2023]
Abstract
Microbial infections are a significant threat to public health, and resistance is on the rise, so new antibiotics with novel modes of action are urgently needed. The extracellular zinc metalloprotease collagenase H (ColH) from Clostridium histolyticum is a virulence factor that catalyses tissue damage, leading to improved host invasion and colonisation. Besides the major role of ColH in pathogenicity, its extracellular localisation makes it a highly attractive target for the development of new antivirulence agents. Previously, we had found that a highly selective and potent thiol prodrug (with a hydrolytically cleavable thiocarbamate unit) provided efficient ColH inhibition. We now report the synthesis and biological evaluation of a range of zinc-binding group (ZBG) variants of this thiol-derived inhibitor, with the mercapto unit being replaced by other zinc ligands. Among these, an analogue with a phosphonate motif as ZBG showed promising activity against ColH, an improved selectivity profile, and significantly higher stability than the thiol reference compound, thus making it an attractive candidate for future drug development.
Collapse
Affiliation(s)
- Katrin Voos
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Esther Schönauer
- Department of Biosciences andChristian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationDivision of Structural BiologyUniversity of SalzburgBillrothstrasse 115020SalzburgAustria
| | - Alaa Alhayek
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Jörg Haupenthal
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
| | - Anastasia Andreas
- Department of Microbial Natural ProductsHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Rolf Müller
- Department of Microbial Natural ProductsHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Hans Brandstetter
- Department of Biosciences andChristian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationDivision of Structural BiologyUniversity of SalzburgBillrothstrasse 115020SalzburgAustria
| | - Anna K. H. Hirsch
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Christian Ducho
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| |
Collapse
|
57
|
Khan MUZ, Humza M, Yang S, Alvi MA, Iqbal MZ, Zain-ul-Fatima H, Khalid S, Munir T, Cai J. Occurrence and Toxicogenetic Profiling of Clostridium perfringens in Buffalo and Cattle: An Update from Pakistan. Toxins (Basel) 2021; 13:toxins13030212. [PMID: 33805744 PMCID: PMC7999003 DOI: 10.3390/toxins13030212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens is a Gram-positive bacterium that possess seven toxinotypes (A, B, C, D, E, F, and G) that are responsible for the production of six major toxins, i.e., α, β, ε, ι, CPE, and NetB. The aim of this study is to find out the occurrence of toxinotypes in buffalo and cattle of Punjab province in Pakistan and their corresponding toxin-encoding genes from the isolated toxinotypes. To accomplish this aim, six districts in Punjab province were selected (i.e., Lahore, Sahiwal, Cheecha Watni, Bhakkar, Dera Ghazi Khan, and Bahawalpur) and a total of 240 buffalo and 240 cattle were selected for the collection of samples. From isolation and molecular analysis (16S rRNA), it was observed that out of seven toxinotypes (A–G), two toxinotypes (A and D) were found at most, whereas other toxinotypes, i.e., B, C, E, F, and G, were not found. The most frequently occurring toxinotype was type A (buffalo: 149/240; cattle: 157/240) whereas type D (buffalo: 8/240 cattle: 7/240) was found to occur the least. Genes encoding toxinotypes A and D were cpa and etx, respectively, whereas genes encoding other toxinotypes were not observed. The occurrence of isolated toxinotypes was studied using response surface methodology, which suggested a considerable occurrence of the isolated toxinotypes (A and D) in both buffalo and cattle. Association between type A and type D was found to be significant among the isolated toxinotypes in both buffalo and cattle (p ≤ 0.05). Correlation was also found to be positive and significant between type A and type D. C. perfringens exhibits a range of toxinotypes that can be diagnosed via genotyping, which is more reliable than classical toxinotyping.
Collapse
Affiliation(s)
- Muhammad Umar Zafar Khan
- State Key Laboratory of Veterinary Etological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.U.Z.K.); (S.Y.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Humza
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shunli Yang
- State Key Laboratory of Veterinary Etological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.U.Z.K.); (S.Y.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Muhammad Zahid Iqbal
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Outfall Road, Lahore 54000, Pakistan;
| | - Hafiza Zain-ul-Fatima
- Veterinary Research Institute, Zarrar Shaheed Road, Lahore Cantt., Lahore 54810, Pakistan;
| | - Shumaila Khalid
- Department of Livestock and Dairy Development, Lahore 54000, Pakistan; (S.K.); (T.M.)
| | - Tahir Munir
- Department of Livestock and Dairy Development, Lahore 54000, Pakistan; (S.K.); (T.M.)
| | - Jianping Cai
- State Key Laboratory of Veterinary Etological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.U.Z.K.); (S.Y.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
58
|
Biochemical characterisation of a collagenase from Bacillus cereus strain Q1. Sci Rep 2021; 11:4187. [PMID: 33603127 PMCID: PMC7893005 DOI: 10.1038/s41598-021-83744-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/04/2021] [Indexed: 12/01/2022] Open
Abstract
Collagen is the most abundant protein in higher animals and as such it is a valuable source of amino acids and carbon for saprophytic bacteria. Due to its unique amino acid composition and triple-helical tertiary structure it can however only be cleaved by specialized proteases like the collagenases secreted by some bacteria. Among the best described bacterial collagenases are ColG and ColH from Clostridium histolyticum. Many Bacillus species contain homologues of clostridial collagenases, which play a role in some infections caused by B. cereus. Detailed biochemical and enzymatic characterizations of bacillial collagenases are however lacking at this time. In an effort to close this gap in knowledge we expressed ColQ1 from B. cereus strain Q1 recombinantly, investigated its metal dependency and performed peptide, gelatin and collagen degradation assays. Our results show that ColQ1 is a true collagenase, cleaving natively folded collagen six times more efficiently than ColG while at the same time being a similarly effective peptidase as ColH. In both ColQ1 and ColG the rate-limiting step in collagenolysis is the unwinding of the triple-helix. The data suggest an orchestrated multi-domain mechanism for efficient helicase activity.
Collapse
|
59
|
Owens LA, Colitti B, Hirji I, Pizarro A, Jaffe JE, Moittié S, Bishop-Lilly KA, Estrella LA, Voegtly LJ, Kuhn JH, Suen G, Deblois CL, Dunn CD, Juan-Sallés C, Goldberg TL. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat Commun 2021; 12:763. [PMID: 33536429 PMCID: PMC7859188 DOI: 10.1038/s41467-021-21012-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Human and animal infections with bacteria of the genus Sarcina (family Clostridiaceae) are associated with gastric dilation and emphysematous gastritis. However, the potential roles of sarcinae as commensals or pathogens remain unclear. Here, we investigate a lethal disease of unknown etiology that affects sanctuary chimpanzees (Pan troglodytes verus) in Sierra Leone. The disease, which we have named "epizootic neurologic and gastroenteric syndrome" (ENGS), is characterized by neurologic and gastrointestinal signs and results in death of the animals, even after medical treatment. Using a case-control study design, we show that ENGS is strongly associated with Sarcina infection. The microorganism is distinct from Sarcina ventriculi and other known members of its genus, based on bacterial morphology and growth characteristics. Whole-genome sequencing confirms this distinction and reveals the presence of genetic features that may account for the unusual virulence of the bacterium. Therefore, we propose that this organism be considered the representative of a new species, named "Candidatus Sarcina troglodytae". Our results suggest that a heretofore unrecognized complex of related sarcinae likely exists, some of which may be highly virulent. However, the potential role of "Ca. S. troglodytae" in the etiology of ENGS, alone or in combination with other factors, remains a topic for future research.
Collapse
Affiliation(s)
- Leah A Owens
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara Colitti
- Department of Veterinary Science, University of Torino, Torino, Italy
| | - Ismail Hirji
- Tacugama Chimpanzee Sanctuary, Freetown, Sierra Leone
| | | | - Jenny E Jaffe
- Tai Chimpanzee Project, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Sophie Moittié
- School of Veterinary Medicine and Sciences, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
- Twycross Zoo, Atherstone, UK
| | - Kimberly A Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
| | - Luis A Estrella
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
| | - Logan J Voegtly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
- Leidos, Reston, VI, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher D Dunn
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
60
|
Zgheib H, Belguesmia Y, Boukherroub R, Drider D. Alginate Nanoparticles Enhance Anti-Clostridium perfringens Activity of the Leaderless Two-Peptide Enterocin DD14 and Affect Expression of Some Virulence Factors. Probiotics Antimicrob Proteins 2021; 13:1213-1227. [PMID: 33481224 DOI: 10.1007/s12602-020-09730-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Here, we report a novel approach to improve the anti-Clostridium perfringens activity of the leaderless two-peptide enterocin 14 (EntDD14), produced by Enterococcus faecalis 14. This strategy consists of loading EntDD14 onto alginate nanoparticles (Alg NPs), which are made of a safe polymer. The resulting formulation (EntDD14/Alg NPs) was able to reduce up to four times the minimum inhibitory concentration (MIC) of EntDD14 against C. perfringens pathogenic strains isolated from a chicken affected by necrotic enteritis (NE). Interestingly, this formulation remained active under conditions mimicking the human and chicken gastric tract. Assays conducted to establish the impact of this formulation on the intestinal epithelial cell line Caco-2 and the human colorectal adenocarcinoma cell line HT29 revealed the absence of cytotoxicity of both free-EntDD14 and EntDD14 loaded onto the alginate nanoparticles (EntDD14/Alg NPs) against the aforementioned eukaryotic cells, after 24 h of contact. Notably, EntDD14 and EntDD14/Alg NPs, both at a sub-inhibitory concentration, affected the expression of genes coding for clostridial toxins such as toxin α, enteritis B-like toxin, collagen adhesion protein and thiol-activated cytolysin. Further, expression of these genes was significantly down-regulated following the addition of EntDD14/Alg NPs, but not affected upon addition of EntDD14 alone. This study revealed that adsorption of EntDD14 onto Alg NPs leads to a safe and active formulation (EntDD14/Alg NPs) capable of affecting the pathogenicity of C. perfringens. This formulation could therefore be used in the poultry industry as a novel approach to tackle NE.
Collapse
Affiliation(s)
- Hassan Zgheib
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France. UMR, 8520 - IEMN, 59000, Lille, France
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France. UMR, 8520 - IEMN, 59000, Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| |
Collapse
|
61
|
KOJIMA K, CHAMBERS JK, ISHII A, SEGAWA K, UCHIDA K. Pathological features of hepatic portal venous gas in a cat. J Vet Med Sci 2021; 84:213-217. [PMID: 34955462 PMCID: PMC8920730 DOI: 10.1292/jvms.21-0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An 8-year 8-month-old castrated male Munchkin presented with vomiting, anorexia and
hypoactivity. Computed tomography revealed excessive gas accumulation within the
intestinal lumen and gas bubbles in the liver, spleen, and portal venous system,
indicating hepatic portal venous gas. The cat died without any significant improvement,
and mild splenomegaly was found at necropsy. Histologically, multiple gas vacuoles were
diffusely observed in the liver and spleen. In the stomach, multiple gas vacuoles and
scattered focal ulcers were detected within the mucosa. Multifocal hemorrhage was noted in
the small and large intestines, whereas gas vacuoles were not present. Based on these
findings, a gastric ulcer under high gas pressure may have provided an entry point for gas
into the portal venous system.
Collapse
Affiliation(s)
- Kazuhiro KOJIMA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - James K. CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | | | | | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
62
|
Diseases of the hematologic, immunologic, and lymphatic systems (multisystem diseases). SHEEP, GOAT, AND CERVID MEDICINE 2021. [PMCID: PMC7169350 DOI: 10.1016/b978-0-323-62463-3.00025-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Eckhard U, Blöchl C, Jenkins BGL, Mansfield MJ, Huber CG, Doxey AC, Brandstetter H. Identification and characterization of the proteolytic flagellin from the common freshwater bacterium Hylemonella gracilis. Sci Rep 2020; 10:19052. [PMID: 33149258 PMCID: PMC7643111 DOI: 10.1038/s41598-020-76010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Flagellins are the protein components of bacterial flagella and assemble in up to 20,000 copies to form extracellular flagellar filaments. An unusual family of flagellins was recently discovered that contains a unique metalloprotease domain within its surface-exposed hypervariable region. To date, these proteolytic flagellins (also termed flagellinolysins) have only been characterized in the Gram-positive organism Clostridium haemolyticum, where flagellinolysin was shown to be proteolytically active and capable of cleaving extracellular protein substrates. The biological function of flagellinolysin and its activity in other organisms, however, remain unclear. Here, using molecular biochemistry and proteomics, we have performed an initial characterization of a novel flagellinolysin identified from Hylemonella gracilis, a Gram-negative organism originally isolated from pond water. We demonstrate that H. gracilis flagellinolysin (HgrFlaMP) is an active calcium-dependent zinc metallopeptidase and characterize its cleavage specificity profile using both trypsin and GluC-derived peptide libraries and protein substrates. Based on high-throughput degradomic assays, HgrFlaMP cleaved 784 unique peptides and displayed a cleavage site specificity similar to flagellinolysin from C. haemolyticum. Additionally, by using a set of six protein substrates, we identified 206 protein-embedded cleavage sites, further refining the substrate preference of HgrFlaMP, which is dominated by large hydrophobic amino acids in P1', and small hydrophobic or medium-sized polar residues on the amino-terminal side of the scissile bond. Intriguingly, recombinant HgrFlaMP was also capable of cleaving full-length flagellins from another species, suggesting its potential involvement in interbacterial interactions. Our study reports the first experimentally characterized proteolytic flagellin in a Gram-negative organism, and provides new insights into flagellum-mediated enzymatic activity.
Collapse
Affiliation(s)
- Ulrich Eckhard
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria. .,Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac, 15-21, 08028, Barcelona, Catalonia, Spain.
| | - Constantin Blöchl
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Benjamin G L Jenkins
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Michael J Mansfield
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada.,Genomics and Regulatory Sytems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Christian G Huber
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada.
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
64
|
Leiblein M, Wagner N, Adam EH, Frank J, Marzi I, Nau C. Clostridial Gas Gangrene - A Rare but Deadly Infection: Case series and Comparison to Other Necrotizing Soft Tissue Infections. Orthop Surg 2020; 12:1733-1747. [PMID: 33015993 PMCID: PMC7767692 DOI: 10.1111/os.12804] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Clostridial gas gangrene (GG) or clostridial myonecrosis is a very rare but life‐threatening necrotizing soft tissue infection (NSTI) caused by anaerobic, spore‐forming, and gas‐producing clostridium subspecies. It is the most rapidly spreading and lethal infection in humans, also affecting muscle tissue. The high mortality, of up to 100%, in clostridial GG is mediated by potent bacterial exotoxins. Necrotizing fasciitis (NF) is an important differential diagnosis, most often caused by group A streptococci, primarily not affecting musculature but the subcutaneous tissue and fascia. In the early stages of the infection, it is difficult to distinguish between GG and NF. Therefore, we compare both infection types, identify relevant differences in initial clinical presentation and later course, and present the results of our patients in a retrospective review. Methods Patients diagnosed with GG from 2008 to 2018 in our level one trauma center were identified. Their charts were reviewed retrospectively and data analyzed in terms of demographic information, microbiological and histological results, therapeutic course, outcome, and mortality rates. The laboratory risk indicator for NF (LRINEC) score was applied on the first blood work acquired. Results were compared to those of a second group diagnosed with NF. Results Five patients with GG and nine patients with NF were included in the present study. Patients with GG had a mortality rate of 80% compared to 0% in patients with NF. In eight patients with NF, affected limbs could be salvaged; one NF underwent amputation. LRINEC did not show significant differences between the groups; however, C‐reactive protein was significantly increased (P = 0.009) and hemoglobin (Hb) was significantly decreased (P = 0.02) in patients with GG. Interleukin‐6 and procalcitonin levels did not show significant difference. Patients with GG were older (70.2 vs 50 years). Of the isolated bacteria, 86% were sensitive to the initial calculated antibiotic treatment with ampicillin‐sulbactam or imipenem plus metronidazole plus clindamycin. Conclusion Both GG and NF need full‐scale surgical, antibiotic, and intensive care treatment, especially within the first days. Among patients with NSTI, those with clostridial GG have a significantly increased mortality risk due to early septic shock caused by clostridial toxins. In the initial stages, clinical differences are hardly detectable. Immediate surgical debridement is the key to successful therapy for NSTI and needs to be performed as early as possible. However, patients should be treated in a center with an experienced interdisciplinary intensive care team based on a predetermined treatment plan.
Collapse
Affiliation(s)
- Maximilian Leiblein
- Department of Trauma, Hand, and Reconstructive Surgery, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Nils Wagner
- Department of Trauma, Hand, and Reconstructive Surgery, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Elisabeth H Adam
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Johannes Frank
- Department of Trauma, Hand, and Reconstructive Surgery, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand, and Reconstructive Surgery, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Nau
- Department of Trauma, Hand, and Reconstructive Surgery, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
65
|
Brunt J, van Vliet AHM, Carter AT, Stringer SC, Amar C, Grant KA, Godbole G, Peck MW. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins (Basel) 2020; 12:toxins12090586. [PMID: 32932818 PMCID: PMC7551954 DOI: 10.3390/toxins12090586] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Clostridium botulinum Group I and Clostridium sporogenes are closely related bacteria responsible for foodborne, infant and wound botulism. A comparative genomic study with 556 highly diverse strains of C. botulinum Group I and C. sporogenes (including 417 newly sequenced strains) has been carried out to characterise the genetic diversity and spread of these bacteria and their neurotoxin genes. Core genome single-nucleotide polymorphism (SNP) analysis revealed two major lineages; C. botulinum Group I (most strains possessed botulinum neurotoxin gene(s) of types A, B and/or F) and C. sporogenes (some strains possessed a type B botulinum neurotoxin gene). Both lineages contained strains responsible for foodborne, infant and wound botulism. A new C. sporogenes cluster was identified that included five strains with a gene encoding botulinum neurotoxin sub-type B1. There was significant evidence of horizontal transfer of botulinum neurotoxin genes between distantly related bacteria. Population structure/diversity have been characterised, and novel associations discovered between whole genome lineage, botulinum neurotoxin sub-type variant, epidemiological links to foodborne, infant and wound botulism, and geographic origin. The impact of genomic and physiological variability on the botulism risk has been assessed. The genome sequences are a valuable resource for future research (e.g., pathogen biology, evolution of C. botulinum and its neurotoxin genes, improved pathogen detection and discrimination), and support enhanced risk assessments and the prevention of botulism.
Collapse
Affiliation(s)
- Jason Brunt
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
- Correspondence: (J.B.); (M.W.P.)
| | - Arnoud H. M. van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK;
| | - Andrew T. Carter
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
| | - Sandra C. Stringer
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
| | - Corinne Amar
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Kathie A. Grant
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Gauri Godbole
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Michael W. Peck
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
- Correspondence: (J.B.); (M.W.P.)
| |
Collapse
|
66
|
Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020; 12:toxins12090531. [PMID: 32825096 PMCID: PMC7551085 DOI: 10.3390/toxins12090531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it. This review highlights host responses to CDC pathogenesis with a focus on macrophages. Due to their robust plasticity, macrophages play key roles in the outcome of bacterial infections. Understanding the unique features and differences within the common theme of CDCs bolsters new tools for research and therapy.
Collapse
|
67
|
Fairmont I, Winkler A. Novel Cosmetic Uses of Botulinum Toxin in the Head and Neck. CURRENT OTORHINOLARYNGOLOGY REPORTS 2020. [DOI: 10.1007/s40136-020-00309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
68
|
Konstantinović J, Yahiaoui S, Alhayek A, Haupenthal J, Schönauer E, Andreas A, Kany AM, Müller R, Koehnke J, Berger FK, Bischoff M, Hartmann RW, Brandstetter H, Hirsch AKH. N-Aryl-3-mercaptosuccinimides as Antivirulence Agents Targeting Pseudomonas aeruginosa Elastase and Clostridium Collagenases. J Med Chem 2020; 63:8359-8368. [PMID: 32470298 PMCID: PMC7429951 DOI: 10.1021/acs.jmedchem.0c00584] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
In light of the global
antimicrobial-resistance crisis, there is
an urgent need for novel bacterial targets and antibiotics with novel
modes of action. It has been shown that Pseudomonas aeruginosa elastase (LasB) and Clostridium histolyticum (Hathewaya histolytica) collagenase (ColH) play a significant
role in the infection process and thereby represent promising antivirulence
targets. Here, we report novel N-aryl-3-mercaptosuccinimide
inhibitors that target both LasB and ColH, displaying potent activities in vitro and high selectivity for the bacterial over human
metalloproteases. Additionally, the inhibitors demonstrate no signs
of cytotoxicity against selected human cell lines and in a zebrafish
embryo toxicity model. Furthermore, the most active ColH inhibitor
shows a significant reduction of collagen degradation in an ex vivo pig-skin model.
Collapse
Affiliation(s)
- Jelena Konstantinović
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Alaa Alhayek
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Anastasia Andreas
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Andreas M Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Fabian K Berger
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg/Saar, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg/Saar, Germany
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Anna K H Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
69
|
Rius-Rocabert S, Llinares Pinel F, Pozuelo MJ, García A, Nistal-Villan E. Oncolytic bacteria: past, present and future. FEMS Microbiol Lett 2020; 366:5521890. [PMID: 31226708 DOI: 10.1093/femsle/fnz136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
More than a century ago, independent groups raised the possibility of using bacteria to selectively infect tumours. Such treatment induces an immune reaction that can cause tumour rejection and protect the patient against further recurrences. One of the first holistic approximations to use bacteria in cancer treatment was performed by William Coley, considered the father of immune-therapy, at the end of XIX century. Since then, many groups have used different bacteria to test their antitumour activity in animal models and patients. The basis for this reactivity implies that innate immune responses activated upon bacteria recognition, also react against the tumour. Different publications have addressed several aspects of oncolytic bacteria. In the present review, we will focus on revisiting the historical aspects using bacteria as oncolytic agents and how they led to the current clinical trials. In addition, we address the molecules present in oncolytic bacteria that induce specific toxic effects against the tumors as well as the activation of host immune responses in order to trigger antitumour immunity. Finally, we discuss future perspectives that could be considered in the different fields implicated in the implementation of this kind of therapy in order to improve the current use of bacteria as oncolytic agents.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Francisco Llinares Pinel
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Maria Jose Pozuelo
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Faculty of Pharmacy, San Pablo-CEU University, Boadilla del Monte, E-28668 Madrid, Spain
| | - Estanislao Nistal-Villan
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| |
Collapse
|
70
|
Brunt J, van Vliet AHM, Stringer SC, Carter AT, Lindström M, Peck MW. Pan-Genomic Analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) Associated with Foodborne Botulism and Isolated from the Environment. Toxins (Basel) 2020; 12:E306. [PMID: 32397147 PMCID: PMC7291236 DOI: 10.3390/toxins12050306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
The neurotoxin formed by Clostridium botulinum Group II is a major cause of foodborne botulism, a deadly intoxication. This study aims to understand the genetic diversity and spread of C. botulinum Group II strains and their neurotoxin genes. A comparative genomic study has been conducted with 208 highly diverse C. botulinum Group II strains (180 newly sequenced strains isolated from 16 countries over 80 years, 28 sequences from Genbank). Strains possessed a single type B, E, or F neurotoxin gene or were closely related strains with no neurotoxin gene. Botulinum neurotoxin subtype variants (including novel variants) with a unique amino acid sequence were identified. Core genome single-nucleotide polymorphism (SNP) analysis identified two major lineages-one with type E strains, and the second dominated by subtype B4 strains with subtype F6 strains. This study revealed novel details of population structure/diversity and established relationships between whole-genome lineage, botulinum neurotoxin subtype variant, association with foodborne botulism, epidemiology, and geographical source. Additionally, the genome sequences represent a valuable resource for the research community (e.g., understanding evolution of C. botulinum and its neurotoxin genes, dissecting key aspects of C. botulinum Group II biology). This may contribute to improved risk assessments and the prevention of foodborne botulism.
Collapse
Affiliation(s)
- Jason Brunt
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Arnoud H. M. van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK;
| | - Sandra C. Stringer
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Andrew T. Carter
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Michael W. Peck
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| |
Collapse
|
71
|
Ameliorative Effects of Antibiotic-, Probiotic- and Phytobiotic-Supplemented Diets on the Performance, Intestinal Health, Carcass Traits, and Meat Quality of Clostridium perfringens-Infected Broilers. Animals (Basel) 2020; 10:ani10040669. [PMID: 32290578 PMCID: PMC7222811 DOI: 10.3390/ani10040669] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Necrotic enteritis is considered the most important economic problem for the poultry industry due to the sudden death rates of up to 50%. However, there is limited information concerning the ameliorative role of probiotic and/or phytobiotic compounds in the prevention of Clostridium perfringens infections in broilers. Hence, this trial is conducted to evaluate the influence of some antibiotic, probiotic and phytobiotic compounds (Maxus, CloStat, Sangrovit Extra, CloStat + Sangrovit Extra, and Gallipro Tect) on the growth performance, carcass traits, intestinal health, and meat quality of broiler chicks. The obtained in vivo results highlight that a probiotic- and/or phytobiotic-supplemented diet has many positive effects on the performance, organ weight, and meat quality of broilers. Besides, a notable reduction in the lesion score is observed with a combined probiotic and phytobiotic diet. Abstract The poultry industry needs efficient antibiotic alternatives to prevent necrotic enteritis (NE) infections. Here, we evaluate the effects of probiotic and/or prebiotic dietary supplementation on performance, meat quality and carcass traits, using only an NE coinfection model, in broiler chickens. Three hundred and twenty-four healthy Ross 308 broiler chicks are allocated into six groups. Taking a 35 d feeding trial, the chicks are fed a basal diet with 0.0, 0.1, 0.5, 0.12, 0.5 + 0.12, and 0.2 g Kg−1 for the control (T1), Avilamycin (Maxus; T2), live probiotic (CloStat (Bacillus subtilis);T3), natural phytobiotic compounds (Sangrovit Extra (sanguinarine and protopine); T4), CloStat + Sangrovit Extra (T5), and spore probiotic strain (Gallipro Tect (Bacillus subtilis spores); T6) treatments, respectively. Occurring at 15 days-old, chicks are inoculated with Clostridium perfringens. The obtained results reveal that all feed additives improve the performance, feed efficiency, and survival rate, and reduces the intestinal lesions score compared with the control group. The T6 followed by T3 groups show a significant (p < 0.05) increase in some carcass traits, such as dressing, spleen, and thymus percentages compared with other treatments. Also, T5 and T6 have significantly recorded the lowest temperature and pHu values and the highest hardness and chewiness texture values compared to the other treated groups. To conclude, probiotics combined with prebiotic supplementation improves the growth, meat quality, carcass characterization and survival rate of NE-infected broiler chickens by modulating gut health conditions and decreasing lesion scores. Moreover, it could be useful as an ameliorated NE disease alternative to antibiotics in C. perfringens coinfected poultry.
Collapse
|
72
|
Abstract
Clostridia can cause hepatic damage in domestic livestock, and wild and laboratory animals. Clostridium novyi type B causes infectious necrotic hepatitis (INH) in sheep and less frequently in other species. Spores of C. novyi type B can be present in soil; after ingestion, they reach the liver via portal circulation where they persist in phagocytic cells. Following liver damage, frequently caused by migrating parasites, local anaerobic conditions allow germination of the clostridial spores and production of toxins. C. novyi type B alpha toxin causes necrotizing hepatitis and extensive edema, congestion, and hemorrhage in multiple organs. Clostridium haemolyticum causes bacillary hemoglobinuria (BH) in cattle, sheep, and rarely, horses. Beta toxin is the main virulence factor of C. haemolyticum, causing hepatic necrosis and hemolysis. Clostridium piliforme, the causal agent of Tyzzer disease (TD), is the only gram-negative and obligate intracellular pathogenic clostridia. TD occurs in multiple species, but it is more frequent in foals, lagomorphs, and laboratory animals. The mode of transmission is fecal-oral, with ingestion of spores from a fecal-contaminated environment. In affected animals, C. piliforme proliferates in the intestinal mucosa, resulting in necrosis, and then disseminates to the liver and other organs. Virulence factors for this microorganism have not been identified, to date. Given the peracute or acute nature of clostridial hepatitis in animals, treatment is rarely effective. However, INH and BH can be prevented, and should be controlled by vaccination and control of liver flukes. To date, no vaccine is available to prevent TD.
Collapse
Affiliation(s)
- Mauricio A Navarro
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA (Navarro, Uzal)
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA (Navarro, Uzal)
| |
Collapse
|
73
|
Junior CAO, Silva ROS, Lobato FCF, Navarro MA, Uzal FA. Gas gangrene in mammals: a review. J Vet Diagn Invest 2020; 32:175-183. [PMID: 32081096 DOI: 10.1177/1040638720905830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gas gangrene is a necrotizing infection of subcutaneous tissue and muscle that affects mainly ruminants and horses, but also other domestic and wild mammals. Clostridium chauvoei, C. septicum, C. novyi type A, C. perfringens type A, and C. sordellii are the etiologic agents of this disease, acting singly or in combination. Although a presumptive diagnosis of gas gangrene can be established based on clinical history, clinical signs, and gross and microscopic changes, identification of the clostridia involved is required for confirmatory diagnosis. Gross and microscopic lesions are, however, highly suggestive of the disease. Although the disease has a worldwide distribution and can cause significant economic losses, the literature is limited mostly to case reports. Thus, we have reviewed the current knowledge of gas gangrene in mammals.
Collapse
Affiliation(s)
- Carlos A Oliveira Junior
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Rodrigo O S Silva
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Francisco C F Lobato
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Mauricio A Navarro
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| | - Francisco A Uzal
- Veterinary School, Federal University of Minas Gerais, Brazil (Oliveira Junior, Silva, Lobato).,California Animal Health and Food Safety Laboratory, University of California, Davis, CA (Navarro, Uzal)
| |
Collapse
|
74
|
Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G, Nielsen LK, Marcellin E. Revisiting the Evolution and Taxonomy of Clostridia, a Phylogenomic Update. Genome Biol Evol 2020; 11:2035-2044. [PMID: 31076745 PMCID: PMC6656338 DOI: 10.1093/gbe/evz096] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 12/28/2022] Open
Abstract
Clostridium is a large genus of obligate anaerobes belonging to the Firmicutes phylum of bacteria, most of which have a Gram-positive cell wall structure. The genus includes significant human and animal pathogens, causative of potentially deadly diseases such as tetanus and botulism. Despite their relevance and many studies suggesting that they are not a monophyletic group, the taxonomy of the group has largely been neglected. Currently, species belonging to the genus are placed in the unnatural order defined as Clostridiales, which includes the class Clostridia. Here, we used genomic data from 779 strains to study the taxonomy and evolution of the group. This analysis allowed us to 1) confirm that the group is composed of more than one genus, 2) detect major differences between pathogens classified as a single species within the group of authentic Clostridium spp. (sensu stricto), 3) identify inconsistencies between taxonomy and toxin evolution that reflect on the pervasive misclassification of strains, and 4) identify differential traits within central metabolism of members of what has been defined earlier and confirmed by us as cluster I. Our analysis shows that the current taxonomic classification of Clostridium species hinders the prediction of functions and traits, suggests a new classification for this fascinating class of bacteria, and highlights the importance of phylogenomics for taxonomic studies.
Collapse
Affiliation(s)
- Pablo Cruz-Morales
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia.,Joint BioEnergy Institute, Emeryville, CA
| | - Camila A Orellana
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | | | | | | | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| |
Collapse
|
75
|
|
76
|
Wang YH. Sialidases From Clostridium perfringens and Their Inhibitors. Front Cell Infect Microbiol 2020; 9:462. [PMID: 31998664 PMCID: PMC6966327 DOI: 10.3389/fcimb.2019.00462] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Clostridium perfringens is an important human and animal pathogen that is the primary causative agent of necrotizing enteritis and enterotoxemia in many types of animals; it causes traumatic gas gangrene in humans and animals and is associated with cases of food poisoning in humans. C. perfringens produces a variety of toxins as well as many enzymes, including three sialidases, NanH, NanI, and NanJ. Sialidases could be important virulence factors that promote the pathogenesis of C. perfringens. Among them, NanI promotes the colonization of C. perfringens in the intestinal tract and enhances the cytotoxic activity and association of several major C. perfringens toxins with host cells. In recent years, studies on the structure and functions of sialidases have yielded interesting results, and the functions of sialic acid and sialidases in bacterial pathogenesis have become a hot research topic. An in-depth understanding and additional studies of sialidases will further elucidate mechanisms of C. perfringens pathogenesis and could promote the development and clinical applications of sialidase inhibitors. This article reviews the structural characteristics, expression regulation, roles of sialidases in C. perfringens pathogenesis, and effects of their inhibitors.
Collapse
Affiliation(s)
- Yan-Hua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
77
|
Ghimire TR, Regmi GR, Huettmann F. When Micro Drives the Macro: A Fresh Look at Disease and its Massive Contributions in the Hindu Kush-Himalaya. HINDU KUSH-HIMALAYA WATERSHEDS DOWNHILL: LANDSCAPE ECOLOGY AND CONSERVATION PERSPECTIVES 2020. [PMCID: PMC7197387 DOI: 10.1007/978-3-030-36275-1_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outbreaks of emerging and reemerging diseases have a high impact on the human and animal health because they are the underlying causes of disability, death, and long-term illness. For many regions those details are not, or just poorly known. Here we present on the morbidity and mortality in faunal diversities including domestic and wild species caused by various viral, bacterial, parasitic, and fungal diseases prevalent in Nepal and relevant for the wider Hindu Kush Himalaya. In addition, we provide details how antibiotic resistivity, vectors, and zoonosis have resulted on a landscape-scale in the huge public and veterinary health problem has been dealt with in the context of Nepal and the wider region.
Collapse
|
78
|
Peng X, Peng G, Li X, Feng L, Dong L, Jiang Y. Immunization of rabbits with recombinant Clostridium perfringens alpha toxins CPA-C and CTB-CPA-C in a bicistronic design expression system confers strong protection against challenge. Protein Expr Purif 2019; 167:105550. [PMID: 31811913 DOI: 10.1016/j.pep.2019.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
The Clostridium perfringens alpha toxin (CPA), encoded by the plc gene, is the causative pathogen of gas gangrene, which is a lethal infection. In this study, we used an E. coli system for the efficient production of recombinant proteins and developed a bicistronic design (BCD) expression construct consisting of two copies of the C-terminal (247-370) domain of the alpha toxin (CPA-C) in the first cistron, followed by Cholera Toxin B (CTB) linked with another two copies of CPA-C in the second cistron that is controlled by a single promoter. Rabbits were immunized twice with purified proteins (rCPA-C rCTB-CPA-C) produced in the BCD expression system, with an inactivated recombinant E. coli vaccine (RE), C. perfringens formaldehyde-inactivated alpha toxoid (FA-CPA) and C. perfringensl-lysine/formaldehyde alpha toxoid (LF-CPA) vaccines. Following the second vaccination, 0.1 mL of pooled sera of the RE-vaccinated rabbits could neutralize 12× mouse LD100 (100% lethal dose) of CPA, while that of the rCPA-C rCTB-CPA-C-vaccinated rabbits could neutralize 6× mouse LD100 of CPA. Antibody titers against CPA were also assessed by ELISA, reaching titers as high as 1:2048000 in the RE group; this was significantly higher compared to the C. perfringens alpha toxoid vaccinated groups (FA-CPA and LF-CPA). Rabbits from all vaccinated groups were completely protected from a 2× rabbit LD100 of CPA challenge. These results demonstrate that the recombinant proteins are able to induce a strong immune responses, indicating that they may be potentially utilized as targets for novel vaccines specifically against the C. perfringens alpha toxin.
Collapse
Affiliation(s)
- Xiaobing Peng
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China.
| | - Guorui Peng
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Xuni Li
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Lifang Feng
- Good Clinical Practice Office, Beijing Zhonghai Biotech Co., Ltd, Beijing, China
| | - Lingying Dong
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Yuwen Jiang
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
79
|
Sárvári KP, Schoblocher D. The antibiotic susceptibility pattern of gas gangrene-forming Clostridium spp. clinical isolates from South-Eastern Hungary. Infect Dis (Lond) 2019; 52:196-201. [DOI: 10.1080/23744235.2019.1696472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
80
|
Linden JR, Flores C, Schmidt EF, Uzal FA, Michel AO, Valenzuela M, Dobrow S, Vartanian T. Clostridium perfringens epsilon toxin induces blood brain barrier permeability via caveolae-dependent transcytosis and requires expression of MAL. PLoS Pathog 2019; 15:e1008014. [PMID: 31703116 PMCID: PMC6867657 DOI: 10.1371/journal.ppat.1008014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/20/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is responsible for causing the economically devastating disease, enterotoxaemia, in livestock. It is well accepted that ETX causes blood brain barrier (BBB) permeability, however the mechanisms involved in this process are not well understood. Using in vivo and in vitro methods, we determined that ETX causes BBB permeability in mice by increasing caveolae-dependent transcytosis in brain endothelial cells. When mice are intravenously injected with ETX, robust ETX binding is observed in the microvasculature of the central nervous system (CNS) with limited to no binding observed in the vasculature of peripheral organs, indicating that ETX specifically targets CNS endothelial cells. ETX binding to CNS microvasculature is dependent on MAL expression, as ETX binding to CNS microvasculature of MAL-deficient mice was not detected. ETX treatment also induces extravasation of molecular tracers including 376Da fluorescein salt, 60kDA serum albumin, 70kDa dextran, and 155kDA IgG. Importantly, ETX-induced BBB permeability requires expression of both MAL and caveolin-1, as mice deficient in MAL or caveolin-1 did not exhibit ETX-induced BBB permeability. Examination of primary murine brain endothelial cells revealed an increase in caveolae in ETX-treated cells, resulting in dynamin and lipid raft-dependent vacuolation without cell death. ETX-treatment also results in a rapid loss of EEA1 positive early endosomes and accumulation of large, RAB7-positive late endosomes and multivesicular bodies. Based on these results, we hypothesize that ETX binds to MAL on the apical surface of brain endothelial cells, causing recruitment of caveolin-1, triggering caveolae formation and internalization. Internalized caveolae fuse with early endosomes which traffic to late endosomes and multivesicular bodies. We believe that these multivesicular bodies fuse basally, releasing their contents into the brain parenchyma. Clostridium perfringens epsilon toxin (ETX) is an extremely lethal bacterial toxin known to cause a devastating disease in livestock animals and may be a possible cause of multiple sclerosis in humans. ETX is well known to cause disruption of the blood-brain barrier (BBB), a critical structure necessary for proper brain function. Deterioration of this barrier allows entry of toxic blood-borne material to enter the brain. Although ETX-induced BBB dysfunction is well accepted, how this happens is unknown. Here, we demonstrate that ETX causes BBB permeability by inducing formation of cell-surface invaginations called caveolae in endothelial cells, the cells that line blood vessels. Importantly, only endothelial cells from the brain and other central nervous system organs appear to be a target of ETX, as the toxin only binds to blood vessels in these organs and not blood vessels from other organs. These ETX-induced caveolae fuse with other caveolae and specialized intracellular vesicles called endosomes. We predict that these endosomes engulf blood-borne material during their internalization, allowing material to travel from the blood, through the cell, and into brain tissue. We also show that expression of the protein MAL and caveolin-1 is necessary for ETX-induced BBB permeability.
Collapse
Affiliation(s)
- Jennifer R. Linden
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Claudia Flores
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, New York, United States of America
| | - Francisco A. Uzal
- California Animal Health & Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, San Bernardino, California, United States of America
| | - Adam O. Michel
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, United States of America
| | - Marissa Valenzuela
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Sebastian Dobrow
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Timothy Vartanian
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
81
|
Xu J, Wang Y, Cui H, Chen J. Fatal Liver Infection Caused By Clostridium perfringens After Common Bile Duct Stenting Due To Pancreatic Cancer: A Case Report. Infect Drug Resist 2019; 12:3343-3347. [PMID: 31695453 PMCID: PMC6817490 DOI: 10.2147/idr.s219472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/13/2019] [Indexed: 11/23/2022] Open
Abstract
Background Intra-abdominal Clostridium perfringens, especially liver infection, is rare and fatal. It often occurs in patients with immunodeficiency due to various factors, such as cancer, diabetes mellitus, and organ transplantation. The identification of gram-positive bacilli in septicemia, the presence of gas-forming liver damage and intravascular hemolysis are manifestations of Clostridium perfringens infection. The episode deteriorates rapidly and has a high mortality rate. Case presentation This case involved a 60-year-old man with infection onset 2 weeks after common bile duct stenting for obstructive jaundice caused by unresectable pancreatic cancer. Abdominal computed tomography (CT) revealed gas-containing lesions in the liver. Blood culture showed Clostridium perfringens. Though aggressively rescued, he died within 24 hrs after admission. Conclusion Clostridium perfringens liver infection is rare but leads to a severe prognosis rapidly. High awareness of this condition is key for early diagnosis and effective treatment.
Collapse
Affiliation(s)
- Jingyong Xu
- Department of General Surgery, Beijing Hospital, National Centre of Gerontology, Beijing 100730, People's Republic of China
| | - Yanbin Wang
- Department of General Surgery, Beijing Aero Space General Hospital, Beijing 100076, People's Republic of China
| | - Hongyuan Cui
- Department of General Surgery, Beijing Hospital, National Centre of Gerontology, Beijing 100730, People's Republic of China
| | - Jian Chen
- Department of General Surgery, Beijing Hospital, National Centre of Gerontology, Beijing 100730, People's Republic of China
| |
Collapse
|
82
|
Wen Z, Lu M, Ledesma-Amaro R, Li Q, Jin M, Yang S. TargeTron Technology Applicable in Solventogenic Clostridia: Revisiting 12 Years' Advances. Biotechnol J 2019; 15:e1900284. [PMID: 31475782 DOI: 10.1002/biot.201900284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/20/2019] [Indexed: 12/11/2022]
Abstract
Clostridium has great potential in industrial application and medical research. But low DNA repair capacity and plasmids transformation efficiency severely delay development and application of genetic tools based on homologous recombination (HR). TargeTron is a gene editing technique dependent on the mobility of group II introns, rather than homologous recombination, which makes it very suitable for gene disruption of Clostridium. The application of TargeTron technology in solventogenic Clostridium is academically reported in 2007 and this tool has been introduced in various clostridia as it is easy to operate, time saving, and reliable. TargeTron has made great progress in solventogenic Clostridium in the aspects of acetone-butanol-ethanol (ABE) fermentation pathway modification, important functional genes identification, and xylose metabolic pathway analysis and reconstruction. In the review, 12 years' advances of TargeTron technology applicable in solventogenic Clostridium, including its principle, technical characteristics, application, and efforts to expand its capabilities, or to avoid potential drawbacks, are revisisted. Some other technologies as putative competitors or collaborators are also discussed. It is believed that TargeTron combined with CRISPR/Cas-assisted gene/base editing and gene-expression regulation system will make a better future for clostridial genetic modification.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | | | - Qi Li
- College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, 610101, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Zhejiang, 313000, China
| |
Collapse
|
83
|
Crippen TL, Sheffield CL, Singh B, Byrd JA, Beier RC. How Management Practices Within a Poultry House During Successive Flock Rotations Change the Structure of the Soil Microbiome. Front Microbiol 2019; 10:2100. [PMID: 31572320 PMCID: PMC6753631 DOI: 10.3389/fmicb.2019.02100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023] Open
Abstract
The microbiome within a poultry production house influences the attainment of physiologically strong birds and thus food safety and public health. Yet little is known about the microbial communities within the house and the effects on the soil microbes onto which the houses are placed; nor the effects of management practices on their equilibrium. This study looked at the soil bacterial microbiome before a broiler house was constructed, then through 11 flock rotations (2.5 years) that included a partial clean-out and a total clean-out within the management regimen. Major shifts were observed, occurring at the taxonomic class level, related to the introduction of bedding and birds on top of the soil. The partial clean-out of litter did not change the soil bacterial community in any substantial way, only prompting a temporary increase in some genera; however, the total litter clean-out caused a major increase in a cohort of Actinobacteria. The underlying soil contained bacteria beneficial for poultry metabolism, such as Lactobacillus, Faecalibacterium, Bacteriodes, and Ruminococcus. Additionally, management practices affected the class structure of the soil bacterial community beneath the poultry house. The scheduling of these practices should be leveraged to exploit maintenance of beneficial bacteria that maximize microbiome contributions to bird production processes, while minimizing possible antibiotic-resistant bacteria and environmental effects.
Collapse
Affiliation(s)
- Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Cynthia L. Sheffield
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Baneshwar Singh
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States
| | - J. Allen Byrd
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Ross C. Beier
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| |
Collapse
|
84
|
Zaragoza NE, Orellana CA, Moonen GA, Moutafis G, Marcellin E. Vaccine Production to Protect Animals Against Pathogenic Clostridia. Toxins (Basel) 2019; 11:E525. [PMID: 31514424 PMCID: PMC6783934 DOI: 10.3390/toxins11090525] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Clostridium is a broad genus of anaerobic, spore-forming, rod-shaped, Gram-positive bacteria that can be found in different environments all around the world. The genus includes human and animal pathogens that produce potent exotoxins that cause rapid and potentially fatal diseases responsible for countless human casualties and billion-dollar annual loss to the agricultural sector. Diseases include botulism, tetanus, enterotoxemia, gas gangrene, necrotic enteritis, pseudomembranous colitis, blackleg, and black disease, which are caused by pathogenic Clostridium. Due to their ability to sporulate, they cannot be eradicated from the environment. As such, immunization with toxoid or bacterin-toxoid vaccines is the only protective method against infection. Toxins recovered from Clostridium cultures are inactivated to form toxoids, which are then formulated into multivalent vaccines. This review discusses the toxins, diseases, and toxoid production processes of the most common pathogenic Clostridium species, including Clostridiumbotulinum, Clostridiumtetani, Clostridiumperfringens, Clostridiumchauvoei, Clostridiumsepticum, Clostridiumnovyi and Clostridiumhemolyticum.
Collapse
Affiliation(s)
- Nicolas E. Zaragoza
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (N.E.Z.); (C.A.O.)
| | - Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (N.E.Z.); (C.A.O.)
| | - Glenn A. Moonen
- Zoetis, 45 Poplar Road, Parkville VIC 3052, Australia; (G.A.M.); (G.M.)
| | - George Moutafis
- Zoetis, 45 Poplar Road, Parkville VIC 3052, Australia; (G.A.M.); (G.M.)
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (N.E.Z.); (C.A.O.)
| |
Collapse
|
85
|
Guan Z, Garrett TA, Goldfine H. Lipidomic Analysis of Clostridium cadaveris and Clostridium fallax. Lipids 2019; 54:423-431. [PMID: 31368115 PMCID: PMC6739832 DOI: 10.1002/lipd.12181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/06/2022]
Abstract
The lipidomes of Clostridium fallax and Clostridium cadaveris were studied using thin-layer chromatography (TLC) and normal phase liquid chromatography/mass spectrometry (NPLC/MS). Both species contain diradylglycerol (DRG), monohexosyldiradylglycerol (MHDRG), monohexosyl monoacylglycerol (MHMAG), phosphatidylglycerol (PtdGro), and phosphatidylethanolamine (PtdEtn). DRG, MHDRG, PtdEtn, and PtdGro are present in both diacyl and alk-1-enyl acyl (plasmalogen) forms. Both species contain cardiolipin (Ptd2 Gro), which is present in tetraacyl, monoalkenyl-triacyl, and dialkenyl-diacyl forms. Both species contain small amounts of phosphatidylcholine (PtdCho). The presence of octadecadienoic (18:2) acyl chains in some PtdCho species indicates that they arise from the medium because no 18:2 is seen in the other lipids and clostridia generally lack the capacity to synthesize polyunsaturated fatty acids. The major lipidomic differences between these two species are that C. fallax contains a glycerolacetal of plasmenylethanolamine while C. cadaveris contains an ethanolamine-phosphate-modified diacylglycerol. The significance of these lipid compositions is discussed.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, 307 Research Drive, Durham, NC 27710, USA
| | - Teresa A. Garrett
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Box 748, Poughkeepsie, NY 12604-0748, USA
| | - Howard Goldfine
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| |
Collapse
|
86
|
Wang Y, Guo W, Wu X, Zhang Y, Mannion C, Brouchkov A, Man YG, Chen T. Oncolytic Bacteria and their potential role in bacterium-mediated tumour therapy: a conceptual analysis. J Cancer 2019; 10:4442-4454. [PMID: 31528208 PMCID: PMC6746139 DOI: 10.7150/jca.35648] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
As the human microbiota has been confirmed to be of great significance in maintaining health, the dominant bacteria in them have been applied as probiotics to treat various diseases. After the detection of bacteria in tumours, which had previously been considered a sterile region, these bacteria have been isolated and genetically modified for use in tumour therapy. In this review, we sum up the main types of bacteria used in tumour therapy and reveal the mechanisms of both wild type and engineered bacteria in eliminating tumour cells, providing potential possibilities for newly detected, genetically modified, tumour-associated bacteria in anti-tumour therapy.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenxuan Guo
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - XiaoLi Wu
- JiangXi university of traditional Chinese medicine, College of basic medicine, Nanchang 330000, PR China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ciaran Mannion
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Anatoli Brouchkov
- Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Tyumen State University, Volodarskogo 6, Tyumen 625003, Russia
| | - Yan-Gao Man
- Department of Pathology, Hackensack Meridian Health-Hackensack University Medical Center, NJ, USA
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
87
|
Praveen Kumar N, Vinod Kumar N, Karthik A. Molecular detection and characterization of Clostridium perfringens toxin genes causing necrotic enteritis in broiler chickens. Trop Anim Health Prod 2019; 51:1559-1569. [PMID: 31076994 DOI: 10.1007/s11250-019-01847-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/13/2019] [Indexed: 11/26/2022]
Abstract
A total of 464 samples comprising of cloacal swabs from necrotic enteritis suspected live birds (191), intestinal scrapings from dead birds with symptoms of necrotic enteritis (91), and apparently healthy birds (182) were collected from selected districts of AP. The samples were subjected to multiplex PCR for simultaneous detection of α, β, and β2 toxin genes and uniplex PCR for the detection of NetB gene. Multiplex PCR screening of samples reveled α toxin gene positives from (cpa) 248/282 (87.94%) necrotic enteritis suspected and 40/182 (21.97%) apparently healthy samples. Among cpa positives 142/248 (57.25%) and 3/40 (7.5%) were positive for β2 toxin gene in necrotic enteritis suspected and apparently healthy birds respectively, indicating the involvement of C. perfringens type A, with minor pore forming toxin gene cpb2 in causing necrotic enteritis in poultry. None of the sample was positive for β toxin gene. The present research indicates C. perfringens type A along with β2 toxin gene was responsible for causing necrotic enteritis in broiler chickens in some parts of Andhra Pradesh in India. Phylogenetic relationship of amplified cpa and cpb2 amino acids sequences from present C. perfringens isolates were studied. The analysis reveals the sequence identity of cpb2 gene of the present isolates and variations at both nucleotide and amino acid level with the published sequences of cpb2 gene of C. perfringens isolates from different animal species of the USA, Iran, Netherlands, and Japan.
Collapse
Affiliation(s)
- N Praveen Kumar
- Department of Veterinary Microbiology, College of Veterinary Science, SV Veterinary University, Tirupathi, Andhra Pradesh, India.
| | - N Vinod Kumar
- Department of Veterinary Microbiology, College of Veterinary Science, SV Veterinary University, Tirupathi, Andhra Pradesh, India
| | - A Karthik
- Department of Veterinary Microbiology, College of Veterinary Science, SV Veterinary University, Tirupathi, Andhra Pradesh, India
| |
Collapse
|
88
|
Heiss CN, Olofsson LE. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J Neuroendocrinol 2019; 31:e12684. [PMID: 30614568 DOI: 10.1111/jne.12684] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
The gut microbiota has emerged as an environmental factor that modulates the development of the central nervous system (CNS) and the enteric nervous system (ENS). Before obtaining its own microbiota, eutherian foetuses are exposed to products and metabolites from the maternal microbiota. At birth, the infants are colonised by microorganisms. The microbial composition in early life is strongly influenced by the mode of delivery, the feeding method, the use of antibiotics and the maternal microbial composition. Microbial products and microbially produced metabolites act as signalling molecules that have direct or indirect effects on the CNS and the ENS. An increasing number of studies show that the gut microbiota can modulate important processes during development, including neurogenesis, myelination, glial cell function, synaptic pruning and blood-brain barrier permeability. Furthermore, numerous studies indicate that there is a developmental window early in life during which the gut microbial composition is crucial and perturbation of the gut microbiota during this period causes long-lasting effects on the development of the CNS and the ENS. However, other functions are readily modulated in adult animals, including microglia activation and neuroinflammation. Several neurobehavioural, neurodegenerative, mental and metabolic disorders, including Parkinson disease, autism spectrum disorder, schizophrenia, Alzheimer's disease, depression and obesity, have been linked to the gut microbiota. This review focuses on the role of the microorganisms in the development and function of the CNS and the ENS, as well as their potential role in pathogenesis.
Collapse
Affiliation(s)
- Christina N Heiss
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Louise E Olofsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
89
|
Halpin JL, Dykes JK, Katz L, Centurioni DA, Perry MJ, Egan CT, Lúquez C. Molecular Characterization of Clostridium botulinum Harboring the bont/B7 Gene. Foodborne Pathog Dis 2019; 16:428-433. [PMID: 30932710 PMCID: PMC6585170 DOI: 10.1089/fpd.2018.2600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the causative agent of botulism, a rare but serious disease that can result in death if not treated. Infant botulism occurs when C. botulinum colonizes the intestinal tract of infants and produces BoNT. It has been proposed that infants under the age of 1 year are uniquely susceptible to colonization by C. botulinum as their intestinal microbiota is not fully developed and provides little competition, allowing C. botulinum to thrive and produce BoNT in the gut. There are seven well-characterized serotypes (A–G) of BoNT identified by the ability of specific antitoxins to neutralize BoNTs. Molecular technology has allowed researchers to narrow these further into subtypes based on nucleic acid sequences of the botulinum toxin (bont) gene. One of the most recently recognized subtypes for bont/B is subtype bont/B7. We identified through whole genome sequencing five C. botulinum isolates harboring bont/B7 from CDC's strain collection, including patient isolates and an epidemiologically linked isolate from an opened infant formula container. In this study, we report the results of whole genome sequencing analysis of these C. botulinum subtype bont/B7 isolates. Average nucleotide identity and high quality single nucleotide polymorphism (hqSNP) analysis resulted in two major clades. The epidemiologically linked isolates differed from each other by 2–6 hqSNPs, and this clade separated from the other isolates by 95–119 hqSNPs, corroborating available epidemiological evidence.
Collapse
Affiliation(s)
- Jessica L Halpin
- 1 Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, National Botulism and Enteric Toxins Team, Atlanta, Georgia
| | - Janet K Dykes
- 1 Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, National Botulism and Enteric Toxins Team, Atlanta, Georgia
| | - Lee Katz
- 1 Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, National Botulism and Enteric Toxins Team, Atlanta, Georgia.,2 Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia
| | - Dominick A Centurioni
- 3 New York State Department of Health, Wadsworth Center, David Axelrod Institute, Albany, New York
| | - Michael J Perry
- 3 New York State Department of Health, Wadsworth Center, David Axelrod Institute, Albany, New York
| | - Christina T Egan
- 3 New York State Department of Health, Wadsworth Center, David Axelrod Institute, Albany, New York
| | - Carolina Lúquez
- 1 Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, National Botulism and Enteric Toxins Team, Atlanta, Georgia
| |
Collapse
|
90
|
Draft Genome Sequences for Dual-Toxin-Producing Clostridium botulinum Strains. Microbiol Resour Announc 2019; 8:MRA01152-18. [PMID: 30701230 PMCID: PMC6346179 DOI: 10.1128/mra.01152-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/19/2018] [Indexed: 12/03/2022] Open
Abstract
Here, we present draft genome sequences for three Clostridium botulinum strains that produce multiple botulinum toxin serotypes. Strains that produce two toxins are rare; however, one of these strains produces subtype B5 and F2 toxins, and two of the strains produce subtype A4 and B5 toxins. Here, we present draft genome sequences for three Clostridium botulinum strains that produce multiple botulinum toxin serotypes. Strains that produce two toxins are rare; however, one of these strains produces subtype B5 and F2 toxins, and two of the strains produce subtype A4 and B5 toxins.
Collapse
|
91
|
Gazioglu A, Karagülle B, Yüksel H, Nuri Açık M, Keçeci H, Dörtbudak MB, Çetinkaya B. Sudden death due to gas gangrene caused by Clostridium septicum in goats. BMC Vet Res 2018; 14:406. [PMID: 30563529 PMCID: PMC6299590 DOI: 10.1186/s12917-018-1747-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023] Open
Abstract
Background Even though gas gangrene caused by Clostridium septicum in goats is mentioned in the classical textbooks, we have not managed to find any case description in the literature. Case presentation Clinical signs resembling gas gangrene such as subcutaneous bloating, edema and crepitation were detected at various body parts of nine pregnant animals at the ages of 2–3 years on a hair goat farm (n = 170) located in Bingol province, Eastern Turkey. Five of these suspected animals with severe clinical symptoms died within 2 days. Various samples such as internal organs, edematous skin and edema fluid collected from dead and live animals were analyzed for the presence of clostridial agents by histopathological and microbiological methods. As a result of macroscopic and microscopic examination, lesions of gas gangrene were detected. The suspected isolates were identified and confirmed as C. septicum by bacteriological and molecular methods. Conclusion The present study was the first to report identification of C. septicum as primary agent in the gas gangrene of goats.
Collapse
Affiliation(s)
- Abdullah Gazioglu
- Department of Veterinary Science, Vocational School of Technical Sciences, University of Bingol, 12000, Bingol, Turkey
| | - Burcu Karagülle
- Department of Microbiology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey
| | - Hayati Yüksel
- Department of Pathology, Faculty of Veterinary Medicine, University of Bingol, 12000, Bingol, Turkey
| | - M Nuri Açık
- Department of Microbiology, Faculty of Veterinary Medicine, University of Bingol, 12000, Bingol, Turkey.
| | - Hakan Keçeci
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Bingol, 12000, Bingol, Turkey
| | | | - Burhan Çetinkaya
- Department of Microbiology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey
| |
Collapse
|
92
|
Roberts EJ, Martucci JA, Wu D. The Unusual Presence of Gas From a Puncture Wound: A Case Report. J Foot Ankle Surg 2018; 57:785-789. [PMID: 29571810 DOI: 10.1053/j.jfas.2017.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 02/03/2023]
Abstract
The presence of gas within soft tissues as suggested by plain film radiographs and magnetic resonance imaging is usually sufficient evidence for a gas-producing bacterial infection. A thorough clinical examination and history and tissue culture are necessary to better determine the source of the gas. However, despite the unremarkable physical examination findings, the present case of a plantar puncture wound rapidly developed gas in the tissues and warranted surgical exploration and repair. Delaying treatment in any case of potential gas gangrene can be limb- and life-threatening. Only later was it revealed by the patient's husband that the wound might have been contaminated soon after the injury from a source other than the puncture, which led to the early presentation of gas on the imaging studies.
Collapse
Affiliation(s)
- Eric J Roberts
- Associate, Aria Health and Wellness Institute, St. Petersburg, FL.
| | - John A Martucci
- Student, Temple University School of Podiatric Medicine, Philadelphia, PA
| | - Daniel Wu
- Student, Temple University School of Podiatric Medicine, Philadelphia, PA
| |
Collapse
|
93
|
Scalfaro C, Auricchio B, De Medici D, Anniballi F. Foodborne botulism: an evolving public health challenge. Infect Dis (Lond) 2018; 51:97-101. [DOI: 10.1080/23744235.2018.1524584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Concetta Scalfaro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Bruna Auricchio
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Dario De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Anniballi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
94
|
Sindern N, Suchodolski JS, Leutenegger CM, Mehdizadeh Gohari I, Prescott JF, Proksch AL, Mueller RS, Busch K, Unterer S. Prevalence of Clostridium perfringens netE and netF toxin genes in the feces of dogs with acute hemorrhagic diarrhea syndrome. J Vet Intern Med 2018; 33:100-105. [PMID: 30499621 PMCID: PMC6335515 DOI: 10.1111/jvim.15361] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recently, novel pore-forming toxin genes designated netE and netF were identified in a Clostridium perfringens type A strain isolated from a dog with acute hemorrhagic diarrhea. OBJECTIVES Pore-forming toxins could play an important role in the disease pattern of acute hemorrhagic diarrhea syndrome (AHDS) in dogs. Thus, we aimed to determine the prevalence of C. perfringens genes encoding for netE and netF in the feces of dogs with AHDS and to evaluate any association between selected clinical variables and the presence of these toxin genes. ANIMALS In total, 174 dogs were included in the study. METHODS Fecal samples of all dogs were tested by real-time polymerase chain reaction for netE and netF genes. Time to recovery, hospitalization time, and selected laboratory variables were compared between dogs with AHDS that were positive or negative for the toxin genes. RESULTS A significant difference was found among the 3 groups in the prevalence of the pore-forming toxin genes netE and netF: dogs with AHDS: 26 of 54 (48.1%); dogs with canine parvovirus (CPV) infection: 0 of 54 (0%); and healthy dogs: 8 of 66 (12.1%; P < .001). In dogs with AHDS, no significant difference was detected in any variables evaluated between netE-positive and netF-positive and netE-negative and netF-negative dogs. CONCLUSIONS AND CLINICAL IMPORTANCE The prevalence of C. perfringens encoding for netE and netF is significantly higher in dogs with AHDS compared to control dogs. Further studies are warranted to evaluate whether these toxins are an inciting cause for AHDS in dogs.
Collapse
Affiliation(s)
- Natalie Sindern
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, Texas A&M University, College Station, Texas
| | | | | | - John F Prescott
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Anna-Lena Proksch
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ralf S Mueller
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kathrin Busch
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Unterer
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
95
|
Elgioushy M, Rizk MA, El-Adl M, Elhadidy M, El-Khodery S. The first molecular detection of Clostridium perfringens from pneumonic cases associated with foot and mouth disease in cattle and buffalo in Egypt. Trop Anim Health Prod 2018; 51:847-852. [PMID: 30488175 DOI: 10.1007/s11250-018-1763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022]
Abstract
Panting syndrome and respiratory infection have been recorded in complicated cases of foot and mouth disease (FMD) in cattle. However, investigations on the causative agents of respiratory disease in such cases are scarce. In this study, 30 animals (13 buffalo and 17 cattle) suffering from respiratory distress associated with signs of FMD were examined. Serum samples were collected and FMD infection was confirmed. Bacteriological examination of lungs from eight necropitized cases revealed the presence of C. perfringens. Multiplex polymerase chain reaction (mPCR) was performed on the positive samples followed by sequencing analysis. The alpha toxin gene (plc) of C. perfringens was identified in six cases. The present investigation highlights the role of clostridial infection as a complication of FMD in cattle and buffalo. This is the first report identifying the C. perfringens toxins from lung of animals with respiratory distress associated with FMD infection.
Collapse
Affiliation(s)
- Magdy Elgioushy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Aswan University, Aswan, 37916, Egypt
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Elhadidy
- Zewail City of Science and Technology, University of Science and Technology, Giza, Egypt.,Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Sabry El-Khodery
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
96
|
Wakabayashi Y, Nariya H, Yasugi M, Kuwahara T, Sarker MR, Miyake M. An enhanced green fluorescence protein (EGFP)-based reporter assay for quantitative detection of sporulation in Clostridium perfringens SM101. Int J Food Microbiol 2018; 291:144-150. [PMID: 30500691 DOI: 10.1016/j.ijfoodmicro.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/17/2018] [Accepted: 11/17/2018] [Indexed: 11/16/2022]
Abstract
Clostridium perfringens type F is a spore-forming anaerobe that causes bacterial food-borne illness in humans. The disease develops when ingested vegetative cells reach the intestinal tract and begin to form spores that produce the diarrheagenic C. perfringens enterotoxin (CPE). Given that CPE production is regulated by the master regulator of sporulation (transcription factor Spo0A), the identification of sporulation-inducing factors in the intestine is relevant to better understanding of the disease. To examine these factors, we established assays to quantify C. perfringens sporulation stage under microscopy by using two fluorescent reporters, namely, Evoglow-Bs2 and CpEGFP. When the reporter genes were placed under control of the cpe promoter, both protein products were expressed specifically during sporulation. However, the intensity of the anaerobic reporter Evoglow-Bs2 was weak and rapidly photobleached during microscopic observation. Alternatively, CpEGFP, a canonical green fluorescence protein with optimized codon usage for Clostridium species, was readily detectable in the mother-cell compartment of most bacteria at early stages of sporulation. Additionally, CpEGFP expression predicted final spore yield and was quantifiable in 96-well plates using fluorescence plate reader. These results indicate that CpEGFP can be used to analyze the sporulation of C. perfringens and has a potential application in the large-scale screening of sporulation-regulating biomolecules.
Collapse
Affiliation(s)
- Yuki Wakabayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hirofumi Nariya
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Mayo Yasugi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Masami Miyake
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
97
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
98
|
Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker MR, Songer JG, Uzal FA, Van Immerseel F. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018; 53:5-10. [PMID: 29866424 PMCID: PMC6195859 DOI: 10.1016/j.anaerobe.2018.04.011] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
Clostridium perfringens causes many different histotoxic and enterotoxic diseases in humans and animals as a result of its ability to produce potent protein toxins, many of which are extracellular. The current scheme for the classification of isolates was finalized in the 1960s and is based on their ability to produce a combination of four typing toxins - α-toxin, β-toxin, ε-toxin and ι-toxin - to divide C. perfringens strains into toxinotypes A to E. However, this scheme is now outdated since it does not take into account the discovery of other toxins that have been shown to be required for specific C. perfringens-mediated diseases. We present a long overdue revision of this toxinotyping scheme. The principles for the expansion of the typing system are described, as is a mechanism by which new toxinotypes can be proposed and subsequently approved. Based on these criteria two new toxinotypes have been established. C. perfringens type F consists of isolates that produce C. perfringens enterotoxin (CPE), but not β-toxin, ε-toxin or ι-toxin. Type F strains will include strains responsible for C. perfringens-mediated human food poisoning and antibiotic associated diarrhea. C. perfringens type G comprises isolates that produce NetB toxin and thereby cause necrotic enteritis in chickens. There are at least two candidates for future C. perfringens toxinotypes, but further experimental work is required before these toxinotypes can formally be proposed and accepted.
Collapse
Affiliation(s)
- Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Vicki Adams
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jake Lacey
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Robert J Moore
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA 92408, USA
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
99
|
Ferreira DA, Cruz R, Venâncio C, Faustino-Rocha AI, Silva A, Mesquita JR, Ortiz AL, Vala H. Evaluation of renal injury caused by acute volume replacement with hydroxyethyl starch 130/0.4 or Ringer's lactate solution in pigs. J Vet Sci 2018; 19:608-619. [PMID: 30041290 PMCID: PMC6167343 DOI: 10.4142/jvs.2018.19.5.635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/21/2018] [Accepted: 07/13/2018] [Indexed: 11/21/2022] Open
Abstract
This work aimed to evaluate the effects on renal tissue integrity after hydroxyethyl starch (HES) 130/0.4 and Ringer's lactate (RL) administration in pigs under general anesthesia after acute bleeding. A total of 30 mL/kg of blood were passively removed from the femoral artery in two groups of Large White pigs, under total intravenous anesthesia with propofol and remifentanil. After bleeding, Group 1 (n = 11) received RL solution (25 mL/kg) and Group 2 (n = 11) received HES 130/0.4 solution (20 mL/kg). Additionally, Group 3 (n = 6) was not submitted to bleeding or volume replacement. Pigs were euthanized and kidneys were processed for histopathological and immunohistochemical analyses. Minimal to moderate glomerular, tubular, and interstitial changes, as well as papillary necrosis, were observed in all experimental groups. Pre-apoptosis and apoptosis indicators were higher in pigs that received HES 130/0.4, indicating a higher renal insult. Both HES 130/0.4 and RL administration may cause renal injury, although renal injury may be more significant in pigs receiving HES 13/0.4. Results also suggest that total intravenous anesthesia with propofol and remifentanil may cause renal injury, and this effect can be dose related.
Collapse
Affiliation(s)
- David A Ferreira
- Department of Veterinary Medicine, ICAAM Research Center, University of Évora, 7006-554 Évora, Portugal
| | - Rita Cruz
- Educational, Technologies and Health Study Center (CI&DETS), Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Aura Silva
- REQUIMTE - Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - João R Mesquita
- Educational, Technologies and Health Study Center (CI&DETS), Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Ana L Ortiz
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Helena Vala
- Educational, Technologies and Health Study Center (CI&DETS), Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
100
|
Liu J, Bai R, Li Y, Staedtke V, Zhang S, van Zijl PC, Liu G. MRI detection of bacterial brain abscesses and monitoring of antibiotic treatment using bacCEST. Magn Reson Med 2018; 80:662-671. [PMID: 29577382 PMCID: PMC5910221 DOI: 10.1002/mrm.27180] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE To develop a new MRI method to detect and characterize brain abscesses using the CEST contrast inherently carried by bacterial cells, namely bacCEST. METHODS Bacteria S. aureus (ATCC #49775) and F98 and 9L glioma cells were injected stereotactically in the brains of F344 rats to form abscesses and tumors. The CEST signals of brain abscesses (n = 4) and tumors (n = 7) were acquired using 2 B1 values (i.e., 1 and 3 µT) and compared. The bacCEST signal of the brain abscesses in the rats (n = 3) receiving ampicillin (intraperitoneal injection 40 mg/kg twice daily) was acquired before, 4 and 10 days after the treatment. RESULTS The bacCEST signal of S. aureus was characterized in vitro as a strong and broad signal in the range of 1 to 4 ppm, with the maximum contrast occurring at 2.6 ppm. The CEST signal in S. aureus-induced brain abscesses was significantly higher than that of contralateral parenchyma (p = .003). Moreover, thanks to their different B1 independence, brain abscesses and tumors could be effectively differentiated (p = .005) using ΔCEST(2.6 ppm, 3 µT-1 µT), defined by the difference between the CEST signal (offset = 2.6 ppm) acquired using B1 = 3 µT and that of 1 µT. In treated rats, bacCEST MRI could detect the response of bacteria as early as 4 days after the antibiotic treatment (p = .035). CONCLUSION BacCEST MRI provides a new imaging method to detect, discriminate, and monitor bacterial infection in deep-seated organs. Because no contrast agent is needed, such an approach has a great translational potential for detecting and monitoring bacterial infection in deep-seated organs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong, China
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
| | - Renyuan Bai
- Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Verena Staedtke
- Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuixing Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Peter C.M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|