51
|
Wu HJ, Xiao ZG, Lv XJ, Huang HT, Liao C, Hui CY, Xu Y, Li HF. Drug‑resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp Ther Med 2023; 25:209. [PMID: 37090073 PMCID: PMC10119666 DOI: 10.3892/etm.2023.11908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Bacterial drug resistance is increasingly becoming an important problem that needs to be solved urgently in modern clinical practices. Infection caused by Acinetobacter baumannii is a serious threat to the life and health of patients. The drug resistance rate of Acinetobacter baumannii strains is increasing, thus research on the drug resistance of Acinetobacter baumannii has also seen an increase. When patients are infected with drug-resistant Acinetobacter baumannii, the availability of suitable antibiotics commonly used in clinical practices is becoming increasingly limited and the prognosis of patients is worsening. Studying the molecular mechanism of the drug resistance of Acinetobacter baumannii is fundamental to solving the problem of drug-resistant Acinetobacter baumannii and potentially other 'super bacteria'. Drug resistance mechanisms primarily include enzymes, membrane proteins, efflux pumps and beneficial mutations. Research on the underlying mechanisms provides a theoretical basis for the use and development of antibiotics and the development of novel treatment methods.
Collapse
Affiliation(s)
- Hao-Jia Wu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhi-Gang Xiao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiao-Juan Lv
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Hai-Tang Huang
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chu Liao
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chen-Yang Hui
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Yue Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Heng-Fei Li
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
- Correspondence to: Professor Heng-Fei Li, Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Room 4, Garden Hill, Wuchang, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
52
|
Healthcare-Associated Bloodstream Infections Due to Multidrug-Resistant Acinetobacter baumannii in COVID-19 Intensive Care Unit: A Single-Center Retrospective Study. Microorganisms 2023; 11:microorganisms11030774. [PMID: 36985347 PMCID: PMC10056625 DOI: 10.3390/microorganisms11030774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Healthcare-associated infections are an emerging cause of morbidity and mortality in COVID-19 intensive care units (ICUs) worldwide, especially those caused by multidrug-resistant (MDR) pathogens. The objectives of this study were to assess the incidence of bloodstream infections (BSIs) among critically ill COVID-19 patients and to analyze the characteristics of healthcare-associated BSIs due to MDR Acinetobacter baumannii in an COVID-19 ICU. A single-center retrospective study was conducted at a tertiary hospital during a 5-month period. The detection of carbapenemase genes was performed by PCR and genetic relatedness by pulsed-field gel electrophoresis (PFGE) and multilocus-sequence typing. A total of 193 episodes were registered in 176 COVID-19 ICU patients, with an incidence of 25/1000 patient-days at risk. A. baumannii was the most common etiological agent (40.3%), with a resistance to carbapenems of 100%. The blaOXA-23 gene was detected in ST2 isolates while the blaOXA-24 was ST636-specific. PFGE revealed a homogeneous genetic background of the isolates. The clonal spread of OXA-23-positive A. baumannii is responsible for the high prevalence of MDR A. baumannii BSIs in our COVID-19 ICU. Further surveillance of resistance trends and mechanisms is needed along with changes in behavior to improve the implementation of infection control and the rational use of antibiotics.
Collapse
|
53
|
Zhang X, Yun Y, Lai Z, Ji S, Yu G, Xie Z, Zhang H, Zhong X, Wang T, Zhang L. Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets. J Anim Sci Biotechnol 2023; 14:36. [PMID: 36907895 PMCID: PMC10009951 DOI: 10.1186/s40104-023-00828-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) can cause lipid disorders in infants and have long-term adverse effects on their growth and development. Clostridium butyricum (C. butyricum), a kind of emerging probiotics, has been reported to effectively attenuate lipid metabolism dysfunctions. Therefore, the objective of this study was to investigate the effects of C. butyricum supplementation on hepatic lipid disorders in IUGR suckling piglets. METHODS Sixteen IUGR and eight normal birth weight (NBW) neonatal male piglets were used in this study. From d 3 to d 24, in addition to drinking milk, the eight NBW piglets (NBW-CON group, n = 8) and eight IUGR piglets (IUGR-CON group, n = 8) were given 10 mL sterile saline once a day, while the remaining IUGR piglets (IUGR-CB group, n = 8) were orally administered C. butyricum at a dose of 2 × 108 colony-forming units (CFU)/kg body weight (suspended in 10 mL sterile saline) at the same frequency. RESULTS The IUGR-CON piglets exhibited restricted growth, impaired hepatic morphology, disordered lipid metabolism, increased abundance of opportunistic pathogens and altered ileum and liver bile acid (BA) profiles. However, C. butyricum supplementation reshaped the gut microbiota of the IUGR-CB piglets, characterized by a decreased abundance of opportunistic pathogens in the ileum, including Streptococcus and Enterococcus. The decrease in these bile salt hydrolase (BSH)-producing microbes increased the content of conjugated BAs, which could be transported to the liver and function as signaling molecules to activate liver X receptor α (LXRα) and farnesoid X receptor (FXR). This activation effectively accelerated the synthesis and oxidation of fatty acids and down-regulated the total cholesterol level by decreasing the synthesis and promoting the efflux of cholesterol. As a result, the growth performance and morphological structure of the liver improved in the IUGR piglets. CONCLUSION These results indicate that C. butyricum supplementation in IUGR suckling piglets could decrease the abundance of BSH-producing microbes (Streptococcus and Enterococcus). This decrease altered the ileum and liver BA profiles and consequently activated the expression of hepatic LXRα and FXR. The activation of these two signaling molecules could effectively normalize the lipid metabolism and improve the growth performance of IUGR suckling piglets.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Zheng Lai
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Zechen Xie
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| |
Collapse
|
54
|
Pariyar M, Adhikari S, Regmi RS, Dhungel B, Banjara MR, Rijal BP, Rijal KR, Ghimire P. Beta-Lactamase-Producing Gram-Negative Bacterial Isolates Among the Patients Attending a Tertiary Care Hospital, Kathmandu, Nepal. Microbiol Insights 2023; 16:11786361221150761. [PMID: 36713265 PMCID: PMC9880579 DOI: 10.1177/11786361221150761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Over the times, carbapenems have been the choice of drug for treating multidrug-resistant (MDR) and extended spectrum beta-lactamase (ESBL)-producing organisms. The current study aimed at determining the occurrence of metallo beta-lactamase (MBL) and AmpC beta-lactamase (ABL) in gram negative bacteria isolated from clinical samples. A cross-sectional study was conducted amongst the patients visiting Manmohan Memorial Medical College and Teaching Hospital (MMTH), Kathmandu, Nepal from August 2017 to January 2018. A total of 4351 samples including urine, pus, wound swab, endotracheal tip, catheter tip, and blood were collected from the patients and processed by standard conventional microbiological methods. Antibiotic susceptibility testing (AST) of the isolates was performed by Kirby-Bauer disk diffusion method. Double disc synergy test was performed on carbapenem resistant organisms to detect production of MBL and inhibitor-based test was used for the detection of ABL production. Of the 4351 samples, 421 bacterial isolates belonging to 16 different genera were recovered, of which 303 (71.97%) were Gram negative bacilli (GNB). E. coli (189/303) and S. aureus (80/118) were the most prevalent among gram negatives and gram positives, respectively. Bacterial incidence was found significantly associated with gender, specimen type, and the department where the patients were enrolled. Colistin-sulfate and polymycin-B were the most effective drug against GNB, whereas imipenem against gram positives. Prevalence of MDR and methicillin-resistant S. aureus (MRSA) was 35.15% and 60%, respectively. The prevalence of MBL and ABL-producing isolate was 11(3.6%) and 13(4.3%), respectively. Pseudomonas aeruginosa (5/11) and E. coli (9/13) were the major MBL and ABL producers, respectively. MBL and ABL production was found to be significantly associated with the age of the patient and the specimen type. A regular antibiotic surveillance activity with screening for MBL and ABL-producing bacterial isolates in the hospital settings to curb the incidence and transmission of such difficult-to-treat pathogens.
Collapse
Affiliation(s)
- Manita Pariyar
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | - Sanjib Adhikari
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | | | - Binod Dhungel
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | | | - Komal Raj Rijal
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal,Komal Raj Rijal, Central Department of
Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal. Emails:
;
| | - Prakash Ghimire
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
55
|
Jeon JH, Jang KM, Lee JH, Kang LW, Lee SH. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159497. [PMID: 36257427 DOI: 10.1016/j.scitotenv.2022.159497] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance is a major global public health concern. Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of its high levels of resistance to many antibiotics, particularly those considered as last-resort antibiotics, such as carbapenems. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antibiotic resistance genes (ARGs), including the mobilization of ARGs within and between species. We conducted an in-depth, systematic investigation of the occurrence and dissemination of ARGs associated with MGEs in A. baumannii. We focused on a cross-sectoral approach that integrates humans, animals, and environments. Four strategies for the prevention of ARG dissemination through MGEs have been discussed: prevention of airborne transmission of ARGs using semi-permeable membrane-covered thermophilic composting; application of nanomaterials for the removal of emerging pollutants (antibiotics) and pathogens; tertiary treatment technologies for controlling ARGs and MGEs in wastewater treatment plants; and the removal of ARGs by advanced oxidation techniques. This review contemplates and evaluates the major drivers involved in the transmission of ARGs from the cross-sectoral perspective and ARG-transfer prevention processes.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea.
| |
Collapse
|
56
|
Bajaj T, Ismail N, Trivedi A, Sarav M. Peritoneal Dialysis-Related Peritonitis With Acinetobacter Pittii: A Case Report. J Investig Med High Impact Case Rep 2023; 11:23247096221148264. [PMID: 36624661 PMCID: PMC9834918 DOI: 10.1177/23247096221148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We demonstrate the first reported case of peritoneal dialysis (PD)-related peritonitis with Acinetobacter pittii. Although previous reports have reported the uncommon similar infection in the larger Acinetobacter calcoaceticus-baumannii complex group of organisms, none have particularly focused on A pittii. Furthermore, we present a case of a young man with end-stage renal disease on PD who had a severe infection with A pittii. Although the organism was sensitive to ceftazidime, and despite a 4-week extended course of intraperitoneal antibiotics, the patient had a worsening infection leading to the removal of the PD catheter. Furthermore, the case illustrates the importance of proper sterile technique and hand hygiene, as this may have been the nidus of infection for this case.
Collapse
Affiliation(s)
- Tushar Bajaj
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Nader Ismail
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Anuja Trivedi
- Jackson Park Hospital & Medical Center, Chicago, IL, USA
| | - Menaka Sarav
- Northshore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
57
|
Gupta N, Angadi K, Jadhav S. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. Infect Drug Resist 2022; 15:7631-7650. [PMID: 36579124 PMCID: PMC9791997 DOI: 10.2147/idr.s386641] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases are β-lactamase enzymes that hydrolyze a variety of β-lactams including carbapenem and belong to different Ambler classes (A, B, D). These enzymes can be encoded by plasmid or chromosomal-mediated genes. The major issues associated with carbapenemases-producing organisms are compromising the activity and increasing the resistance to carbapenems which are the last resort antibiotics used in treating serious infections. The global increase of pathogen, carbapenem-resistant A. baumannii has significantly threatened public health. Thus, there is a pressing need for a better understanding of this pathogen, to know the various carbapenem resistance encoding genes and dissemination of resistance genes from A. baumannii which help in developing strategies to overcome this problem. The horizontal transfer of resistant determinants through mobile genetic elements increases the incidence of multidrug, extensive drug, and Pan-drug resistant A. baumannii. Therefore, the current review aims to know the various mechanisms of carbapenem resistance, categorize and discuss carbapenemases encoding genes and various mobile genetic elements, and the prevalence of carbapenemase genes in recent years in A. baumannii from various geographical regions.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Kalpana Angadi
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Savita Jadhav
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India,Correspondence: Savita Jadhav, Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India, Tel +919284434364, Email
| |
Collapse
|
58
|
Mohamed HMA, Abd-Elhafeez HH, Al-Jabr OA, El-Zamkan MA. Characterization of Acinetobacter baumannii Isolated from Raw Milk. BIOLOGY 2022; 11:biology11121845. [PMID: 36552354 PMCID: PMC9775129 DOI: 10.3390/biology11121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen associated with nosocomial infections. In this study, 100 raw milk samples were collected from Qena, Egypt, and subjected to conventional and molecular assays to determine the presence of A. baumannii and investigate their antimicrobial resistance and biofilm formation. Our findings revealed that, among the 100 samples, Acinetobacter spp. were found in 13 samples based on CHROM agar results. We further characterized them using rpoB and 16S-23SrRNA sequencing and gyrB multiplex PCR analysis and confirmed that 9 out of the 13 Acinetobacter spp. isolates were A. baumannii and 4 were other species. The A. baumannii isolates were resistant to β-lactam drugs, including cefotaxime (44%), ampicillin-sulbactam and levofloxacin (33.3% for each), imipenem, meropenem and aztreonam (22.2% for each). We observed different antimicrobial resistance patterns, with a multi-antibiotic resistant (MAR) index ranging from 0.2 to 0.3. According to the PCR results, blaOXA-51 and blaOXA-23 genes were amplified in 100% and 55.5% of the A. baumannii isolates, respectively, while the blaOXA-58 gene was not amplified. Furthermore, the metallo-β-lactamases (MBL) genes blaIMP and blaNDM were found in 11.1% and 22.2% of isolates, respectively, while blaVIM was not amplified. Additionally, eight A. baumannii isolates (88.8%) produced black-colored colonies on Congo red agar, demonstrating their biofilm production capacity. These results showed that, besides other foodborne pathogens, raw milk should also be examined for A. baumannii, which could be a public health concern.
Collapse
Affiliation(s)
- Hams M. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Hanan H. Abd-Elhafeez
- Department of Cells and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Correspondence:
| | - Omar A. Al-Jabr
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mona A. El-Zamkan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| |
Collapse
|
59
|
Buchhorn de Freitas S, Hartwig DD. Promising targets for immunotherapeutic approaches against Acinetobacter baumannii. Microb Pathog 2022; 173:105855. [DOI: 10.1016/j.micpath.2022.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
60
|
Wang L, Zhang F, Zeng K, Dong W, Yuan H, Wang Z, Liu J, Pan J, Zhao R, Guan D. Microbial communities in the liver and brain are informative for postmortem submersion interval estimation in the late phase of decomposition: A study in mouse cadavers recovered from freshwater. Front Microbiol 2022; 13:1052808. [PMID: 36458191 PMCID: PMC9705336 DOI: 10.3389/fmicb.2022.1052808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Bodies recovered from water, especially in the late phase of decomposition, pose difficulties to the investigating authorities. Various methods have been proposed for postmortem submersion interval (PMSI) estimation and drowning identification, but some limitations remain. Many recent studies have proved the value of microbiota succession in viscera for postmortem interval estimation. Nevertheless, the visceral microbiota succession and its application for PMSI estimation and drowning identification require further investigation. METHODS In the current study, mouse drowning and CO2 asphyxia models were developed, and cadavers were immersed in freshwater for 0 to 14 days. Microbial communities in the liver and brain were characterized via 16S rDNA high-throughput sequencing. RESULTS Only livers and brains collected from 5 to 14 days postmortem were qualified for sequencing. There was significant variation between microbiota from liver and brain. Differences in microbiota between the cadavers of mice that had drowned and those only subjected to postmortem submersion decreased over the PMSI. Significant successions in microbial communities were observed among the different subgroups within the late phase of the PMSI in livers and brains. Eighteen taxa in the liver which were mainly related to Clostridium_sensu_stricto and Aeromonas, and 26 taxa in the brain which were mainly belonged to Clostridium_sensu_stricto, Acetobacteroides, and Limnochorda, were selected as potential biomarkers for PMSI estimation based on a random forest algorithm. The PMSI estimation models established yielded accurate prediction results with mean absolute errors ± the standard error of 1.282 ± 0.189 d for the liver and 0.989 ± 0.237 d for the brain. CONCLUSIONS The present study provides novel information on visceral postmortem microbiota succession in corpses submerged in freshwater which sheds new light on PMSI estimation based on the liver and brain in forensic practice.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang, China
| | - Fuyuan Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Kuo Zeng
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Wenwen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang, China
| | - Huiya Yuan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang, China
| | - Ziwei Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Jin Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Jiaqing Pan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang, China
| |
Collapse
|
61
|
Pérez-Varela M, Tierney ARP, Dawson E, Hutcheson AR, Tipton KA, Anderson SE, Haldopoulos ME, Song S, Tomlinson BR, Shaw LN, Weiss DS, Kim M, Rather PN. Stochastic activation of a family of TetR type transcriptional regulators controls phenotypic heterogeneity in Acinetobacter baumannii. PNAS NEXUS 2022; 1:pgac231. [PMID: 36704122 PMCID: PMC9802203 DOI: 10.1093/pnasnexus/pgac231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Phenotypic heterogeneity is an important mechanism for regulating bacterial virulence, where a single regulatory switch is typically activated to generate virulent and avirulent subpopulations. The opportunistic pathogen Acinetobacter baumannii can transition at high frequency between virulent opaque (VIR-O) and avirulent translucent subpopulations, distinguished by cells that form opaque or translucent colonies. We demonstrate that expression of 11 TetR-type transcriptional regulators (TTTRs) can drive cells from the VIR-O opaque subpopulation to cells that form translucent colonies. Remarkably, in a subpopulation of VIR-O cells, four of these TTTRs were stochastically activated in different combinations to drive cells to the translucent state. The resulting translucent subvariants exhibited unique phenotypic differences and the majority were avirulent. Due to their functional redundancy, a quadruple mutant with all four of these TTTRs inactivated was required to observe a loss of switching from the VIR-O state. Further, we demonstrate a small RNA, SrvS, acts as a "rheostat," where the levels of SrvS expression influences both the VIR-O to translucent switching frequency, and which TTTR is activated when VIR-O cells switch. In summary, this work has revealed a new paradigm for phenotypic switching in bacteria, where an unprecedented number of related transcriptional regulators are activated in different combinations to control virulence and generate unique translucent subvariants with distinct phenotypic properties.
Collapse
Affiliation(s)
- María Pérez-Varela
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Aimee R P Tierney
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Emma Dawson
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Anna R Hutcheson
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Kyle A Tipton
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Sarah E Anderson
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Marina E Haldopoulos
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shaina Song
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Brooke R Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - David S Weiss
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
62
|
Paouris D, Dallos T, Pitiriga V. Polymicrobial Acute Suppurative Parotitis in a 33-Day-Old Infant: A Case Report and Review of the Literature. Clin Pediatr (Phila) 2022; 61:802-807. [PMID: 35678072 DOI: 10.1177/00099228221102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acute suppurative parotitis (ASP) of neonates is a rare condition characterized by irritability, erythema, and tenderness of the affected gland. METHODS/RESULTS Only few cases have been reported in Engilsh literature, mostly in male neonates, in a unilateral fashion. In our case, a polymicrobial etiology (Klebsiella pneumoniae, Staphylococcus aureus, Acinetobacter ursingii, and Acinetobacter junii) was found. Based on the review of the microbiological findings of cases of ASP in English literature for the years 1970 to 2020, S. aureus is the most commonly isolated microorganism (47% of the total 65 patients). Our patient was born with a C-section procedure and was not breast-fed, making dysbiosis along with the usage of the feeding bottle, possible risk factors for the development of ASP. CONCLUSIONS ASP may be due to polymicrobial etiology. Initial presentation in neonates may not include typical signs and symptoms, like fever. Aseptic technique of oral procedures is of utmost importance also in immune-competent neonates.
Collapse
Affiliation(s)
- D Paouris
- Pediatric Otorhinolaryngologic Clinic of the Medical Faculty of Comenius University and the National Institute of Children's Diseases, Bratislava, Slovakia
| | - T Dallos
- Pediatric Clinic of the Medical Faculty of Comenius University and the National Institute of Children's Diseases, Bratislava, Slovakia
| | - V Pitiriga
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
63
|
Iron Acquisition Mechanisms and Their Role in the Virulence of Acinetobacter baumannii. Infect Immun 2022; 90:e0022322. [PMID: 36066263 PMCID: PMC9584212 DOI: 10.1128/iai.00223-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential element for survival of most organisms. One mechanism of host defense is to tightly chelate iron to several proteins to limit its extracellular availability. This has forced pathogens such as Acinetobacter baumannii to adapt mechanisms for the acquisition and utilization of iron even in iron-limiting conditions. A. baumannii uses a variety of iron acquisition strategies to meet its iron requirements. It can lyse erythrocytes to harvest the heme molecules, use iron-chelating siderophores, and use outer membrane vesicles to acquire iron. Iron acquisition pathways, in general, have been seen to affect many other virulence factors such as cell adherence, cell motility, and biofilm formation. The knowledge gained from research on iron acquisition led to the synthesis of the antibiotic cefiderocol, which uses iron uptake pathways for entry into the cell with some success as a novel cephalosporin. Understanding the mechanisms of iron acquisition of A. baumannii allows for insight into clinical infections and offer potential targets for novel antibiotics or potentiators of current drugs.
Collapse
|
64
|
Combined Biocidal Effect of Gaseous Ozone and Citric Acid on Acinetobacter baumannii Biofilm Formed on Ceramic Tiles and Polystyrene as a Novel Approach for Infection Prevention and Control. Processes (Basel) 2022. [DOI: 10.3390/pr10091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii is a prominent emerging pathogen responsible for a variety of hospital-acquired infections. It can contaminate inanimate surfaces and survive in harsh environmental conditions for prolonged periods of time in the form of biofilm. Biofilm is difficult to remove with only one method of disinfection, so combined disinfection methods and biocidal active substances are needed for biofilm eradication. Additionally, having in mind ecological demands, legislators are more prone using fewer toxic substances for disinfection that produce less solid waste and hazardous disinfection byproducts. Gaseous ozone and citric acid are natural biocidal compounds, and the purpose of this study was to determine their combined biocidal effects on A. baumannii biofilm formed on ceramics and polystyrene. Twenty-four-hour A. baumannii biofilm formed on ceramic tiles and polystyrene was exposed to different combinations of disinfection protocols with 25 ppm of gaseous ozone for 1 h exposure time and 15% citric acid for 10 min exposure. The total number of bacteria was counted afterwards and expressed as CFU/cm2. The determined disinfection protocols of A. baumannii biofilm with combined citric acid and gaseous ozone caused reduction of 2.8 to 5.89 log10 CFU (99.99% inhibition rate) of total viable bacteria for each method, with the citric acid–ozone–citric acid disinfection protocol being most successful in eradication of viable bacteria on both ceramics and polystyrene. In conclusion, gaseous ozone and citric acid showed good combined biocidal effects on A. baumannii biofilm and successfully reduced early A. baumannii biofilm from ceramic and polystyrene surfaces. The given combination of active substances can be a good option for eco-friendly disinfection of hospital inanimate surfaces from A. baumannii biofilm contamination with prior mechanical cleaning.
Collapse
|
65
|
Cui B, Chen X, Guo Q, Song S, Wang M, Liu J, Deng Y. The Cell-Cell Communication Signal Indole Controls the Physiology and Interspecies Communication of Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0102722. [PMID: 35862954 PMCID: PMC9431217 DOI: 10.1128/spectrum.01027-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Many bacteria utilize quorum sensing (QS) to control group behavior in a cell density-dependent manner. Previous studies have demonstrated that Acinetobacter baumannii employs an N-acyl-L-homoserine lactone (AHL)-based QS system to control biological functions and virulence. Here, we report that indole controls biological functions, virulence and AHL signal production in A. baumannii. The biosynthesis of indole is performed by A1S_3160 (AbiS, Acinetobacter baumannii indole synthase), which is a novel indole synthase annotated as an alpha/beta hydrolase in A. baumannii. Heterologous expression of AbiS in an Escherichia coli indole-deficient mutant also rescued the production of indole by using a distinct biosynthetic pathway from the tryptophanase TnaA, which produces indole directly from tryptophan in E. coli. Moreover, we revealed that indole from A. baumannii reduced the competitive fitness of Pseudomonas aeruginosa by inhibiting its QS systems and type III secretion system (T3SS). As A. baumannii and P. aeruginosa usually coexist in human lungs, our results suggest the crucial roles of indole in both the bacterial physiology and interspecies communication. IMPORTANCE Acinetobacter baumannii is an important human opportunistic pathogen that usually causes high morbidity and mortality. It employs the N-acyl-L-homoserine lactone (AHL)-type quorum sensing (QS) system, AbaI/AbaR, to regulate biological functions and virulence. In this study, we found that A. baumannii utilizes another QS signal, indole, to modulate biological functions and virulence. It was further revealed that indole positively controls the production of AHL signals by regulating abaI expression at the transcriptional levels. Furthermore, indole represses the QS systems and type III secretion system (T3SS) of P. aeruginosa and enhances the competitive ability of A. baumannii. Together, our work describes a QS signaling network where a pathogen uses to control the bacterial physiology and pathogenesis, and the competitive ability in microbial community.
Collapse
Affiliation(s)
- Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jingyun Liu
- Department of Stomatology, Zhengzhou Shuqing Medical College, Zhenzhou, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
66
|
Lee SA, Kim M, Kim HS, Ahn CY. Extra benefit of microalgae in raw piggery wastewater treatment: pathogen reduction. MICROBIOME 2022; 10:142. [PMID: 36045433 PMCID: PMC9429445 DOI: 10.1186/s40168-022-01339-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Monitoring microbial communities especially focused on pathogens in newly developed wastewater treatment systems is recommended for public health. Thus, we investigated the microbial community shift in a pilot-scale microalgal treatment system for piggery wastewater. RESULTS Microalgae showed reasonable removal efficiencies for COD and ammonia, resulting in higher transparency of the final effluent. Metagenome and microbial diversity analyses showed that heterotrophic microalgal cultivation barely changed the bacterial community; however, the mixotrophic microalgal cultivation induced a sudden change. In addition, an evaluation of risk groups (RGs) of bacteria showed that raw piggery wastewater included abundant pathogens, and the microalgal treatment of the raw piggery wastewater decreased the RG2 pathogens by 63%. However, co-cultivation of microalgae and the most dominant RG2 pathogen, Oligella, showed no direct effects between them. CONCLUSIONS Thus, a microbial interaction network was constructed to elucidate algae-bacteria interrelationships, and the decrease in Oligella was indirectly connected with microalgal growth via Brevundimonas, Sphingopyxis, and Stenotrophomonas. In a validation test, 3 among 4 connecting bacterial strains exhibited inhibition zones against Oligella. Therefore, we showed that microalgal wastewater treatment causes a decrease in RG2 bacteria, which is an indirect impact of microalgae associated with bacteria. Video abstract.
Collapse
Affiliation(s)
- Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123, Saarbrücken, Germany
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
67
|
Ghalavand Z, Eslami G, Hashemi A, Sadredinamin M, Yousefi N, Dehbanipour R. Characterization of Sequence Types and Mechanisms of Resistance to Tigecycline Among Acinetobacter baumannii Isolated from Children. Curr Microbiol 2022; 79:285. [PMID: 35947200 DOI: 10.1007/s00284-022-02976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
The present study aimed to investigate the mechanisms of resistance to tigecycline and to determine sequence types of Acinetobacter baumannii isolates recovered from children, using the Multilocus Sequence Typing (MLST). A total of 74 A. baumannii isolates were recovered from patients at one of the children's hospital in Tehran, Iran. Antimicrobial susceptibility testing of the isolates was performed for different classes of antibiotics and minimum inhibitory concentrations of colistin and tigecycline were determined using broth microdilution method and E-test strips, respectively. The presence of ISAba1, AbaR, tet(39), and tetX and the expressions of adeB, adeG, and adeJ efflux pump genes were measured using Polymerase Chain Reaction (PCR) and quantitative real-time PCR (RT-PCR), respectively. The diversity of mutations across the regulatory genes of RND efflux pumps (adeRS, adeL, and adeN) and trm gene were determined using their PCR amplification and DNA sequencing in tigecycline-resistant isolates. In addition, STs of tigecycline-resistant isolates were determined using MLST method. Three A. baumannii isolates were resistant to tigecycline. Several amino acid substitutions were identified in AdeRS, AdeN, and Trm but no alteration was found in AdeL. Nevertheless, adeB, adeG, and adeJ overexpression were observed in 1, 2, and 1 isolates, respectively. The tigecycline-resistant isolates belonged to ST1720 and ST2285. This is the first study reporting on ST2285 in A. baumannii populations. Among 74 isolates, two tigecycline susceptible isolates carried tet(39) gene but no tetX gene was detected. We concluded that mutations in regulatory genes of RND efflux pumps and the trm gene may play some important role in A. baumannii resistance to tigecycline.
Collapse
Affiliation(s)
- Zohreh Ghalavand
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Yousefi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Dehbanipour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
68
|
Rafiei E, Shahini Shams Abadi M, Zamanzad B, Gholipour A. The frequency of efflux pump genes expression in Acinetobacter baumannii isolates from pulmonary secretions. AMB Express 2022; 12:103. [PMID: 35925415 PMCID: PMC9352836 DOI: 10.1186/s13568-022-01444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Acinetobacter baumannii is an important opportunistic pathogen, and the cause of nosocomial infections worldwide in recent decades. Efflux pumps are considered as the important causes of multidrug resistance of A. baumannii. The aim of this study was to determine the frequency of efflux pump genes, and evaluate the antibiotic effect of Tigecycline on the expression of adeB gene in isolates of multidrug-resistant. A. baumannii. 70 isolates of A. baumannii were collected and confirmed by biochemical and molecular tests. Antibiotic resistance (Ciprofloxacin, Trimethoprim-sulfamethoxazole, and Tigecycline) was performed based on the minimum inhibitory concentration (MIC) method. Then, the effect of Carbonyl cyanide m-chlorophenyl hydrazone inhibitor (CCCP) on isolates was investigated and the frequency of adeB, adeG, adeJ and abeM genes were examined by PCR for isolates with reduced in MIC titer. Also, the antibiotic effect of Tigecycline on adeB gene expression in A. baumannii isolates was analyzed by Real-Time PCR. The antibiotic resistance for Ciprofloxacin, Trimethoprim-sulfamethoxazole, and Tigecycline was 97.1%, 95.8% and 37.2%, respectively. Following CCCP inhibitor use, the MIC titer had a decrease in MIC titer containing CCCP inhibitor was 64.3% for Ciprofloxacin, 51.5% for Trimethoprim-sulfamethoxazole and 50% for Tigecycline. The frequencies of genes associated with adeB, adeG, adeJ and abeM efflux pump were 100%, 92.8%, 86% and 98.5%, respectively. Real-Time PCR results showed a correlation between the antibiotic effects of Tigecycline on adeB gene expression. The antibiotic resistance of the isolates was relatively high. The isolates were resistant to Ciprofloxacin and Trimethoprim-sulfamethoxazole antibiotics, while more sensitive to Tigecycline. Also, efflux pump genes, which are the antibiotic resistance factors of A. baumannii, are frequently high in the isolates but it seems that isolates use other effluxe pumps than RND family to exit tigecycline. The frequencies of genes associated with adeB, adeG, adeJ and abeM efflux pump were 100%, 92.8%, 86% and 98.5%, respectively. Real-Time PCR results showed a correlation between the antibiotic effects of Tigecycline on adeB gene expression. The antibiotic resistance of the isolates was relatively high. Also, efflux pump genes, which are the antibiotic resistance factors of A. baumannii, are frequently high in the isolates but it seems that isolates use other effluxe pumps than RND family to exit tigecycline.
Collapse
Affiliation(s)
- Ebrahim Rafiei
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Milad Shahini Shams Abadi
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Behnam Zamanzad
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abolfazl Gholipour
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran. .,Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
69
|
Massik A, Hibaoui L, Moussa B, Yahyaoui G, Oumokhtar B, Mahmoud M. First report of SPM metallo-β-lactamases producing Acinetobacter baumannii isolates in Morocco. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:438-444. [PMID: 36721516 PMCID: PMC9867632 DOI: 10.18502/ijm.v14i4.10229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Carbapenem-resistant Acinetobacter baumannii has recently been identified by the World Health Organization as a critical pathogen. We propose to characterize the molecular characteristics of clinical isolates of A. baumannii resistant to carbapenems collected in a Moroccan hospital. Materials and Methods Seventy carbapenem-resistant A. baumannii isolates from various samples were received at the microbiology laboratory of the Hospital Center. Antibiotic susceptibility was tested by the diffusion disc method and molecular characterization of antimicrobial resistance was performed by PCR and sequencing. Results Carbapenemase genes were detected in our isolates: the OXA-51 gene and the ISbA1 sequence were detected in all isolates (100%), the OXA-23 and OXA-58 genes were detected in 82.85% and 10% of isolates respectively, MBL genes were dominated by VIM 39 isolates (55.7%), followed by GIM 26 isolates (37%), SIM 20 isolates (28.5%), IMP 8 isolates (11, 4%), NDM 3 isolates (4%) and for the first time in Morocco SPM with 4 isolates (5.7%). Conclusion The emergence of resistance of A. baumannii to carbapenems is a serious problem in our hospital which requires the establishment of a prevention strategy and strict respect for hygiene to minimize their dissemination.
Collapse
Affiliation(s)
- Abdelhamid Massik
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco,Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco,Corresponding author: Abdelhamid Massik, Ph.D, Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco; Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco. Tel: +98-212626805059
| | - Lahbib Hibaoui
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco,Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Benboubker Moussa
- Human Pathologies, Biomedicine and Environment Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Ghita Yahyaoui
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco
| | - Bouchra Oumokhtar
- Human Pathologies, Biomedicine and Environment Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Mustapha Mahmoud
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco,Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
70
|
Seo CW, Kim YK, An JL, Kim JS, Kwon PS, Yu YB. The effect of photodynamic therapy using Radachlorin on biofilm-forming multidrug-resistant bacteria. Osong Public Health Res Perspect 2022; 13:290-297. [PMID: 36097751 PMCID: PMC9468690 DOI: 10.24171/j.phrp.2022.0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES This study aimed to test the effect of photodynamic therapy (PDT) on the inhibition and removal of biofilms containing multidrug-resistant Acinetobacter baumannii. METHODS Using multidrug-resistant A. baumannii strains, an antibiotic susceptibility test was performed using the Gram-negative identification card of the Vitek 2 system (bioMérieux Inc., France), as well as an analysis of resistance genes, the effects of treatment with a light-emitting diode (LED) array using Radachlorin (RADA-PHARMA Co., Ltd., Russia), and transmission and scanning electron microscopy to confirm the biofilm-inhibitory effect of PDT. RESULTS The antibiotic susceptibility test revealed multiple resistance to the antibiotics imipenem and meropenem in the carbapenem class. A class-D-type β-lactamase was found, and OXA-23 and OXA-51 were found in 100% of 15 A. baumannii strains. After PDT using Radachlorin, morphological observations revealed an abnormal structure due to the loss of the cell membrane and extensive morphological changes, including low intracellular visibility and small vacuoles attached to the cell membrane. CONCLUSION PDT involving a combination of LED and Radachlorin significantly eliminated the biofilm of multidrug-resistant A. baumannii. Observations made using electron microscopy showed that PDT combining LED and Radachlorin was effective. Additional studies on the effective elimination of biofilms containing multidrug-resistant bacteria are necessary, and we hope that a treatment method superior to sterilization with antibiotics will be developed in the future.
Collapse
Affiliation(s)
- Choong-Won Seo
- Department of Biomedical Laboratory Science, Dongeui Institute of Technology, Busan, Korea
| | - Young-Kwon Kim
- Department of Health Sciences, The Graduate School of Konyang University, Daejeon, Korea
| | - Jeong-Lib An
- Department of Health Sciences, The Graduate School of Konyang University, Daejeon, Korea
| | - Jong-Sook Kim
- Department of Health Sciences, The Graduate School of Konyang University, Daejeon, Korea
| | - Pil-Seung Kwon
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, Korea
| | - Young-Bin Yu
- Department of Biomedical Laboratory Science, College of Medical Sciences, Konyang University, Daejeon, Korea
| |
Collapse
|
71
|
Temel A, Erac B. Investigating Biofilm Formation and Antibiofilm Activity Using Real Time Cell Analysis Method in Carbapenem Resistant Acinetobacter baumannii Strains. Curr Microbiol 2022; 79:256. [PMID: 35834022 DOI: 10.1007/s00284-022-02943-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
Acinetobacter baumannii is a significant nosocomial pathogen, with its biofilm forming capacity playing an important role in its pathogenicity. The fast and reliable detection of the biofilm formation and measurement of antibiofilm activity of various molecules are critical for combating A. baumannii infections. In this study, we aimed to detect biofilm formation by real time cell analyses (RTCA) method in clinical A. baumannii isolates and to investigate antibiofilm activities of tigecycline (TGC), N-acetylcysteine (NAC), and acetylsalicylic acid (ASA). The effect of the tested drugs on expressions of biofilm-related genes bap and csuE in clinical A. baumannii strains was also analyzed by real time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Biofilm forming capacities for strong and weak biofilm producer A. baumannii strains were detected within 10 h by RTCA method (P < 0.05). We also observed that sub-minimum inhibitory concentrations of NAC + TGC and ASA + TGC combinations could significantly reduce biofilm formation and expression of biofilm-related genes in A. baumanii strains. No statistically significant activity of the tested drugs was detected against mature biofilms of the bacterial strains with the RTCA method. These results suggest that reproducible results on biofilm production capacity of A. baumannii strains and antibiofilm activities of various compounds can be obtained in a short time using RTCA method. Therefore, RTCA method seems to be a beneficial technique for biofilm detection and can help in combating A. baumannii infections by giving health providers the opportunity of implementing antibiofilm treatment strategies in a timely manner.
Collapse
Affiliation(s)
- Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Bayrı Erac
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey.
| |
Collapse
|
72
|
Kanapathy S, Obande GA, Chuah C, Shueb RH, Yean CY, Banga Singh KK. Sequence-Specific Electrochemical Genosensor for Rapid Detection of blaOXA-51-like Gene in Acinetobacter baumannii. Microorganisms 2022; 10:1413. [PMID: 35889132 PMCID: PMC9322073 DOI: 10.3390/microorganisms10071413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) are phenotypically indistinguishable from the Acinetobacter calcoaceticus−A. baumannii (ACB) complex members using routine laboratory methods. Early diagnosis plays an important role in controlling A. baumannii infections and this could be assisted by the development of a rapid, yet sensitive diagnostic test. In this study, we developed an enzyme-based electrochemical genosensor for asymmetric PCR (aPCR) amplicon detection of the blaOXA-51-like gene in A. baumannii. A. baumanniiblaOXA-51-like gene PCR primers were designed, having the reverse primer modified at the 5′ end with FAM. A blaOXA-51-like gene sequence-specific biotin labelled capture probe was designed and immobilized using a synthetic oligomer (FAM-labelled) deposited on the working electrode of a streptavidin-modified, screen-printed carbon electrode (SPCE). The zot gene was used as an internal control with biotin and FAM labelled as forward and reverse primers, respectively. The blaOXA-51-like gene was amplified using asymmetric PCR (aPCR) to generate single-stranded amplicons that were detected using the designed SPCE. The amperometric current response was detected with a peroxidase-conjugated, anti-fluorescein antibody. The assay was tested using reference and clinical A. baumannii strains and other nosocomial bacteria. The analytical sensitivity of the assay at the genomic level and bacterial cell level was 0.5 pg/mL (1.443 µA) and 103 CFU/mL, respectively. The assay was 100% specific and sensitive for A. baumannii. Based on accelerated stability performance, the developed genosensor was stable for 1.6 years when stored at 4 °C and up to 28 days at >25 °C. The developed electrochemical genosensor is specific and sensitive and could be useful for rapid, accurate diagnosis of A. baumannii infections even in temperate regions.
Collapse
Affiliation(s)
- Swarnaletchumi Kanapathy
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| | - Godwin Attah Obande
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia 950101, Nasarawa State, Nigeria;
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
- Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| |
Collapse
|
73
|
Cao Y, Macori G, Naithani A, Tall BD, Gangiredla J, Srikumar S, Fanning S. A 16S rRNA Sequencing Study Describing the Environmental Microbiota of Two Powdered Infant Formula Built Facilities. Foodborne Pathog Dis 2022; 19:473-484. [PMID: 35766923 DOI: 10.1089/fpd.2021.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microbial safety is critically important for powdered infant formula (PIF) fed to neonates, with under-developed immune systems. The quality and safety of food products are dictated by those microorganisms found in both raw materials and the built production environment. In this study, a 2-year monitoring program of a production environment was carried out in two PIF factories located in the Republic of Ireland, and the environmental microbiome in different care areas of these sites was studied by using a 16S ribosomal RNA (rRNA)-based sequencing technique. Results highlighted a core microbiome associated with the PIF factory environment containing 24 bacterial genera representing five phyla, with Acinetobacter and Pseudomonas as the predominant genera. In different care areas of the PIF factory, as hygiene standards increased, deciphered changes in microbial community compositions became smaller over time and approached stability, and bacteria dominating the care area became less influenced by the external environment and more by human interactions and raw materials. These observations indicated that the microbial composition can be altered in response to environmental interventions. Genera Cronobacter and Salmonella were observed in trace amounts in the PIF factory environment, and bacterial genera known to be persistent in a stressed environment, such as Acinetobacter, Bacillus, Streptococcus, and Clostridium, were likely to have higher abundances in dry environment-based care areas. To our knowledge, this is the first study to characterize the PIF production environment microbiome using 16S rRNA-based sequencing. This study described the composition and changing trends of the environmental microbial communities in different care areas of the PIF manufacturing facility, and it provided valuable information to support the safer production of PIF in the future.
Collapse
Affiliation(s)
- Yu Cao
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| | - Ankita Naithani
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| | - Ben D Tall
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Jayanthi Gangiredla
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Shabarinath Srikumar
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland.,Department of Food, Nutrition and Health, College of Food and Agriculture, UAE University Al Ain Campus, Al Ain, United Arab Emirates
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| |
Collapse
|
74
|
El-Kattan N, Emam AN, Mansour AS, Ibrahim MA, Abd El-Razik AB, Allam KAM, Riad NY, Ibrahim SA. Curcumin assisted green synthesis of silver and zinc oxide nanostructures and their antibacterial activity against some clinical pathogenic multi-drug resistant bacteria. RSC Adv 2022; 12:18022-18038. [PMID: 35874032 PMCID: PMC9239055 DOI: 10.1039/d2ra00231k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
According to WHO warnings, the antibiotic resistance crisis is a severe health issue in the 21st century, attributed to the overuse and misuse of these medications. Consequently, the dramatic spreading rate of the drug-resistant microbial pathogens strains. The microbiological, biochemical tests and antibiotic sensitivity identified the bacteria's multi-drug resistance (MDR). About 150 different clinical samples were taken from hospitalized patients, both males, and females, ranging from 9 to 68 years. Gram-negative strains were (70.0%), while Gram-positive isolates were (30.0%). Among sixteen antibiotics, antibiotic susceptibility of imipenem was found to be the most efficient drug against most of the Gram-negative and Gram-positive isolates, followed by meropenem, depending on the culture and sensitivity results. All the experimental bacteria showed multidrug-resistant phenomena. In this study, green synthesized silver (Cur-Ag NPs) and zinc oxide (Cur-ZnO NPs) nanoparticles in the presence of curcumin extract. In addition, their physicochemical properties have been characterized using different techniques such as UV-Vis spectroscopy, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and colloidal properties techniques. Furthermore, curcumin-capped silver nanoparticles (AgNPs) exhibited solid antimicrobial action against the experimental bacterial isolates, except Proteus vulgaris (i.e., P. vulgaris). Curcumin-capped zinc oxide nanoparticles (ZnO NPs) found antimicrobial activity against all tested strains. Finally, the minimum inhibitory concentration exhibited values from 3.9 to 15.6 μg ml-1, which is too small compared to other traditional antibiotics. In addition, the green-synthesized Cur-Ag NPs and Cur-ZnO NPs showed good biocompatibility.
Collapse
Affiliation(s)
- Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes Giza Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre El Bohouth St., Dokki 12622 Cairo Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University Zayed City Giza Egypt
| | - Ahmed S Mansour
- Department of Laser Applications in Meteorology, Chemistry and Agriculture, National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University Zayed City Giza Egypt
| | - Mostafa A Ibrahim
- Production and R&D Unit, NanoFab Technology Company 6th October City Giza Egypt
| | - Ashraf B Abd El-Razik
- Genetics Department, Faculty of Agriculture, Ain Shams University P.O. Box 68, Hadayek Shoubra 11241 Cairo Egypt
| | - Kamilia A M Allam
- Department of Epidemiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes Giza
| | - Nadia Youssef Riad
- Department of Clinical Pathology, National Heart Institute, General Organization for Teaching Hospitals and Institutes Giza Egypt
| | - Samir A Ibrahim
- Genetics Department, Faculty of Agriculture, Ain Shams University P.O. Box 68, Hadayek Shoubra 11241 Cairo Egypt
| |
Collapse
|
75
|
Li X, Yang B, Shi C, Wang H, Yu R, Li Q, Liu S. Synergistic Interaction of Low Salinity Stress With Vibrio Infection Causes Mass Mortalities in the Oyster by Inducing Host Microflora Imbalance and Immune Dysregulation. Front Immunol 2022; 13:859975. [PMID: 35663972 PMCID: PMC9162580 DOI: 10.3389/fimmu.2022.859975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
A sudden drop in salinity following extreme precipitation events usually causes mass mortality of oysters exposed to pathogens in ocean environment. While how low salinity stress interacts with pathogens to cause mass mortality remains obscure. In this study, we performed an experiment by low salinity stress and pathogen infection with Vibrio alginolyticus to investigate their synergistic effect on the mortality of the Pacific oyster toward understanding of the interaction among environment, host, and pathogen. We showed that low salinity stress did not significantly affect proliferation and virulence of V. alginolyticus, but significantly altered microbial composition and immune response of infected oysters. Microbial community profiling by 16S rRNA amplicon sequencing revealed disrupted homeostasis of digestive bacterial microbiota with the abundance of several pathogenic bacteria being increased, which may affect the pathogenesis in infected oysters. Transcriptome profiling of infected oysters revealed that a large number of genes associated with apoptosis and inflammation were significantly upregulated under low salinity, suggesting that low salinity stress may have triggered immune dysregulation in infected oysters. Our results suggest that host-pathogen interactions are strongly affected by low salinity stress, which is of great significance for assessing future environmental risk of pathogenic diseases, decoding the interaction among environment, host genetics and commensal microbes, and disease surveillance in the oyster.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Ben Yang
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Chenyu Shi
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Hebing Wang
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Ruihai Yu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
76
|
Hubeny J, Korzeniewska E, Buta-Hubeny M, Zieliński W, Rolbiecki D, Harnisz M. Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from wastewater and river water in Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153437. [PMID: 35122847 DOI: 10.1016/j.scitotenv.2022.153437] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 05/29/2023]
Abstract
The aim of this study was to analyze the prevalence of carbapenem resistance genes in Acinetobacter spp. isolated from wastewater in a municipal WWTP and to determine their spread from treated wastewater to river water with the use of conventional and molecular microbiology methods (qualitative and quantitative PCR and metagenomic analysis). Samples of untreated and treated wastewater and samples of river water obtained upstream and downstream from the wastewater discharge point were collected in 3 seasons (February, June, and September) of 2019. Acinetobacter spp. isolates were obtained by the culture method on the CHROMagar™ Acinetobacter medium. Additionally, environmental DNA was extracted from the samples for metagenomic and qPCR analyses. The presence of beta-lactam resistance genes (Ambler class B and D), insertion sequence ISAba1, and class I, II, and III integron-integrase genes was determined, and the bacterial taxonomic structure and wastewater and river samples was analyzed. Out of the 301 isolates obtained on the CHROMagar™ Acinetobacter medium, 258 belonged to the genus Acinetobacter, including 21 isolates that were identified as Acinetobacter baumannii. The highest number of Acinetobacter spp. and A. baumannii isolates were obtained from wastewater and river water samples collected in June and September. The ISAba1/blaOXA-51 complex was identified in 13 isolates, which confirms the occurrence of carbapenem-resistance isolates in the analyzed samples. The number of Acinetobacter isolates carrying antibiotic resistance genes (ARGs) increased in river water samples collected downstream from the wastewater discharge point (48 out of 258 isolates - 18.6%) compared to river water samples collected upstream from the wastewater discharge point (34 out of 258 isolates - 13.2%), which suggests that WWTP is a source of pollution in the natural environment. The conducted research provides evidence that bacteria of the genus Acinetobacter may spread alarming beta-lactam resistance in the environment and, therefore, pose a serious epidemiological threat.
Collapse
Affiliation(s)
- Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| |
Collapse
|
77
|
Hubloher JJ, van der Sande L, Müller V. Na + homeostasis in Acinetobacter baumannii is facilitated via the activity of the Mrp antiporter. Environ Microbiol 2022; 24:4411-4424. [PMID: 35535800 DOI: 10.1111/1462-2920.16039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
The human opportunistic pathogen Acinetobacter baumannii is a global threat to healthcare institutions worldwide, since it developed very efficient strategies to evade host defense and to adapt to the different environmental conditions of the host. This worked focused on the importance of Na+ homeostasis in A. baumannii with regards to pathobiological aspects. In silico studies revealed a homologue of a multicomponent Na+ /H+ antiporter system. Inactivation of the Mrp antiporter through deletion of the first gene (mrpA') resulted in a mutant that was sensitive to increasing pH values. Furthermore, the strain was highly sensitive to increasing Na+ and Li+ concentrations. Increasing Na+ sensitivity is thought to be responsible for growth impairment in human fluids. Furthermore, deletion of mrpA' is associated with energetic defects, inhibition of motility and survival under anoxic and dry conditions.
Collapse
Affiliation(s)
- Josephine Joy Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Lisa van der Sande
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|
78
|
Srikanth D, Vinayak Joshi S, Ghouse Shaik M, Pawar G, Bujji S, Kanchupalli V, Chopra S, Nanduri S. A Comprehensive Review on Potential Therapeutic Inhibitors of Nosocomial Acinetobacter baumannii Superbugs. Bioorg Chem 2022; 124:105849. [DOI: 10.1016/j.bioorg.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
79
|
Chan KW, Liu CY, Wong HY, Chan WC, Wong KY, Chen S. Specific Amino Acid Substitutions in OXA-51-Type β-Lactamase Enhance Catalytic Activity to a Level Comparable to Carbapenemase OXA-23 and OXA-24/40. Int J Mol Sci 2022; 23:ijms23094496. [PMID: 35562886 PMCID: PMC9105447 DOI: 10.3390/ijms23094496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
The chromosomal blaOXA-51-type gene encodes carbapenem-hydrolyzing class D β-lactamases (CHDLs), specific variants shown to mediate carbapenem resistance in the Gram-negative bacterial pathogen Acinetobacter baumannii. This study aims to characterize the effect of key amino acid substitutions in OXA-51 variants of carbapenem-hydrolyzing class D β-lactamases (CHDLs) on substrate catalysis. Mutational and structural analyses indicated that each of the L167V, W222G, or I129L substitutions contributed to an increase in catalytic activity. The I129L mutation exhibited the most substantial effect. The combination of W222G and I129L substitutions exhibited an extremely strong catalytic enhancement effect in OXA-66, resulting in higher activity than OXA-23 and OXA-24/40 against carbapenems. These findings suggested that specific arrangement of residues in these three important positions in the intrinsic OXA-51 type of enzyme can generate variants that are even more active than known CHDLs. Likewise, mutation leading to the W222M change also causes a significant increase in the catalytic activity of OXA-51. blaOXA-51 gene in A. baumannii may likely continue to evolve, generating mutant genes that encode carbapenemase with extremely strong catalytic activity.
Collapse
Affiliation(s)
- Kwan-Wai Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; (K.-W.C.); (H.-Y.W.); (W.-C.C.); (K.-Y.W.)
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong;
| | - Chen-Yu Liu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong;
| | - Ho-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; (K.-W.C.); (H.-Y.W.); (W.-C.C.); (K.-Y.W.)
| | - Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; (K.-W.C.); (H.-Y.W.); (W.-C.C.); (K.-Y.W.)
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; (K.-W.C.); (H.-Y.W.); (W.-C.C.); (K.-Y.W.)
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong;
- Correspondence: ; Tel.: +852-3442-5782
| |
Collapse
|
80
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
81
|
Ahmad N, Singh A, Gupta A, Pant P, Singh TP, Sharma S, Sharma P. Discovery of the Lead Molecules Targeting the First Step of the Histidine Biosynthesis Pathway of Acinetobacter baumannii. J Chem Inf Model 2022; 62:1744-1759. [PMID: 35333517 DOI: 10.1021/acs.jcim.1c01421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acinetobacter baumannii is a multidrug-resistant, opportunistic, nosocomial pathogen for which a new line of treatments is desperately needed. We have targeted the enzyme of the first step of the histidine biosynthesis pathway, viz., ATP-phosphoribosyltransferase (ATP-PRT). The three-dimensional structure of ATP-PRT was predicted on the template of the known three-dimensional structure of ATP-PRT from Psychrobacter arcticus (PaATPPRT) using a homology modeling approach. High-throughput virtual screening (HTVS) of the antibacterial library of Life Chemicals Inc., Ontario, Canada was carried out followed by molecular dynamics simulations of the top hit compounds. In silico results were then biochemically validated using surface plasmon resonance spectroscopy. We found that two compounds, namely, F0843-0019 and F0608-0626, were binding with micromolar affinities to the ATP-phosphoribosyltransferase from Acinetobacter baumannii (AbATPPRT). Both of these compounds were binding in the same way as AMP in PaATPPRT, and the important residues of the active site, viz., Val4, Ser72, Thr76, Tyr77, Glu95, Lys134, Val136, and Tyr156, were also interacting via hydrogen bonds. The calculated binding energies of these compounds were -10.5 kcal/mol and -11.1 kcal/mol, respectively. These two compounds can be used as the potential lead molecules for designing antibacterial compounds in the future, and this information will help in drug discovery programs against Acinetobacter worldwide.
Collapse
Affiliation(s)
- Nabeel Ahmad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Akshita Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pradeep Pant
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
82
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
83
|
Dey N, Kamatchi C, Vickram AS, Anbarasu K, Thanigaivel S, Palanivelu J, Pugazhendhi A, Ponnusamy VK. Role of nanomaterials in deactivating multiple drug resistance efflux pumps - A review. ENVIRONMENTAL RESEARCH 2022; 204:111968. [PMID: 34453898 DOI: 10.1016/j.envres.2021.111968] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The changes in lifestyle and living conditions have affected not only humans but also microorganisms. As man invents new drugs and therapies, pathogens alter themselves to survive and thrive. Multiple drug resistance (MDR) is the talk of the town for decades now. Many generations of medications have been termed useless as MDR rises among the infectious population. The surge in nanotechnology has brought a new hope in reducing this aspect of resistance in pathogens. It has been observed in several laboratory-based studies that the use of nanoparticles had a synergistic effect on the antibiotic being administered to the pathogen; several resistant strains scummed to the stress created by the nanoparticles and became susceptible to the drug. The major cause of resistance to date is the efflux system, which makes the latest generation of antibiotics ineffective without reaching the target site. If species-specific nanomaterials are used to control the activity of efflux pumps, it could revolutionize the field of medicine and make the previous generation resistant medications active once again. Therefore, the current study was devised to assess and review nanoparticles' role on efflux systems and discuss how specialized particles can be designed towards an infectious host's particular drug ejection systems.
Collapse
Affiliation(s)
- Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - C Kamatchi
- Department of Biotechnology, The Oxford College of Science, Bengaluru, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Thanigaivel
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | | | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan; Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, Taiwan.
| |
Collapse
|
84
|
Liu H, Hu Z, Zhou M, Zhang H, Zhang X, Yue Y, Yao X, Wang J, Xi C, Zheng P, Xu X, Hu B. PM 2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118715. [PMID: 34933062 DOI: 10.1016/j.envpol.2021.118715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM2.5) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM2.5 samples, all of which are the important components of PM2.5. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM2.5 concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM2.5 concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM2.5 and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM2.5, offering a new perspective for atmospheric ecology and pollution control.
Collapse
Affiliation(s)
- Huan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; School of Civil Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhichao Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaole Zhang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Yang Yue
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Ping Zheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
85
|
Li J, Wei X, Huang D, Xiao J. The Phylosymbiosis Pattern Between the Fig Wasps of the Same Genus and Their Associated Microbiota. Front Microbiol 2022; 12:800190. [PMID: 35237241 PMCID: PMC8882959 DOI: 10.3389/fmicb.2021.800190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities can be critical for many metazoans, which can lead to the observation of phylosymbiosis with phylogenetically related species sharing similar microbial communities. Most of the previous studies on phylosymbiosis were conducted across the host families or genera. However, it is unclear whether the phylosymbiosis signal is still prevalent at lower taxonomic levels. In this study, 54 individuals from six species of the fig wasp genus Ceratosolen (Hymenoptera: Agaonidae) collected from nine natural populations and their associated microbiota were investigated. The fig wasp species were morphologically identified and further determined by mitochondrial CO1 gene fragments and nuclear ITS2 sequences, and the V4 region of 16S rRNA gene was sequenced to analyze the bacterial communities. The results suggest a significant positive correlation between host genetic characteristics and microbial diversity characteristics, indicating the phylosymbiosis signal between the phylogeny of insect hosts and the associated microbiota in the lower classification level within a genus. Moreover, we found that the endosymbiotic Wolbachia carried by fig wasps led to a decrease in bacterial diversity of host-associated microbial communities. This study contributes to our understanding of the role of host phylogeny, as well as the role of endosymbionts in shaping the host-associated microbial community.
Collapse
|
86
|
Mona MH, El-Khodary GM, Abdel-Halim KY, Omran NE, Abd El-Aziz KK, El-Saidy SA. Histopathological alterations induced by marine environmental pollutants on the bivalve Cerastoderma glaucum (Bruguière 1789) from Temsah Lake, Suez Canal, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9971-9989. [PMID: 34510354 DOI: 10.1007/s11356-021-14966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Bivalves are considered a main consumed matrix for coastal communities worldwide and classified as hyperaccumulators of pollutants. The present study aims to determine some micro-organisms, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and okadaic acid (OA) levels in Cerastoderma glaucum collected from Temsah Lake, Egypt, and their induction through histopathological damage and caspase-3 protein expression. During the autumn, it was found different types of biological and chemical pollutants, especially benzo[a]pyrene (BaP) that accumulated in C. glaucum soft tissues and exceeded the safety limit for shellfish consumption. Dioxin-like PCB3 was predominant in C. glaucum soft tissues during autumn, but the total levels of PCBs in these tissues have not exceeded the permissible limit. Chlorophyll-a (Chl. a), nutrient concentrations, and Prorocentrum lima dinoflagellates in the water significantly increased during autumn. High P. lima abundance was confirmed by high OA in the soft tissues during this season compared to the other seasons. The measured contaminants may render C. glaucum more susceptible to bacterial and fungal infections. The autumn season showed a significant increase in the colony-forming units (CFU). C. glaucum showed calcification abnormalities and adhering of abnormal brown organic material to the inner surface of the shell valves, which was related to poor water conditions and Vibrio infection. Damages or injuries on gills and digestive gland tissues indicated an impact of the pollutants on C. glaucum. Also, high expressions of caspase-3 were recorded in these tissues during all the seasons. So, C. glaucum cockles, collected from Temsah Lake, may induce serious diseases to consumers, especially when eaten raw or insufficient cooking.
Collapse
Affiliation(s)
- Mohamed H Mona
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Gihan M El-Khodary
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Khaled Y Abdel-Halim
- Mammalian & Aquatic Toxicology Department, Central Agriculural Pesticides Laboratory (CAPL), Agricultural Research Center (ARC),12618-Dokki, Giza, Egypt.
| | - Nahla E Omran
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Salwa A El-Saidy
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
87
|
Wan K, Zheng S, Ye C, Hu D, Zhang Y, Dao H, Chen S, Yu X. Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. WATER RESEARCH 2022; 209:117902. [PMID: 34910990 DOI: 10.1016/j.watres.2021.117902] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future.
Collapse
Affiliation(s)
- Kun Wan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dong Hu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yiting Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haosha Dao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shaohua Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
88
|
Selim S, Faried OA, Almuhayawi MS, Mohammed OA, Saleh FM, Warrad M. Dynamic Gene Clusters Mediating Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Antibiotics (Basel) 2022; 11:antibiotics11020168. [PMID: 35203771 PMCID: PMC8868416 DOI: 10.3390/antibiotics11020168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Acinetobacter baumanni (A. baumannii), a nonfermenting Gram-negative bacterium, has recently been associated with a broad range of nosocomial infections. To gain more meaningful insight into the problem of nosocomial illnesses caused by the multidrug-resistant (MDR) A. baumannii, as well as the factors that increase the risk of catching these infections, this investigation included a total of 86 clinical A. baumannii infections. Repetitive extragenic palindromic (REP)-PCR was used to investigate imipenem-resistant A. baumannii isolates for dynamic gene clusters causing carbapenem resistance. Four distinct A. baumannii lineages were found in the REP-PCR-DNA fingerprints of all isolates, with 95% of the samples coming from two dominant lineages. Imipenem, amikacin, and ciprofloxacin were less effective against genotype (A) isolates because of enhanced antibiotic tolerance. Lastly, to gain more insight into the mode of action of imipenem, we explored the binding affinity of imipenem toward different Acinetobacter baumannii OXA beta-lactamase class enzymes.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence:
| | - Osama Ahmed Faried
- Medical Microbiology and Immunology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62513, Egypt;
| | - Mohamed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Osama A. Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat 77454, Saudi Arabia;
| |
Collapse
|
89
|
Artuso I, Lucidi M, Visaggio D, Capecchi G, Lugli GA, Ventura M, Visca P. Genome diversity of domesticated Acinetobacter baumannii ATCC 19606 T strains. Microb Genom 2022; 8. [PMID: 35084299 PMCID: PMC8914354 DOI: 10.1099/mgen.0.000749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii has emerged as an important opportunistic pathogen worldwide, being responsible for large outbreaks for nosocomial infections, primarily in intensive care units. A. baumannii ATCC 19606T is the species type strain, and a reference organism in many laboratories due to its low virulence, amenability to genetic manipulation and extensive antibiotic susceptibility. We wondered if frequent propagation of A. baumannii ATCC 19606T in different laboratories may have driven micro- and macro-evolutionary events that could determine inter-laboratory differences of genome-based data. By combining Illumina MiSeq, MinION and Sanger technologies, we generated a high-quality whole-genome sequence of A. baumannii ATCC 19606T, then performed a comparative genome analysis between A. baumannii ATCC 19606T strains from several research laboratories and a reference collection. Differences between publicly available ATCC 19606T genome sequences were observed, including SNPs, macro- and micro-deletions, and the uneven presence of a 52 kb prophage belonging to genus Vieuvirus. Two plasmids, pMAC and p1ATCC19606, were invariably detected in all tested strains. The presence of a putative replicase, a replication origin containing four 22-mer direct repeats, and a toxin-antitoxin system implicated in plasmid stability were predicted by in silico analysis of p1ATCC19606, and experimentally confirmed. This work refines the sequence, structure and functional annotation of the A. baumannii ATCC 19606T genome, and highlights some remarkable differences between domesticated strains, likely resulting from genetic drift.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giulia Capecchi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| |
Collapse
|
90
|
Naing SY, Hordijk J, Duim B, Broens EM, van der Graaf-van Bloois L, Rossen JW, Robben JH, Leendertse M, Wagenaar JA, Zomer AL. Genomic Investigation of Two Acinetobacter baumannii Outbreaks in a Veterinary Intensive Care Unit in The Netherlands. Pathogens 2022; 11:pathogens11020123. [PMID: 35215067 PMCID: PMC8875366 DOI: 10.3390/pathogens11020123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that frequently causes healthcare-acquired infections. The global spread of multidrug-resistant (MDR) strains with its ability to survive in the environment for extended periods imposes a pressing public health threat. Two MDR A. baumannii outbreaks occurred in 2012 and 2014 in a companion animal intensive care unit (caICU) in the Netherlands. Whole-genome sequencing (WGS) was performed on dog clinical isolates (n = 6), environmental isolates (n = 5), and human reference strains (n = 3) to investigate if the isolates of the two outbreaks were related. All clinical isolates shared identical resistance phenotypes displaying multidrug resistance. Multi-locus Sequence Typing (MLST) revealed that all clinical isolates belonged to sequence type ST2. The core genome MLST (cgMLST) results confirmed that the isolates of the two outbreaks were not related. Comparative genome analysis showed that the outbreak isolates contained different gene contents, including mobile genetic elements associated with antimicrobial resistance genes (ARGs). The time-measured phylogenetic reconstruction revealed that the outbreak isolates diverged approximately 30 years before 2014. Our study shows the importance of WGS analyses combined with molecular clock investigations to reduce transmission of MDR A. baumannii infections in companion animal clinics.
Collapse
Affiliation(s)
- Soe Yu Naing
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Joost Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Els M. Broens
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Linda van der Graaf-van Bloois
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - John W. Rossen
- Department of Medical Microbiology, University Medical Center, University of Groningen, 9700 AB Groningen, The Netherlands;
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joris H. Robben
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands;
| | - Masja Leendertse
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
| | - Aldert L. Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (S.Y.N.); (J.H.); (B.D.); (E.M.B.); (L.v.d.G.-v.B.); (M.L.); (J.A.W.)
- Correspondence:
| |
Collapse
|
91
|
Bharathi SV, Venkataramaiah M, Rajamohan G. Genotypic and Phenotypic Characterization of Novel Sequence Types of Carbapenem-Resistant Acinetobacter baumannii, With Heterogeneous Resistance Determinants and Targeted Variations in Efflux Operons. Front Microbiol 2022; 12:738371. [PMID: 35002996 PMCID: PMC8735875 DOI: 10.3389/fmicb.2021.738371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/16/2021] [Indexed: 01/21/2023] Open
Abstract
Acinetobacter baumannii has emerged as one of the dominant nosocomial human pathogens associated with high morbidity and mortality globally. Increased incidences of carbapenem-resistant A. baumannii (CRAB) have resulted in an enormous socioeconomic burden on health-care systems. Here, we report the genotypic and phenotypic characterization of novel ST1816 and ST128 variants in A. baumannii strains belonging to International clone II (GC2) with capsule types KL1:OCL8 and KL3:OCL1d from India. Sequence analysis revealed the presence of diverse virulome and resistome in these clinical strains, in addition to islands, prophages, and resistance genes. The oxacillinase bla OXA-23 detected in the genomic island also highlighted the coexistence of bla OXA-66 /bla OXA-98 , bla ADC73 /bla ADC-3 , and bla TEM-1D in their mobile scaffolds, which is alarming. Together with these resistance-determining enzymes, multidrug efflux transporters also harbored substitutions, with increased expression in CRAB strains. The hotspot mutations in colistin resistance-conferring operons, PmrAB, LpxACD, and AdeRS, were additionally confirmed. Phenotype microarray analysis indicated that multidrug-resistant strains A. baumannii DR2 and A. baumannii AB067 preferred a range of antimicrobial compounds as their substrates relative to the other. To our knowledge, this is the first comprehensive report on the characterization of A. baumannii variants ST1816 and ST128, with different genetic makeup and genome organization. The occurrence of CRAB infections worldwide is a severe threat to available limited therapeutic options; hence, continued surveillance to monitor the emergence and dissemination of such novel ST variants in A. baumannii is imperative.
Collapse
Affiliation(s)
- Srinivasan Vijaya Bharathi
- Molecular Biology Division, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Manjunath Venkataramaiah
- Molecular Biology Division, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Govindan Rajamohan
- Molecular Biology Division, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
92
|
Zhang S, Lu J, Wang Y, Verstraete W, Yuan Z, Guo J. Insights of metallic nanoparticles and ions in accelerating the bacterial uptake of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126728. [PMID: 34339990 DOI: 10.1016/j.jhazmat.2021.126728] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The increasing release of nanomaterials has attracted significant concerns for human and environmental health. Similarly, the dissemination of antimicrobial resistance (AMR) is a global health crisis affecting approximately 700,000 people a year. However, a knowledge gap persists between the spread of AMR and nanomaterials. This study aims to fill this gap by investigating whether and how nanomaterials could directly facilitate the dissemination of AMR through horizontal gene transfer. Our results show that commonly-used nanoparticles (NPs) (Ag, CuO and ZnO NPs) and their ion forms (Ag+, Cu2+ and Zn2+) at realistic concentrations within aquatic environments can significantly promote the transformation of extracellular antibiotic resistance genes in Acinetobacter baylyi ADP1 by a factor of 11.0-folds, which is comparable to the effects of antibiotics. The enhanced transformation by Ag NPs/Ag+ and CuO NPs/Cu2+ was primarily associated with the overproduction of reactive oxygen species and cell membrane damage. ZnO NPs/Zn2+ might increase the natural transformation rate by stimulating the stress response and ATP synthesis. All tested NPs/ions resulted in upregulating the competence and SOS response-associated genes. These findings highlight a new concern that nanomaterials can speed up the spread of AMR, which should not be ignored when assessing the holistic risk of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zhang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science &Technology, Nanjing 210044, China
| | - Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yue Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Willy Verstraete
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
93
|
Donath Benitez CA, Mattenberger-Cantú E, Salas-Flores R, Gómez-Morales GB, Mártinez-Diaz PA, Moreno-Treviño MG, García-Tovar LE, González-Salazar F. Update on Pediatric Sepsis in Mexico. Glob Pediatr Health 2022; 9:2333794X221118017. [PMID: 35967590 PMCID: PMC9373156 DOI: 10.1177/2333794x221118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The main objective of this work was to determine and update the causal agents’
antibiotic sensitivity and resistance patterns on pediatric sepsis in a
population of northeast Mexico. It is a cross-sectional study showing the
results of blood cultures of pediatric patients with a presumptive diagnosis of
sepsis were reviewed according to the SOFA criteria during 2020 in a public
hospital in Mexico. A total of 207 blood cultures were performed and analyzed.
The main isolated microorganisms were Staphylococcus, followed by Klebsiella and
Escherichia. Several microorganisms showed 100% of sensitivity to different
antibiotics or antifungals, some of them include Vancomycin, Voriconazole,
Meropenem, Ciprofloxacin, and Cefotaxime. Bacteria of genre Staphylococcus
showed its highest sensitivity rate to Tigecycline with 63.3%. Too
Staphylococcus showed the highest resistance rate to Oxacillin with 50%.
Although the patterns of sepsis-causing germs are similar to those previously
reported, the development of new drugs with greater efficacy is the main
contribution.
Collapse
Affiliation(s)
| | - Estefanía Mattenberger-Cantú
- Universidad de Monterrey, San Pedro Garza García, Nuevo León, México
- Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
| | | | | | | | | | | | - Francisco González-Salazar
- Universidad de Monterrey, San Pedro Garza García, Nuevo León, México
- Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
| |
Collapse
|
94
|
Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice. J Microbiol 2021; 60:128-136. [PMID: 34964948 DOI: 10.1007/s12275-022-1620-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Acinetobacter baumannii causes multidrug resistance, leading to fatal infections in humans. In this study, we showed that Lys AB2 P3-His-a hexahistidine-tagged form of an antimicrobial peptide (AMP) loaded onto DNA aptamer-functionalized gold nanoparticles (AuNP-Apt)-can effectively inhibit A. baumannii infection in mice. When A. baumannii-infected mice were intraperitoneally injected with AuNP-Apt loaded with Lys AB2 P3-His, a marked reduction in A. baumannii colonization was observed in the mouse organs, leading to prominently increased survival time and rate of the mice compared to those of the control mice treated with AuNP-Apt or Lys AB2 P3-His only. This study shows that AMPs loaded onto AuNP-Apt could be an effective therapeutic tool against infections caused by multidrug-resistant pathogenic bacteria in humans.
Collapse
|
95
|
Ouyang Y, Liu D, Zhang L, Li X, Chen X, Zhao C. Green Alga Enteromorpha prolifera Oligosaccharide Ameliorates Ageing and Hyperglycemia through Gut-Brain Axis in Age-Matched Diabetic Mice. Mol Nutr Food Res 2021; 66:e2100564. [PMID: 34894199 DOI: 10.1002/mnfr.202100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/25/2021] [Indexed: 12/12/2022]
Abstract
SCOPE To investigate the anti-ageing and anti-diabetic effects of Enteromorpha prolifera oligosaccharide (EPO) in age-matched streptozocin-induced diabetic mice. METHODS AND RESULTS LC-MS metabolomics and 16S rRNA sequencing is used to identify the brain metabolites and gut microbiota, respectively. EPO could significantly improve glucose metabolism and activity of total superoxide dismutase in serum. It also could regulate the tricarboxylic acid cycle, arginine, and inosine-related metabolic pathways in the brain of aged diabetic mice. Inosine is found to enhance the relative expressions of daf-2, daf-16, and skn-1 in insulin-resistant Caenorhabditis elegans. Additionally, EPO could alter the composition and diversity of gut microbiota in mice. It could upregulate the Signal Transducer and Activator of Transcription 3/Forkhead Box O1 (FOXO1)/B cell lymphoma 6 (Bcl-6) pathways in the brain and the c-Jun N-terminal Kinase (JNK)/FOXO1/Bcl-6 signaling axis in the intestine to regulate glucose metabolite status and ageing in mice. EPO could also improve the levels of glucagon-like peptide type 1 (GLP1) expression in the gut, thereby inducing high expression of GLP1 receptor in the brain to control glucose metabolites through the brain-gut axis. Enterococcus is negatively correlated with AMP in the brain and could be a potential hallmark species in age-related diabetes. CONCLUSIONS These results suggest that EPO could be a potential novel natural drug for the treatment of diabetes in the elderly.
Collapse
Affiliation(s)
- Yuezhen Ouyang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhu Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Zhao
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
96
|
Fratianni F, d'Acierno A, Ombra MN, Amato G, De Feo V, Ayala-Zavala JF, Coppola R, Nazzaro F. Fatty Acid Composition, Antioxidant, and in vitro Anti-inflammatory Activity of Five Cold-Pressed Prunus Seed Oils, and Their Anti-biofilm Effect Against Pathogenic Bacteria. Front Nutr 2021; 8:775751. [PMID: 34869542 PMCID: PMC8636901 DOI: 10.3389/fnut.2021.775751] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background/Aim: Sweet almond (Prunus amygdalus dulcis) oil is one of the most famous cold-pressed seed oils. However, other species of Prunus can provide oils with healthy properties. We analyzed the fatty acid (FA) composition, as well as the antioxidant, the in vitro anti-inflammatory properties, and the antibiofilm activity of five commercial vegetable cold-pressed seed oils of apricot, peach, plum, cherry, and black cherry. Methods: Gas Chromatography-Mass Spectrometry was performed for the analysis of FAs The antioxidant property of the oils was carried using different tests [2, 2-diphenyl-1-picrylhydrazyl (DPPH assay)], Ferric Reducing Antioxidant Power (FRAP), and the 2, 20 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+). The denaturation assay performed on bovine serum albumin (BSA) was used to evaluate the in vitro anti-inflammatory activity. The anti-biofilm activity was assessed using five pathogenic strains, namely, Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus, through the crystal violet test and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), used to evaluate the metabolism of the microbial cells present within the biofilm. Results: Oleic acid and linoleic acids were the most abundant FAs. Black cherry seed oil exhibited the best antioxidant activity, but in general, the amount of oil needed to inhibit the activity of 1 ml of DPPH assay at 50% did not exceed 10 μg. The extract concentration for the 50% inhibition of the denaturation of the protein (IC50) did not exceed 4.4 μg. Linoleic and stearic acids affected the antioxidant activity of the oils; oleic acid, linolenic, and palmitoleic acids exhibited beneficial effects in preserving the BSA denaturation, as shown by the correlation data. The oils were able to inhibit the biofilm formation of the pathogens (up to 71.40% of inhibition) as well as act against their mature biofilm, although with different strengths, with values up to 61.54%. Concurrently, they also acted on the pathogen metabolism. Conclusion: The oils represent a valuable source of some healthy FAs. They showed potential antioxidant and anti-inflammatory in vitro activity, in addition, their potential effect on the biofilm can offer important ideas for research and reflection on their use as functional foods and/or ingredients.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, National Research Council of Italy (CNR), Avellino, Italy
| | - Antonio d'Acierno
- Institute of Food Science, National Research Council of Italy (CNR), Avellino, Italy
| | - Maria Neve Ombra
- Institute of Food Science, National Research Council of Italy (CNR), Avellino, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council of Italy (CNR), Avellino, Italy
| |
Collapse
|
97
|
Jeong YJ, Gu N, Kwack WG, Kang Y, Park SY, Yoon YS. Prospective observational study of the impact of plasma colistin levels in patients with carbapenem-resistant Acinetobacter baumannii pneumonia. J Glob Antimicrob Resist 2021; 27:315-323. [PMID: 34775134 DOI: 10.1016/j.jgar.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Colistin, an important drug to treat carbapenem-resistant Acinetobacter baumannii (CRAB) infections, has a narrow therapeutic window with nephrotoxicity. This study was conducted to determine the importance of colistin concentrations in predicting nephrotoxicity when treating CRAB pneumonia with colistin. METHODS A prospective cohort study was performed in one teaching hospital from May 2015 to January 2018. Patients with CRAB pneumonia were treated with intravenous colistin methanesulfonate (CMS) at 2.5-5.0 mg/kg/day. On Days 3 and 4, plasma colistin and CMS concentrations were determined by six serial blood samples (immediately prior to dosing and 1 h and 4 h after the end of infusion). RESULTS The 25 patients included in the analysis had hospital-acquired pneumonia caused by CRAB. Nephrotoxicity occurred in five patients (20%) on Day 7. There was no difference in clinical characteristics of patients with or without nephrotoxicity. The maximum plasma CMS concentration (mean ± standard deviation) was significantly higher in patients with nephrotoxicity on Day 7 than those without nephrotoxicity (15.3 ± 4.2 mg/L vs. 8.3 ± 3.8 mg/L; P = 0.014). The maximum plasma colistin concentration (Cmax,col) was significantly higher in the nephrotoxicity group on Day 7 (4.8 ± 2.0 mg/L vs. 2.1 ± 1.0 mg/L; P = 0.002). Cmax,col was lower in patients with microbiological failure than those without microbiological failure (1.92 mg/L vs. 3.01 mg/L; P = 0.038). CONCLUSION This study confirmed that plasma levels of CMS and colistin, especially maximum levels, are important for predicting nephrotoxicity in patients with CRAB pneumonia. [ClinicalTrials.gov ID NCT02482961].
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Namyi Gu
- Department of Clinical Pharmacology and Therapeutics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Won Gun Kwack
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Yunseong Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Seong Yeon Park
- Division of Infectious Diseases, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Young-Soon Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea.
| |
Collapse
|
98
|
Peña-Tuesta I, Del Valle-Vargas C, Petrozzi-Helasvuo V, Aguilar-Luis MA, Carrillo-Ng H, Silva-Caso W, Del Valle-Mendoza J. Community acquired Acinetobacter baumannii in pediatric patients under 1 year old with a clinical diagnosis of whooping cough in Lima, Peru. BMC Res Notes 2021; 14:412. [PMID: 34758882 PMCID: PMC8579657 DOI: 10.1186/s13104-021-05826-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Objective This study aimed to determine the prevalence of A. baumannii in children aged less than 1 year admitted with a clinical diagnosis of whooping cough. Results A total of 225 nasopharyngeal samples from children under 1 year old hospitalized with clinical diagnosis of whooping cough were studied from January 2010 to July 2012. The presence of A. baumannii was detected in 20.89% (47/225) of the nasopharyngeal swab samples. Among the 47 patients with A. baumannii: 5 were diagnosed with A. baumannii monoinfection, 17 co-infection with bacteria, 7 co-infection with virus and 18 co-infection with bacteria + virus. It was observed that 51.6% (116/225) were children between 29 days and 3 months old, this same group had the highest overall prevalence with 53.3%. The most common co-infecting pathogens were Bordetella pertussis in 55.3%, Adenovirus in 42.6% and Mycoplasma pneumoniae in 23.4%. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05826-y.
Collapse
Affiliation(s)
- Isaac Peña-Tuesta
- School of Medicine, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | | | - Veronica Petrozzi-Helasvuo
- School of Medicine, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Hugo Carrillo-Ng
- School of Medicine, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Juana Del Valle-Mendoza
- School of Medicine, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru. .,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| |
Collapse
|
99
|
Mahto M, Chaudhary M, Shah A, Show KL, Moses FL, Stewart AG. High antibiotic resistance and mortality with Acinetobacter species in a tertiary hospital, Nepal. Public Health Action 2021; 11:13-17. [PMID: 34778010 DOI: 10.5588/pha.21.0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
SETTING Nepal Mediciti Hospital, Bhainsepati, Lalitpur, Nepal. OBJECTIVES To determine antimicrobial resistance patterns, and the number and proportion of multidrug-resistant (MDR-) and extensively drug-resistant (XDR-) cases among all patients with Acinetobacter isolates between September 2018 and September 2019. DESIGN This was a hospital laboratory-based, cross-sectional study. RESULTS Acinetobacter spp. (n = 364) were more common in respiratory (n = 172, 47.3%) and invasive samples such as blood, body fluids (n = 95, 26.1%). Sensitivity to AWaRe (Access, Watch and Reserve) Group antibiotics (tigecycline, polymyxin B, colistin) remained high. MDR (resistance to at least three classes of antimicrobial agents) (n = 110, 30.2%) and XDR (MDR plus carbapenem) (n = 87, 23.9%) isolates were most common in the Watch Group of antibiotics and found in respectively 99 (31.0%) and 78 (24.5%) patients (n = 319). Infected patients were more likely to be aged >40 years (n = 196, 61.4%) or inpatients (n = 191, 59.9%); 76 (23.8%) patients had an unfavourable outcome, including death (n = 59, 18.5%). CONCLUSION A significant proportion of MDR and XDR isolates was found; nearly one patient in five died. Robust hospital infection prevention and control measures (particularly for respiratory and invasive procedures) and routine surveillance are needed to reduce infections and decrease the mortality rate. Tigecycline, polymyxin B and colistin should be cautiously used only in MDR and XDR cases.
Collapse
Affiliation(s)
- M Mahto
- Nepal Mediciti Hospital, Bhainsepati, Lalitpur, Nepal
| | - M Chaudhary
- Nepal Mediciti Hospital, Bhainsepati, Lalitpur, Nepal
| | - A Shah
- Kist Medical College and Teaching Hospital, Nepal
| | - K L Show
- Department of Medical Research, Yangon, Myanmar
| | - F L Moses
- Sierra Leone Ministry of Health and Sanitation, Freetown, Sierra Leone.,College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - A G Stewart
- College of Life and Environmental Science, University of Exeter, Exeter, UK
| |
Collapse
|
100
|
Yousefi Nojookambari N, Sadredinamin M, Dehbanipour R, Ghalavand Z, Eslami G, Vaezjalali M, Nikmanesh B, Yazdansetad S. Prevalence of β-lactamase-encoding genes and molecular typing of Acinetobacter baumannii isolates carrying carbapenemase OXA-24 in children. Ann Clin Microbiol Antimicrob 2021; 20:75. [PMID: 34702307 PMCID: PMC8549256 DOI: 10.1186/s12941-021-00480-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background β-Lactam antibiotics have been broadly used for the treatment of Acinetobacter baumannii infections, resulting in development of β-lactam inactivating β-lactamases. Here, we described antibiotic resistance rate, prevalence of β-lactamase-encoding genes, and clonal relationships of A. baumannii strains isolated from children referred to Children’s Medical Center in Tehran, Iran, during 2019–2020. Methods A total of 60 non-replicate A. baumannii isolates were recovered from clinical specimens of pediatric patients. Antibiotic susceptibility testing was done by the disc diffusion method. Colistin susceptibility of isolates was performed by the broth microdilution method. β-lactamase-encoding genes were characterized by PCR. The presence of ISAba1 element upstream of the several oxacillinase genes was also checked. Genetic relatedness of isolates was determined by using random amplification of polymorphic DNA (RAPD) typing. Results The antimicrobial susceptibility tests showed that 83.3% of A. baumannii isolates were MDR, and 40% XDR. Both MDR and XDR A. baumannii isolates were susceptible to colistin. The frequency of blaOXA-51-like, blaOXA-23-like, blaTEM, blaOXA-24-like, blaPER, blaSHV, blaCTX-M, blaOXA-58-like, and blaIMP was 100, 93.33, 60, 36.67, 28.33, 8.33, 5, 3.33, and 1.67%, respectively. Coexistence of ISAba1/blaOXA-23-like and ISAba1/blaOXA-51-like was observed in 65% and 85% of isolates, respectively. RAPD analysis revealed 4 common types and 2 single types of A. baumannii isolates. Conclusions The multiple clones harboring blaOXA-23-like, ISAba1-blaOXA-51-like, and ISAba1-blaOXA-23-like were responsible for the spread of A. baumannii isolates in our clinical wards. Dissemination of the well-established clones is worrisome and would become therapeutic challenges due to the possible transferring genetic elements associated with resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-021-00480-5.
Collapse
Affiliation(s)
- Neda Yousefi Nojookambari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Dehbanipour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Nikmanesh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Yazdansetad
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|