51
|
Goulart CL, Lery LM, Diniz MM, Vianez-Junior JL, Neves-Ferreira AGC, Perales J, Bisch PM, von Krüger WM. Molecular analysis of VCA1008: a putative phosphoporin ofVibrio cholerae. FEMS Microbiol Lett 2009; 298:241-8. [DOI: 10.1111/j.1574-6968.2009.01727.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
52
|
Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine. Infect Immun 2009; 77:3807-16. [PMID: 19564383 DOI: 10.1128/iai.00279-09] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.
Collapse
|
53
|
Hsiao A, Zhu J. Genetic tools to study gene expression during bacterial pathogen infection. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:297-314. [PMID: 19245943 DOI: 10.1016/s0065-2164(08)01009-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study of bacterial pathogenesis is in many ways the study of the regulatory mechanisms at work in the microbe during infection. The astonishing flexibility and adaptability of the bacterial cell has enabled many pathogenic species to freely transition between dramatically different environmental conditions. The transcriptional changes that underlie this ability can determine the success of the pathogen in the host. Many techniques have been devised to examine the transcriptional repertoire of bacteria in vivo during infection. Here, we review a class of technologies known as in vivo expression technology (IVET), which use promoter-trapping with a variety of different reporter constructs to allow researchers to probe the transcriptional changes taking place in bacteria under various environmental conditions. Using IVET techniques, researchers have been able to catalogue a wide variety of virulence factors in the host for several important human pathogens, as well as examining the timing of virulence gene regulation. Most recently, IVET techniques have also been used to identify transcriptional repression events in vivo, such as the suppression of anti-colonization factors deleterious to infection. As the array of IVET reporters and promoter-trapping strategies grow, researchers are increasingly able to illuminate the myriad transcriptional activities that allow bacteria to survive and cause disease in the host.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
54
|
Vibrio cholerae Interactions with the Gastrointestinal Tract: Lessons from Animal Studies. Curr Top Microbiol Immunol 2009; 337:37-59. [DOI: 10.1007/978-3-642-01846-6_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
55
|
Van Dellen KL, Houot L, Watnick PI. Genetic analysis of Vibrio cholerae monolayer formation reveals a key role for DeltaPsi in the transition to permanent attachment. J Bacteriol 2008; 190:8185-96. [PMID: 18849423 PMCID: PMC2593239 DOI: 10.1128/jb.00948-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/30/2008] [Indexed: 11/20/2022] Open
Abstract
A bacterial monolayer biofilm is a collection of cells attached to a surface but not to each other. Monolayer formation is initiated when a bacterial cell forms a transient attachment to a surface. While some transient attachments are broken, others transition into the permanent attachments that define a monolayer biofilm. In this work, we describe the results of a large-scale, microscopy-based genetic screen for Vibrio cholerae mutants that are defective in formation of a monolayer biofilm. This screen identified mutations that alter both transient and permanent attachment. Transient attachment was somewhat slower in the absence of flagellar motility. However, flagellar mutants eventually formed a robust monolayer. In contrast, in the absence of the flagellar motor, monolayer formation was severely impaired. A number of proteins that modulate the V. cholerae ion motive force were also found to affect the transition from transient to permanent attachment. Using chemicals that dissipate various components of the ion motive force, we discovered that dissipation of the membrane potential (DeltaPsi) completely blocks the transition from transient to permanent attachment. We propose that as a bacterium approaches a surface, the interaction of the flagellum with the surface leads to transient hyperpolarization of the bacterial cell membrane. This, in turn, initiates the transition to permanent attachment.
Collapse
Affiliation(s)
- Katrina L Van Dellen
- Division of Infectious Disease, Children's Hospital Boston, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
56
|
McCarthy Y, Ryan RP, O'Donovan K, He YQ, Jiang BL, Feng JX, Tang JL, Dow JM. The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. MOLECULAR PLANT PATHOLOGY 2008; 9:819-24. [PMID: 19019010 PMCID: PMC6640328 DOI: 10.1111/j.1364-3703.2008.00495.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cyclic di-GMP [(bis-(3'-5')-cyclic di-guanosine monophosphate)] is an almost ubiquitous second messenger in bacteria that is implicated in the regulation of a range of functions that include developmental transitions, aggregative behaviour, adhesion, biofilm formation and virulence. Comparatively little is known about the mechanism(s) by which cyclic di-GMP exerts these various regulatory effects. PilZ has been identified as a cyclic di-GMP binding protein domain; proteins with this domain are involved in regulation of specific cellular processes, including the virulence of animal pathogens. Here we have examined the role of PilZ domain proteins in virulence and the regulation of virulence factor synthesis in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot of crucifers. The Xcc genome encodes four proteins (XC0965, XC2249, XC2317 and XC3221) that have a PilZ domain. Mutation of XC0965, XC2249 and XC3221 led to a significant reduction of virulence in Chinese radish. Mutation of XC2249 and XC3221 led to a reduction in motility whereas mutation of XC2249 and XC0965 affected extracellular enzyme production. All mutant strains were unaffected in biofilm formation in vitro. The reduction of virulence following mutation of XC3221 could not be wholly attributed to an effect on motility as mutation of pilA, which abolishes motility, has a lesser effect on virulence.
Collapse
Affiliation(s)
- Yvonne McCarthy
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Recombination-based in vivo expression technology identifies Helicobacter pylori genes important for host colonization. Infect Immun 2008; 76:5632-44. [PMID: 18794279 DOI: 10.1128/iai.00627-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here we undertook to identify colonization and gastric disease-promoting factors of the human gastric pathogen Helicobacter pylori as genes that were induced in response to the stomach environment. Using recombination-based in vivo expression technology (RIVET), we identified six promoters induced in the host compared to laboratory conditions. Three of these promoters, designated Pivi10, Pivi66, and Pivi77, regulate genes that H. pylori may use to interact with other microbes or the host. Pivi10 likely regulates the mobA, mobB, and mobD genes, which have potential roles in horizontal gene transfer through plasmid mobilization. Pivi66 occurs in the cytotoxin-associated gene pathogenicity island, a genomic region known to be associated with more severe disease outcomes, and likely regulates cagZ, virB11, and virD4. Pivi77 likely regulates HP0289, an uncharacterized paralogue of the vacA cytotoxin gene. We assessed the roles of a subset of these genes in colonization by creating deletion mutants and analyzing them in single-strain and coinfection experiments. We found that a mobABD mutant was defective for murine host colonization and that a cagZ mutant outcompeted the wild-type strain in a coinfection analysis. Our work supports the conclusion that RIVET is a valuable tool for identifying H. pylori factors with roles in host colonization.
Collapse
|
58
|
Dudley EG. In VivoExpression Technology and Signature-Tagged Mutagenesis Screens for Identifying Mechanisms of Survival of Zoonotic Foodborne Pathogens. Foodborne Pathog Dis 2008; 5:473-85. [DOI: 10.1089/fpd.2008.0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Edward G. Dudley
- Department of Food Science, Penn State University, University Park, Pennsylvania
| |
Collapse
|
59
|
Münch A, Stingl L, Jung K, Heermann R. Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 2008; 9:229. [PMID: 18489737 PMCID: PMC2422844 DOI: 10.1186/1471-2164-9-229] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 05/19/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Photorhabdus luminescens is a Gram-negative luminescent enterobacterium and a symbiote to soil nematodes belonging to the species Heterorhabditis bacteriophora. P.luminescens is simultaneously highly pathogenic to insects. This bacterium exhibits a complex life cycle, including one symbiotic stage characterized by colonization of the upper nematode gut, and a pathogenic stage, characterized by release from the nematode into the hemocoel of insect larvae, resulting in rapid insect death caused by bacterial toxins. P. luminescens appears to sense and adapt to the novel host environment upon changing hosts, which facilitates the production of factors involved in survival within the host, host-killing, and -exploitation. RESULTS A differential fluorescence induction (DFI) approach was applied to identify genes that are up-regulated in the bacterium after infection of the insect host Galleria mellonella. For this purpose, a P. luminescens promoter-trap library utilizing the mCherry fluorophore as a reporter was constructed, and approximately 13,000 clones were screened for fluorescence induction in the presence of a G. mellonella larvae homogenate. Since P. luminescens has a variety of regulators that potentially sense chemical molecules, like hormones, the screen for up-regulated genes or operons was performed in vitro, excluding physicochemical signals like oxygen, temperature or osmolarity as variables. Clones (18) were obtained exhibiting at least 2.5-fold induced fluorescence and regarded as specific responders to insect homogenate. In combination with a bioinformatics approach, sequence motifs were identified in these DNA-fragments that are similar to 29 different promoters within the P. luminescens genome. By cloning each of the predicted promoters upstream of the reporter gene, induction was verified for 27 promoters in vitro, and for 24 promoters in viable G. mellonella larvae. Among the validated promoters are some known to regulate the expression of toxin genes, including tccC1 (encoding an insecticidal toxin complex), and others encoding putative toxins. A comparably high number of metabolic genes or operons were observed to be induced upon infection; among these were eutABC, hutUH, and agaZSVCD, which encode proteins involved in ethanolamine, histidine and tagatose degradation, respectively. The results reflect rearrangements in metabolism and the use of other metabolites available from the insect. Furthermore, enhanced activity of promoters controlling the expression of genes encoding enzymes linked to antibiotic production and/or resistance was observed. Antibiotic production and resistance may influence competition with other bacteria, and thus might be important for a successful infection. Lastly, several genes of unknown function were identified that may represent novel pathogenicity factors. CONCLUSION We show that a DFI screen is useful for identifying genes or operons induced by chemical stimuli, such as diluted insect homogenate. A bioinformatics comparison of motifs similar to known promoters is a powerful tool for identifying regulated genes or operons. We conclude that signals for the regulation of those genes or operons induced in P. luminescens upon insect infection may represent a wide variety of compounds that make up the insect host. Our results provide insight into the complex response to the host that occurs in a bacterial pathogen, particularly reflecting the potential for metabolic shifts and other specific changes associated with virulence.
Collapse
Affiliation(s)
- Anna Münch
- Ludwig-Maximilians-Universität München, Adolf-Butenandt-Institut, Bereich Biochemie, Schillerstr. 44, 80336 München, Germany
| | - Lavinia Stingl
- Universitätsklinikum Würzburg, Klinik und Poliklinik für Strahlentherapie, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Kirsten Jung
- Ludwig-Maximilians-Universität München, Department Biologie I, Bereich Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany
- Munich Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, München, Germany
| | - Ralf Heermann
- Ludwig-Maximilians-Universität München, Department Biologie I, Bereich Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany
| |
Collapse
|
60
|
Silva AJ, Eko FO, Benitez JA. Exploiting cholera vaccines as a versatile antigen delivery platform. Biotechnol Lett 2008; 30:571-9. [PMID: 18008168 PMCID: PMC2753531 DOI: 10.1007/s10529-007-9594-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/29/2007] [Indexed: 02/03/2023]
Abstract
The development of safe, immunogenic and protective cholera vaccine candidates makes possible their use as a versatile antigen delivery platform. Foreign antigens can be delivered to the immune system with cholera vaccines by expressing heterologous antigens in live attenuated vectors, as fusion proteins with cholera toxin subunits combined with inactivated Vibrio cholerae whole cells or by exposing them on the surface of V. cholerae ghosts. Progress in our understanding of the genes expressed by V. cholerae during infection creates unprecedented opportunities to develop an improved generation of vaccine vectors to induce immune protection against a broad range of pathogenic organisms.
Collapse
Affiliation(s)
- Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr., SW Atlanta, GA 30310, USA.
| | | | | |
Collapse
|
61
|
Gao M, Teplitski M. RIVET-a tool for in vivo analysis of symbiotically relevant gene expression in Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:162-70. [PMID: 18184060 DOI: 10.1094/mpmi-21-2-0162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Despite significant advances in the development of sensitive tools for studying genetics and signal exchange in legume-rhizobium symbioses, many uncertainties remain about the in vivo role of bacterial and plant signals in symbiotic gene regulation. In this study, we adapted TnpR recombinase-based in vivo expression technology (RIVET) to document gene regulation in Sinorhizobium meliloti. The substrate for TnpR, the res1-tet-res1 cassette, is stably inherited when cloned into a neutral site of the S. meliloti genome. Bicistronic promoterless tnpR-beta-glucuronidase (GUS) reporters were constructed to track expression ("resolution") of symbiotically relevant S. meliloti genes during different stages of the interaction. In proof of principle experiments, the resolution of the nodC::tnpR reporter was detected within 4 h of exposure to micromolar levels of the nod operon inducer luteolin and after overnight incubation in the rhizosphere. RIVET demonstrated that cell division gene ftsZ2 was not strongly expressed in the rhizosphere but was activated inside the nodules and on agar surfaces. Rhizosphere expression of the N-acyl homoserine lactone (AHL) synthase sinI::tnpR-GUS reporter was modest in prequorate microcolonies, and then increased with time. AHL synthase sinI and an AHL-regulated gene, expG, were activated inside the nodules.
Collapse
Affiliation(s)
- Mengsheng Gao
- Soil and Water Science Department. Cancer and Genetics Research Complex, Rm 330E, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL 32610, USA
| | | |
Collapse
|
62
|
Role of cyclic Di-GMP during el tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA. Infect Immun 2008; 76:1617-27. [PMID: 18227161 DOI: 10.1128/iai.01337-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In Vibrio cholerae, the second messenger cyclic di-GMP (c-di-GMP) positively regulates biofilm formation and negatively regulates virulence and is proposed to play an important role in the transition from persistence in the environment to survival in the host. Herein we describe a characterization of the infection-induced gene cdpA, which encodes both GGDEF and EAL domains, which are known to mediate diguanylate cyclase and c-di-GMP phosphodiesterase (PDE) activities, respectively. CdpA is shown to possess PDE activity, and this activity is regulated by its inactive degenerate GGDEF domain. CdpA inhibits biofilm formation but has no effect on colonization of the infant mouse small intestine. Consistent with these observations, cdpA is expressed during in vitro growth in a biofilm but is not expressed in vivo until the late stage of infection, after colonization has occurred. To test for a role of c-di-GMP in the early stages of infection, we artificially increased c-di-GMP and observed reduced colonization. This was attributed to a significant reduction in toxT transcription during infection. Cumulatively, these results support a model of the V. cholerae life cycle in which c-di-GMP must be down-regulated early after entering the small intestine and maintained at a low level to allow virulence gene expression, colonization, and motility at appropriate stages of infection.
Collapse
|
63
|
Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. BMC Genomics 2008; 9:40. [PMID: 18221513 PMCID: PMC2266911 DOI: 10.1186/1471-2164-9-40] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 01/25/2008] [Indexed: 11/24/2022] Open
Abstract
Background Photorhabdus luminescens and Yersinia enterocolitica are both enteric bacteria which are associated with insects. P. luminescens lives in symbiosis with soil nematodes and is highly pathogenic towards insects but not to humans. In contrast, Y. enterocolitica is widely found in the environment and mainly known to cause gastroenteritis in men, but has only recently been shown to be also toxic for insects. It is expected that both pathogens share an overlap of genetic determinants that play a role within the insect host. Results A selective genome comparison was applied. Proteins belonging to the class of two-component regulatory systems, quorum sensing, universal stress proteins, and c-di-GMP signalling have been analysed. The interorganismic synopsis of selected regulatory systems uncovered common and distinct signalling mechanisms of both pathogens used for perception of signals within the insect host. Particularly, a new class of LuxR-like regulators was identified, which might be involved in detecting insect-specific molecules. In addition, the genetic overlap unravelled a two-component system that is unique for the genera Photorhabdus and Yersinia and is therefore suggested to play a major role in the pathogen-insect relationship. Our analysis also highlights factors of both pathogens that are expressed at low temperatures as encountered in insects in contrast to higher (body) temperature, providing evidence that temperature is a yet under-investigated environmental signal for bacterial adaptation to various hosts. Common degradative metabolic pathways are described that might be used to explore nutrients within the insect gut or hemolymph, thus enabling the proliferation of P. luminescens and Y. enterocolitica in their invertebrate hosts. A strikingly higher number of genes encoding insecticidal toxins and other virulence factors in P. luminescens compared to Y. enterocolitica correlates with the higher virulence of P. luminescens towards insects, and suggests a putative broader insect host spectrum of this pathogen. Conclusion A set of factors shared by the two pathogens was identified including those that are involved in the host infection process, in persistence within the insect, or in host exploitation. Some of them might have been selected during the association with insects and then adapted to pathogenesis in mammalian hosts.
Collapse
|
64
|
|
65
|
Lombardo MJ, Michalski J, Martinez-Wilson H, Morin C, Hilton T, Osorio CG, Nataro JP, Tacket CO, Camilli A, Kaper JB. An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci U S A 2007; 104:18229-34. [PMID: 17986616 PMCID: PMC2084325 DOI: 10.1073/pnas.0705636104] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Indexed: 12/19/2022] Open
Abstract
In vivo expression technology (IVET) has been widely used to study gene expression of human bacterial pathogens in animal models, but has heretofore not been used in humans to our knowledge. As part of ongoing efforts to understand Vibrio cholerae pathogenesis and develop improved V. cholerae vaccines, we have performed an IVET screen in humans for genes that are preferentially expressed by V. cholerae during infection. A library of 8,734 nontoxigenic V. cholerae strains carrying transcriptional fusions of genomic DNA to a resolvase gene was ingested by five healthy adult volunteers. Transcription of the fusion leads to resolvase-dependent excision of a sacB-containing cassette and thus the selectable phenotype of sucrose resistance (Suc(R)). A total of approximately 20,000 Suc(R) isolates, those carrying putative in vivo-induced fusions, were recovered from volunteer stool samples. Analysis of the fusion junctions from >7,000 Suc(R) isolates from multiple samples from multiple volunteers identified 217 candidate genes for preferential expression during human infection. Of genes or operons induced in three or more volunteers, the majority of those tested (65%) were induced in an infant mouse model. VC0201 (fhuC), which encodes the ATPase of a ferrichrome ABC transporter, is one of the identified in vivo-induced genes and is required for virulence in the mouse model.
Collapse
Affiliation(s)
- Mary-Jane Lombardo
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jane Michalski
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Hector Martinez-Wilson
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA 02111; and
| | - Cara Morin
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tamara Hilton
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Carlos G. Osorio
- Programa de Microbiología y Micología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James P. Nataro
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Carol O. Tacket
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA 02111; and
| | - James B. Kaper
- *Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
66
|
Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, Camilli A. Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2007; 2:264-77. [PMID: 18005744 PMCID: PMC2169296 DOI: 10.1016/j.chom.2007.09.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/16/2007] [Accepted: 09/13/2007] [Indexed: 01/12/2023]
Abstract
The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic environments. While investigation of the infection process has revealed many factors important for pathogenesis, little is known regarding transmission of this or other water-borne pathogens. Using a temporally controlled reporter of transcription, we focus on bacterial gene expression during the late stage of infection and identify a unique class of V. cholerae genes specific to this stage. Mutational analysis revealed limited roles for these genes in infection. However, using a host-to-environment transition assay, we detected roles for six of ten genes examined for the ability of V. cholerae to persist within cholera stool and/or aquatic environments. Furthermore, passage through the intestinal tract was necessary to observe this phenotype. Thus, V. cholerae genes expressed prior to exiting the host intestinal tract are advantageous for subsequent life in aquatic environments.
Collapse
Affiliation(s)
- Stefan Schild
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, U.S.A
| | - Rita Tamayo
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, U.S.A
| | - Eric J. Nelson
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, U.S.A
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research, Dhaka 1000, Bangladesh
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Camilli
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, U.S.A
| |
Collapse
|
67
|
Persson J, Vance RE. Genetics-squared: combining host and pathogen genetics in the analysis of innate immunity and bacterial virulence. Immunogenetics 2007; 59:761-78. [PMID: 17874090 DOI: 10.1007/s00251-007-0248-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/20/2007] [Indexed: 12/16/2022]
Abstract
The interaction of bacterial pathogens with their hosts' innate immune systems can be extremely complex and is often difficult to disentangle experimentally. Using mouse models of bacterial infections, several laboratories have successfully applied genetic approaches to identify novel host genes required for innate immune defense. In addition, a variety of creative bacterial genetic schemes have been developed to identify key bacterial genes involved in triggering or evading host immunity. In cases where both the host and pathogen are amenable to genetic manipulation, a combination of host and pathogen genetic approaches can be used. Focusing on bacterial infections of mice, this review summarizes the benefits and limitations of applying genetic analysis to the study of host-pathogen interactions. In particular, we consider how prokaryotic and eukaryotic genetic strategies can be combined, or "squared," to yield new insights in host-pathogen biology.
Collapse
|
68
|
Ryan RP, Fouhy Y, Lucey JF, Jiang BL, He YQ, Feng JX, Tang JL, Dow JM. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 2007; 63:429-42. [PMID: 17241199 DOI: 10.1111/j.1365-2958.2006.05531.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cyclic di-GMP is a second messenger with a role in regulation of a range of cellular functions in diverse bacteria including the virulence of pathogens. Cellular levels of cyclic di-GMP are controlled through synthesis, catalysed by the GGDEF protein domain, and degradation by EAL or HD-GYP domains. Here we report a comprehensive study of cyclic di-GMP signalling in bacterial disease in which we examine the contribution of all proteins with GGDEF, EAL or HD-GYP domains to virulence and virulence factor production in the phytopathogen Xanthomonas campestris pathovar campestris (Xcc). Genes with significant roles in virulence to plants included those encoding proteins whose probable function is in cyclic-di-GMP synthesis as well as others (including the HD-GYP domain regulator RpfG) implicated in cyclic di-GMP degradation. Furthermore, RpfG controlled expression of a subset of these genes. A partially overlapping set of elements controlled the production of virulence factors in vitro. Other GGDEF-EAL domain proteins had no effect on virulence factor synthesis but did influence motility. These findings indicate the existence of a regulatory network that may allow Xcc to integrate information from diverse environmental inputs to modulate virulence factor synthesis as well as of cyclic di-GMP signalling systems dedicated to other specific tasks.
Collapse
Affiliation(s)
- Robert P Ryan
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Cyclic diguanylate (c-di-GMP) is a bacterial second messenger of growing recognition involved in the regulation of a number of complex physiological processes. This review describes the biosynthesis and hydrolysis of c-di-GMP and several mechanisms of regulation of c-di-GMP metabolism. The contribution of c-di-GMP to regulating biofilm formation and motility, processes that affect pathogenesis of many bacteria, is described, as is c-di-GMP regulation of virulence gene expression. Finally, ways in which c-di-GMP may mediate these regulatory effects are proposed.
Collapse
Affiliation(s)
- Rita Tamayo
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
70
|
Römling U, Amikam D. Cyclic di-GMP as a second messenger. Curr Opin Microbiol 2006; 9:218-28. [PMID: 16530465 DOI: 10.1016/j.mib.2006.02.010] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 02/27/2006] [Indexed: 12/22/2022]
Abstract
In many bacteria bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling determines the timing and amplitude of complex biological processes from biofilm formation and virulence to photosynthesis. Thereby, the tightly regulated temporal and spatial activity patterns of GGDEF and EAL domain proteins, which synthesize and degrade c-di-GMP, respectively, are currently being resolved. Although details of the mechanisms of c-di-GMP signaling are not yet determined, the recent presentation of PilZ as a candidate c-di-GMP binding-domain opens the field for experimental investigations. Besides its role as an intracellular signaling molecule in bacteria, c-di-GMP also acts as an intercellular signaling molecule between prokaryotes and also has effects in eukaryotes that could provide a perspective in cancer treatment.
Collapse
Affiliation(s)
- Ute Römling
- Karolinska Institutet, Microbiology and Tumor Biology Center (MTC), Box 280, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
71
|
Merighi M, Ellermeier CD, Slauch JM, Gunn JS. Resolvase-in vivo expression technology analysis of the Salmonella enterica serovar Typhimurium PhoP and PmrA regulons in BALB/c mice. J Bacteriol 2005; 187:7407-16. [PMID: 16237024 PMCID: PMC1272988 DOI: 10.1128/jb.187.21.7407-7416.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica modulates resistance to antimicrobial peptides in part via covalent modifications of the lipopolysaccharide (LPS). The two-component systems PhoP/PhoQ and PmrA/PmrB are activated during infection and regulate several genes involved in LPS modifications by responding to signals such as pH, iron, magnesium, and antimicrobial peptides. A recombination-based in vivo expression technology approach was adopted to analyze the spatial-temporal patterns of in vivo expression of genes of the PhoP and PmrA regulons and to identify the in vivo signals modulating their transcription. In vitro, we showed PhoP- and/or PmrA-dependent induction of pmrH (LPS aminoarabinose modification operon) by acidic pH, low levels of magnesium, or high levels of Fe(III). Upregulation in cultured J774A.1 macrophages was shown for pmrH, pagP (LPS palmitate addition), and ssaB (pathogenicity island II secretion) but not for prgH (pathogenicity island I secretion). Increased levels of pmrH, phoP, and prgH transcription but not ssaB were observed in bacteria isolated from the lumen of the distal ileum. Bacteria isolated from spleens of orally inoculated mice showed no further induction of prgH but had the highest expression of pmrH, pagP, and ssaB. In vivo induction of pmrH was fully dependent on pmrA and phoP, and buffering stomach acidity, iron chelation, or low-iron diets did not affect the expression of pmrH in the intestinal lumen. The observation of pmrH and pagP expression in the intestine refutes the paradigm of PhoP/PhoQ and PmrA/PmrB in vivo expression as solely intracellularly induced and supports previous data demonstrating peroral virulence attenuation of pmrH mutants.
Collapse
Affiliation(s)
- Massimo Merighi
- Department of Molecular Virology, Immunology, and Medical Genetics, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
72
|
Brown NF, Vallance BA, Coombes BK, Valdez Y, Coburn BA, Finlay BB. Salmonella pathogenicity island 2 is expressed prior to penetrating the intestine. PLoS Pathog 2005; 1:e32. [PMID: 16304611 PMCID: PMC1287911 DOI: 10.1371/journal.ppat.0010032] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 10/17/2005] [Indexed: 11/26/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes disease in mice that resembles human typhoid. Typhoid pathogenesis consists of distinct phases in the intestine and a subsequent systemic phase in which bacteria replicate in macrophages of the liver and spleen. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI-2) is a major virulence factor contributing to the systemic phase of typhoid pathogenesis. Understanding how pathogens regulate virulence mechanisms in response to the environment, including different host tissues, is key to our understanding of pathogenesis. A recombinase-based in vivo expression technology system was developed to assess SPI-2 expression during murine typhoid. SPI-2 expression was detectable at very early times in bacteria that were resident in the lumen of the ileum and was independent of active bacterial invasion of the epithelium. We also provide direct evidence for the regulation of SPI-2 by the Salmonella transcription factors ompR and ssrB in vivo. Together these results demonstrate that SPI-2 expression precedes penetration of the intestinal epithelium. This induction of expression precedes any documented SPI-2-dependent phases of typhoid and may be involved in preparing Salmonella to successfully resist the antimicrobial environment encountered within macrophages. Typhoid fever is a disease caused by specific Salmonella strains and is a significant cause of mortality in many regions of the developing world. Following a person's ingestion of Salmonella, the bacteria initially colonize the intestine, which they subsequently breach to reside in immune cells of the liver and spleen. The ability to survive inside immune cells directly contributes to the ability of Salmonella to cause typhoid, and is conferred upon Salmonella by the so-called Salmonella pathogenicity island 2 (SPI-2) type III secretion system. Previous work has shown that while SPI-2 is specifically turned on inside host cells, it is not active when grown in typical laboratory medium. Owing to these facts, it has been hypothesized that Salmonella specifically turn on SPI-2 inside host cells after breaching the host intestine. The researchers developed a sensitive system in Salmonella to test this hypothesis using a mouse model of typhoid. Interestingly, SPI-2 was specifically turned on before Salmonella breached the intestine, suggesting that SPI-2, which is integral to virulence, is active in a preemptive fashion to allow Salmonella to survive within the immune system.
Collapse
Affiliation(s)
- Nat F Brown
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Brian K Coombes
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yanet Valdez
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bryan A Coburn
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
73
|
Abstract
The cyclic dinucleotide second messenger cyclic diguanylate (c-diGMP) has been implicated in regulation of cell surface properties in several bacterial species, including Vibrio cholerae. Expression of genes required for V. cholerae biofilm formation is activated by an increased intracellular c-diGMP concentration. The response regulator VieA, which contains a domain responsible for degradation of c-diGMP, is required to maintain a low concentration of c-diGMP and repress biofilm formation. The VieSAB three-component signal transduction system was, however, originally identified as a regulator of ctxAB, the genes encoding cholera toxin (CT). Here we show that the c-diGMP phosphodiesterase activity of VieA is required to enhance CT production. This regulation occurred at the transcriptional level, and ectopically altering the c-diGMP concentration by expression of diguanylate cyclase or phosphodiesterase enzymes also affected ctxAB transcription. The c-diGMP phosphodiesterase activity of VieA was also required for maximal transcription toxT but did not influence the activity of ToxR or expression of TcpP. Finally, a single amino acid substitution in VieA that increases the intracellular c-diGMP concentration led to attenuation in the infant mouse model of cholera. Since virulence genes including toxT and ctxA are repressed by a high concentration of c-diGMP, while biofilm genes are activated, we suggest that c-diGMP signaling is important for the transition of V. cholerae from the environment to the host.
Collapse
Affiliation(s)
- Anna D Tischler
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
74
|
Rediers H, Rainey PB, Vanderleyden J, De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 2005; 69:217-61. [PMID: 15944455 PMCID: PMC1197422 DOI: 10.1128/mmbr.69.2.217-261.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge for microbiologists is to elucidate the strategies deployed by microorganisms to adapt to and thrive in highly complex and dynamic environments. In vitro studies, including those monitoring genomewide changes, have proven their value, but they can, at best, mimic only a subset of the ensemble of abiotic and biotic stimuli that microorganisms experience in their natural habitats. The widely used gene-to-phenotype approach involves the identification of altered niche-related phenotypes on the basis of gene inactivation. However, many traits contributing to ecological performance that, upon inactivation, result in only subtle or difficult to score phenotypic changes are likely to be overlooked by this otherwise powerful approach. Based on the premise that many, if not most, of the corresponding genes will be induced or upregulated in the environment under study, ecologically significant genes can alternatively be traced using the promoter trap techniques differential fluorescence induction and in vivo expression technology (IVET). The potential and limitations are discussed for the different IVET selection strategies and system-specific variants thereof. Based on a compendium of genes that have emerged from these promoter-trapping studies, several functional groups have been distinguished, and their physiological relevance is illustrated with follow-up studies of selected genes. In addition to confirming results from largely complementary approaches such as signature-tagged mutagenesis, some unexpected parallels as well as distinguishing features of microbial phenotypic acclimation in diverse environmental niches have surfaced. On the other hand, by the identification of a large proportion of genes with unknown function, these promoter-trapping studies underscore how little we know about the secret lives of bacteria and other microorganisms.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | | | |
Collapse
|
75
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447509 DOI: 10.1002/cfg.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|