51
|
Juan C, Moyá B, Pérez JL, Oliver A. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother 2006; 50:1780-7. [PMID: 16641450 PMCID: PMC1472203 DOI: 10.1128/aac.50.5.1780-1787.2006] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Development of resistance to the antipseudomonal penicillins and cephalosporins mediated by hyperproduction of the chromosomal cephalosporinase AmpC is a major threat to the successful treatment of Pseudomonas aeruginosa infections. Although ampD inactivation has been previously found to lead to a partially derepressed phenotype characterized by increased AmpC production but retaining further inducibility, the regulation of ampC in P. aeruginosa is far from well understood. We demonstrate that ampC expression is coordinately repressed by three AmpD homologues, including the previously described protein AmpD plus two additional proteins, designated AmpDh2 and AmpDh3. The three AmpD homologues are responsible for a stepwise ampC upregulation mechanism ultimately leading to constitutive hyperexpression of the chromosomal cephalosporinase and high-level antipseudomonal beta-lactam resistance, as shown by analysis of the three single ampD mutants, the three double ampD mutants, and the triple ampD mutant. This is achieved by a three-step escalating mechanism rendering four relevant expression states: basal-level inducible expression (wild type), moderate-level hyperinducible expression with increased antipseudomonal beta-lactam resistance (ampD mutant), high-level hyperinducible expression with high-level beta-lactam resistance (ampD ampDh3 double mutant), and very high-level (more than 1,000-fold compared to the wild type) derepressed expression (triple mutant). Although one-step inducible-derepressed expression models are frequent in natural resistance mechanisms, this is the first characterized example in which expression of a resistance gene can be sequentially amplified through multiple steps of derepression.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología, Hospital Son Dureta, C. Andrea Doria No. 55, 07014 Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
52
|
Juan C, Maciá MD, Gutiérrez O, Vidal C, Pérez JL, Oliver A. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother 2006; 49:4733-8. [PMID: 16251318 PMCID: PMC1280133 DOI: 10.1128/aac.49.11.4733-4738.2005] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in natural strains of Pseudomonas aeruginosa were investigated in a collection of 10 isogenic, ceftazidime-susceptible and -resistant pairs of isolates, each sequentially recovered from a different intensive care unit patient treated with beta-lactams. All 10 ceftazidime-resistant mutants hyper-produced AmpC (beta-lactamase activities were 12- to 657-fold higher than those of the parent strains), but none of them harbored mutations in ampR or the ampC-ampR intergenic region. On the other hand, six of them harbored inactivating mutations in ampD: four contained frameshift mutations, one had a C-->T mutation, creating a premature stop codon, and finally, one had a large deletion, including the complete ampDE region. Complementation studies revealed that only three of the six ampD mutants could be fully trans-complemented with either ampD- or ampDE-harboring plasmids, whereas one of them could be trans-complemented only with ampDE and two of them (including the mutant with the deletion of the ampDE region and one with an ampD frameshift mutation leading to an ampDE-fused open reading frame) could not be fully trans-complemented with any of the plasmids. Finally, one of the four mutants with no mutations in ampD could be trans-complemented, but only with ampDE. Although the inactivation of AmpD is found to be the most frequent mechanism of AmpC hyperproduction in clinical strains, our findings suggest that for certain types of mutations, AmpE plays an indirect role in resistance and that there are other unknown genes involved in AmpC hyperproduction, with at least one of them apparently located close to the ampDE operon.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología, Hospital Son Dureta, C. Andrea Doria No. 55, 07014 Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
53
|
Kaneko K, Okamoto R, Nakano R, Kawakami S, Inoue M. Gene mutations responsible for overexpression of AmpC beta-lactamase in some clinical isolates of Enterobacter cloacae. J Clin Microbiol 2005; 43:2955-8. [PMID: 15956430 PMCID: PMC1151923 DOI: 10.1128/jcm.43.6.2955-2958.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AmpC regulatory genes in 21 ceftazidime-resistant clinical isolates of Enterobacter cloacae (MICs of > or = 16 microg/ml) were characterized. All isolates exhibited AmpC overproduction due to AmpD mutation. Additionally, we found two AmpR mutants among the isolates. This is the first report of chromosomal ampR mutation in clinical isolates of E. cloacae.
Collapse
Affiliation(s)
- Kenichi Kaneko
- Department of Environmental Infectious Diseases, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | |
Collapse
|
54
|
Ishii Y, Alba J, Kimura S, Shiroto K, Yamaguchi K. Evaluation of antimicrobial activity of beta-lactam antibiotics using Etest against clinical isolates from 60 medical centres in Japan. Int J Antimicrob Agents 2005; 25:296-301. [PMID: 15784308 DOI: 10.1016/j.ijantimicag.2004.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
An antimicrobial resistance surveillance study was carried out in 60 medical centres across Japan. Resistance to piperacillin was 10.8% in clinical isolates of Escherichia coli, while 1.3% or fewer isolates were resistant to other beta-lactams. Klebsiella spp. were more susceptible to imipenem, cefepime and cefpirome. Isolates of Enterobacter spp., Citrobacter spp., indole-positive Proteus and Serratia spp. were susceptible to imipenem, cefepime and cefpirome, while Acinetobacter spp. were most susceptible to cefoperazone/sulbactam, imipenem, ceftazidime (5.8% resistance) and cefepime (7.6%). Isolates of Pseudomonas aeruginosa were more susceptible to ceftazidime (12.3% resistance), cefoperazone/sulbactam (12.5%) and cefepime (12.6%) than to piperacillin (15.0%), cefpirome (22.6%) and imipenem (30.8%). The percentage of Japanese imipenem resistant P. aeruginosa clinical isolates was around 30%.
Collapse
Affiliation(s)
- Yoshikazu Ishii
- Department of Microbiology, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, 1438540 Tokyo, Japan.
| | | | | | | | | |
Collapse
|
55
|
Folkesson A, Eriksson S, Andersson M, Park JT, Normark S. Components of the peptidoglycan-recycling pathway modulate invasion and intracellular survival of Salmonella enterica serovar Typhimurium. Cell Microbiol 2005; 7:147-55. [PMID: 15617530 DOI: 10.1111/j.1462-5822.2004.00443.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
beta-Lactam resistance in enteric bacteria is frequently caused by mutations in ampD encoding a cytosolic N-acetylmuramyl- l-alanine amidase. Such mutants are blocked in murein (peptidoglycan) recycling and accumulate cytoplasmic muropeptides that interact with the transcriptional activator ampR, which de-represses beta-lactamase expression. Salmonella enterica serovar Typhimurium, an extensively studied enteric pathogen, was used to show that mutations in ampD decreased the ability of S. typhimurium to enter a macrophage derived cell line and made the bacteria more potent as inducers of inducible nitric oxide synthase (iNOS), as compared with the wild-type. ampG mutants, defective in the transport of recycled muropeptides across the cytoplasmic membrane, behaved essentially as the wild-type in invasion assays and in activation of iNOS. As ampD mutants also have reduced in vivo fitness in a murine model, we suggest that the cytoplasmic accumulation of muropeptides affects the virulence of the ampD mutants.
Collapse
Affiliation(s)
- Anders Folkesson
- Mikrobiologiskt och Tumörbiologiskt Centrum, Karolinska Institutet, S-17177 Stockholm, Sverige, Sweden.
| | | | | | | | | |
Collapse
|
56
|
Uehara T, Suefuji K, Valbuena N, Meehan B, Donegan M, Park JT. Recycling of the anhydro-N-acetylmuramic acid derived from cell wall murein involves a two-step conversion to N-acetylglucosamine-phosphate. J Bacteriol 2005; 187:3643-9. [PMID: 15901686 PMCID: PMC1112033 DOI: 10.1128/jb.187.11.3643-3649.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) is returned to the biosynthetic pathway by conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is first phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK), yielding MurNAc-P, and this is followed by action of an etherase which cleaves the bond between D-lactic acid and the N-acetylglucosamine moiety of MurNAc-P, yielding GlcNAc-P. The kinase gene has been identified by a reverse genetics method. The enzyme was overexpressed, purified, and characterized. The cell extract of an anmK deletion mutant totally lacked activity on anhMurNAc. Surprisingly, in the anmK mutant, anhMurNAc did not accumulate in the cytoplasm but instead was found in the medium, indicating that there was rapid efflux of free anhMurNAc.
Collapse
Affiliation(s)
- Tsuyoshi Uehara
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
57
|
Reisbig MD, Hanson ND. Promoter sequences necessary for high-level expression of the plasmid-associated ampC beta-lactamase gene blaMIR-1. Antimicrob Agents Chemother 2004; 48:4177-82. [PMID: 15504838 PMCID: PMC525406 DOI: 10.1128/aac.48.11.4177-4182.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about mechanisms involved in high-level expression of plasmid-associated ampC genes. The sequence for bla(MIR-1) has been elucidated, and the gene is not inducible. Although the sequence for the promoter (prA) that drives expression of Enterobacter cloacae chromosomal ampC is present upstream of bla(MIR-1), high-level expression from bla(MIR-1) is directed from a hybrid promoter (prB) located further upstream of prA. The purpose of this study was to determine the influence of each promoter on bla(MIR-1) expression and beta-lactam resistance. RNA expression by deletion clones with both promoters was measured and compared to that by clones in which -35 and/or -10 elements of prA and/or prB were altered. Primer extension revealed two start sites for bla(MIR-1) transcription. Expression of bla(MIR-1) in clones with both promoters was 171-fold higher than that in clones carrying only prA. In addition, bla(MIR-1) expression from prA increased 11-fold in the presence of the prB -10 element compared to expression driven from prA alone. Ceftazidime and cefotaxime MICs increased 42- and 64-fold, respectively, for the clone expressing bla(MIR-1) from both promoters compared to expression from prA alone. The upstream promoter prB of bla(MIR-1) is solely responsible for high-level expression required for cefotaxime and ceftazidime resistance. These data suggest that resistance to extended-spectrum cephalosporins mediated by noninducible plasmid-associated ampC genes requires the formation of novel promoter elements that are capable of increasing ampC expression.
Collapse
Affiliation(s)
- Mark D Reisbig
- Center for Research in Anti-Infectives and Biotechnology, Department of Microbiology and Immunology, Creighton University School of Medicine, 2500 California Pl., Omaha, NE 68178, USA
| | | |
Collapse
|
58
|
|
59
|
Généreux C, Dehareng D, Devreese B, Van Beeumen J, Frère JM, Joris B. Mutational analysis of the catalytic centre of the Citrobacter freundii AmpD N-acetylmuramyl-L-alanine amidase. Biochem J 2004; 377:111-20. [PMID: 14507260 PMCID: PMC1223845 DOI: 10.1042/bj20030862] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 09/24/2003] [Accepted: 09/25/2003] [Indexed: 11/17/2022]
Abstract
Citrobacter freundii AmpD is an intracellular 1,6-anhydro-N-acetylmuramyl-L-alanine amidase involved in both peptidoglycan recycling and beta-lactamase induction. AmpD exhibits a strict specificity for 1,6-anhydromuropeptides and requires zinc for enzymic activity. The AmpD three-dimensional structure exhibits a fold similar to that of another Zn2+ N-acetylmuramyl-L-alanine amidase, the T7 lysozyme, and these two enzymes define a new family of Zn-amidases which can be related to the eukaryotic PGRP (peptidoglycan-recognition protein) domains. In an attempt to assign the different zinc ligands and to probe the catalytic mechanism of AmpD amidase, molecular modelling based on the NMR structure and site-directed mutagenesis were performed. Mutation of the two residues presumed to act as zinc ligands into alanine (H34A and D164A) yielded inactive proteins which had also lost their ability to bind zinc. By contrast, the active H154N mutant retained the capacity to bind the metal ion. Three other residues which could be involved in the AmpD catalytic mechanism have been mutated (Y63F, E116A, K162H and K162Q). The E116A mutant was inactive, but on the basis of the molecular modelling this residue is not directly involved in the catalytic mechanism, but rather in the binding of the zinc by contributing to the correct orientation of His-34. The K162H and K162Q mutants retained very low activity (0.7 and 0.2% of the wild-type activity respectively), whereas the Y63F mutant showed 16% of the wild-type activity. These three latter mutants exhibited a good affinity for Zn ions and the substituted residues are probably involved in the binding of the substrate. We also describe a new method for generating the N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-tripeptide AmpD substrate from purified peptidoglycan by the combined action of two hydrolytic enzymes.
Collapse
Affiliation(s)
- Catherine Généreux
- Center for Protein Engineering, Liège University, Institut de Chimie, B6, Sart-Tilman, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
60
|
Lister PD. Chromosomally-encoded resistance mechanisms of Pseudomonas aeruginosa: therapeutic implications. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 2:235-43. [PMID: 12421094 DOI: 10.2165/00129785-200202040-00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pseudomonas aeruginosa is an important nosocomial pathogen that presents a difficult therapeutic challenge. Although P. aeruginosa has been shown to acquire resistance mechanisms encoded on plasmids, this pathogen comes armed with multiple chromosomally-encoded mechanisms of resistance that can provide impressive intrinsic resistance, as well as the potential to mutate to high-level multi-drug resistance. Recent analysis of the sequenced genome of P. aeruginosa PAO1 suggested that we have just started to unlock the resistance potential of this pathogen. One of the most serious threats to the usefulness of beta-lactams against P. aeruginosa is the chromosomal AmpC cephalosporinase. When AmpC production increases through mutational events, overproduction of this cephalosporinase provides high-level resistance to all beta-lactams except the carbapenems. Carbapenem resistance typically requires down-regulation of the outer membrane protein (OprD), which serves as the primary route of entry for carbapenems. Perhaps the most threatening of the resistance mechanisms encoded on the P. aeruginosa chromosome are the multi-drug efflux pumps. These pumps have the ability to extrude multiple classes of antibiotics from the periplasmic space, as well as the cytoplasm. Natural expression of efflux pumps in 'wild-type' cells plays an important role in the relatively decreased susceptibility of P. aeruginosa to antibiotics. However, the greatest therapeutic problems occur when these pumps are overproduced in mutants and high-level, multi-drug resistance develops. Although the development of infections with highly resistant strains of P. aeruginosa can present serious therapeutic challenges, the most troublesome threat associated with the chromosomally-encoded resistance mechanisms is the potential for high-level resistance to emerge during the course of therapy. When resistance emerges during therapy, clinical failure can occur and the therapeutic options for second-line therapy can become severely limited. Unfortunately, the emergence of resistance during therapy is not a rare event with P. aeruginosa and these three resistance mechanisms. Therefore, clinicians must be mindful of this threat when choosing an appropriate therapy, and usually appropriate therapy includes a combination of drugs. Since the standard combination of an aminoglycoside and a beta-lactam has been shown to be ineffective in preventing the emergence of some resistance problems, the search for more effective combinations must be a priority.
Collapse
Affiliation(s)
- Philip D Lister
- Department Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA.
| |
Collapse
|
61
|
Bagge N, Ciofu O, Hentzer M, Campbell JIA, Givskov M, Høiby N. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother 2002; 46:3406-11. [PMID: 12384343 PMCID: PMC128714 DOI: 10.1128/aac.46.11.3406-3411.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of chromosomal AmpC beta-lactamase in Pseudomonas aeruginosa is negatively regulated by the activity of an amidase, AmpD. In the present study we examined resistant clinical P. aeruginosa strains and several resistant variants isolated from in vivo and in vitro biofilms for mutations in ampD to find evidence for the genetic changes leading to high-level expression of chromosomal beta-lactamase. A new insertion sequence, IS1669, was found located in the ampD genes of two clinical P. aeruginosa isolates and several biofilm-isolated variants. The presence of IS1669 in ampD resulted in the expression of high levels of AmpC beta-lactamase. Complementation of these isolates with ampD from the reference P. aeruginosa strain PAO1 caused a dramatic decrease in the expression of AmpC beta-lactamase and a parallel decrease of the MIC of ceftazidime to a level comparable to that of PAO1. One highly resistant, constitutive beta-lactamase-producing variant contained no mutations in ampD, but a point mutation was observed in ampR, resulting in an Asp-135-->Asn change. An identical mutation of AmpR in Enterobacter cloacae has been reported to cause a 450-fold higher AmpC expression. However, in many of the isolates expressing high levels of chromosomal beta-lactamase, no changes were found in either ampD, ampR, or in the promoter region of ampD, ampR, or ampC. Our results suggest that multiple pathways may exist leading to increased antimicrobial resistance due to chromosomal beta-lactamase.
Collapse
Affiliation(s)
- Niels Bagge
- Institute of Medical Microbiology and Immunology, Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
Antibiotic resistance is a clinical and socioeconomical problem that is here to stay. Resistance can be natural or acquired. Some bacterial species, such as Pseudomonas aeruginosa, show a high intrinsic resistance to a number of antibiotics whereas others are normally highly antibiotic susceptible such as group A streptococci. Acquired resistance evolve via genetic alterations in the microbes own genome or by horizontal transfer of resistance genes located on various types of mobile DNA elements. Mutation frequencies to resistance can vary dramatically depending on the mechanism of resistance and whether or not the organism exhibits a mutator phenotype. Resistance usually has a biological cost for the microorganism, but compensatory mutations accumulate rapidly that abolish this fitness cost, explaining why many types of resistances may never disappear in a bacterial population. Resistance frequently occurs stepwise making it important to identify organisms with low level resistance that otherwise may constitute the genetic platform for development of higher resistance levels. Self-replicating plasmids, prophages, transposons, integrons and resistance islands all represent DNA elements that frequently carry resistance genes into sensitive organisms. These elements add DNA to the microbe and utilize site-specific recombinases/integrases for their integration into the genome. However, resistance may also be created by homologous recombination events creating mosaic genes where each piece of the gene may come from a different microbe. The selection with antibiotics have informed us much about the various genetic mechanisms that are responsible for microbial evolution.
Collapse
Affiliation(s)
- B Henriques Normark
- Swedish Institute of Infectious Disease Control and the Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
63
|
Uehara T, Park JT. Role of the murein precursor UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-diaminopimelic acid-D-Ala-D-Ala in repression of beta-lactamase induction in cell division mutants. J Bacteriol 2002; 184:4233-9. [PMID: 12107141 PMCID: PMC135216 DOI: 10.1128/jb.184.15.4233-4239.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain beta-lactam antibiotics induce the chromosomal ampC beta-lactamase of many gram-negative bacteria. The natural inducer, though not yet unequivocally identified, is a cell wall breakdown product which enters the cell via the AmpG permease component of the murein recycling pathway. Surprisingly, it has been reported that beta-lactamase is not induced by cefoxitin in the absence of FtsZ, which is required for cell division, or in the absence of penicillin-binding protein 2 (PBP2), which is required for cell elongation. Since these results remain unexplained, we examined an ftsZ mutant and other cell division mutants (ftsA, ftsQ, and ftsI) and a PBP2 mutant for induction of beta-lactamase. In all mutants, beta-lactamase was not induced by cefoxitin, which confirms the initial reports. The murein precursor, UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-diaminopimelic acid-D-Ala-D-Ala (UDP-MurNAc-pentapeptide), has been shown to serve as a corepressor with AmpR to repress beta-lactamase expression in vitro. Our results suggest that beta-lactamase is not induced because the fts mutants contain a greatly increased amount of corepressor which the inducer cannot displace. In the PBP2(Ts) mutant, in addition to accumulation of corepressor, cell wall turnover and recycling were greatly reduced so that little or no inducer was available. Hence, in both cases, a high ratio of repressor to inducer presumably prevents induction.
Collapse
Affiliation(s)
- Tsuyoshi Uehara
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
64
|
Huber TW. Growth of cell-wall-deficient variants of Enterobacter cloacae facilitates beta-lactamase derepressed mutants. Int J Antimicrob Agents 2002; 19:397-404. [PMID: 12007848 DOI: 10.1016/s0924-8579(02)00008-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The degree to which cell-wall-deficient bacteria (CWDB) are involved in the generation of beta-lactamase derepressed mutants (DM) was measured using Enterobacter cloacae 3624. The frequency of DM in non-permissive isotonic ticarcillin medium was compared with their frequency in hypertonic ticarcillin medium that supports CWDB growth. DM were resistant to extended spectrum penicillins and cephalosporins and had a basal beta-lactamase activity of >300 units/mg protein. Anaerobic growth of CWDB increased the relative risk of DM 2 x 10(6)-fold. Aerobic incubation produced fewer CWDB colonies but the risk of DM was still increased 400-fold over non-permissive controls. These results define a new role for CWDB as intermediaries in the emergence of resistance.
Collapse
Affiliation(s)
- Thomas W Huber
- Department of Pathology and Laboratory Medicine (113), Department of Medical Microbiology and Immunology, Central Texas Veterans Health Care System, Texas A&M College of Medicine, 1901 South First Street, Temple, TX 76504, USA
| |
Collapse
|
65
|
Petrosino JF, Pendleton AR, Weiner JH, Rosenberg SM. Chromosomal system for studying AmpC-mediated beta-lactam resistance mutation in Escherichia coli. Antimicrob Agents Chemother 2002; 46:1535-9. [PMID: 11959593 PMCID: PMC127180 DOI: 10.1128/aac.46.5.1535-1539.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In some enterobacterial pathogens, but not in Escherichia coli, loss-of-function mutations in the ampD gene are a common route to beta-lactam antibiotic resistance. We constructed an assay system for studying mechanism(s) of enterobacterial ampD mutation using the well-developed genetics of E. coli. We integrated the Enterobacter ampRC genes into the E. coli chromosome. These cells acquire spontaneous recombination- and SOS response-independent beta-lactam resistance mutations in ampD. This chromosomal system is useful for studying mutation mechanisms that promote antibiotic resistance.
Collapse
Affiliation(s)
- Joseph F Petrosino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411, USA.
| | | | | | | |
Collapse
|
66
|
Valtonen SJ, Kurittu JS, Karp MT. A luminescent Escherichia coli biosensor for the high throughput detection of beta-lactams. JOURNAL OF BIOMOLECULAR SCREENING 2002; 7:127-34. [PMID: 12006111 DOI: 10.1177/108705710200700205] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A group-specific bioluminescent Escherichia coli strain for studying the action of beta-lactam antibiotics is described. The strain contains a plasmid, pBlaLux1, in which the luciferase genes from Photorhabdus luminescens are inserted under the control of the beta-lactam-responsive element ampR/ampC from Citrobacter freundii. In the presence of beta-lactams, the bacterial cells are induced to express the luciferase enzyme and three additional enzymes generating the substrate for the luciferase reaction. This biosensor for beta-lactams does not need any substrate or cofactor additions, and the bioluminescence can be measured very sensitively in real time by using a luminometer. Basic parameters affecting the light production and induction in the gram-negative model organism E. coli SNO301/pBlaLux1 by various beta-lactams were studied. The dose-response curves were bell shaped, indicating toxic effects for the sensor strain at high concentrations of beta-lactams. Various beta-lactams had fairly different assay ranges: ampicillin, 0.05-1.0 microg/ml; piperacillin, 0.0025-25 microg/ml; imipenem, 0.0025-0.25 microg/ml; cephapirin, 0.025-2.5 microg/ml; cefoxitin, 0.0025-1.5 microg/ml; and oxacillin, 25-500 microg/ml. Also, the induction coefficients (signal over background noninduced control) varied considerably from 3 to 158 in a 2-hour assay. Different non-beta-lactam antibiotics did not cause induction. Because the assay can be automated using microplate technologies, the approach may be suitable for higher throughput analysis of beta-lactam action.
Collapse
Affiliation(s)
- Satu J Valtonen
- Karolinska Institutet, Center for Genomics and Bioinformatics, Stockholm, Sweden
| | | | | |
Collapse
|
67
|
Ehrhardt AF, Russo R. Clinical resistance encountered in the respiratory surveillance program (RESP) study: a review of the implications for the treatment of community-acquired respiratory tract infections. Am J Med 2001; 111 Suppl 9A:30S-35S discussion 36S-38S. [PMID: 11755441 DOI: 10.1016/s0002-9343(01)01029-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Respiratory Surveillance Program (RESP) is a large-scale surveillance study of potential bacterial pathogens from respiratory tract infections that was performed over a 10-month period (July to April) during the 1999-2000 respiratory infection season. It is also the first study of its kind to derive its information entirely from community-based medical practices. This study, therefore, provides insight into the identity, frequency, and susceptibility of the possible pathogens isolated from patients encountered by primary care physicians. Reduction of antibiotic susceptibility in various bacterial pathogens may be of academic interest. However, it is only the emergence of clinical resistance (strains exhibiting minimum inhibitory concentrations above the resistance breakpoint) to commonly used antibacterial agents in the most prevalent species that has significant impact on empiric therapy choices. A review of data from RESP indicated that the most prevalent species were Moraxella catarrhalis, Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pneumoniae. As expected, the prevalence of these bacterial isolates varied by disease state. The prevalence of clinical resistance to various antibiotics ranged, within these 4 species, between 0% and 92%. Resistance to the greatest number of drugs was expressed by S pneumoniae, followed by S aureus, H influenzae, and M catarrhalis. The prevalence of antibiotic resistance found among these community-isolated pathogens was surprisingly similar to that reported in hospital-based studies, suggesting that resistance is as important an issue in the community as it is in hospitals. With few exceptions, the prevalence of resistance was fairly uniform across disease states. The antibiotics most likely to encounter clinically resistant isolates during the treatment of community-acquired respiratory tract infections were penicillins, macrolides, and trimethoprim/sulfamethoxazole. The antibiotics least likely to encounter resistance were quinolones, followed by ceftriaxone and amoxicillin/clavulanate.
Collapse
Affiliation(s)
- A F Ehrhardt
- Department of Infectious Diseases, Bristol-Myers Squibb, Plainsboro, New Jersey 08536, USA
| | | |
Collapse
|
68
|
Núñez C, Moreno S, Cárdenas L, Soberón-Chávez G, Espín G. Inactivation of the ampDE operon increases transcription of algD and affects morphology and encystment of Azotobacter vinelandii. J Bacteriol 2000; 182:4829-35. [PMID: 10940024 PMCID: PMC111360 DOI: 10.1128/jb.182.17.4829-4835.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of algD, encoding GDP-mannose dehydrogenase, the key enzyme in the alginate biosynthetic pathway, is highly regulated in Azotobacter vinelandii. We describe here the characterization of a Tn5 insertion mutant (AC28) which shows a higher level of expression of an algD::lacZ fusion. AC28 cells were morphologically abnormal and unable to encyst. The cloning and nucleotide sequencing of the Tn5-disrupted locus in AC28 revealed an operon homologous to the Escherichia coli ampDE operon. Tn5 was located within the ampD gene, encoding a cytosolic N-acetyl-anhydromuramyl-L-alanine amidase that participates in the intracellular recycling of peptidoglycan fragments. The ampE gene encodes a transmembrane protein, but the function of the protein is not known. We constructed strains carrying ampD or ampE mutations and one with an ampDE deletion. The strain with a deletion of the ampDE operon showed a phenotype similar to that of mutant AC28. The present work demonstrates that both alginate production and bacterial encystment are greatly influenced by the bacterial ability to recycle its cell wall.
Collapse
Affiliation(s)
- C Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, México
| | | | | | | | | |
Collapse
|
69
|
Tavío Pérez MM, Amicosante G, Franceschini N, Vila J, Ruiz J, Oratore A, Martín-Sánchez AM, Jiménez de Anta MT. Decreased production of AmpC-type beta-lactamases associated with the development of resistance to quinolones in Citrobacter freundii strains. Microb Drug Resist 2000; 5:235-40. [PMID: 10647079 DOI: 10.1089/mdr.1999.5.235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of fluoroquinolones in Citrobacter freundii strains that results in a decreased expression of cephalosporin-hydrolysing beta-lactamases was studied. Resistance to broad-spectrum cephalosporins and penicillins in two C. freundii clinical isolates was associated with moderate production of chromosomal AmpC-type-beta-lactamase in addition to changes in the outer membrane proteins profile with respect to wild-type C. freundii strains. Ten quinolone-resistant mutants were derived from the two clinical isolates using increasing fluoroquinolone concentrations. The level of susceptibility to cephalosporins and meropenem of these 10 mutants was increased and was associated with a 3.6-32% diminution in the hydrolyzing activity of their periplasmic extracts containing beta-lactamases on cephaloridine as compared with those from their parent strains. Susceptibility to cephalosporins and meropenem, as well as the expression of chromosomal AmpC-type-beta-lactamase in C. freundii strains, was influenced by the exposure to quinolones.
Collapse
Affiliation(s)
- M M Tavío Pérez
- Department of Clinical Sciences, School of Medicine, University of Las Palmas de G.C., Spain
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Normark S. beta-Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb Drug Resist 2000; 1:111-4. [PMID: 9158742 DOI: 10.1089/mdr.1995.1.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A number of Gram-negative organisms normally express a chromosomally mediated class C beta-lactamase that is inducible by beta-lactam antibiotics. Data have recently emerged suggesting a close link between beta-lactamase induction and the recycling of released muramyl peptides from the bacterial peptidoglycan. Thus the AmpG transporter is responsible for the uptake into the cell of GlcNAc-anhMurNAc-tripeptide. A mutant unable to express AmpG is therefore unable to recycle the cell wall and is at the same time not possible to induce by a beta-lactam. Once inside the cytosol the above muramyl peptide and its derivative anhMurNAc-tripeptide is degraded by the cytosolic AmpD amidase that specifically releases the tripeptide from cytosolic muramyl peptides brought into the cell via AmpG. Mutants unable to produce AmpD are blocked in a cytosolic step for cell wall recycling and accumulate large amounts of cytosolic anhMurNAc-tripeptide. It is believed that cytosolic muramyl peptides can act as ligands for the beta-lactamase regulator AmpR to activate expression of beta-lactamase. AmpD mutants, therefore, constitutively overproduce the chromosomal beta-lactamase and are beta-lactam resistant. In wild-type strains beta-lactams that result in an increased cell wall breakdown will cause an increase in the cytosol of muramyl peptides leading to beta-lactamase induction. Mutants affected in the ampD gene arise readily during treatment with third-generation cephalosporins. Since these mutants lack a functional cell wall recycling system they may be at a disadvantage in the absence of selection. However, since muramyl peptides may act as cytotoxins, especially for respiratory epithelial cells, ampD mutants due to their large accumulation of anhMurNAc-tripeptide may be altered in their pathogenic properties as compared to wild-type cells possessing a normal cell wall recycling system.
Collapse
Affiliation(s)
- S Normark
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
71
|
Langaee TY, Gagnon L, Huletsky A. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression. Antimicrob Agents Chemother 2000; 44:583-9. [PMID: 10681322 PMCID: PMC89730 DOI: 10.1128/aac.44.3.583-589.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown in enterobacteria that mutations in ampD provoke hyperproduction of chromosomal beta-lactamase, which confers to these organisms high levels of resistance to beta-lactam antibiotics. In this study, we investigated whether this genetic locus was implicated in the altered AmpC beta-lactamase expression of selected clinical isolates and laboratory mutants of Pseudomonas aeruginosa. The sequences of the ampD genes and promoter regions from these strains were determined and compared to that of wild-type ampD from P. aeruginosa PAO1. Although we identified numerous nucleotide substitutions, they resulted in few amino acid changes. The phenotypes produced by these mutations were ascertained by complementation analysis. The data revealed that the ampD genes of the P. aeruginosa mutants transcomplemented Escherichia coli ampD mutants to the same levels of beta-lactam resistance and beta-lactamase expression as wild-type ampD. Furthermore, complementation of the P. aeruginosa mutants with wild-type ampD did not restore the inducibility of beta-lactamase to wild-type levels. This shows that the amino acid substitutions identified in AmpD do not cause the altered phenotype of AmpC beta-lactamase expression in the P. aeruginosa mutants. The effects of AmpD inactivation in P. aeruginosa PAO1 were further investigated by gene replacement. This resulted in moderate-basal-level and hyperinducible expression of beta-lactamase accompanied by high levels of beta-lactam resistance. This differs from the stably derepressed phenotype reported in AmpD-defective enterobacteria and suggests that further change at another unknown genetic locus may be causing total derepressed AmpC production. This genetic locus could also be altered in the P. aeruginosa mutants studied in this work.
Collapse
Affiliation(s)
- T Y Langaee
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada G1V 4G2
| | | | | |
Collapse
|
72
|
Kuga A, Okamoto R, Inoue M. ampR gene mutations that greatly increase class C beta-lactamase activity in Enterobacter cloacae. Antimicrob Agents Chemother 2000; 44:561-7. [PMID: 10681318 PMCID: PMC89726 DOI: 10.1128/aac.44.3.561-567.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ampC and ampR genes of Enterobacter cloacae GN7471 were cloned into pMW218 to yield pKU403. Four mutant plasmids derived from pKU403 (pKU404, pKU405, pKU406, and pKU407) were isolated in an AmpD mutant of Escherichia coli ML4953 by selection with ceftazidime or aztreonam. The beta-lactamase activities expressed by pKU404, pKU405, pKU406, and pKU407 were about 450, 75, 160, and 160 times higher, respectively, than that expressed by the original plasmid, pKU403. These mutant plasmids all carried point mutations in the ampR gene. In pKU404 and pKU405, Asp-135 was changed to Asn and Val, respectively. In both pKU406 and pKU407, Arg-86 was changed to Cys. The ease of selection of AmpR mutations at a frequency of about 10(-6) in this study strongly suggests that derepressed strains, such as AmpD or AmpR mutants, could frequently emerge in the clinical setting.
Collapse
Affiliation(s)
- A Kuga
- Department of Microbiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | |
Collapse
|
73
|
Pfeifle D, Janas E, Wiedemann B. Role of penicillin-binding proteins in the initiation of the AmpC beta-lactamase expression in Enterobacter cloacae. Antimicrob Agents Chemother 2000; 44:169-72. [PMID: 10602741 PMCID: PMC89646 DOI: 10.1128/aac.44.1.169-172.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-binding proteins (PBPs) are involved in the regulation of beta-lactamase expression by determining the level of anhydromuramylpeptides in the periplasmatic space. It was hypothesized that one or more PBPs act as a sensor in the beta-lactamase induction pathway. We have performed induction studies with Escherichia coli mutants lacking one to four PBPs with DD-carboxypeptidase activity. Therefore, we conclude that a strong beta-lactamase inducer must inhibit all DD-carboxypeptidases as well as the essential PBPs 1a, 1b, and/or 2.
Collapse
Affiliation(s)
- D Pfeifle
- Pharmazeutische Mikrobiologie, University of Bonn, 53115 Bonn, Germany
| | | | | |
Collapse
|
74
|
Lakaye B, Dubus A, Lepage S, Groslambert S, Frère JM. When drug inactivation renders the target irrelevant to antibiotic resistance: a case story with beta-lactams. Mol Microbiol 1999; 31:89-101. [PMID: 9987113 DOI: 10.1046/j.1365-2958.1999.01150.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By challenging the efficiency of some of our most useful antimicrobial weapons, bacterial antibiotic resistance is becoming an increasingly worrying clinical problem. A good antibiotic is expected to exhibit a high affinity for its target and to reach it rapidly, while escaping chemical modification by inactivating enzymes and elimination by efflux mechanisms. A study of the behaviour of a beta-lactamase-overproducing mutant of Enterobacter cloacae in the presence of several penicillins and cephalosporins showed that the minimum inhibitory concentration (MIC) values for several compounds were practically independent of the sensitivity of the target penicillin binding protein (PBP), even for poor beta-lactamase substrates. This apparent paradox was explained by analysing the equation that relates the antibiotic concentration in the periplasm to that in the external medium. Indeed, under conditions that are encountered frequently in clinical isolates, the factor characterizing the PBP sensitivity became negligible. The conclusions can be extended to all antibiotics that are sensitive to enzymatic inactivation and efflux mechanisms and must overcome permeability barriers. It would be a grave mistake to neglect these considerations in the design of future antibacterial chemotherapeutic agents.
Collapse
Affiliation(s)
- B Lakaye
- Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | | | | | | | |
Collapse
|
75
|
Jacobs C. Pharmacia Biotech & Science prize. 1997 grand prize winner. Life in the balance: cell walls and antibiotic resistance. Science 1997; 278:1731-2. [PMID: 9411793 DOI: 10.1126/science.278.5344.1731b] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C Jacobs
- Department of Developmental Biology, Stanford University, Stanford, CA 94305-5427, USA.
| |
Collapse
|
76
|
Dietz H, Pfeifle D, Wiedemann B. The signal molecule for beta-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide. Antimicrob Agents Chemother 1997; 41:2113-20. [PMID: 9333034 PMCID: PMC164079 DOI: 10.1128/aac.41.10.2113] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Beta-lactamase induction in Enterobacter cloacae, which is linked to peptidoglycan recycling, was investigated by high-performance liquid chromatographic analysis of cell wall fragments in genetically defined cells of Escherichia coli. After treatment of cells with beta-lactams, we detected an increase in a D-tripeptide (disaccharide-tripeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid), aD-tetrapeptide (disaccharide-tetrapeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid-D-alanine), and aD-pentapeptide (disaccharide-pentapeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid-D-alanyl-D-alanine)levels in the periplasms of bacterial cells. Furthermore, only the accumulation of aD-pentapeptide correlates with the beta-lactamase-inducing capacity of the beta-lactam antibiotic. The transmembrane protein AmpG transports all three aD-peptides into the cytoplasm, where they are degraded into the corresponding monosaccharide peptides. In the absence of AmpD the constitutive overproduction of beta-lactamase is accompanied by an accumulation of aM-tripeptide (monosaccharide-tripeptide, anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid) and aM-pentapeptide (L1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanyl-D-alanine), but not aM-tetrapeptide (anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine), in the cytoplasm. Only the amount of aM-pentapeptide is increased upon treatment with imipenem. These findings indicate that aD-pentapeptide is the main periplasmic muropeptide, which is converted into the cytoplasmic signal molecule for beta-lactamase induction, the aM-pentapeptide.
Collapse
Affiliation(s)
- H Dietz
- Institut für Medizinische Mikrobiologie und Immunologie, University of Bonn, Germany
| | | | | |
Collapse
|
77
|
Sanders CC, Bradford PA, Ehrhardt AF, Bush K, Young KD, Henderson TA, Sanders WE. Penicillin-binding proteins and induction of AmpC beta-lactamase. Antimicrob Agents Chemother 1997; 41:2013-5. [PMID: 9303404 PMCID: PMC164055 DOI: 10.1128/aac.41.9.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In competition assays for radiolabeled penicillin, penicillin-binding proteins (PBPs) 4, 7a, and 7b showed very high affinities for strong inducers of AmpC beta-lactamase. Loss of PBP 4 resulted in diminished inducibility. This suggests that if PBPs are involved in induction of AmpC beta-lactamase, there is probably a redundancy in function among the different PBPs.
Collapse
Affiliation(s)
- C C Sanders
- Center for Research in Anti-Infectives and Biotechnology, Department of Medical Microbiology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Jacobs C, Frère JM, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell 1997; 88:823-32. [PMID: 9118225 DOI: 10.1016/s0092-8674(00)81928-5] [Citation(s) in RCA: 244] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
beta-lactam induction of chromosomal beta-lactamase in gram-negative bacteria requires the transcriptional regulator AmpR and the transport of murein breakdown products (muropeptides) into the cytoplasm. In vitro transcription shows that purified AmpR acts as an activator for ampC beta-lactamase synthesis. The murein precursor, UDP-MurNAc-pentapeptide, decreases AmpR-mediated transcriptional activation in vitro, but has no effect on an AmpR(G102E) mutant that mediates constitutive activation of ampC in vivo. Addition of the muropeptide, anhMurNAc-tripeptide, which accumulates in beta-lactamase-overproducing mutants, counteracts the negative effect of UDP-MurNAc-pentapeptide, restoring the innate ability of AmpR to induce ampC expression in vitro. Cytosolic intermediates of murein biosynthesis and degradation thus act antagonistically to control beta-lactamase expression, thereby operating as a cell-wall sensing device.
Collapse
Affiliation(s)
- C Jacobs
- Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | | | |
Collapse
|
79
|
Alksne LE, Rasmussen BA. Expression of the AsbA1, OXA-12, and AsbM1 beta-lactamases in Aeromonas jandaei AER 14 is coordinated by a two-component regulon. J Bacteriol 1997; 179:2006-13. [PMID: 9068648 PMCID: PMC178926 DOI: 10.1128/jb.179.6.2006-2013.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aeromonas jandaei AER 14 (formerly Aeromonas sobria AER 14) expresses three inducible beta-lactamases, AsbA1, OXA-12 (AsbB1), and AsbM1. Mutant strains that constitutively overexpress all three enzyme simultaneously, suggesting that they share a common regulatory pathway, have been isolated. Detectable expression of the cloned genes of AsbA1 and OXA-12 in some Escherichia coli K-12 laboratory strains is achieved only in the presence of a blp mutation. These mutations map to the cre operon at 0 min, which encodes a classical two-component regulatory system of unknown function. Two regulatory elements from A. jandaei which permit high-level constitutive expression of OXA-12 in E. coli were cloned. Both loci encode proteins with characteristics of response regulator proteins of two-component regulatory systems. One of these loci, designated blrA, bestowed constitutive expression of all three beta-lactamases in A. jandaei AER 14 when present on a multicopy plasmid, confirming its role in the regulatory pathway of beta-lactamase production in this organism.
Collapse
Affiliation(s)
- L E Alksne
- Infectious Disease Section, Wyeth-Ayerst Research, Pearl River, New York 10965, USA
| | | |
Collapse
|
80
|
|
81
|
Dietz H, Pfeifle D, Wiedemann B. Location of N-acetylmuramyl-L-alanyl-D-glutamylmesodiaminopimelic acid, presumed signal molecule for beta-lactamase induction, in the bacterial cell. Antimicrob Agents Chemother 1996; 40:2173-7. [PMID: 8878601 PMCID: PMC163493 DOI: 10.1128/aac.40.9.2173] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using a chromatographic method for the isolation and detection of periplasmic and cytoplasmic muropeptides avoiding radioactive labeling, we found that in the ampD-negative strain JRG582 the anhydromuropeptide N-acetylmuramyl-L-alanyl-D-glutamylmesodiaminopimelic acid (anhMurNAc tripeptide) accumulates not only in the cytoplasm but also in the periplasm. Simultaneously JRG582 carrying the Enterobacter cloacae genes ampC and ampR, which are necessary for the induction of beta-lactamase expression, overproduces beta-lactamase. We confirmed that the transmembrane protein AmpG transports a precursor muropeptide into the cytoplasm and that the formation of the anhMurNAc tripeptide takes place in the cytoplasm. anhMurNAc tripeptide can then be secreted into the periplasm. Therefore, the amount of anhMurNAc tripeptide in the cytoplasm is reduced not only by AmpD but also by transport out of the cell.
Collapse
Affiliation(s)
- H Dietz
- Institut für Medizinische Mikrobiologie und Immunologie, University of Bonn, Germany
| | | | | |
Collapse
|
82
|
Ehrhardt AF, Sanders CC, Romero JR, Leser JS. Sequencing and analysis of four new Enterobacter ampD Alleles. Antimicrob Agents Chemother 1996; 40:1953-6. [PMID: 8843314 PMCID: PMC163450 DOI: 10.1128/aac.40.8.1953] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sequences of ampD genes from wild-type, temperature-sensitive, and stably derepressed mutants of the wild-type strain of Enterobacter cloacae 029 and the hyperinducible strain E. cloacae 1194E were determined and compared with the ampD gene of the wild-type strain E. cloacae 14. Seventy nucleotide differences were found between the wild-type sequences, resulting in 13 amino acid changes. The deduced amino acid changes do not correspond to published AmpC regulation mutations and expand the number of known mutations leading to altered AmpC beta-lactamase expression in members of the family Enterobacteriaceae.
Collapse
Affiliation(s)
- A F Ehrhardt
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | | | | | |
Collapse
|
83
|
Dietz H, Wiedemann B. The role of N-actylglucosaminyl-1,6 anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine for the induction of beta-lactamase in Enterobacter cloacae. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1996; 284:207-17. [PMID: 8837381 DOI: 10.1016/s0934-8840(96)80096-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism of beta-lactamase induction in Enterobacter cloacae which is linked to the peptidoglycan recycling, was investigated by HPLC analysis of cell wall fragments in genetically defined cells. It is demonstrated here that the transmembrane protein AmpG transports not only the precursor muropeptide of M-tripeptide (N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid), the D-tripeptide (N-actylglucosaminyl-1,6 anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid), but also that of M-tetra-peptide (N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine), the D-tetrapeptide (N-actylglucosaminyl-1,6 anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine), into the cytoplasm. These findings indicate that probably also M-tetrapeptide and D-tetrapeptide are signal muropeptides for beta-lactamase induction. In fact, D-tetrapeptide, not D-tripeptide, increases upon imipenem treatment.
Collapse
|
84
|
Magdalena J, Joris B, Van Beeumen J, Brasseur R, Dusart J. Regulation of the beta-lactamase BlaL of Streptomyces cacaoi: the product of the blaB regulatory gene is an internal membrane-bound protein. Biochem J 1995; 311 ( Pt 1):155-60. [PMID: 7575447 PMCID: PMC1136132 DOI: 10.1042/bj3110155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The beta-lactamase-encoding gene blaL, cloned from Streptomyces cacaoi in Streptomyces lividans, is inducible by beta-lactam compounds. This regulation has been shown to depend on the products of two open reading frames, ORF1 (blaA) and ORF2 (blaB) [Lenzini, Magdalena, Fraipont, Joris, Matagne and Dusart (1992) Mol. Gen. Genet. 235, 41-48]. BlaA belongs to the LysR family of transcription activators, whereas BlaB shares some features with the penicillin-recognizing proteins. BlaB has now been overexpressed in Escherichia coli, purified and used for antibody preparation. Immunoblotting of cell-fractionated materials from S. cacaoi showed that BlaB is attached to the internal face of the cytoplasmic membrane. It could not be released by high salt concentrations or EDTA, but only by protease treatment. Under the assay conditions, BlaB did not act as a penicillin-binding protein, a beta-lactamase, a D-amino-peptidase or a target in a phosphorylation step.
Collapse
Affiliation(s)
- J Magdalena
- Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | | | | | | | |
Collapse
|
85
|
Schmidt H, Korfmann G, Barth H, Martin HH. The signal transducer encoded by ampG is essential for induction of chromosomal AmpC beta-lactamase in Escherichia coli by beta-lactam antibiotics and 'unspecific' inducers. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 5):1085-1092. [PMID: 7773404 DOI: 10.1099/13500872-141-5-1085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemical mutagenesis of the AmpC beta-lactamase-hyperinducible Escherichia coli strain SN0301/pNu305 carrying the cloned ampC and ampR genes from Citrobacter freundii OS60 gave four independent mutants in which beta-lactamase was no longer inducible, or was inducible only to a low level, by beta-lactam antibiotics. The genes ampC, ampR, ampD and ampE, which were essential for beta-lactamase induction, were functional in these mutants. In all four mutants, the sites of mutation were mapped to 9.9 min on the E. coli chromosome. Complementation with wild-type ampG restored inducibility of beta-lactamase to wild-type levels. The nucleotide sequence of all four mutant ampG alleles (ampG1, ampG3, ampG4 and ampG5) was determined. In three of the mutants, a single base exchange led to an amino acid change from glycine to aspartate at different sites in the deduced amino acid sequence. In the fourth mutant (ampG4), with low-level inducibility, the nucleotide sequence was identical to wild-type ampG. Spontaneous back-mutation of the chromosomal ampG1 mutant resulted in restoration of wild-type inducibility and a return to the wild-type ampG sequence. Unspecific induction by components of the growth medium was also dependent on intact ampG function.
Collapse
Affiliation(s)
- Herbert Schmidt
- Institut fr Mikrobiologie, Technische Hochschule, 64287 Darmstadt, Germany
| | | | - Holger Barth
- Institut fr Mikrobiologie, Technische Hochschule, 64287 Darmstadt, Germany
| | - Hans H Martin
- Institut fr Mikrobiologie, Technische Hochschule, 64287 Darmstadt, Germany
| |
Collapse
|
86
|
Jacobs C, Joris B, Jamin M, Klarsov K, Van Beeumen J, Mengin-Lecreulx D, van Heijenoort J, Park JT, Normark S, Frère JM. AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 1995; 15:553-9. [PMID: 7783625 DOI: 10.1111/j.1365-2958.1995.tb02268.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In enterobacteria, the ampD gene encodes a cytosolic protein which acts as a negative regulator of beta-lactamase expression. It is shown here that the AmpD protein is a novel N-acetylmuramyl-L-alanine amidase (E.C.3.5.1.28) participating in the intracellular recycling of peptidoglycan fragments. Surprisingly, AmpD exhibits an exclusive specificity for substrates containing anhydro muramic acid. This anhydro bond is mainly found in the peptidoglycan degradation products formed by the periplasmic lytic transglycosylases and thus might behave as a 'recycling tag' allowing the enzyme to distinguish these fragments from the newly synthesized peptidoglycan precursors. The AmpD substrate (or substrates) which accumulates in the absence of the corresponding enzymatic activity acts as an intracellular positive effector for beta-lactamase expression and might represent an element of a communication network between the chromosome and the cell wall peptidoglycan.
Collapse
Affiliation(s)
- C Jacobs
- Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Cheng Y, Chen M. Extended-spectrum beta-lactamases in clinical isolates of Enterobacter gergoviae and Escherichia coli in China. Antimicrob Agents Chemother 1994; 38:2838-42. [PMID: 7695270 PMCID: PMC188293 DOI: 10.1128/aac.38.12.2838] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Resistance to ceftazidime, detected in isolates of Escherichia coli 5518 and Enterobacter gergoviae 3773 from our hospital, was transferred, together with resistance to aminoglycosides, trimethoprim, sulfonamide, and other beta-lactam antibiotics, by conjugation to E. coli JP559. Both E. coli transconjugants were resistant to ampicillin, all cephalosporins, and aztreonam but remained susceptible to cefoxitin and imipenem. The enzymes of the two transconjugant strains readily hydrolyzed cephalosporins in a spectrophotometric assay. Hybridization results suggested that the extended-spectrum beta-lactamase produced by E. coli 5518 was a non-TEM, non-SHV enzyme, the origin of which is currently unknown. The beta-lactamase produced by E. gergoviae 3773 was of the SHV type and was further proved to be SHV-2 by DNA sequencing. Thus, extended-spectrum beta-lactamases are occurring in China as well as in other parts of the world.
Collapse
Affiliation(s)
- Y Cheng
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Beijing, Peoples Republic of China
| | | |
Collapse
|
88
|
Datz M, Joris B, Azab EA, Galleni M, Van Beeumen J, Frère JM, Martin HH. A common system controls the induction of very different genes. The class-A beta-lactamase of Proteus vulgaris and the enterobacterial class-C beta-lactamase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:149-57. [PMID: 7957242 DOI: 10.1111/j.1432-1033.1994.tb20036.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Among the Enterobacteriaceae, Proteus vulgaris is exceptional in the inducible production of a 29-kDa beta-lactamase (cefuroximase) with an unusually high activity towards the beta-lactamase-stable oximino-cephalosporins (e.g. cefuroxime and cefotaxime). Sequencing of the corresponding gene, cumA, showed that the derived CumA beta-lactamase belonged to the molecular class A. The structural gene was under the direct control of gene cumR, which was transcribed backwards and whose initiation codon was 165 bp away from that of the beta-lactamase gene. This resembled the arrangement of structural and regulator genes ampC and ampR of the 39-kDa molecular-class-C beta-lactamase AmpC present in many enterobacteria. Moreover, cloned genes ampD and ampG for negative modulation and signal transduction of AmpC beta-lactamase induction, respectively, were also able to restore constitutively CumA overproducing and non-inducible P. vulgaris mutants to the inducible, wild-type phenotype. The results indicate that controls of the induction phenomena are equivalent for the CumA and AmpC beta-lactamase. Very different structural genes can thus be under the control of identical systems.
Collapse
Affiliation(s)
- M Datz
- Laboratoire d'Enzymologie, Université de Liège, Sart Tilman, Belgium
| | | | | | | | | | | | | |
Collapse
|
89
|
Höltje JV, Kopp U, Ursinus A, Wiedemann B. The negative regulator of beta-lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol Lett 1994; 122:159-64. [PMID: 7958768 DOI: 10.1111/j.1574-6968.1994.tb07159.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Construction of a malE-ampD gene fusion allowed purification of biologically active fusion protein by affinity chromatography. The cloned malE-ampD gene fusion complemented a chromosomal ampD mutation. Purified MalE-AmpD fusion protein was found to have murein amidase activity with a pronounced specificity for 1,6-anhydromuropeptides, the characteristic murein turnover products in Escherichia coli. Being a N-acetyl-anhydromuranmyl-L-alanine amidase AmpD is likely to be involved in recycling of the turnover products. It is suggested that the negative regulatory effect of AmpD is due to the hydrolysis of anhydro-muropeptides which may function as signals for beta-lactamase induction.
Collapse
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, FRG
| | | | | | | |
Collapse
|
90
|
Rasmussen BA, Keeney D, Yang Y, Bush K. Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli: requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme. Antimicrob Agents Chemother 1994; 38:2078-85. [PMID: 7811022 PMCID: PMC284687 DOI: 10.1128/aac.38.9.2078] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two beta-lactamase genes, asbA1 and asbB1, encoding AsbA1 and AsbB1, respectively, have been cloned from Aeromonas sobria AER 14M into Escherichia coli. AsbA1 was expressed at low but detectable levels in all E. coli laboratory cloning strains tested. AsbB1 was expressed well in the E. coli cloning strain DH5 alpha. However, no enzyme activity could be detected from the same clone when placed in E. coli MC1061. Ampicillin-resistant mutants of E. coli MC1061 were obtained that expressed high levels of enzymatically active AsbB1. Four independent mutants were examined. All four mutations mapped to one locus, designated blpA (beta-lactamase permissive). The blpA locus was distinct from other known loci that play a role in beta-lactamase expression, i.e., the two loci that affect expression of the Bacteroides fragilis metallo-beta-lactamase and the ampC regulatory genes, ampD, ampE, and ampG. Sequence analysis of asbA1 and asbB1 revealed that AsbA1 was a class C beta-lactamase most closely related to the Pseudomonas aeruginosa chromosomal cephalosporinase and probably represents the common A. sobria cephalosporinase. AsbB1 was a class D enzyme most closely related to the oxacillin-hydrolyzing enzyme OXA-1, with 34% amino acid sequence identity. Purified AsbA1 was a typical cephalosporinase with a substrate profile that reflected high rates of hydrolysis of cephaloridine compared with benzylpenicillin. Purified AsbB1 showed strong penicillinase activity, with hydrolysis rates for carbenicillin and cloxacillin 2 to 2.5 times that for benzylpenicillin. Hydrolysis of imipenem was < or = 1% of that for benzylpenicillin. Both clavulanic acid and tazobactam strongly inhibited AsbB1, while sulbactam inhibited the AsbB1 enzyme less effectively. None of the inhibitors worked well against the AsbA1 enzyme. The chelators EDTA and 1,10-o-phenanthroline did not affect the activity of either enzyme. A. sobria AER 14M was found to produce both a group 1 cephalosporinase and a novel group 2d cloxacillin-hydrolyzing beta-lactamase that has been designated here OXA-12.
Collapse
Affiliation(s)
- B A Rasmussen
- Medical Research Division, American Cyanamid Company, Pearl River, New York 10965
| | | | | | | |
Collapse
|
91
|
Gonzalez Leiza M, Perez-Diaz JC, Ayala J, Casellas JM, Martinez-Beltran J, Bush K, Baquero F. Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated beta-lactamase with two molecular variants. Antimicrob Agents Chemother 1994; 38:2150-7. [PMID: 7811034 PMCID: PMC284699 DOI: 10.1128/aac.38.9.2150] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Klebsiella pneumoniae BA32, a clinical isolate from Buenos Aires, Argentina, was found to produce a plasmid-encoded beta-lactamase (FOX-1) which conferred resistance to broad-spectrum cephalosporins and cephamycins. Resistance could be transferred by conjugation or transformation into Escherichia coli K-12 via a 48.5-kb plasmid (pGLK1) that produced two FOX-1 molecular variants with isoelectric points of 6.8 and 7.2 and apparent molecular sizes of 37 and 35 kDa, respectively. The kinetic study revealed that the two variants had very similar substrate and inhibition profiles. These values resemble those of chromosomally mediated class C (group 1) cephalosporinases. The structural gene of FOX-1 (blaFOX-1) was cloned into a 2,270-bp PstI-PstI fragment and was expressed in E. coli TG1. The deduced 382-amino-acid sequence of FOX-1 exhibited a high degree of similarity with chromosomally encoded AmpC beta-lactamases of Pseudomonas aeruginosa, Serratia marcescens, Enterobacter cloacae, E. coli, and Citrobacter freundii. These findings suggest that FOX-1 is a plasmid-mediated AmpC-type beta-lactamase that is encoded by a single gene and that has two molecular variants.
Collapse
|
92
|
Lindquist S, Weston-Hafer K, Schmidt H, Pul C, Korfmann G, Erickson J, Sanders C, Martin HH, Normark S. AmpG, a signal transducer in chromosomal beta-lactamase induction. Mol Microbiol 1993; 9:703-15. [PMID: 8231804 DOI: 10.1111/j.1365-2958.1993.tb01731.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chromosomal ampC beta-lactamase in Citrobacter freundii and Enterobacter cloacae is inducible by beta-lactam antibiotics. When an inducible ampC gene is introduced on a plasmid into Escherichia coli together with its transcriptional regulator ampR, the plasmid-borne beta-lactamase is still inducible. We have isolated mutants, containing alterations in a novel E. coli gene, ampG, in which a cloned C. freundii ampC gene is unable to respond to beta-lactam inducers. The ampG gene was cloned, sequenced and mapped to minute 9.6 on the E. coli chromosome. The deduced amino acid sequence predicted AmpG to be a 53 kDa, transmembrane protein, which we propose acts as a signal transducer or permease in the beta-lactamase induction system. Immediately upstream of ampG there is another 579-base-pair-long open reading frame (ORF) encoding a putative lipoprotein shown to be non-essential for beta-lactamase induction. We have found that ampG and this ORF form an operon, whose promoter is located in front of the ORF. Located closely upstream of the putative promoter is the morphogene bolA, which is transcribed in the opposite orientation. However, using transcription fusions, we have found that the ampG transcription is not regulated by bolA. In addition, we show that transcription is probably not regulated by either the starvation specific sigma factor RpoS, which controls bolA, or by AmpD the negative regulator for ampC transcription.
Collapse
Affiliation(s)
- S Lindquist
- Department of Microbiology, University of Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Dubus A, Monnaie D, Jacobs C, Normark S, Frère JM. A dramatic change in the rate-limiting step of beta-lactam hydrolysis results from the substitution of the active-site serine residue by a cysteine in the class-C beta-lactamase of Enterobacter cloacae 908R. Biochem J 1993; 292 ( Pt 2):537-43. [PMID: 8503887 PMCID: PMC1134243 DOI: 10.1042/bj2920537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A cysteine residue has been substituted for the active-site serine of the class-C beta-lactamase produced by Enterobacter cloacae 908R by site-directed mutagenesis. The modified protein exhibited drastically reduced kcat./Km values on all tested substrates. However, this decrease was due to increased Km values with some substrates and to decreased kcat. values with others. These apparently contradictory results could be explained by a selective influence of the mutation on the first-order rate constant characteristic of the acylation step, a hypothesis which was confirmed by the absence of detectable acylenzyme accumulation with all the tested substrates, with the sole exception of cefoxitin.
Collapse
Affiliation(s)
- A Dubus
- Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | | | | | | | |
Collapse
|
94
|
Horii T, Arakawa Y, Ohta M, Ichiyama S, Wacharotayankun R, Kato N. Plasmid-mediated AmpC-type beta-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum beta-lactams, including moxalactam. Antimicrob Agents Chemother 1993; 37:984-90. [PMID: 8517725 PMCID: PMC187871 DOI: 10.1128/aac.37.5.984] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Klebsiella pneumoniae NU2936 was isolated from a patient and was found to produce a plasmid-encoded beta-lactamase (MOX-1) which conferred resistance to broad spectrum beta-lactams, including moxalactam, flomoxef, ceftizoxime, cefotaxime, and ceftazidime. Resistance could be transferred from K. pneumoniae NU2936 to Escherichia coli CSH2 by conjugation with a transfer frequency of 5 x 10(-7). The structural gene of MOX-1 (blaMOX-1) was cloned and expressed in E. coli HB101. The MIC of moxalactam for E. coli HB101 producing MOX-1 was > 512 micrograms/ml. The apparent molecular mass and pI of this enzyme were calculated to be 38 kDa and 8.9, respectively. Hg2+ and Cu2+ failed to block enzyme activity, and the presence of EDTA in the reaction buffer did not reduce the enzyme activity. However, clavulanate and cloxacillin, serine beta-lactamase inhibitors, inhibited the enzyme activity competitively (Kis = 5.60 and 0.35 microM, respectively). The kinetic study of MOX-1 suggested that it effectively hydrolyzed broad-spectrum beta-lactams. A hybridization study confirmed that blaMOX-1 is encoded on a large resident plasmid (pRMOX1; 180 kb) of strain NU2936. By deletion analysis, the functional region was localized within a 1.2-kb region of the plasmid. By amino acid sequencing, 18 of 33 amino acid residues at the N terminus of MOX-1 were found to be identical to those of Pseudomonas aeruginosa AmpC. These findings suggest that MOX-1 is a plasmid-mediated AmpC-type beta-lactamase that provides enteric bacteria resistance to broad-spectrum beta-lactams, including moxalactam.
Collapse
Affiliation(s)
- T Horii
- Department of Bacteriology, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
95
|
Proenca R, Niu WW, Cacalano G, Prince A. The Pseudomonas cepacia 249 chromosomal penicillinase is a member of the AmpC family of chromosomal beta-lactamases. Antimicrob Agents Chemother 1993; 37:667-74. [PMID: 8494361 PMCID: PMC187732 DOI: 10.1128/aac.37.4.667] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas cepacia 249 produces an inducible beta-lactamase with penicillinase activity. The nucleotide sequence of the penA gene, which encodes this beta-lactamase, was determined and found to include regions with a significant homology to the ampC-encoded beta-lactamases of members of the family Enterobacteriaceae and Pseudomonas aeruginosa. The predicted amino acid sequence of the PenA beta-lactamase contained 17 amino acids immediately preceding the putative active-site serine which were highly conserved among the enzymes of the AmpC family. Although the penA-coding sequence had a total GC content of 60%, the predicted codon usage was more characteristic of Escherichia coli ampC-encoded beta-lactamase, with 53% of the codons having G or C in the third position, in contrast to the values for the P. aeruginosa ampC (88.5%) or Pseudomonas cepacia (88 to 92%) metabolic genes. The inducible expression of penA can be regulated by the E. coli gene product AmpD. A putative P. cepacia AmpR homolog was associated with the positive regulation of both Enterobacter cloacae ampC and P. cepacia penA expression, as confirmed by gel retardation studies. The E. cloacae AmpR did not regulate penA expression. Thus, by homology studies, codon usage, and genetic analysis, the P. cepacia penA beta-lactamase appears to have been acquired from members of the family Enterobacteriaceae and belongs to the class C group of beta-lactamases.
Collapse
Affiliation(s)
- R Proenca
- College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
96
|
Kopp U, Wiedemann B, Lindquist S, Normark S. Sequences of wild-type and mutant ampD genes of Citrobacter freundii and Enterobacter cloacae. Antimicrob Agents Chemother 1993; 37:224-8. [PMID: 8383940 PMCID: PMC187643 DOI: 10.1128/aac.37.2.224] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ampD gene product regulates the expression of AmpC beta-lactamase in gram-negative bacteria and is proposed to be involved in peptidoglycan metabolism. In this study, we sequenced the ampD wild type and three mutant genes of Enterobacter cloacae and Citrobacter freundii. They exhibited a high degree of homology with the corresponding gene of Escherichia coli except in the carboxy termini, where, in the wild-type genes of E. cloacae and C. freundii, four additional amino acids yielding the Ser-X-X-Lys motif were found. Evidence that this C-terminal region of the ampD gene product is necessary for activity was shown by constructing a deletion of the last 16 amino acids. The spontaneous mutation of ampD02 is an out-of-frame insertion and yields an inactive AmpD protein. The single-base-pair substitution of Gly for Asp-121 in ampD05 is responsible for a hyperinducible phenotype. These results demonstrate regions of the ampD gene and the corresponding protein which have functional importance for the induction of AmpC beta-lactamase in E. cloacae.
Collapse
Affiliation(s)
- U Kopp
- Institut für Medizinische Mikrobiologie und Immunologie, University of Bonn, Germany
| | | | | | | |
Collapse
|
97
|
Bennett PM, Chopra I. Molecular basis of beta-lactamase induction in bacteria. Antimicrob Agents Chemother 1993; 37:153-8. [PMID: 8452343 PMCID: PMC187630 DOI: 10.1128/aac.37.2.153] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- P M Bennett
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
98
|
Bishop RE, Weiner JH. Coordinate regulation of murein peptidase activity and AmpC beta-lactamase synthesis in Escherichia coli. FEBS Lett 1992; 304:103-8. [PMID: 1618308 DOI: 10.1016/0014-5793(92)80598-b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the periplasmic space of Escherichia coli, the (L)-m-A2pm-(D)-m-A2pm peptide, the lipoprotein, and the AmpC beta-lactamase are controlled by growth rate. To explain this coordinate regulation, it is proposed that the AmpC protein functions as an LD-endopeptidase in addition to its known function as a beta-lactamase. As LD-peptides, DD-peptides and beta-lactams are structurally similar, LD-peptidases may belong to the larger family of DD-peptidases and serine beta-lactamases. In contrast to E. coli, many related bacteria possess an inducible AmpC protein. Several gene systems necessary for AmpC induction are known to affect various aspects of peptidoglycan metabolism. It is proposed that AmpC induction occurs indirectly via a recyclable cell wall peptide.
Collapse
Affiliation(s)
- R E Bishop
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
99
|
Seoane A, Francia MV, García Lobo JM. Nucleotide sequence of the ampC-ampR region from the chromosome of Yersinia enterocolitica. Antimicrob Agents Chemother 1992; 36:1049-52. [PMID: 1510392 PMCID: PMC188833 DOI: 10.1128/aac.36.5.1049] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nucleotide sequence of a 3.1-kb region from the chromosome of the Yersinia enterocolitica O:5b strain IP97 containing the gene for an inducible chromosomal cephalosporinase has been determined. The cephalosporinase gene was homologous to other enterobacterial chromosomal cephalosporinase genes, and it was accompanied by a gene homologous to the regulatory ampR gene. The arrangement of genes in the Y. enterocolitica ampCR unit was identical to that in the Enterobacter cloacae and Citrobacter freundii ampCR units.
Collapse
Affiliation(s)
- A Seoane
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
100
|
Jacobs C, Dubus A, Monnaie D, Normark S, Frère JM. Mutation of serine residue 318 in the class C β-lactamase of Enterobacter cloacae908R. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05241.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|