51
|
Abstract
Prokaryotes are characterized by an extreme flexibility of their respiratory systems allowing them to cope with various extreme environments. To date, supramolecular organization of respiratory systems appears as a conserved evolutionary feature as supercomplexes have been isolated in bacteria, archaea, and eukaryotes. Most of the yet identified supercomplexes in prokaryotes are involved in aerobic respiration and share similarities with those reported in mitochondria. Supercomplexes likely reflect a snapshot of the cellular respiration in a given cell population. While the exact nature of the determinants for supramolecular organization in prokaryotes is not understood, lipids, proteins, and subcellular localization can be seen as key players. Owing to the well-reported supramolecular organization of the mitochondrial respiratory chain in eukaryotes, several hypotheses have been formulated to explain the consequences of such arrangement and can be tested in the context of prokaryotes. Considering the inherent metabolic flexibility of a number of prokaryotes, cellular distribution and composition of the supramolecular assemblies should be studied in regards to environmental signals. This would pave the way to new concepts in cellular respiration.
Collapse
|
52
|
Garrett TA, Raetz CRH, Son JD, Richardson TD, Bartling C, Guan Z. Non-enzymatically derived minor lipids found in Escherichia coli lipid extracts. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:827-37. [PMID: 21925285 DOI: 10.1016/j.bbalip.2011.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 02/04/2023]
Abstract
Electrospray ionization mass spectrometry is a powerful technique to analyze lipid extracts especially for the identification of new lipid metabolites. A hurdle to lipid identification is the presence of solvent contaminants that hinder the identification of low abundance species or covalently modify abundant lipid species. We have identified several non-enzymatically derived minor lipid species in lipid extracts of Escherichia coli; phosphatidylmethanol, ethyl and methyl carbamates of PE and N-succinyl PE were identified in lipid extracts of E. coli. Phosphatidylmethanol (PM) was identified by exact mass measurement and collision induced dissociation tandem mass spectrometry (MS/MS). Extraction in the presence of deuterated methanol leads to a 3 atomic mass unit shift in the [M-H](-) ions of PM indicating its formation during extraction. Ethyl and methyl carbamates of PE, also identified by exact mass measurement and MS/MS, are likely to be formed by phosgene, a breakdown product of chloroform. Addition of phosgene to extractions containing synthetic PE significantly increases the levels of PE-MC detected in the lipid extracts by ESI-MS. Extraction in the presence of methylene chloride significantly reduced the levels of these lipid species. N-succinyl PE is formed from reaction of succinyl-CoA with PE during extraction. Interestingly N-succinyl PE can be formed in an aqueous reaction mixture in the absence of added E. coli proteins. This work highlights the reactivity of the amine of PE and emphasizes that careful extraction controls are required to ensure that new minor lipid species identified using mass spectrometry are indeed endogenous lipid metabolites.
Collapse
Affiliation(s)
- Teresa A Garrett
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Curtis J, Kim G, Wehr NB, Levine RL. Group B Streptococcus, phospholipids and pulmonary hypertension. J Perinatol 2011; 31 Suppl 1:S24-8. [PMID: 21448200 PMCID: PMC3391007 DOI: 10.1038/jp.2010.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Group B Streptococcus is the most common cause of bacterial infection in the newborn. Our aim was to purify and identify molecules produced by the bacterium, which cause pulmonary hypertension. STUDY DESIGN Guided by bioassays performed in neonatal lambs, we utilized standard biochemical techniques for the purification of these bioactive compounds. The compounds were identified by mass spectrometry. Fully synthetic compounds were then tested using the bioassay to confirm their ability to induce pulmonary hypertension. RESULT The purified bacterial components causing pulmonary hypertension were the phospholipids cardiolipin and phosphatidylglycerol. Synthetic cardiolipin or phosphatidylglycerol also induced pulmonary hypertension in lambs. CONCLUSION Bacterial phospholipids are capable of causing pulmonary hypertension. This finding opens new avenues for therapeutic intervention in persistent pulmonary hypertension of the newborn and generates hypotheses regarding the etiology of respiratory distress in the newborn and the possible effect of antibiotic therapy.
Collapse
Affiliation(s)
- Jerri Curtis
- Office of Graduate Medical Education and Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung & Blood Institute, Bethesda, MD USA
| | - Nancy B. Wehr
- Laboratory of Biochemistry, National Heart, Lung & Blood Institute, Bethesda, MD USA
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung & Blood Institute, Bethesda, MD USA
| |
Collapse
|
54
|
Lu YH, Guan Z, Zhao J, Raetz CRH. Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli. J Biol Chem 2011; 286:5506-18. [PMID: 21148555 PMCID: PMC3037664 DOI: 10.1074/jbc.m110.199265] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/08/2010] [Indexed: 01/15/2023] Open
Abstract
The phospholipids of Escherichia coli consist mainly of phosphatidylethanolamine, phosphatidylglycerol (PG), and cardiolipin. PG makes up ∼25% of the cellular phospholipid and is essential for growth in wild-type cells. PG is synthesized on the inner surface of the inner membrane from cytidine diphosphate-diacylglycerol and glycerol 3-phosphate, generating the precursor phosphatidylglycerol-phosphate (PGP). This compound is present at low levels (∼0.1% of the total lipid). Dephosphorylation of PGP to PG is catalyzed by several PGP-phosphatases. The pgpA and pgpB genes, which encode structurally distinct PGP-phosphatases, were identified previously. Double deletion mutants lacking pgpA and pgpB are viable and still make PG, suggesting the presence of additional phosphatase(s). We have identified a third PGP-phosphatase gene (previously annotated as yfhB but renamed pgpC) using an expression cloning strategy. A mutant with deletions in all three phosphatase genes is not viable unless covered by a plasmid expressing either pgpA, pgpB, or pgpC. When the triple mutant is covered with the temperature-sensitive plasmid pMAK705 expressing any one of the three pgp genes, the cells grow at 30 but not 42 °C. As growth slows at 42 °C, PGP accumulates to high levels, and the PG content declines. PgpC orthologs are present in many other bacteria.
Collapse
Affiliation(s)
- Yi-Hsueh Lu
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Ziqiang Guan
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Jinshi Zhao
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Christian R. H. Raetz
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
55
|
Herzog R, Schwudke D, Schuhmann K, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol 2011; 12:R8. [PMID: 21247462 PMCID: PMC3091306 DOI: 10.1186/gb-2011-12-1-r8] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/04/2011] [Accepted: 01/19/2011] [Indexed: 01/27/2023] Open
Abstract
Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry platform.
Collapse
Affiliation(s)
- Ronny Herzog
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
56
|
Erez E, Stjepanovic G, Zelazny AM, Brugger B, Sinning I, Bibi E. Genetic evidence for functional interaction of the Escherichia coli signal recognition particle receptor with acidic lipids in vivo. J Biol Chem 2010; 285:40508-14. [PMID: 20956528 DOI: 10.1074/jbc.m110.140921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism underlying the interaction of the Escherichia coli signal recognition particle receptor FtsY with the cytoplasmic membrane has been studied in detail. Recently, we proposed that FtsY requires functional interaction with inner membrane lipids at a late stage of the signal recognition particle pathway. In addition, an essential lipid-binding α-helix was identified in FtsY of various origins. Theoretical considerations and in vitro studies have suggested that it interacts with acidic lipids, but this notion is not yet fully supported by in vivo experimental evidence. Here, we present an unbiased genetic clue, obtained by serendipity, supporting the involvement of acidic lipids. Utilizing a dominant negative mutant of FtsY (termed NG), which is defective in its functional interaction with lipids, we screened for E. coli genes that suppress the negative dominant phenotype. In addition to several unrelated phenotype-suppressor genes, we identified pgsA, which encodes the enzyme phosphatidylglycerophosphate synthase (PgsA). PgsA is an integral membrane protein that catalyzes the committed step to acidic phospholipid synthesis, and we show that its overexpression increases the contents of cardiolipin and phosphatidylglycerol. Remarkably, expression of PgsA also stabilizes NG and restores its biological function. Collectively, our results strongly support the notion that FtsY functionally interacts with acidic lipids.
Collapse
Affiliation(s)
- Elinor Erez
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism.
Collapse
|
58
|
Uchiyama J, Nobue Y, Zhao H, Matsuzaki H, Nagahama H, Matsuoka S, Matsumoto K, Hara H. Involvement of sigmaS accumulation in repression of the flhDC operon in acidic phospholipid-deficient mutants of Escherichia coli. MICROBIOLOGY-SGM 2010; 156:1650-1660. [PMID: 20185506 DOI: 10.1099/mic.0.036749-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Escherichia coli pgsA mutations, which cause acidic phospholipid deficiency, repress transcription of the flagellar master operon flhDC, and thus impair flagellar formation and motility. The molecular mechanism of the strong repression of flhDC transcription in the mutant cells, however, has not yet been clarified. In order to shed light on this mechanism we isolated genes which, when supplied in multicopy, suppress the repression of flhD, and found that three genes, gadW, metE and yeaB, were capable of suppression. Taking into account a previous report that gadW represses sigma(S) production, the level of sigma(S) in the pgsA3 mutant was examined. We found that pgsA3 cells had a high level of sigma(S) and that introduction of a gadW plasmid into pgsA3 cells did reduce the sigma(S) level. The pgsA3 cells exhibited a sharp increase in sigma(S) levels that can only be partially attributed to the slight increase in rpoS transcription; the largest part of the effect is due to a post-transcriptional accumulation of sigma(S). GadW in multicopy exerts its effect by post-transcriptionally downregulating sigma(S). YeaB and MetE in multicopy also exert their effect via sigma(S). Disruption of rpoS caused an increase of the flhD mRNA level, and induction from P(trc)-rpoS repressed the flhD mRNA level. The strong repression of flhD transcription in pgsA3 mutant cells is thus suggested to be caused by the accumulated sigma(S).
Collapse
Affiliation(s)
- Junji Uchiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Saitama, Saitama 338-8570, Japan
| | - Yuka Nobue
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Saitama, Saitama 338-8570, Japan
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Saitama, Saitama 338-8570, Japan
| | - Hiroshi Matsuzaki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Saitama, Saitama 338-8570, Japan
| | - Hideki Nagahama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Saitama, Saitama 338-8570, Japan
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Saitama, Saitama 338-8570, Japan
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Saitama, Saitama 338-8570, Japan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Saitama, Saitama 338-8570, Japan
| |
Collapse
|
59
|
Mileykovskaya E, Ryan AC, Mo X, Lin CC, Khalaf KI, Dowhan W, Garrett TA. Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J Biol Chem 2009; 284:2990-3000. [PMID: 19049984 PMCID: PMC2631977 DOI: 10.1074/jbc.m805189200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 12/01/2008] [Indexed: 11/06/2022] Open
Abstract
The pgsA null Escherichia coli strain, UE54, lacks the major anionic phospholipids phosphatidylglycerol and cardiolipin. Despite these alterations the strain exhibits relatively normal cell division. Analysis of the UE54 phospholipids using negativeion electrospray ionization mass spectrometry resulted in identification of a new anionic phospholipid, N-acylphosphatidylethanolamine. Staining with the fluorescent dye 10-N-nonyl acridine orange revealed anionic phospholipid membrane domains at the septal and polar regions. Making UE54 null in minCDE resulted in budding off of minicells from polar domains. Analysis of lipid composition by mass spectrometry revealed that minicells relative to parent cells were significantly enriched in phosphatidic acid and N-acylphosphatidylethanolamine. Thus despite the absence of cardiolipin, which forms membrane domains at the cell pole and division sites in wild-type cells, the mutant cells still maintain polar/septal localization of anionic phospholipids. These three anionic phospholipids share common physical properties that favor polar/septal domain formation. The findings support the proposed role for anionic phospholipids in organizing amphitropic cell division proteins at specific sites on the membrane surface.
Collapse
Affiliation(s)
- Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030.
| | - Andrea C Ryan
- Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Xi Mo
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030
| | - Chun-Chieh Lin
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030
| | - Khaled I Khalaf
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030.
| | - Teresa A Garrett
- Department of Chemistry, Vassar College, Poughkeepsie, New York 12604.
| |
Collapse
|
60
|
Hashimoto M, Takahashi H, Hara Y, Hara H, Asai K, Sadaie Y, Matsumoto K. Induction of extracytoplasmic function sigma factors in Bacillus subtilis cells with membranes of reduced phosphatidylglycerol content. Genes Genet Syst 2009; 84:191-8. [DOI: 10.1266/ggs.84.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Michihiro Hashimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hiroaki Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Yoshinori Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Kei Asai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Yoshito Sadaie
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
61
|
Onder O, Turkarslan S, Sun D, Daldal F. Overproduction or absence of the periplasmic protease DegP severely compromises bacterial growth in the absence of the dithiol: disulfide oxidoreductase DsbA. Mol Cell Proteomics 2008; 7:875-90. [PMID: 18174153 PMCID: PMC2401338 DOI: 10.1074/mcp.m700433-mcp200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 12/31/2007] [Indexed: 02/05/2023] Open
Abstract
Facultative phototrophic bacterium Rhodobacter capsulatus DsbA-null mutants are proficient in photosynthesis but are defective in respiration especially in enriched growth medium at 35 degrees C. They also exhibit severe pleiotropic phenotypes extending from motility defects to osmofragility and oxidative stresses. In this work, using a combined proteomics and molecular genetics approach, we demonstrated that the respiratory defect of R. capsulatus DsbA-null mutants originates from the overproduction of the periplasmic protease DegP, which renders them temperature-sensitive for growth. The DsbA-null mutants reverted frequently to overcome this growth defect by decreasing, but not completely eliminating, their DegP activity. In agreement with these findings, we showed that overproduction of DegP abolishes the newly restored respiratory growth ability of the revertants in all growth media. Structural localizations of the reversion mutations in DegP revealed the regions and amino acids that are important for its protease-chaperone activity. Remarkably although R. capsulatus DsbA-null or DegP-null mutants were viable, DegP-null DsbA-null double mutants were lethal at all growth temperatures. This is unlike Escherichia coli, and it indicates that in the absence of DsbA some DegP activity is required for survival of R. capsulatus. Absence of a DegQ protease homologue in some bacteria together with major structural variations among the DegP homologues, including a critical disulfide bond-bearing region, correlates well with the differences seen between various species like R. capsulatus and E. coli. Our findings illustrate the occurrence of two related but distinct periplasmic protease families in bacterial species.
Collapse
Affiliation(s)
- Ozlem Onder
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19014-6019, USA
| | | | | | | |
Collapse
|
62
|
Kapralov AA, Kurnikov IV, Vlasova II, Belikova NA, Tyurin VA, Basova LV, Zhao Q, Tyurina YY, Jiang J, Bayir H, Vladimirov YA, Kagan VE. The Hierarchy of Structural Transitions Induced in Cytochrome c by Anionic Phospholipids Determines Its Peroxidase Activation and Selective Peroxidation during Apoptosis in Cells. Biochemistry 2007; 46:14232-44. [DOI: 10.1021/bi701237b] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander A. Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Igor V. Kurnikov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Irina I. Vlasova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Natalia A. Belikova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Liana V. Basova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Quing Zhao
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Jianfei Jiang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Hulya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Yuri A. Vladimirov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and The Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| |
Collapse
|
63
|
Nagahama H, Oshima T, Mori H, Matsumoto K, Hara H. Hyperexpression of the osmB gene in an acidic phospholipid-deficient Escherichia coli mutant. J GEN APPL MICROBIOL 2007; 53:143-51. [PMID: 17575454 DOI: 10.2323/jgam.53.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An Escherichia coli pgsA null mutant deficient in acidic phospholipids shows a thermosensitive cell lysis phenotype because of activation of the Rcs phosphorelay signal transduction system. We conducted a DNA microarray analysis with special attention to the genes affected by growth temperature in the mutant deficient in acidic phospholipids. Among the genes identified as highly expressed at high temperature in the pgsA null mutant, the osmB gene was shown to be dependent on the Rcs system for the high expression by dot blot hybridization. Induction of the cloned osmB in the pgsA null mutant caused the thermosensitive defect even in the absence of the Rcs system. Although the deletion of osmB did not suppress the thermosensitivity in the presence of the Rcs system, indicating a multifactorial nature of the deleterious effect of the Rcs activation, we suggest that the osmB hyperexpression is one of the causes of the Rcs-dependent lysis phenotype of the pgsA null mutant.
Collapse
Affiliation(s)
- Hideki Nagahama
- Department of Biochemistry and Molecular Biology, Course in Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | | | | | | | |
Collapse
|
64
|
Shiba Y, Matsumoto K, Hara H. DjlA negatively regulates the Rcs signal transduction system in Escherichia coli. Genes Genet Syst 2007; 81:51-6. [PMID: 16607041 DOI: 10.1266/ggs.81.51] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Rcs signal transduction system of Escherichia coli regulating capsular polysaccharide synthesis (cps) genes is activated by overexpression of the djlA gene encoding a cytoplasmic membrane-anchored DnaJ-like protein. However, by monitoring the expression of a cpsB'-lac fusion in pgsA- and mdoH-null mutants in which the Rcs system is activated, we found that the Rcs activity was further increased by deletion of djlA and decreased by low-level extrachromosomal expression of djlA. Furthermore, deletion of djlA in a wild-type strain led to small but significant increase of the basal-level activity of the Rcs system. These results demonstrate that DjlA functions as a negative regulator of the Rcs system unless abnormally overproduced.
Collapse
Affiliation(s)
- Yasuhiro Shiba
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Japan
| | | | | |
Collapse
|
65
|
Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007; 3:121. [PMID: 17593909 PMCID: PMC1911197 DOI: 10.1038/msb4100155] [Citation(s) in RCA: 983] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/12/2007] [Indexed: 02/04/2023] Open
Abstract
An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.
Collapse
Affiliation(s)
- Adam M Feist
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Christopher S Henry
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Jennifer L Reed
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Andrew R Joyce
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, Ravenswood, CA, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Ecole polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bernhard Ø Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
66
|
Kawai F, Hara H, Takamatsu H, Watabe K, Matsumoto K. Cardiolipin enrichment in spore membranes and its involvement in germination of Bacillus subtilis Marburg. Genes Genet Syst 2006; 81:69-76. [PMID: 16755131 DOI: 10.1266/ggs.81.69] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Examination of the lipid composition of spore membranes of Bacillus subtilis Marburg, extracted after treatment of spores with dithiothreitol/urea and NaOH followed by lysozyme digestion, revealed that the spore membranes had significantly higher cardiolipin (CL) content than the membranes of exponentially growing cells. Analysis of the membranes of coat-defective, cotE::cat and gerE::cat mutant spores, which are susceptible to lysozyme digestion without chemical treatment, confirmed that spore membranes contain a high level of CL. After addition of the germinants L-alanine or AGFK (a combination of asparagine, glucose, fructose, and KCl), the turbidity of wild type spore suspensions decreased to 50% within 30 min. Suspensions of spores with only trace amounts of CL, however, showed no decrease in turbidity when L-alanine was added and the initial decrease in turbidity with AGFK was slight (14% after 60 min). These results indicate that CL is involved in an early step of germination, related to the functioning of germinant receptors. This is the first conspicuous in vivo evidence that CL in bacterial membranes has a specific role, in which it cannot be replaced by other anionic phospholipids.
Collapse
Affiliation(s)
- Fumitaka Kawai
- Department of Biochemistry and Molecular Biology, Saitama University, Japan
| | | | | | | | | |
Collapse
|
67
|
Nagahama H, Sakamoto Y, Matsumoto K, Hara H. RcsA-dependent and -independent growth defects caused by the activated Rcs phosphorelay system in the Escherichia coli pgsA null mutant. J GEN APPL MICROBIOL 2006; 52:91-8. [PMID: 16778352 DOI: 10.2323/jgam.52.91] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the Escherichia coli pgsA null mutant, which lacks the major acidic phospholipids, the Rcs phosphorelay signal transduction system is activated, causing thermosensitive growth. The mutant grows poorly at 37 degrees C and lyses at 42 degrees C. We showed that the poor growth at 37 degrees C was corrected by disruption of the rcsA gene, which codes for a coregulator protein that interacts with the RcsB response regulator of the phosphorelay system. However, mutant cells still lysed when incubated at 42 degrees C even in the absence of RcsA. We conclude that the activated Rcs phosphorelay in the pgsA null mutant has both RcsA-dependent and -independent growth inhibitory effects. Since the Rcs system has been shown to positively regulate the essential cell division genes ftsA and ftsZ independently of RcsA, we measured cellular levels of the FtsZ protein, but found that the growth defect of the mutant at 42 degrees C did not involve a change in the level of this protein.
Collapse
Affiliation(s)
- Hideki Nagahama
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Japan
| | | | | | | |
Collapse
|
68
|
Bogdanov M, Zhang W, Xie J, Dowhan W. Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods 2005; 36:148-71. [PMID: 15894490 PMCID: PMC4104023 DOI: 10.1016/j.ymeth.2004.11.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 11/15/2004] [Accepted: 11/15/2004] [Indexed: 01/03/2023] Open
Abstract
We provide an overview of lipid-dependent polytopic membrane protein topogenesis, with particular emphasis on Escherichia coli strains genetically altered in their lipid composition and strategies for experimentally determining the transmembrane organization of proteins. A variety of reagents and experimental strategies are described including the use of lipid mutants and thiol-specific chemical reagents to study lipid-dependent and host-specific membrane protein topogenesis by substituted cysteine site-directed chemical labeling. Employing strains in which lipid composition can be controlled temporally during membrane protein synthesis and assembly provides a means to observe dynamic changes in protein topology as a function of membrane lipid composition.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| |
Collapse
|
69
|
van Dalen A, de Kruijff B. The role of lipids in membrane insertion and translocation of bacterial proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:97-109. [PMID: 15546660 DOI: 10.1016/j.bbamcr.2004.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 02/03/2004] [Accepted: 03/01/2004] [Indexed: 11/20/2022]
Abstract
Phospholipids are essential building blocks of membranes and maintain the membrane permeability barrier of cells and organelles. They provide not only the bilayer matrix in which the functional membrane proteins reside, but they also can play direct roles in many essential cellular processes. In this review, we give an overview of the lipid involvement in protein translocation across and insertion into the Escherichia coli inner membrane. We describe the key and general roles that lipids play in these processes in conjunction with the protein components involved. We focus on the Sec-mediated insertion of leader peptidase. We describe as well the more direct roles that lipids play in insertion of the small coat proteins Pf3 and M13. Finally, we focus on the role of lipids in membrane assembly of oligomeric membrane proteins, using the potassium channel KcsA as model protein. In all cases, the anionic lipids and lipids with small headgroups play important roles in either determining the efficiency of the insertion and assembly process or contributing to the directionality of the insertion process.
Collapse
Affiliation(s)
- Annemieke van Dalen
- Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
70
|
Aboulwafa M, Saier MH. Characterization of soluble enzyme II complexes of the Escherichia coli phosphotransferase system. J Bacteriol 2005; 186:8453-62. [PMID: 15576795 PMCID: PMC532404 DOI: 10.1128/jb.186.24.8453-8462.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid-encoded His-tagged glucose permease of Escherichia coli, the enzyme IIBCGlc (IIGlc), exists in two physical forms, a membrane-integrated oligomeric form and a soluble monomeric form, which separate from each other on a gel filtration column (peaks 1 and 2, respectively). Western blot analyses using anti-His tag monoclonal antibodies revealed that although IIGlc from the two fractions migrated similarly in sodium dodecyl sulfate gels, the two fractions migrated differently on native gels both before and after Triton X-100 treatment. Peak 1 IIGlc migrated much more slowly than peak 2 IIGlc. Both preparations exhibited both phosphoenolpyruvate-dependent sugar phosphorylation activity and sugar phosphate-dependent sugar transphosphorylation activity. The kinetics of the transphosphorylation reaction catalyzed by the two IIGlc fractions were different: peak 1 activity was subject to substrate inhibition, while peak 2 activity was not. Moreover, the pH optima for the phosphoenolpyruvate-dependent activities differed for the two fractions. The results provide direct evidence that the two forms of IIGlc differ with respect to their physical states and their catalytic activities. These general conclusions appear to be applicable to the His-tagged mannose permease of E. coli. Thus, both phosphoenolpyruvate-dependent phosphotransferase system enzymes exist in soluble and membrane-integrated forms that exhibit dissimilar physical and kinetic properties.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
71
|
Bravo A, Serrano-Heras G, Salas M. Compartmentalization of prokaryotic DNA replication. FEMS Microbiol Rev 2005; 29:25-47. [PMID: 15652974 DOI: 10.1016/j.femsre.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022] Open
Abstract
It becomes now apparent that prokaryotic DNA replication takes place at specific intracellular locations. Early studies indicated that chromosomal DNA replication, as well as plasmid and viral DNA replication, occurs in close association with the bacterial membrane. Moreover, over the last several years, it has been shown that some replication proteins and specific DNA sequences are localized to particular subcellular regions in bacteria, supporting the existence of replication compartments. Although the mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown, the docking of replication factors to large organizing structures may be important for the assembly of active replication complexes. In this article, we review the current state of this subject in two bacterial species, Escherichia coli and Bacillus subtilis, focusing our attention in both chromosomal and extrachromosomal DNA replication. A comparison with eukaryotic systems is also presented.
Collapse
Affiliation(s)
- Alicia Bravo
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
72
|
Shiba Y, Yokoyama Y, Aono Y, Kiuchi T, Kusaka J, Matsumoto K, Hara H. Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J Bacteriol 2004; 186:6526-35. [PMID: 15375134 PMCID: PMC516613 DOI: 10.1128/jb.186.19.6526-6535.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB'-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis.
Collapse
Affiliation(s)
- Yasuhiro Shiba
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Gil R, Silva FJ, Peretó J, Moya A. Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 2004; 68:518-537. [PMID: 15353568 PMCID: PMC515251 DOI: 10.1128/mmbr.68.3.518-537.2004] [Citation(s) in RCA: 393] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The availability of a large number of complete genome sequences raises the question of how many genes are essential for cellular life. Trying to reconstruct the core of the protein-coding gene set for a hypothetical minimal bacterial cell, we have performed a computational comparative analysis of eight bacterial genomes. Six of the analyzed genomes are very small due to a dramatic genome size reduction process, while the other two, corresponding to free-living relatives, are larger. The available data from several systematic experimental approaches to define all the essential genes in some completely sequenced bacterial genomes were also considered, and a reconstruction of a minimal metabolic machinery necessary to sustain life was carried out. The proposed minimal genome contains 206 protein-coding genes with all the genetic information necessary for self-maintenance and reproduction in the presence of a full complement of essential nutrients and in the absence of environmental stress. The main features of such a minimal gene set, as well as the metabolic functions that must be present in the hypothetical minimal cell, are discussed.
Collapse
Affiliation(s)
- Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartat Oficial 2085, 46071 València, Spain.
| | | | | | | |
Collapse
|
74
|
Frentzen M. Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:270-6. [PMID: 15134747 DOI: 10.1016/j.pbi.2004.03.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photosynthetic membranes of organisms from cyanobacteria to seed plants are characterized by the neutral galactolipids and the anionic glycerolipids sulfoquinovosyldiacylglycerol and phosphatidylglycerol. Recent findings have brought new insights into the biosynthesis of the anionic membrane lipids, the evolutionary origin of the enzymes involved in this process, and the importance of phosphatidylglycerol and sulfoquinovosyldiacylgycerol in photosynthesis. Photosynthetic membranes require a defined level of anionic membrane lipids for proper function, and phosphatidylglycerol and sulfoquinovosyldiacylglycerol can substitute for each other to a certain extent. A defined level of phosphatidylglycerol is, however, indispensable for photoautotrophic growth. On the other hand, sulfoquinovosyldiacylglycerol plays a conditionally important role in enabling photosynthetic organisms to survive the phosphate-limiting conditions frequently encountered in natural habitats.
Collapse
Affiliation(s)
- Margrit Frentzen
- RWTH Aachen University, Institute for Biology I, Botany, Worringerweg 1, 52056 Aachen, Germany.
| |
Collapse
|
75
|
Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K. Cardiolipin domains in Bacillus subtilis marburg membranes. J Bacteriol 2004; 186:1475-83. [PMID: 14973018 PMCID: PMC344405 DOI: 10.1128/jb.186.5.1475-1483.2004] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, use of the cardiolipin (CL)-specific fluorescent dye 10-N-nonyl-acridine orange (NAO) revealed CL-rich domains in the Escherichia coli membrane (E. Mileykovskaya and W. Dowhan, J. Bacteriol. 182: 1172-1175, 2000). Staining of Bacillus subtilis cells with NAO showed that there were green fluorescence domains in the septal regions and at the poles. These fluorescence domains were scarcely detectable in exponentially growing cells of the clsA-disrupted mutant lacking detectable CL. In sporulating cells with a wild-type lipid composition, fluorescence domains were observed in the polar septa and on the engulfment and forespore membranes. Both in the clsA-disrupted mutant and in a mutant with disruptions in all three of the paralogous genes (clsA, ywjE, and ywiE) for CL synthase, these domains did not vanish but appeared later, after sporulation initiation. A red shift in the fluorescence due to stacking of two dye molecules and the lipid composition suggested that a small amount of CL was present in sporulating cells of the mutants. Mass spectrometry analyses revealed the presence of CL in these mutant cells. At a later stage during sporulation of the mutants the frequency of heat-resistant cells that could form colonies after heat treatment was lower. The frequency of sporulation of these cells at 24 h after sporulation initiation was 30 to 50% of the frequency of the wild type. These results indicate that CL-rich domains are present in the polar septal membrane and in the engulfment and forespore membranes during the sporulation phase even in a B. subtilis mutant with disruptions in all three paralogous genes, as well as in the membranes of the medial septa and at the poles during the exponential growth phase of wild-type cells. The results further suggest that the CL-rich domains in the polar septal membrane and engulfment and forespore membranes are involved in sporulation.
Collapse
Affiliation(s)
- Fumitaka Kawai
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-ohkubo, Sakura, Saitama, Saitama 338-8570, Japan
| | | | | | | | | | | |
Collapse
|
76
|
Aboulwafa M, Hvorup R, Saier MH. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase. Arch Microbiol 2003; 181:26-34. [PMID: 14634719 DOI: 10.1007/s00203-003-0623-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 10/09/2003] [Accepted: 10/17/2003] [Indexed: 11/29/2022]
Abstract
An isogenic pair of Escherichia coli strains lacking ( pssA) and possessing (wild-type) the enzyme phosphatidylserine synthase was used to estimate the effects of the total lack of phosphatidylethanolamine (PE), the major phospholipid in E. coli membranes, on the activities of several sugar permeases (enzymes II) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The mutant exhibits greatly elevated levels of phosphatidylglycerol (PG), a lipid that has been reported to stimulate the in vitro activities of several PTS permeases. The activities, thermal stabilities, and detergent sensitivities of three PTS permeases, the glucose enzyme II (II(Glc)), the mannose enzyme II (II(Man)) and the mannitol enzyme II (II(Mtl)), were characterized. Western blot analyses revealed that the protein levels of II(Glc) were not appreciably altered by the loss of PE. In the pssA mutant, II(Glc) and II(Man) activities were depressed both in vivo and in vitro, with the in vivo transport activities being depressed much more than the in vitro phosphorylation activities. II(Mtl) also exhibited depressed transport activity in vivo but showed normal phosphorylation activities in vitro. II(Man) and II(Glc) exhibited greater thermal lability in the pssA mutant membranes than in the wild-type membranes, but II(Mtl) showed enhanced thermal stability. All three enzymes were activated by exposure to TritonX100 (0.4%) or deoxycholate (0.2%) and inhibited by SDS (0.1%), but II(Mtl) was the least affected. II(Man) and, to a lesser degree, II(Glc) were more sensitive to detergent treatments in the pssA mutant membranes than in the wild-type membranes while II(Mtl) showed no differential effect. The results suggest that all three PTS permeases exhibit strong phospholipid dependencies for transport activity in vivo but much weaker and differential dependencies for phosphorylation activities in vitro, with II(Man) exhibiting the greatest and II(Mtl) the least dependency. The effects of lipid composition on thermal sensitivities and detergent activation responses paralleled the effects on in vitro phosphorylation activities. These results together with those previously published suggest that, while the in vivo transport activities of all PTS enzymes II require an appropriate anionic to zwitterionic phospholipid balance, the in vitro phosphorylation activities of these same enzymes show much weaker and differential dependencies. Alteration of the phospholipid composition of the membrane thus allows functional dissection of transport from the phosphorylation activities of PTS enzyme complexes.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | |
Collapse
|
77
|
Abstract
Phospholipids play multiple roles in bacterial cells. These are the establishment of the permeability barrier, provision of the environment for many enzyme and transporter proteins, and they influence membrane-related processes such as protein export and DNA replication. The lipid synthetic pathway also provides precursors for protein modification and for the synthesis of other molecules. This review concentrates on the phospholipid synthetic pathway and discusses recent data on the synthesis and function of phospholipids mainly in the bacterium Escherichia coli.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|
78
|
Canet S, Heyde M, Portalier R, Laloi P. Involvement of phospholipids in resistance and adaptation of Escherichia coli to acid conditions and to long-term survival. FEMS Microbiol Lett 2003; 225:207-11. [PMID: 12951243 DOI: 10.1016/s0378-1097(03)00515-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Escherichia coli membranes, three major phospholipids are formed: phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL). We report here the survival of mutants lacking either PE or both PG and CL at an acid pHo and during long-term survival experiments. Stationary phase cultures of E. coli lacking PE are much more sensitive to acid shock (pHo 3) than the wild-type strain. Moreover, in the strain lacking PE, long-term survival in stationary phase is impaired and after 5 days no viable cells are recovered. The survival of an exponential phase culture to acid shock is known to be increased if the culture is exposed to moderately acid conditions (pHo 5) prior to a shift to pHo 3. If either PE or both PG and CL are missing, the exposure to pHo 5 does not increase the survival at pHo 3.
Collapse
Affiliation(s)
- Sylvain Canet
- Unité de Microbiologie et Génétique, UMR CNRS 5122, Bât A. Lwoff, Université Lyon 1, F-69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
79
|
Ichihashi N, Kurokawa K, Matsuo M, Kaito C, Sekimizu K. Inhibitory effects of basic or neutral phospholipid on acidic phospholipid-mediated dissociation of adenine nucleotide bound to DnaA protein, the initiator of chromosomal DNA replication. J Biol Chem 2003; 278:28778-86. [PMID: 12767975 DOI: 10.1074/jbc.m212202200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaA protein activity, the initiator of chromosomal DNA replication in bacteria, is regulated by acidic phospholipids such as phosphatidylglycerol (PG) or cardiolipin (CL) via facilitation of the exchange reaction of bound adenine nucleotide. Total lipid isolated from exponentially growing Staphylococcus aureus cells facilitated the release of ATP bound to S. aureus DnaA protein, whereas that from stationary phase cells was inert. Fractionation of total lipid from stationary phase cells revealed that the basic phospholipid, lysylphosphatidylglycerol (LPG), inhibited PG- or CL-facilitated release of ATP from DnaA protein. There was an increase in LPG concentration during the stationary phase. A fraction of the total lipid from stationary phase cells of an integrational deletion mprF mutant, in which LPG was lost, facilitated the release of ATP from DnaA protein. A zwitterionic phospholipid, phosphatidylethanolamine, also inhibited PG-facilitated ATP release. These results indicate that interaction of DnaA protein with acidic phospholipids might be regulated by changes in the phospholipid composition of the cell membrane at different growth stages. In addition, the mprF mutant exhibited an increased amount of origin per cell in vivo, suggesting that LPG is involved in regulating the cell cycle event(s).
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
80
|
Curtis J, Kim G, Wehr NB, Levine RL. Group B streptococcal phospholipid causes pulmonary hypertension. Proc Natl Acad Sci U S A 2003; 100:5087-90. [PMID: 12702761 PMCID: PMC154302 DOI: 10.1073/pnas.0931493100] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group B Streptococcus is the most common cause of bacterial infection in the newborn. Infection in many cases causes persistent pulmonary hypertension, which impairs gas exchange in the lung. We purified the bacterial components causing pulmonary hypertension and identified them as cardiolipin and phosphatidylglycerol. Synthetic cardiolipin or phosphatidylglycerol also induced pulmonary hypertension in lambs. The recognition that bacterial phospholipids may cause pulmonary hypertension in newborns with Group B streptococcal infection opens new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Jerri Curtis
- National Naval Medical Center and Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
81
|
Aboulwafa M, Saier MH. Soluble sugar permeases of the phosphotransferase system in Escherichia coli: evidence for two physically distinct forms of the proteins in vivo. Mol Microbiol 2003; 48:131-41. [PMID: 12657050 DOI: 10.1046/j.1365-2958.2003.03394.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS) consists of a set of cytoplasmic energy-coupling proteins and various integral membrane permeases/sugar phosphotransferases, each specific for a different sugar. We have conducted biochemical analyses of three PTS permeases (enzymes II), the glucose permease (IIGlc), the mannitol permease (IIMtl) and the mannose permease (IIMan). These enzymes each catalyse two vectorial/chemical reactions, sugar phosphorylation using phosphoenolpyruvate (PEP) as the phosphoryl donor, dependent on enzyme I, HPr and IIA as well as IIBC (the PEP reaction), and transphosphorylation using a sugar phosphate (glucose-6-P for IIGlc and IIMan; mannitol-1-P for IIMtl) as the phosphoryl donor, dependent only on IIBC (the TP reaction). When crude extracts of French-pressed or osmotically shocked Escherichia coli cells are centrifuged in an ultracentrifuge at high speed, 5-20% of the enzyme II activity remains in the high-speed supernatant, and passage through a gel filtration column gives two activity peaks, one in the void volume exhibiting high PEP-dependent and TP activities, and a second included peak with high PEP-dependent activity and high (IIMan), moderate (IIGlc) or negligible (IIMtl) TP activities. Both log and stationary phase cells exhibit comparable relative amounts of pelletable and soluble enzyme II activities, but long-term exposure of cells to chloramphenicol results in selective loss of the soluble fraction with retention of much of the pelleted activity concomitant with extensive protein degradation. Short-term exposure of cells to chloramphenicol results in increased activities in both fractions, possibly because of increased lipid association, with more activation in the soluble fraction than in the pelleted fraction. Western blot analyses show that the soluble IIGlc exhibits a subunit size of about 45 kDa, and all three soluble enzymes II elute from the gel filtration column with apparent molecular weights of 40-50 kDa. We propose that enzymes II of the PTS exist in two physically distinct forms in the E. coli cell, one tightly integrated into the membrane and one either soluble or loosely associated with the membrane. We also propose that the membrane-integrated enzymes II are largely dimeric, whereas the soluble enzymes II, retarded during passage through a gel filtration column, are largely monomeric.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
82
|
Babiychuk E, Müller F, Eubel H, Braun HP, Frentzen M, Kushnir S. Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:899-909. [PMID: 12609031 DOI: 10.1046/j.1365-313x.2003.01680.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genetic dissection of the lipid bilayer composition provides essential in vivo evidence for the role of individual lipid species in membrane function. To understand the in vivo role of the anionic phospholipid, phosphatidylglycerol, the loss-of-function mutation was identified and characterized in the Arabidopsis thaliana gene coding for phosphatidylglycerophosphate synthase 1, PGP1. This mutation resulted in pigment-deficient plants of the xantha type in which the biogenesis of thylakoid membranes was severely compromised. The PGP1 gene coded for a precursor polypeptide that was targeted in vivo to both plastids and mitochondria. The activity of the plastidial PGP1 isoform was essential for the biosynthesis of phosphatidylglycerol in chloroplasts, whereas the mitochondrial PGP1 isoform was redundant for the accumulation of phosphatidylglycerol and its derivative cardiolipin in plant mitochondrial membranes. Together with findings in cyanobacteria, these data demonstrated that anionic phospholipids play an important, evolutionarily conserved role in the biogenesis and function of the photosynthetic machinery. In addition, mutant analysis suggested that in higher plants, mitochondria, unlike plastids, could import phosphatidylglycerol from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Elena Babiychuk
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
83
|
Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H. Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2002; 43:1456-64. [PMID: 12514242 DOI: 10.1093/pcp/pcf185] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phosphatidylglycerol is a ubiquitous phospholipid in the biological membranes of many organisms. In plants, phosphatidylglycerol is mainly present in thylakoid membranes and has been suggested to play specific roles in photosynthesis. Here, we have isolated two T-DNA tagged lines of Arabidopsis thaliana that have a T-DNA insertion in the PGP1 gene encoding a phosphatidylglycerolphosphate synthase involved in the biosynthesis of phosphatidylglycerol. In homozygous plants of the T-DNA tagged lines, the PGP1 gene was completely disrupted. The growth of these knockout mutants was dependent on the presence of sucrose in the growth medium, and these plants had pale yellow-green leaves. The leaves of the mutants had remarkably large intercellular spaces due to the reduction in the number of mesophyll cells. The development of chloroplasts in the leaf cells was severely arrested in the mutants. Mesophyll cells with chloroplast particles are only found around vascular structures, whereas epidermal cells are enlarged but largely conserved. The content of phosphatidylglycerol in the mutants was reduced to 12% of that of the wild type. These results demonstrate that PGP1 plays a major role in the biosynthesis of phosphatidylglycerol in chloroplasts, and that phosphatidylglycerol is essential for the development of thylakoid membranes in A. thaliana.
Collapse
Affiliation(s)
- Miki Hagio
- Department of Biology, Faculty of Sciences, Kyushu University, Ropponmatsu, Fukuoka, 810-8560 Japan
| | | | | | | | | | | |
Collapse
|
84
|
Aboulwafa M, Saier MH. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase. Res Microbiol 2002; 153:667-77. [PMID: 12558186 DOI: 10.1016/s0923-2508(02)01376-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been reported that phosphatidyl glycerol (PG) is specifically required for the in vitro activities of the hexose-phosphorylating Enzymes II of the Escherichia coli phosphoenolpyruvate-dependent sugar transporting phosphotransferase system (PTS). We have examined this possibility by measuring the properties of a null pgsA mutant that lacks detectable PG. The mutant showed lower in vitro phosphorylation activities towards several sugars when both PEP-dependent and sugar-phosphate-dependent [14C]sugar phosphorylation reactions were measured. The order of dependency on PG for the different enzymes II was: IIMannose > IIGlucose > IIFructose > IIMannitol. Nonsedimentable (40000 rpm for 2 h) Enzymes II exhibited a greater dependency on PG than pelletable Enzymes II. Western blot analyses showed that the glucose Enzyme II is present in normal amounts. Transport and fermentation measurements revealed diminished activities for all Enzymes II. Thermal stability of all of these enzymes except the mannitol-specific Enzyme II was significantly decreased by the pgsA mutation, and sensitivity to detergent treatments was enhanced. Sugar transport proved to be the most sensitive indicator of proper Enzyme II-phospholipid association. Our results show that PG stimulates but is not required for Enzyme II function in E. coli.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
85
|
Suzuki M, Hara H, Matsumoto K. Envelope disorder of Escherichia coli cells lacking phosphatidylglycerol. J Bacteriol 2002; 184:5418-25. [PMID: 12218030 PMCID: PMC135371 DOI: 10.1128/jb.184.19.5418-5425.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, is considered to play specific roles in various cellular processes that are essential for cell viability. A null mutation of pgsA, which encodes phosphatidylglycerophosphate synthase, does indeed confer lethality. However, pgsA null mutants are viable if they lack the major outer membrane lipoprotein (Lpp) (lpp mutant) (S. Kikuchi, I. Shibuya, and K. Matsumoto, J. Bacteriol. 182:371-376, 2000). Here we show that Lpp expressed from a plasmid causes cell lysis in a pgsA lpp double mutant. The envelopes of cells harvested just before lysis could not be separated into outer and inner membrane fractions by sucrose density gradient centrifugation. In contrast, expression of a mutant Lpp (LppdeltaK) lacking the COOH-terminal lysine residue (required for covalent linking to peptidoglycan) did not cause lysis and allowed for the clear separation of the outer and inner membranes. We propose that in pgsA mutants LppdeltaK could not be modified by the addition of a diacylglyceryl moiety normally provided by phosphatidylglycerol and that this defect caused unmodified LppdeltaK to accumulate in the inner membrane. Although LppdeltaK accumulation did not lead to lysis, the accumulation of unmodified wild-type Lpp apparently led to the covalent linking to peptidoglycan, causing the inner membrane to be anomalously anchored to peptidoglycan and eventually leading to lysis. We suggest that this anomalous anchoring largely explains a major portion of the nonviable phenotypes of pgsA null mutants.
Collapse
Affiliation(s)
- Motoo Suzuki
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan
| | | | | |
Collapse
|
86
|
Makise M, Mima S, Katsu T, Tsuchiya T, Mizushima T. Acidic phospholipids inhibit the DNA-binding activity of DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli. Mol Microbiol 2002; 46:245-56. [PMID: 12366847 DOI: 10.1046/j.1365-2958.2002.03161.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to initiate chromosomal DNA replication in Escherichia coli, the DnaA protein must bind to both ATP and the origin of replication (oriC). Acidic phospholipids are known to inhibit DnaA binding to ATP, and here we examine the effects of various phospholipids on DnaA binding to oriC. Among the phospholipids in E. coli membrane, cardiolipin showed the strongest inhibition of DnaA binding to oriC. Synthetic phosphatidylglycerol containing unsaturated fatty acids inhibited binding more potently than did synthetic phosphatidylglycerol containing saturated fatty acids, suggesting that membrane fluidity is important. Thus, acidic phospholipids seem to inhibit DnaA binding to both oriC and adenine nucleotides in the same manner. Adenine nucleotides bound to DnaA did not affect the inhibitory effect of cardiolipin on DnaA binding to oriC. A mobility-shift assay re-vealed that acidic phospholipids inhibited formation of a DnaA-oriC complex containing several DnaA molecules. DNase I footprinting of DnaA binding to oriC showed that two DnaA binding sites (R2 and R3) were more sensitive to cardiolipin than other DnaA binding sites. Based on these in vitro data, the physiological relevance of this inhibitory effect of acidic phospholipids on DnaA binding to oriC is discussed.
Collapse
Affiliation(s)
- Masaki Makise
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
87
|
Karnezis T, Fisher HC, Neumann GM, Stone BA, Stanisich VA. Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1-->3)-beta-D-glucan (curdlan). J Bacteriol 2002; 184:4114-23. [PMID: 12107128 PMCID: PMC135195 DOI: 10.1128/jb.184.15.4114-4123.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes involved in the production of the extracellular (1-->3)-beta-glucan, curdlan, by Agrobacterium sp. strain ATCC 31749 were described previously (Stasinopoulos et al., Glycobiology 9:31-41, 1999). To identify additional curdlan-related genes whose protein products occur in the cell envelope, the transposon TnphoA was used as a specific genetic probe. One mutant was unable to produce high-molecular-mass curdlan when a previously uncharacterized gene, pss(AG), encoding a 30-kDa, membrane-associated phosphatidylserine synthase was disrupted. The membranes of the mutant lacked phosphatidylethanolamine (PE), whereas the phosphatidylcholine (PC) content was unchanged and that of both phosphatidylglycerol and cardiolipin was increased. In the mutant, the continued appearance of PC revealed that its production by this Agrobacterium strain is not solely dependent on PE in a pathway controlled by the Pss(AG) protein at its first step. Moreover, PC can be produced in a medium lacking choline. When the pss(AG)::TnphoA mutation was complemented by the intact pss(AG) gene, both the curdlan deficiency and the phospholipid profile were restored to wild-type, demonstrating a functional relationship between these two characteristics. The effect of the changed phospholipid profile could occur through an alteration in the overall charge distribution on the membrane or a specific requirement for PE for the folding into or maintenance of an active conformation of any or all of the structural proteins involved in curdlan production or transport.
Collapse
Affiliation(s)
- Tara Karnezis
- Department of Biochemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
88
|
Helmy F, Mueller T, Juracka A. Determination of the phospholipid profile ofE. coliby TLC with thionine as spot-test reagent. Recognition of cardiolipin, phosphatidylglycerol, phosphatidylethanolamine, andN-acyl phosphatidylethanolamine. JPC-J PLANAR CHROMAT 2002. [DOI: 10.1556/jpc.15.2002.1.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
89
|
Koppelman CM, Den Blaauwen T, Duursma MC, Heeren RM, Nanninga N. Escherichia coli minicell membranes are enriched in cardiolipin. J Bacteriol 2001; 183:6144-7. [PMID: 11567016 PMCID: PMC99695 DOI: 10.1128/jb.183.20.6144-6147.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phospholipid composition of Escherichia coli minicells has been studied as a model for the cell division site. Minicells appeared to be enriched in cardiolipin at the expense of phosphatidylglycerol. Mass spectrometry showed no differences between the gross acyl chain compositions of minicells and wild-type cells.
Collapse
Affiliation(s)
- C M Koppelman
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
90
|
Zheng W, Li Z, Skarstad K, Crooke E. Mutations in DnaA protein suppress the growth arrest of acidic phospholipid-deficient Escherichia coli cells. EMBO J 2001; 20:1164-72. [PMID: 11230139 PMCID: PMC145488 DOI: 10.1093/emboj/20.5.1164] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cell growth arrests when the concentrations of anionic phospholipids drop below a critical level in Escherichia coli, with the insufficient amounts of acidic phospholipids adversely affecting the DnaA-dependent initiation of DNA replication at the chromosomal origin (oriC). Mutations have been introduced into the carboxyl region of DnaA, including the portion identified as essential for productive in vitro DnaA-acidic phospholipid interactions. Expression of DnaA proteins possessing certain small deletions or substituted amino acids restored growth to cells deficient in acidic phospholipids, whereas expression of wild-type DnaA did not. The mutations include substitutions and deletions in the phospholipid-interacting domain as well as some small deletions in the DNA-binding domain of DnaA. Marker frequency analysis indicated that initiation of replication occurs at or near oriC in acidic phospholipid- deficient cells rescued by the expression of DnaA having a point mutation in the membrane-binding domain, DnaA(L366K). Flow cytometry revealed that expression in wild-type cells of plasmid-borne DnaA(L366K) and DnaA(Delta363-367) reduced the frequency with which replication was initiated and disturbed the synchrony of initiations.
Collapse
Affiliation(s)
- Weidong Zheng
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington DC 20007, USA and Department of Cell Biology, Institute for Cancer Research, Det Norske Radiumhospital, Montebello, 0310 Oslo, Norway Present address: Celera Genomics, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Zhenya Li
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington DC 20007, USA and Department of Cell Biology, Institute for Cancer Research, Det Norske Radiumhospital, Montebello, 0310 Oslo, Norway Present address: Celera Genomics, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Kirsten Skarstad
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington DC 20007, USA and Department of Cell Biology, Institute for Cancer Research, Det Norske Radiumhospital, Montebello, 0310 Oslo, Norway Present address: Celera Genomics, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Elliott Crooke
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington DC 20007, USA and Department of Cell Biology, Institute for Cancer Research, Det Norske Radiumhospital, Montebello, 0310 Oslo, Norway Present address: Celera Genomics, Rockville, MD 20850, USA Corresponding author e-mail:
| |
Collapse
|
91
|
Matsumoto K. Dispensable nature of phosphatidylglycerol in Escherichia coli: dual roles of anionic phospholipids. Mol Microbiol 2001; 39:1427-33. [PMID: 11260460 DOI: 10.1046/j.1365-2958.2001.02320.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major anionic phospholipids of Escherichia coli, phosphatidylglycerol (PG) and cardiolipin (CL), have been considered to be indispensable for essential cellular functions, such as the initiation of DNA replication and translocation of proteins across the cytoplasmic membrane. However, we successfully constructed a null pgsA mutant of E. coli that had undetectable levels of PG and CL if the major outer membrane lipoprotein was deficient, clearly indicating that these anionic phospholipids are not indispensable. In the null mutant, we observed the accumulation of phosphatidic acid, an acidic biosynthetic precursor. This suggests a functionally substitutable nature of these anionic phospholipids and allows us to formulate a dual role model for the physiological roles of the anionic phospholipids in E. coli. The anionic phospholipids may play dual roles in E. coli as (i) substrates for head group-specific enzyme reactions, albeit the viability of null PG mutants indicates that the products of head group-specific reactions are not essential; and (ii) those that are replaceable, partly or entirely, by other phospholipids bearing net negative charges, because of their rather loose head group specificity. These two aspects of the physiological roles of anionic phospholipids are discussed with special reference to the phospholipids of other bacteria and eukaryotic organelles.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Urawa, Saitama 338-8570, Japan.
| |
Collapse
|
92
|
Abstract
DNA replication in Escherichia coli is controlled at the initiation stage, possibly by regulation of the essential activity of DnaA protein. The cellular membrane has long been hypothesized to be involved in chromosomal replication. Accumulating evidence, both in vitro and in vivo, that supports the importance of membrane phospholipids influencing the initiation activity of DnaA is reviewed.
Collapse
Affiliation(s)
- E Crooke
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
93
|
Sato N, Hagio M, Wada H, Tsuzuki M. Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci U S A 2000; 97:10655-60. [PMID: 10984546 PMCID: PMC27080 DOI: 10.1073/pnas.97.19.10655] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2000] [Accepted: 06/30/2000] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of phosphatidylglycerol (PG) in photosynthesis, we constructed a mutant defective in the CDP-diacylglycerol synthase gene from a cyanobacterium, Synechocystis sp. PCC6803. The mutant, designated as SNC1, required PG supplementation for growth. Growth was repressed in PG-free medium concomitantly with the decrease in cellular content of PG. These results indicate that PG is essential, and that SNC1 is defective in PG synthesis. Decrease in PG content was accompanied by a reduction in the cellular content of chlorophyll, but with little effect on the contents of phycobilisome pigments, which showed that levels of chlorophyll-protein complexes decreased without alteration of those of phycobilisomes. Regardless of the decrease in the PG content, CO(2)-dependent photosynthesis by SNC1 was similar to that by the wild type on a chlorophyll basis, but consequently became lower on a cell basis. Simultaneously, the ratio of oxygen evolution of photosystem II (PSII) measured with p-benzoquinone to that of CO(2)-dependent photosynthesis, which ranged between 1.3 and 1.7 in the wild type. However, it was decreased in SNC1 from 1.3 to 0.4 during the early growth phase where chlorophyll content and CO(2)-dependent photosynthesis were little affected, and then finally to 0.1, suggesting that PSII first lost its ability to reduce p-benzoquinone and then decreased in its level and actual activity. These results indicate that PG contributes to the accumulation of chlorophyll-protein complexes in thylakoid membranes, and also to normal functioning of PSII.
Collapse
Affiliation(s)
- N Sato
- School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
94
|
Abstract
Secretion of most polypeptides across the bacterial plasma membrane is catalyzed by the Sec protein translocase. This complex molecular machine comprises a flexible transmembrane conduit coupled to a motor-like component and displays four activities: (a) it is a specific receptor at its cytoplasmic side for all secretory polypeptides, (b) it converts metabolic energy from ATP and proton gradients into mechanical motion, (c) it prevents substrates from folding in statu translocanti and (d) it binds and releases short segments of the polymeric substrate sequentially. Combination of these activities allows translocase to move processively along the length of the substrate. Substrates are thus gradually expelled from the membrane and are released for subsequent extracytoplasmic folding.
Collapse
Affiliation(s)
- A Economou
- Institute of Molecular Biology and Biotechnology-FORTH and Department of Biology, University of Crete, P.O. Box 1527, Crete GR-711 10, Iraklio, Greece.
| |
Collapse
|