51
|
Ahn SJ, Deep K, Turner ME, Ishkov I, Waters A, Hagen SJ, Rice KC. Characterization of LrgAB as a stationary phase-specific pyruvate uptake system in Streptococcus mutans. BMC Microbiol 2019; 19:223. [PMID: 31606034 PMCID: PMC6790026 DOI: 10.1186/s12866-019-1600-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Our recent '-omics' comparisons of Streptococcus mutans wild-type and lrgAB-mutant revealed that this organism undergoes dynamic cellular changes in the face of multiple exogenous stresses, consequently affecting its comprehensive virulence traits. In this current study, we further demonstrate that LrgAB functions as a S. mutans pyruvate uptake system. RESULTS S. mutans excretes pyruvate during growth as an overflow metabolite, and appears to uptake this excreted pyruvate via LrgAB once the primary carbon source is exhausted. This utilization of excreted pyruvate was tightly regulated by glucose levels and stationary growth phase lrgAB induction. The degree of lrgAB induction was reduced by high extracellular levels of pyruvate, suggesting that lrgAB induction is subject to negative feedback regulation, likely through the LytST TCS, which is required for expression of lrgAB. Stationary phase lrgAB induction was efficiently inhibited by low concentrations of 3FP, a toxic pyruvate analogue, without affecting cell growth, suggesting that accumulated pyruvate is sensed either directly or indirectly by LytS, subsequently triggering lrgAB expression. S. mutans growth was inhibited by high concentrations of 3FP, implying that pyruvate uptake is necessary for S. mutans exponential phase growth and occurs in a Lrg-independent manner. Finally, we found that stationary phase lrgAB induction is modulated by hydrogen peroxide (H2O2) and by co-cultivation with H2O2-producing S. gordonii. CONCLUSIONS Pyruvate may provide S. mutans with an alternative carbon source under limited growth conditions, as well as serving as a buffer against exogenous oxidative stress. Given the hypothesized role of LrgAB in cell death and lysis, these data also provide an important basis for how these processes are functionally and mechanically connected to key metabolic pathways such as pyruvate metabolism.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, P.O. Box 100424, Gainesville, FL, 32610, USA.
| | - Kamal Deep
- Department of Oral Biology, College of Dentistry, University of Florida, P.O. Box 100424, Gainesville, FL, 32610, USA
| | - Matthew E Turner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ivan Ishkov
- Department of Physics, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anthony Waters
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Stephen J Hagen
- Department of Physics, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
52
|
Yee R, Feng J, Wang J, Chen J, Zhang Y. Identification of Genes Regulating Cell Death in Staphylococcus aureus. Front Microbiol 2019; 10:2199. [PMID: 31632363 PMCID: PMC6779855 DOI: 10.3389/fmicb.2019.02199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes acute and chronic infections. Due to S. aureus's highly resistant and persistent nature, it is paramount to identify better drug targets in order to eradicate S. aureus infections. Despite the efforts in understanding bacterial cell death, the genes, and pathways of S. aureus cell death remain elusive. Here, we performed a genome-wide screen using a transposon mutant library to study the genetic mechanisms involved in S. aureus cell death. Using a precisely controlled heat-ramp and acetic acid exposure assays, mutations in 27 core genes (hsdR1, hslO, nsaS, sspA, folD, mfd, vraF, kdpB, USA300HOU_2684, 0868, 0369, 0420, 1154, 0142, 0930, 2590, 0997, 2559, 0044, 2004, 1209, 0152, 2455, 0154, 2386, 0232, 0350 involved in transporters, transcription, metabolism, peptidases, kinases, transferases, SOS response, nucleic acid, and protein synthesis) caused the bacteria to be more death-resistant. In addition, we identified mutations in 10 core genes (capA, gltT, mnhG1, USA300HOU_1780, 2496, 0200, 2029, 0336, 0329, 2386, involved in transporters, metabolism, transcription, and cell wall synthesis) from heat-ramp and acetic acid that caused the bacteria to be more death-sensitive or with defect in persistence. Interestingly, death-resistant mutants were more virulent than the parental strain USA300 and caused increased mortality in a Caenorhabditis elegans infection model. Conversely, death-sensitive mutants were less persistent and formed fewer persister cells upon exposure to different classes of antibiotics. These findings provide new insights into the mechanisms of S. aureus cell death and offer new therapeutic targets for developing more effective treatments for infections caused by S. aureus.
Collapse
Affiliation(s)
- Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jie Feng
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
53
|
Castillo JA, Agathos SN. A genome-wide scan for genes under balancing selection in the plant pathogen Ralstonia solanacearum. BMC Evol Biol 2019; 19:123. [PMID: 31208326 PMCID: PMC6580516 DOI: 10.1186/s12862-019-1456-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Plant pathogens are under significant selective pressure by the plant host. Consequently, they are expected to have adapted to this condition or contribute to evading plant defenses. In order to acquire long-term fitness, plant bacterial pathogens are usually forced to maintain advantageous genetic diversity in populations. This strategy ensures that different alleles in the pathogen’s gene pool are maintained in a population at frequencies larger than expected under neutral evolution. This selective process, known as balancing selection, is the subject of this work in the context of a common bacterial phytopathogen. We performed a genome-wide scan of Ralstonia solanacearum species complex, an aggressive plant bacterial pathogen that shows broad host range and causes a devastating disease called ‘bacterial wilt’. Results Using a sliding window approach, we analyzed 57 genomes from three phylotypes of the R. solanacearum species complex to detect signatures of balancing selection. A total of 161 windows showed extreme values in three summary statistics of population genetics: Tajima’s D, θw and Fu & Li’s D*. We discarded any confounding effects due to demographic events by means of coalescent simulations of genetic data. The prospective windows correspond to 78 genes with known function that map in any of the two main replicons (1.7% of total number of genes). The candidate genes under balancing selection are related to primary metabolism and other basal activities (51.3%) or directly associated to virulence (48.7%), the latter being involved in key functions targeted to dismantle plant defenses or to participate in critical stages in the pathogenic process. Conclusions We identified various genes under balancing selection that play a significant role in basic metabolism as well as in virulence of the R. solanacearum species complex. These genes are useful to understand and monitor the evolution of bacterial pathogen populations and emerge as potential candidates for future treatments to induce specific plant immune responses. Electronic supplementary material The online version of this article (10.1186/s12862-019-1456-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose s/n and Proyecto Yachay, Urcuquí, Ecuador.
| | - Spiros N Agathos
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose s/n and Proyecto Yachay, Urcuquí, Ecuador
| |
Collapse
|
54
|
Fanelli F, Di Pinto A, Mottola A, Mule G, Chieffi D, Baruzzi F, Tantillo G, Fusco V. Genomic Characterization of Arcobacter butzleri Isolated From Shellfish: Novel Insight Into Antibiotic Resistance and Virulence Determinants. Front Microbiol 2019; 10:670. [PMID: 31057492 PMCID: PMC6477937 DOI: 10.3389/fmicb.2019.00670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Arcobacter (A.) butzleri is an emerging pathogenic microorganism, whose taxonomy has been recently suggested to be emended to the Aliarcobacter (Al.) butzleri comb. nov. Despite extensive taxonomic analysis, only few fragmented studies have investigated the occurrence and the prevalence of virulence and antibiotic resistance determinants of this species in strains isolated from shellfish. Herein we report for the first time the whole genome sequencing and genomic characterization of two A. butzleri strains isolated from shellfish, with particular reference to the antibiotic, heavy metals and virulence determinants. This study supported the taxonomic assignment of these strains to the Al. butzleri species, and allowed us to identify antibiotic and metal resistance along with virulence determinants, also additional to those previously reported for the only two A. butzleri strains from different environments genomically characterized. Moreover, both strains showed resistance to β-lactams, vanocomycin, tetracycline and erythromycin and susceptibility to aminoglycosides and ciprofloxacin. Beside enlarging the availability of genomic data to perform comparative studies aimed at correlating phenotypic differences associated with ecological niche and geographic distribution with the genetic diversity of A. butzleri spp., this study reports the endowment of antibiotic and heavy metal resistance and virulence determinants of these shellfish-isolated strains. This leads to hypothesize a relatively high virulence of A. butzleri isolated from shellfish and prompt the need for a wider genomic analysis and for in vitro and in vivo studies of more strains isolated from this and other ecological niches, to unravel the mechanism of pathogenicity of this species, and the potential risk associated to their consumption.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppina Mule
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (CNR-IBIOM), National Research Council of Italy, Bari, Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Federico Baruzzi
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Giuseppina Tantillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| |
Collapse
|
55
|
The Response of nor and nos Contributes to Staphylococcus aureus Virulence and Metabolism. J Bacteriol 2019; 201:JB.00107-19. [PMID: 30782631 DOI: 10.1128/jb.00107-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes a wide spectrum of disease, with the site and severity of infection dependent on virulence traits encoded within genetically distinct clonal complexes (CCs) and bacterial responses to host innate immunity. The production of nitric oxide (NO) by activated phagocytes is a major host response to which S. aureus metabolically adapts through multiple strategies that are conserved in all CCs, including an S. aureus nitric oxide synthase (Nos). Previous genome analysis of CC30, a lineage associated with chronic endocardial and osteoarticular infections, revealed a putative NO reductase (Nor) not found in other CCs that potentially contributes to NO resistance and clinical outcome. Here, we demonstrate that Nor has true nitric oxide reductase activity, with nor expression enhanced by NO stress and anaerobic growth. Furthermore, we demonstrate that nor is regulated by MgrA and SrrAB, which modulate S. aureus virulence and hypoxic response. Transcriptome analysis of the S. aureus UAMS-1, UAMS-1 Δnor, and UAMS-1 Δnos strains under NO stress and anaerobic growth demonstrates that Nor contributes to nucleotide metabolism and Nos to glycolysis. We demonstrate that Nor and Nos contribute to enhanced survival in the presence of human human polymorphonuclear cells and have organ-specific seeding in a tail vein infection model. Nor contributes to abscess formation in an osteological implant model. We also demonstrate that Nor has a role in S. aureus metabolism and virulence. The regulation overlap between Nor and Nos points to an intriguing link between regulation of intracellular NO, metabolic adaptation, and persistence in the CC30 lineage.IMPORTANCE Staphylococcus aureus can cause disease at most body sites, and illness spans asymptomatic infection to death. The variety of clinical presentations is due to the diversity of strains, which are grouped into distinct clonal complexes (CCs) based on genetic differences. The ability of S. aureus CC30 to cause chronic infections relies on its ability to evade the oxidative/nitrosative defenses of the immune system and survive under different environmental conditions, including differences in oxygen and nitric oxide concentrations. The significance of this work is the exploration of unique genes involved in resisting NO stress and anoxia. A better understanding of the functions that control the response of S. aureus CC30 to NO and oxygen will guide the treatment of severe disease presentations.
Collapse
|
56
|
Naushad M, Rajendran S, Gracia F, Thangarajan S, Balasubramanian J, Li Y, Gajendran B. Nanoparticles: Antimicrobial Applications and Its Prospects. ADVANCED NANOSTRUCTURED MATERIALS FOR ENVIRONMENTAL REMEDIATION 2019; 25. [PMCID: PMC7123839 DOI: 10.1007/978-3-030-04477-0_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nowadays, nanomaterials [NPs; size, 1–100 nm] have emerged as unique antimicrobial agents. Specially, several classes of antimicrobial NPs and nanosized carriers for antibiotic delivery have proven their efficacy for handling infectious diseases, including antibiotic-resistant ones, in vitro as well as in animal models, which can offer better therapy than classical drugs due to their high surface area-to-volume ratio, resulting in appearance of new mechanical, chemical, electrical, optical, magnetic, electro-optical, and magneto-optical properties, unlike from their bulk properties. Thus, scientifically NPs have been validated to be fascinating in fighting bacteria. In this chapter, we will discuss precise properties of microorganisms and their modifications among each strain specifically. The toxicity mechanisms vary from one stain to another. Even the NP’s efficacy to treat against bacteria and drug-resistant bacteria and their defense mechanisms change according to strains in particular composition of cell walls, the enzymic composition, and so on. Thus, we provide an outlook on NPs in the microbial world and mechanism to overcome the drug resistance by tagging antibiotics in NPs and its future prospects for the scientific world.
Collapse
Affiliation(s)
- Mu. Naushad
- grid.56302.320000 0004 1773 5396Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saravanan Rajendran
- grid.412182.c0000 0001 2179 0636Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Arica, Chile
| | - Francisco Gracia
- grid.443909.30000 0004 0385 4466Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
57
|
Kim HM, Waters A, Turner ME, Rice KC, Ahn SJ. Regulation of cid and lrg expression by CcpA in Streptococcus mutans. MICROBIOLOGY (READING, ENGLAND) 2019; 165:113-123. [PMID: 30475201 PMCID: PMC6600348 DOI: 10.1099/mic.0.000744] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
The Streptococcus mutans Cid/Lrg system represents an ideal model for studying this organism's ability to withstand various stressors encountered in the oral cavity. The lrg and cid operons display distinct and opposite patterns of expression in response to growth phase and glucose levels, suggesting that the activity and regulation of these proteins must be tightly coordinated in the cell and closely associated with metabolic pathways of the organism. Here, we demonstrate that expression of the cid and lrg operons is directly mediated by a global transcriptional regulator CcpA in response to glucose levels. Comparison of the cid and lrg promoter regions with the conserved CcpA binding motif revealed the presence of two potential cre sites (for CcpA binding) in the cid promoter (designated cid-cre1 and cid-cre2), which were arranged in a similar manner to those previously identified in the lrg promoter region (designated lrg-cre1 and lrg-cre2). We demonstrated that CcpA binds to both the cid and lrg promoters with a high affinity, but has an opposing glucose-dependent effect on the regulation of cid (positive) and lrg (negative) expression. DNase I footprinting analyses revealed potential binding sequences for CcpA in both cid and lrg promoter regions. Collectively, these data suggest that CcpA is a direct regulator of cid and lrg expression, and are suggestive of a potential mechanism by which Cid/Lrg-mediated virulence and cellular homeostasis is integrated with signals associated with both the environment and cellular metabolic status.
Collapse
Affiliation(s)
- Hey-Min Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Anthony Waters
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E. Turner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
58
|
Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 2018; 13:e0210118. [PMID: 30596794 PMCID: PMC6312309 DOI: 10.1371/journal.pone.0210118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) is a generalist and facultative pathogen that causes disease in a wide range of marine animals including fish species of importance in aquaculture. Disease outbreaks in fish farms have been correlated with an increased water temperature during summer months. In this study, we have used RNA sequencing to analyze the transcriptome of Pdd RM-71 cultured at two different temperatures, which simulated temperature conditions experienced during free swimming lifestyle at mid latitudes in winter months (15°C) and during outbreaks in aquaculture in warm summer months (25°C). The enhanced bacterial growth of Pdd observed at 25°C in comparison to 15°C suggests that an elevated seawater temperature contributes to the build-up of a sufficient bacterial population to cause disease. In comparison to growth at 15°C, growth at 25°C resulted in the upregulation of genes involved in DNA synthesis, nutrient uptake, chemotaxis, flagellar motility, secretion systems and antimicrobial resistance. Plasmid-encoded virulence factors, which include a putative adhesin/invasin OmpU, a transferrin receptor and a serum resistance protein, were also upregulated. Transcription factor RpoS, genes involved in cold shock response, modulation of cell envelope and amino acid metabolism, as well as genes of yet unknown function were downregulated at 25°C. Notably, the gene encoding damselysin cytotoxin (Dly) was among the most highly transcribed genes at the two assayed temperatures, at levels comparable to the most highly expressed housekeeping genes. This study contributes to our understanding of the regulatory networks and biology of a generalist marine bacterial pathogen, and provides evidence that temperature regulates multiple physiological and virulence-related functions in Pdd.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
59
|
Food Spoilage-Associated Leuconostoc, Lactococcus, and Lactobacillus Species Display Different Survival Strategies in Response to Competition. Appl Environ Microbiol 2018; 84:AEM.00554-18. [PMID: 29678911 DOI: 10.1128/aem.00554-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/12/2018] [Indexed: 12/27/2022] Open
Abstract
Psychrotrophic lactic acid bacteria (LAB) are the prevailing spoilage organisms in packaged cold-stored meat products. Species composition and metabolic activities of such LAB spoilage communities are determined by the nature of the meat product, storage conditions, and interspecies interactions. Our knowledge of system level responses of LAB during such interactions is very limited. To expand it, we studied interactions between three common psychrotrophic spoilage LAB (Leuconostoc gelidum, Lactococcus piscium, and Lactobacillus oligofermentans) by comparing their time course transcriptome profiles obtained during their growth in individual, pairwise, and triple cultures. The study revealed how these LAB employed different strategies to cope with the consequences of interspecies competition. The fastest-growing bacterium, Le. gelidum, attempted to enhance its nutrient-scavenging and growth capabilities in the presence of other LAB through upregulation of carbohydrate catabolic pathways, pyruvate fermentation enzymes, and ribosomal proteins, whereas the slower-growing Lc. piscium and Lb. oligofermentans downregulated these functions. These findings may explain the competitive success and predominance of Le. gelidum in a variety of spoiled foods. Peculiarly, interspecies interactions induced overexpression of prophage genes and restriction modification systems (mechanisms of DNA exchange and protection against it) in Lc. piscium and Lb. oligofermentans but not in Le. gelidum Cocultivation induced also overexpression of the numerous putative adhesins in Lb. oligofermentans These adhesins might contribute to the survival of this slowly growing bacterium in actively growing meat spoilage communities.IMPORTANCE Despite the apparent relevance of LAB for biotechnology and human health, interactions between members of LAB communities are not well known. Knowledge of such interactions is crucial for understanding how these communities function and, consequently, whether there is any possibility to develop new strategies to interfere with their growth and to postpone spoilage of packaged and refrigerated foods. With the help of controlled experiments, detailed regulation events can be observed. This study gives an insight into the system level interactions and the different competition-induced survival strategies related to enhanced uptake and catabolism of carbon sources, overexpression of adhesins and putative bacteriocins, and the induction of exchange of genetic material. Even though this experiment dealt with only three LAB strains in vitro, these findings agreed well with the relative abundance patterns typically reported for these species in natural food microbial communities.
Collapse
|
60
|
Claunch KM, Bush M, Evans CR, Malmquist JA, Hale MC, McGillivray SM. Transcriptional profiling of the clpX mutant in Bacillus anthracis reveals regulatory connection with the lrgAB operon. MICROBIOLOGY-SGM 2018; 164:659-669. [PMID: 29473820 DOI: 10.1099/mic.0.000628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ClpX functions as either an independent chaperone or a component of the ClpXP protease, a conserved intracellular protease that acts as a global regulator in the bacterial cell by degrading regulatory proteins, stress response proteins and rate-limiting enzymes. Previously, we found that loss of clpX in Bacillus anthracis Sterne leads to increased susceptibility to antimicrobial agents that target the cell envelope. The aim of this study was to identify genes within the regulatory network of clpX that contribute to antimicrobial resistance. Using microarray analysis, we found 119 genes that are highly differentially expressed in the ∆clpX mutant, with the majority involved in metabolic, transport or regulatory functions. Several of these differentially expressed genes, including glpF, sigM, mrsA, lrgA and lrgB, are associated with cell wall-active antibiotics in other bacterial species. We focused on lrgA and lrgB, which form the lrgAB operon and are downregulated in ∆clpX, because loss of lrgAB increases autolytic activity and penicillin susceptibility in Staphylococcus aureus. While we observed no changes in autolytic activity in either ∆clpX or ∆lrgAB B. anthracis Sterne, we find that both mutants have increased susceptibility to the antimicrobial peptide LL-37 and daptomycin. However, phenotypes between ∆clpX and ∆lrgAB are not identical as ∆clpX also displays increased susceptibility to penicillin and nisin but ∆lrgAB does not. Therefore, while decreased expression of lrgAB may be partially responsible for the increased antimicrobial susceptibility seen in the ∆clpX mutant, disruption of other pathways must also contribute to this phenotype.
Collapse
Affiliation(s)
- Kevin M Claunch
- Department of Biology, Texas Christian University, Fort Worth, TX, USA.,Present address: Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Madeline Bush
- Department of Biology, Texas Christian University, Fort Worth, TX, USA.,Present address: St. Jude Graduate School of Biomedical Sciences, Memphis TN, USA
| | - Christopher R Evans
- Department of Biology, Texas Christian University, Fort Worth, TX, USA.,Present address: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - Jacob A Malmquist
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | - Matthew C Hale
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | | |
Collapse
|
61
|
Zhang F, Gao J, Wang B, Huo D, Wang Z, Zhang J, Shao Y. Whole-genome sequencing reveals the mechanisms for evolution of streptomycin resistance in Lactobacillus plantarum. J Dairy Sci 2018; 101:2867-2874. [PMID: 29397163 DOI: 10.3168/jds.2017-13323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
Abstract
In this research, we investigated the evolution of streptomycin resistance in Lactobacillus plantarum ATCC14917, which was passaged in medium containing a gradually increasing concentration of streptomycin. After 25 d, the minimum inhibitory concentration (MIC) of L. plantarum ATCC14917 had reached 131,072 µg/mL, which was 8,192-fold higher than the MIC of the original parent isolate. The highly resistant L. plantarum ATCC14917 isolate was then passaged in antibiotic-free medium to determine the stability of resistance. The MIC value of the L. plantarum ATCC14917 isolate decreased to 2,048 µg/mL after 35 d but remained constant thereafter, indicating that resistance was irreversible even in the absence of selection pressure. Whole-genome sequencing of parent isolates, control isolates, and isolates following passage was used to study the resistance mechanism of L. plantarum ATCC14917 to streptomycin and adaptation in the presence and absence of selection pressure. Five mutated genes (single nucleotide polymorphisms and structural variants) were verified in highly resistant L. plantarum ATCC14917 isolates, which were related to ribosomal protein S12, LPXTG-motif cell wall anchor domain protein, LrgA family protein, Ser/Thr phosphatase family protein, and a hypothetical protein that may correlate with resistance to streptomycin. After passage in streptomycin-free medium, only the mutant gene encoding ribosomal protein S12 remained; the other 4 mutant genes had reverted to the wild type as found in the parent isolate. Although the MIC value of L. plantarum ATCC14917 was reduced in the absence of selection pressure, it remained 128-fold higher than the MIC value of the parent isolate, indicating that ribosomal protein S12 may play an important role in streptomycin resistance. Using the mobile elements database, we demonstrated that streptomycin resistance-related genes in L. plantarum ATCC14917 were not located on mobile elements. This research offers a way of combining laboratory evolution techniques and whole-genome sequencing for evaluating antibiotic resistance in probiotics.
Collapse
Affiliation(s)
- Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Jiayuan Gao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Dongxue Huo
- College of Food Science and Technology, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Zhaoxia Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, P. R. China
| | - Jiachao Zhang
- College of Food Science and Technology, Hainan University, Haikou 570228, Hainan, P. R. China.
| | - Yuyu Shao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China.
| |
Collapse
|
62
|
For the greater good: Programmed cell death in bacterial communities. Microbiol Res 2017; 207:161-169. [PMID: 29458850 DOI: 10.1016/j.micres.2017.11.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
For a long a time programmed cell death was thought to be a unique characteristic of higher eukaryotes, but evidence has accumulated showing that programmed cell death is a universal phenomenon in all life forms. Many different types of bacterial programmed cell death systems have been identified, rivalling the eukaryotic systems in diversity. Bacteria are singular, seemingly independently living organisms, however they are part of complex communities. Being part of a community seems indispensable for survival in different environments. This review is focussed on the mechanism of and reasons for bacterial programmed cell death in the context of bacterial communities.
Collapse
|
63
|
Abstract
Recent studies have revealed an important role for the Staphylococcus aureus CidC enzyme in cell death during the stationary phase and in biofilm development and have contributed to our understanding of the metabolic processes that are important in the induction of bacterial programmed cell death (PCD). To gain more insight into the characteristics of this enzyme, we performed an in-depth biochemical and biophysical analysis of its catalytic properties. In vitro experiments show that this flavoprotein catalyzes the oxidative decarboxylation of pyruvate to acetate and carbon dioxide. CidC efficiently reduces menadione, but not CoenzymeQ0, suggesting a specific role in the S. aureus respiratory chain. CidC exists as a monomer under neutral-pH conditions but tends to aggregate and bind to artificial lipid membranes at acidic pH, resulting in enhanced enzymatic activity. Unlike its Escherichia coli counterpart, PoxB, CidC does not appear to be activated by other amphiphiles like Triton X-100 or octyl β-d-glucopyranoside. In addition, only reduced CidC is protected from proteolytic cleavage by chymotrypsin, and unlike its homologues in other bacteria, protease treatment does not increase CidC enzymatic activity. Finally, CidC exhibits maximal activity at pH 5.5-5.8 and negligible activity at pH 7-8. The results of this study are consistent with a model in which CidC functions as a pyruvate:menaquinone oxidoreductase whose activity is induced at the cellular membrane during cytoplasmic acidification, a process previously shown to be important for the induction of bacterial PCD.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Pharmaceutical Sciences and ‡Department of Pathology & Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198-5900, United States
| | - Kenneth W Bayles
- Department of Pharmaceutical Sciences and ‡Department of Pathology & Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198-5900, United States
| | - Sorin Luca
- Department of Pharmaceutical Sciences and ‡Department of Pathology & Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198-5900, United States
| |
Collapse
|
64
|
Rovetto F, Carlier A, Van den Abeele AM, Illeghems K, Van Nieuwerburgh F, Cocolin L, Houf K. Characterization of the emerging zoonotic pathogen Arcobacter thereius by whole genome sequencing and comparative genomics. PLoS One 2017; 12:e0180493. [PMID: 28671965 PMCID: PMC5495459 DOI: 10.1371/journal.pone.0180493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/17/2017] [Indexed: 11/24/2022] Open
Abstract
Four Arcobacter species have been associated with human disease, and based on current knowledge, these Gram negative bacteria are considered as potential food and waterborne zoonotic pathogens. At present, only the genome of the species Arcobacter butzleri has been analysed, and still little is known about their physiology and genetics. The species Arcobacter thereius has first been isolated from tissue of aborted piglets, duck and pig faeces, and recently from stool of human patients with enteritis. In the present study, the complete genome and analysis of the A. thereius type strain LMG24486T, as well as the comparative genome analysis with 8 other A. thereius strains are presented. Genome analysis revealed metabolic pathways for the utilization of amino acids, which represent the main source of energy, together with the presence of genes encoding for respiration-associated and chemotaxis proteins. Comparative genome analysis with the A. butzleri type strain RM4018 revealed a large correlation, though also unique features. Furthermore, in silico DDH and ANI based analysis of the nine A. thereius strains disclosed clustering into two closely related genotypes. No discriminatory differences in genome content nor phenotypic behaviour were detected, though recently the species Arcobacter porcinus was proposed to encompass part of the formerly identified Arcobacter thereius strains. The report of the presence of virulence associated genes in A. thereius, the presence of antibiotic resistance genes, verified by in vitro susceptibility testing, as well as other pathogenic related relevant features, support the classification of A. thereius as an emerging pathogen.
Collapse
Affiliation(s)
- Francesca Rovetto
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Aurélien Carlier
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, Ghent, Belgium
| | | | - Koen Illeghems
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, Ghent, Belgium
| | - Luca Cocolin
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Kurt Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| |
Collapse
|
65
|
Rice KC, Turner ME, Carney OV, Gu T, Ahn SJ. Modification of the Streptococcus mutans transcriptome by LrgAB and environmental stressors. Microb Genom 2017; 3:e000104. [PMID: 28348880 PMCID: PMC5361627 DOI: 10.1099/mgen.0.000104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
The Streptococcus mutans Cid/Lrg system is central to the physiology of this cariogenic organism, affecting oxidative stress resistance, biofilm formation and competence. Previous transcriptome analyses of lytS (responsible for the regulation of lrgAB expression) and cidB mutants have revealed pleiotropic effects on carbohydrate metabolism and stress resistance genes. In this study, it was found that an lrgAB mutant, previously shown to have diminished aerobic and oxidative stress growth, was also much more growth impaired in the presence of heat and vancomycin stresses, relative to wild-type, lrgA and lrgB mutants. To obtain a more holistic picture of LrgAB and its involvement in stress resistance, RNA sequencing and bioinformatics analyses were used to assess the transcriptional response of wild-type and isogenic lrgAB mutants under anaerobic (control) and stress-inducing culture conditions (aerobic, heat and vancomycin). Hierarchical clustering and principal components analyses of all differentially expressed genes revealed that the most distinct gene expression profiles between S. mutans UA159 and lrgAB mutant occurred during aerobic and high-temperature growth. Similar to previous studies of a cidB mutant, lrgAB stress transcriptomes were characterized by a variety of gene expression changes related to genomic islands, CRISPR-C as systems, ABC transporters, competence, bacteriocins, glucosyltransferases, protein translation, tricarboxylic acid cycle, carbohydrate metabolism/storage and transport. Notably, expression of lrgAB was upregulated in the wild-type strain under all three stress conditions. Collectively, these results demonstrate that mutation of lrgAB alters the transcriptional response to stress, and further support the idea that the Cid/Lrg system acts to promote cell homeostasis in the face of environmental stress.
Collapse
Affiliation(s)
- Kelly C Rice
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E Turner
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - O'neshia V Carney
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,†Present address: Department of Health Outcomes and Policy, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tongjun Gu
- 2Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Sang-Joon Ahn
- 3Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
66
|
Miller CL, Van Laar TA, Chen T, Karna SLR, Chen P, You T, Leung KP. Global transcriptome responses including small RNAs during mixed-species interactions with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Microbiologyopen 2016; 6. [PMID: 27868360 PMCID: PMC5458535 DOI: 10.1002/mbo3.427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus mixed‐species biofilm infections are more resilient to biocide attacks compared to their single‐species counterparts. Therefore, this study used an in vitro model recapitulating bacterial burdens seen in in vivo infections to investigate the interactions of P. aeruginosa and S. aureus in biofilms. RNA sequencing (RNA‐seq) was utilized to identify the entire genomic response, both open reading frames (ORFs) and small RNAs (sRNAs), of each species. Using competitive indexes, transposon mutants validated uncharacterized PA1595 of P. aeruginosa and Panton–Valentine leukocidin ORFs of S. aureus are required for competitive success. Assessing spent media on biofilm development determined that the effects of these ORFs are not solely mediated by mechanisms of secretion. Unlike PA1595, leukocidin (lukS‐PV) mutants of S. aureus lack a competitive advantage through contact‐mediated mechanisms demonstrated by cross‐hatch assays. RNA‐seq results suggested that during planktonic mixed‐species growth there is a robust genomic response or active combat from both pathogens until a state of equilibrium is reached during the maturation of a biofilm. In mixed‐species biofilms, P. aeruginosa differentially expressed only 0.3% of its genome, with most ORFs necessary for growth and biofilm development, whereas S. aureus modulated approximately 5% of its genome, with ORFs suggestive of a phenotype of increased virulence and metabolic quiescence. Specific expression of characterized sRNAs aligned with the genomic response to presumably coordinate the adaptive changes necessary for this homeostatic mixed‐species biofilm and sRNAs may provide viable foci for the design of future therapeutics.
Collapse
Affiliation(s)
- Christine L Miller
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Tricia A Van Laar
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, USA
| | - S L Rajasekhar Karna
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Ping Chen
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Tao You
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Kai P Leung
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| |
Collapse
|
67
|
Fakhruzzaman M, Inukai Y, Yanagida Y, Kino H, Igarashi M, Eguchi Y, Utsumi R. Study on in vivo effects of bacterial histidine kinase inhibitor, Waldiomycin, in Bacillus subtilis and Staphylococcus aureus. J GEN APPL MICROBIOL 2016; 61:177-84. [PMID: 26582287 DOI: 10.2323/jgam.61.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two-component signal transduction systems (TCSs) represent one of the primary means by which bacteria sense and respond to changes in their environment, both intra- and extracellular. The highly conserved WalK (histidine kinase)/WalR (response regulator) TCS is essential for cell wall metabolism of low G+C Gram-positive bacteria and acts as a master regulatory system in controlling and coordinating cell wall metabolism with cell division. Waldiomycin, a WalK inhibitor, has been discovered by screening metabolites from actinomycetes and belongs to the family of angucycline antibiotics. In the present study, we have shown that waldiomycin inhibited autophosphorylation of WalK histidine kinases in vitro from Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, and Streptococcus mutans at half-maximal inhibitory concentrations of 10.2, 8.8, 9.2, and 25.8 μM, respectively. Quantitative RT-PCR studies of WalR regulon genes have suggested that waldiomycin repressed the WalK/WalR system in B. subtilis and S. aureus cells. Morphology of waldiomycin-treated S. aureus cells displayed increased aggregation instead of proper cellular dissemination. Furthermore, autolysis profiles of S. aureus cells revealed that waldiomycin-treated cells were highly resistant to Triton X-100- and lysostaphin-induced lysis. These phenotypes are consistent with those of cells starved for the WalK/WalR system, indicating that waldiomycin inhibited the autophosphorylation activity of WalK in cells. We have also confirmed that waldiomycin inhibits WalK autophosphorylation in vivo by actually observing the phosphorylated WalK ratio in cells using Phos-tag SDS-PAGE. The results of our current study strongly suggest that waldiomycin targets WalK histidine kinases and inhibits the WalR regulon genes expression, thereby affecting both cell wall metabolism and cell division.
Collapse
Affiliation(s)
- Md Fakhruzzaman
- Department of Bioscience, Graduate School of Agriculture, Kinki University
| | | | | | | | | | | | | |
Collapse
|
68
|
Understanding the Streptococcus mutans Cid/Lrg System through CidB Function. Appl Environ Microbiol 2016; 82:6189-6203. [PMID: 27520814 DOI: 10.1128/aem.01499-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
The Streptococcus mutans lrgAB and cidAB operons have been previously described as a potential model system to dissect the complexity of biofilm development and virulence of S. mutans Herein, we have attempted to further characterize the Cid/Lrg system by focusing on CidB, which has been shown to be critical for the ability of S. mutans to survive and persist in a nonpreferred oxygen-enriched condition. We have found that the expression level of cidB is critical to oxidative stress tolerance of S. mutans, most likely by impacting lrg expression. Intriguingly, the impaired aerobic growth phenotype of the cidB mutant could be restored by the additional loss of either CidA or LrgA. Growth-dependent expression of cid and lrg was demonstrated to be tightly under the control of both CcpA and the VicKR two-component system (TCS), regulators known to play an essential role in controlling major catabolic pathways and cell envelope homeostasis, respectively. RNA sequencing (RNA-Seq) analysis revealed that mutation of cidB resulted in global gene expression changes, comprising major domains of central metabolism and virulence processes, particularly in those involved with oxidative stress resistance. Loss of CidB also significantly changed the expression of genes related to genomic islands (GI) TnSmu1 and TnSmu2, the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system, and toxin-antitoxin (T/A) modules. Taken together, these data show that CidB impinges on the stress response, as well as the fundamental cellular physiology of S. mutans, and further suggest a potential link between Cid/Lrg-mediated cellular processes, S. mutans pathogenicity, and possible programmed growth arrest and cell death mechanisms. IMPORTANCE The ability of Streptococcus mutans to survive a variety of harmful or stressful conditions and to emerge as a numerically significant member of stable oral biofilm communities are essential elements for its persistence and cariogenicity. In this study, the homologous cidAB and lrgAB operons, previously identified as being highly balanced and coordinated during S. mutans aerobic growth, were further characterized through the functional and transcriptomic analysis of CidB. Precise control of CidB levels is shown to impact the expression of lrg, oxidative stress tolerance, major metabolic domains, and the molecular modules linked to cell death and lysis. This study advances our understanding of the Cid/Lrg system as a key player in the integration of complex environmental signals (such as oxidative stress) into the regulatory networks that modulate S. mutans virulence and cell homeostasis.
Collapse
|
69
|
van den Esker MH, Kovács ÁT, Kuipers OP. YsbA and LytST are essential for pyruvate utilization in Bacillus subtilis. Environ Microbiol 2016; 19:83-94. [PMID: 27422364 DOI: 10.1111/1462-2920.13454] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/12/2016] [Indexed: 12/01/2022]
Abstract
The genome of Bacillus subtilis encodes homologues of the Cid/Lrg network. In other bacterial species, this network consists of holin- and antiholin-like proteins that regulate cell death by controlling murein hydrolase activity. The YsbA protein of B. subtilis is currently annotated as a putative antiholin-like protein that possibly impedes cell death, whereas YwbH is thought to act as holin-like protein. However, the actual functions of YsbA and YwbH in B. subtilis have never been characterized. Therefore, we examined the impact of these proteins on growth and cell death in B. subtilis. We did not find a connection to the regulation of programmed cell death, but instead, our experiments reveal that YsbA and its two-component regulator LytST are essential for growth on pyruvate. Moreover, deletion of ysbA and lytS significantly reduces pyruvate consumption. Our findings suggest that LytST induces ysbA transcription in the presence of pyruvate, and that YsbA is involved in pyruvate utilization presumably by functioning as pyruvate uptake system. We show that B. subtilis excretes pyruvate as overflow metabolite in rich medium, indicating that pyruvate could be a common nutrient in the environment. Hence, YsbA and LytST might play a major role in environmental growth of B. subtilis.
Collapse
Affiliation(s)
- Marielle H van den Esker
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ákos T Kovács
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
70
|
Zheng W, Cai X, Xie M, Liang Y, Wang T, Li Z. Structure-Based Identification of a Potent Inhibitor Targeting Stp1-Mediated Virulence Regulation in Staphylococcus aureus. Cell Chem Biol 2016; 23:1002-13. [PMID: 27499528 DOI: 10.1016/j.chembiol.2016.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 11/26/2022]
Abstract
The increasing threats of antibiotic resistance urge the need for developing new strategies against bacterial infections. Targeting eukaryotic-like Ser/Thr phosphatase Stp1-mediated virulence regulation represents a promising approach for combating staphylococcal infection yet to be explored. Here, we report the 2.32-Å resolution crystal structure of Stp1. Stp1 binds an unexpected fourth metal ion, which is important for Stp1's enzymatic activity as demonstrated by amino acid substitution studies. Inspired by the structural details of Stp1, we identified a potent and selective Stp1 inhibitor, aurintricarboxylic acid (ATA). Transcriptome analysis and biochemical studies supported Stp1 as the target of ATA inhibition within the pathogen, preventing upregulation of virulence genes. Notably, ATA did not affect in vitro growth of Staphylococcus aureus, while simultaneously attenuating staphylococcal virulence in mice. Our findings demonstrate that ATA is a potent anti-virulence compound against staphylococcal infection, laying the foundation for further developing new scaffolds for Stp1-targeted small molecules.
Collapse
Affiliation(s)
- Weihao Zheng
- Key Lab of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Xiaodan Cai
- Key Lab of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Mingsheng Xie
- Key Lab of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Yujie Liang
- Key Lab of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Tao Wang
- Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China; SZCDC-SUSTech Joint Key Laboratory for Tropical Diseases, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Zigang Li
- Key Lab of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| |
Collapse
|
71
|
SpoVG Regulates Cell Wall Metabolism and Oxacillin Resistance in Methicillin-Resistant Staphylococcus aureus Strain N315. Antimicrob Agents Chemother 2016; 60:3455-61. [PMID: 27001809 DOI: 10.1128/aac.00026-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023] Open
Abstract
Increasing cases of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains in healthy individuals have raised concerns worldwide. MRSA strains are resistant to almost the entire family of β-lactam antibiotics due to the acquisition of an extra penicillin-binding protein, PBP2a. Studies have shown that spoVG is involved in oxacillin resistance, while the regulatory mechanism remains elusive. In this study, we have found that SpoVG plays a positive role in oxacillin resistance through promoting cell wall synthesis and inhibiting cell wall degradation in MRSA strain N315. Deletion of spoVG in strain N315 led to a significant decrease in oxacillin resistance and a dramatic increase in Triton X-100-induced autolytic activity simultaneously. Real-time quantitative reverse transcription-PCR revealed that the expression of 8 genes related to cell wall metabolism or oxacillin resistance was altered in the spoVG mutant. Electrophoretic mobility shift assay indicated that SpoVG can directly bind to the putative promoter regions of lytN (murein hydrolase), femA, and lytSR (the two-component system). These findings suggest a molecular mechanism in which SpoVG modulates oxacillin resistance by regulating cell wall metabolism in MRSA.
Collapse
|
72
|
Prax M, Mechler L, Weidenmaier C, Bertram R. Glucose Augments Killing Efficiency of Daptomycin Challenged Staphylococcus aureus Persisters. PLoS One 2016; 11:e0150907. [PMID: 26960193 PMCID: PMC4784881 DOI: 10.1371/journal.pone.0150907] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/21/2016] [Indexed: 02/05/2023] Open
Abstract
Treatment of Staphylococcus aureus in stationary growth phase with high doses of the antibiotic daptomycin (DAP) eradicates the vast majority of the culture and leaves persister cells behind. Despite resting in a drug-tolerant and dormant state, persister cells exhibit metabolic activity which might be exploited for their elimination. We here report that the addition of glucose to S. aureus persisters treated with DAP increased killing by up to five-fold within one hour. This glucose-DAP effect also occurred with strains less sensitive to the drug. The underlying mechanism is independent of the proton motive force and was not observed with non-metabolizable 2-deoxy-glucose. Our results are consistent with two hypotheses on the glucose-DAP interplay. The first is based upon glucose-induced carbohydrate transport proteins that may influence DAP and the second suggests that glucose may trigger the release or activity of cell-lytic proteins to augment DAP’s mode of action.
Collapse
Affiliation(s)
- Marcel Prax
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Auf der Morgenstelle 28, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Paul-Ehrlich-Institut, Mikrobiologische Sicherheit, Paul-Ehrlich-Str. 51–59, 63225 Langen, Germany
| | - Lukas Mechler
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Auf der Morgenstelle 28, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Christopher Weidenmaier
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Auf der Morgenstelle 28, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Klinikum Nürnberg Medical School GmbH, Research Department, Paracelsus Medical University, Nuremberg, Germany
- * E-mail:
| |
Collapse
|
73
|
Wang D, Yu JM, Dorosky RJ, Pierson LS, Pierson EA. The Phenazine 2-Hydroxy-Phenazine-1-Carboxylic Acid Promotes Extracellular DNA Release and Has Broad Transcriptomic Consequences in Pseudomonas chlororaphis 30-84. PLoS One 2016; 11:e0148003. [PMID: 26812402 PMCID: PMC4727817 DOI: 10.1371/journal.pone.0148003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Enhanced production of 2-hydroxy-phenazine-1-carboxylic acid (2-OH-PCA) by the biological control strain Pseudomonas chlororaphis 30–84 derivative 30-84O* was shown previously to promote cell adhesion and alter the three-dimensional structure of surface-attached biofilms compared to the wild type. The current study demonstrates that production of 2-OH-PCA promotes the release of extracellular DNA, which is correlated with the production of structured biofilm matrix. Moreover, the essential role of the extracellular DNA in maintaining the mass and structure of the 30–84 biofilm matrix is demonstrated. To better understand the role of different phenazines in biofilm matrix production and gene expression, transcriptomic analyses were conducted comparing gene expression patterns of populations of wild type, 30-84O* and a derivative of 30–84 producing only PCA (30-84PCA) to a phenazine defective mutant (30-84ZN) when grown in static cultures. RNA-Seq analyses identified a group of 802 genes that were differentially expressed by the phenazine producing derivatives compared to 30-84ZN, including 240 genes shared by the two 2-OH-PCA producing derivatives, the wild type and 30-84O*. A gene cluster encoding a bacteriophage-derived pyocin and its lysis cassette was upregulated in 2-OH-PCA producing derivatives. A holin encoded in this gene cluster was found to contribute to the release of eDNA in 30–84 biofilm matrices, demonstrating that the influence of 2-OH-PCA on eDNA production is due in part to cell autolysis as a result of pyocin production and release. The results expand the current understanding of the functions different phenazines play in the survival of bacteria in biofilm-forming communities.
Collapse
Affiliation(s)
- Dongping Wang
- Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, 87544, United States of America
| | - Jun Myoung Yu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843–2132, United States of America
| | - Robert J. Dorosky
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843–2132, United States of America
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843–2132, United States of America
| | - Elizabeth A. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843–2132, United States of America
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843–2133, United States of America
- * E-mail:
| |
Collapse
|
74
|
SrrAB Modulates Staphylococcus aureus Cell Death through Regulation of cidABC Transcription. J Bacteriol 2016; 198:1114-22. [PMID: 26811317 DOI: 10.1128/jb.00954-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/20/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED The death and lysis of a subpopulation in Staphylococcus aureus biofilm cells are thought to benefit the surviving population by releasing extracellular DNA, a critical component of the biofilm extracellular matrix. Although the means by which S. aureus controls cell death and lysis is not understood, studies implicate the role of the cidABC and lrgAB operons in this process. Recently, disruption of the srrAB regulatory locus was found to cause increased cell death during biofilm development, likely as a result of the sensitivity of this mutant to hypoxic growth. In the current study, we extended these findings by demonstrating that cell death in the ΔsrrAB mutant is dependent on expression of the cidABC operon. The effect of cidABC expression resulted in the generation of increased reactive oxygen species (ROS) accumulation and was independent of acetate production. Interestingly, consistently with previous studies, cidC-encoded pyruvate oxidase was found to be important for the generation of acetic acid, which initiates the cell death process. However, these studies also revealed for the first time an important role of the cidB gene in cell death, as disruption of cidB in the ΔsrrAB mutant background decreased ROS generation and cell death in a cidC-independent manner. The cidB mutation also caused decreased sensitivity to hydrogen peroxide, which suggests a complex role for this system in ROS metabolism. Overall, the results of this study provide further insight into the function of the cidABC operon in cell death and reveal its contribution to the oxidative stress response. IMPORTANCE The manuscript focuses on cell death mechanisms in Staphylococcus aureus and provides important new insights into the genes involved in this ill-defined process. By exploring the cause of increased stationary-phase death in an S. aureus ΔsrrAB regulatory mutant, we found that the decreased viability of this mutant was a consequence of the overexpression of the cidABC operon, previously shown to be a key mediator of cell death. These investigations highlight the role of the cidB gene in the death process and the accumulation of reactive oxygen species. Overall, the results of this study are the first to demonstrate a positive role for CidB in cell death and to provide an important paradigm for understanding this process in all bacteria.
Collapse
|
75
|
Qin W, Wang L, Zhai R, Ma Q, Liu J, Bao C, Zhang H, Sun C, Feng X, Gu J, Du C, Han W, Langford PR, Lei L. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages. Antonie van Leeuwenhoek 2015; 109:51-70. [PMID: 26494209 DOI: 10.1007/s10482-015-0609-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Abstract
Actinobacillus pleuropneumoniae is an important pathogen that causes respiratory disease in pigs. Trimeric autotransporter adhesin (TAA) is a recently discovered bacterial virulence factor that mediates bacterial adhesion and colonization. Two TAA coding genes have been found in the genome of A. pleuropneumoniae strain 5b L20, but whether they contribute to bacterial pathogenicity is unclear. In this study, we used homologous recombination to construct a double-gene deletion mutant, ΔTAA, in which both TAA coding genes were deleted and used it in in vivo and in vitro studies to confirm that TAAs participate in bacterial auto-aggregation, biofilm formation, cell adhesion and virulence in mice. A microarray analysis was used to determine whether TAAs can regulate other A. pleuropneumoniae genes during interactions with porcine primary alveolar macrophages. The results showed that deletion of both TAA coding genes up-regulated 36 genes, including ene1514, hofB and tbpB2, and simultaneously down-regulated 36 genes, including lgt, murF and ftsY. These data illustrate that TAAs help to maintain full bacterial virulence both directly, through their bioactivity, and indirectly by regulating the bacterial type II and IV secretion systems and regulating the synthesis or secretion of virulence factors. This study not only enhances our understanding of the role of TAAs but also has significance for those studying A. pleuropneumoniae pathogenesis.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lei Wang
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.,College of Animal Science, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Ruidong Zhai
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Qiuyue Ma
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jianfang Liu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hu Zhang
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chongtao Du
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - P R Langford
- Section of Paediatrics, Imperial College London, London, UK
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
76
|
Arya R, Princy SA. Exploration of Modulated Genetic Circuits Governing Virulence Determinants in Staphylococcus aureus. Indian J Microbiol 2015; 56:19-27. [PMID: 26843693 DOI: 10.1007/s12088-015-0555-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
The expression of virulence genes in the human pathogen Staphylococcus aureus is strongly influenced by the multiple global regulators. The signal transduction cascade of these global regulators is accountable for recognizing and integrating the environmental cues to regulate the virulence regulon. While the production of virulent factors by individual global regulators are comparatively straightforward to define, auto-regulation of these global regulators and their impact on other regulators is more complex process. There are several reports on the production of virulent factors that are precisely regulated by switching processes of multiple global regulators including some prominent accessory regulators such as agr, sae and sar which allows S. aureus to coordinate the gene expression, and thus, provide organism an ability to act collectively. This review implicates the mechanisms involved in the global regulation of various virulence factors along with a comprehensive discussion on the differences between these signal transduction systems, their auto-induction and, coordination of classical and some comparatively new bacterial signal transduction systems.
Collapse
Affiliation(s)
- Rekha Arya
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, 613 401 Tamil Nadu India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, 613 401 Tamil Nadu India
| |
Collapse
|
77
|
Beltrame CO, Côrtes MF, Bonelli RR, Côrrea ABDA, Botelho AMN, Américo MA, Fracalanzza SEL, Figueiredo AMS. Inactivation of the Autolysis-Related Genes lrgB and yycI in Staphylococcus aureus Increases Cell Lysis-Dependent eDNA Release and Enhances Biofilm Development In Vitro and In Vivo. PLoS One 2015; 10:e0138924. [PMID: 26406329 PMCID: PMC4583396 DOI: 10.1371/journal.pone.0138924] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus ica-independent biofilms are multifactorial in nature, and various bacterial proteins have been associated with biofilm development, including fibronectin-binding proteins A and B, protein A, surface protein SasG, proteases, and some autolysins. The role of extracellular DNA (eDNA) has also been demonstrated in some S. aureus biofilms. Here, we constructed a Tn551 library, and the screening identified two genes that affected biofilm formation, lrgB and yycI. The repressive effect of both genes on the development of biofilm was also confirmed in knockout strains constructed by allelic recombination. In contrast, the superexpression of either lrgB or yycI by a cadmium-inducible promoter led to a decrease in biofilm accumulation. Indeed, a significant increase in the cell-lysis dependent eDNA release was detected when lrgB or yycI were inactivated, explaining the enhanced biofilm formed by these mutants. In fact, lrgB and yycI genes belong to distinct operons that repress bacterial autolysis through very different mechanisms. LrgB is associated with the synthesis of phage holin/anti-holin analogues, while YycI participates in the activation/repression of the two-component system YycGF (WalKR). Our in vivo data suggest that autolysins activation lead to increased bacterial virulence in the foreign body animal model since a higher number of attached cells was recovered from the implanted catheters inoculated with lrgB or yycI knockout mutants.
Collapse
Affiliation(s)
- Cristiana Ossaille Beltrame
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Marina Farrel Côrtes
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Raquel Regina Bonelli
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Ana Beatriz de Almeida Côrrea
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Ana Maria Nunes Botelho
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Marco Antônio Américo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Sérgio Eduardo Longo Fracalanzza
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
78
|
Patel D, Ellington MJ, Hope R, Reynolds R, Arnold C, Desai M. Identification of genetic variation exclusive to specific lineages associated with Staphylococcus aureus bacteraemia. J Hosp Infect 2015; 91:136-45. [PMID: 26320614 DOI: 10.1016/j.jhin.2015.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/08/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Meticillin-resistant Staphylococcus aureus (MRSA) bacteraemia cases have declined since 2003, and have mostly been due to two epidemic (E) strains, E15 (multi-locus sequence type clonal complex CC22) and E16 (CC30). By contrast, the incidence of meticillin-susceptible S. aureus (MSSA) bacteraemia has remained largely unchanged and our understanding of these isolates has remained poor. AIM To investigate the distribution and nucleotide sequence of heterogeneous regions between successful lineages using the 2009 British Society for Antimicrobial Chemotherapy (BSAC) Bacteraemia Resistance Surveillance Programme collection of S. aureus. METHODS S. aureus isolates (N = 202) comprised of 103 MRSA and 99 MSSA isolates were analysed using fluorescent amplified fragment length polymorphism (FAFLP) to detect nucleotide variations due to lineage-specific sequence motifs as well as differences in the distribution of mobile genetic elements between lineages. FINDINGS E15 and E16 MRSA strains comprised 79% and 6% of the collection in 2009 respectively. Six lineages, including CC22 and CC30, were associated with MRSA bacteraemia in the UK and Ireland. MSSA isolates were more diverse with 19 different lineages detected. FAFLP revealed lineage-specific sequence variations in loci encoding factors such as proteases or factors involved in haem biosynthesis, both of which may affect the success of major S. aureus lineages. Proteins encoded on certain mobile genetic elements or involved in cobalamin biosynthesis were found to be exclusive to CC8, CC22, or CC30. CONCLUSION Overall, the genetic diversity among regions of the core genome and mobile genetic elements may alter antimicrobial resistance and the production of virulence or fitness factors that may be linked to strain success.
Collapse
Affiliation(s)
- D Patel
- Genomic Services and Development Unit, Microbiology Services Colindale, Public Health England, London, UK
| | - M J Ellington
- Microbiology Services Cambridge, Public Health England, Addenbrooke's Hospital, Cambridge, UK
| | - R Hope
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Microbiology Services Colindale, Public Health England, London, UK
| | - R Reynolds
- Infection Sciences, North Bristol NHS Trust, Bristol, UK; British Society of Antimicrobial Chemotherapy, Birmingham, UK
| | - C Arnold
- Genomic Services and Development Unit, Microbiology Services Colindale, Public Health England, London, UK
| | - M Desai
- Genomic Services and Development Unit, Microbiology Services Colindale, Public Health England, London, UK.
| |
Collapse
|
79
|
Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS One 2015; 10:e0134149. [PMID: 26230316 PMCID: PMC4521753 DOI: 10.1371/journal.pone.0134149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/06/2015] [Indexed: 11/19/2022] Open
Abstract
The Lactobacillus buchneri CD034 strain, known to improve the ensiling process of green fodder and the quality of the silage itself was transcriptionally analyzed by sequencing of transcriptomes isolated under anaerobic vs. aerobic conditions. L. buchneri CD034 was first cultivated under anaerobic conditions and then shifted to aerobic conditions by aeration with 21% oxygen. Cultivations already showed that oxygen was consumed by L. buchneri CD034 after aeration of the culture while growth of L. buchneri CD034 was still observed. RNA sequencing data revealed that irrespective of the oxygen status of the culture, the most abundantly transcribed genes are required for basic cell functions such as protein biosynthesis, energy metabolism and lactic acid fermentation. Under aerobic conditions, 283 genes were found to be transcriptionally up-regulated while 198 genes were found to be down-regulated (p-value < 0.01). Up-regulated genes i. a. play a role in oxygen consumption via oxidation of pyruvate or lactate (pox, lctO). Additionally, genes encoding proteins required for decomposition of reactive oxygen species (ROS) such as glutathione reductase or NADH peroxidase were also found to be up-regulated. Genes related to pH homeostasis and redox potential balance were found to be down-regulated under aerobic conditions. Overall, genes required for lactic acid fermentation were hardly affected by the growth conditions applied. Genes identified to be differentially transcribed depending on the aeration status of the culture are suggested to specify the favorable performance of the strain in silage formation.
Collapse
|
80
|
Misawa Y, Kelley KA, Wang X, Wang L, Park WB, Birtel J, Saslowsky D, Lee JC. Staphylococcus aureus Colonization of the Mouse Gastrointestinal Tract Is Modulated by Wall Teichoic Acid, Capsule, and Surface Proteins. PLoS Pathog 2015. [PMID: 26201029 PMCID: PMC4511793 DOI: 10.1371/journal.ppat.1005061] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI) tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA) mutant (ΔtagO) failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl) tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin. Staphylococcus aureus persistently colonizes ~20% of the human population, and 40–60% of humans are intermittently colonized by this bacterium. The most common reservoir for S. aureus is the anterior nares, and the incidence of staphylococcal disease in higher in individuals who are colonized. Rectal colonization by S. aureus isolates, reflecting gastrointestinal (GI) carriage, has recently been recognized as an important reservoir from which person to person transmission occurs. We developed a murine model of S. aureus GI colonization to investigate bacterial factors that promote staphylococcal colonization of the gut. We identified several surface-associated S. aureus antigens that modulate colonization of the GI tract and identified a surface glycopolymer (cell wall teichoic acid) as critical for the early steps in colonization. The failure of the teichoic acid mutant to colonize the GI tract can be attributed to its defects in bacterial adherence and to its enhanced susceptibility to mammalian host defenses unique to the gastrointestinal tract. Efforts to develop antimicrobials that target WTA may lead to an overall reduction in asymptomatic colonization by antibiotic-resistant S. aureus and may impact the incidence of invasive disease.
Collapse
Affiliation(s)
- Yoshiki Misawa
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathryn A. Kelley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linhui Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wan Beom Park
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Johannes Birtel
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Saslowsky
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
81
|
Abstract
UNLABELLED Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. IMPORTANCE Volatiles are small, air-transmittable molecules produced by all kingdoms of organisms including bacteria. Volatiles possess diverse biological activities and play important roles in bacteria-bacteria and bacteria-host interactions. Although volatiles can be used as a novel and important way of cell-cell communication due to their air-transmittable nature, little is known about how the volatile-mediated signaling mechanism works. In this study, we demonstrate that the bacterium Bacillus subtilis uses one such volatile, acetic acid, as a quorum-sensing-like signal to coordinate the timing of the formation of structurally complex cell communities, also known as biofilms. We further characterized the molecular mechanisms of how B. subtilis responds to acetic acid in stimulating biofilm formation. Our study also suggests that acetic acid may be used as a volatile signal for cross-species communication.
Collapse
|
82
|
Zheng L, Yan M, Fan F, Ji Y. The Essential WalK Histidine Kinase and WalR Regulator Differentially Mediate Autolysis of Staphylococcus aureus RN4220. JOURNAL OF NATURE AND SCIENCE 2015; 1:e111. [PMID: 26052549 PMCID: PMC4457336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The two-component regulatory system, WalR/WalK is necessary for growth of different gram-positive bacteria, including Staphylococcus aureus. In present study, we confirmed the essentiality of both the histidine kinase protein WalK and the response regulator WalR for growth using S. aureus RN4220 strain and demonstrated that the histidine kinase protein WalK and the response regulator WalR function differently in regulation of staphylococcal autolysis. The down-regulation of walR expression effectively inhibited Triton X-100-induced lysis and had a weak impact on bacterial tolerance to penicillin induced cell lysis. In contrast, the down-regulation of walK expression had no influence on either Triton X-100- or penicillin-caused autolysis. Moreover, we determined the effect of WalR and WalK on bacterial hydrolase activity using a zymogram analysis. The results showed that the cell lysate of down-regulated walR expression mutant displayed several bands of decreased cell wall hydrolytic activities; however, the down-regulation of WalK had no dramatic impact on the hydrolytic activities. Furthermore, we examined the impact of WalR on the transcription of cidA associated with staphylococcal autolysis, and the results showed that the down-regulation of WalR led to decreased transcription of cidA in the log phase of growth. Taken together, the above results suggest that the essential WalR response regulator and the essential WalK histidine kinase might differently control bacterial lysis in RN4220 strain.
Collapse
Affiliation(s)
- Li Zheng
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota. 1971 Commonwealth Ave. St. Paul. MN 55108, USA
| | - Meiying Yan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota. 1971 Commonwealth Ave. St. Paul. MN 55108, USA
| | - Frank Fan
- Promega Corporation, Madison, WI 53711, USA
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota. 1971 Commonwealth Ave. St. Paul. MN 55108, USA
| |
Collapse
|
83
|
The Matrix Reloaded: Probing the Extracellular Matrix Synchronizes Bacterial Communities. J Bacteriol 2015; 197:2092-2103. [PMID: 25825428 DOI: 10.1128/jb.02516-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In response to chemical communication, bacterial cells often organize themselves into complex multicellular communities that carry out specialized tasks. These communities are frequently referred to as biofilms, which involve collective behavior of different cell types. Like cells of multicellular eukaryotes, the biofilm cells are surrounded by self-produced polymers that constitute the extracellular matrix (ECM), which binds them to each other and to the surface. In multicellular eukaryotes, it has been evident for decades that cell-ECM interactions control multiple cellular processes during development. While cells, both in biofilms and in multicellular eukaryotes, are surrounded by ECM and activate various genetic programs, until recently it has been unclear whether cell-ECM interactions are recruited in bacterial communicative behaviors. In this review, we will describe the examples reported thus far for ECM involvement in control of cell behavior throughout the different stages of biofilm formation. The studies presented in this review provide a newly emerging perspective of the bacterial ECM as an active player in regulation of biofilm development.
Collapse
|
84
|
Patel K, Golemi-Kotra D. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS. F1000Res 2015; 4:79. [PMID: 27127614 PMCID: PMC4830213 DOI: 10.12688/f1000research.6213.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/08/2023] Open
Abstract
The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of
Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of
cidABC and
lrgAB operons, the gene products of which are involved in programmed cell death and lysis.
Invivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the
lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the
in vivo observations that regulation of the
lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of
lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS.
Collapse
Affiliation(s)
- Kevin Patel
- Department of Chemistry, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada
| | - Dasantila Golemi-Kotra
- Department of Chemistry, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada; Department of Biology, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
85
|
Lewis AM, Matzdorf SS, Endres JL, Windham IH, Bayles KW, Rice KC. Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Mol Microbiol 2015; 96:651-69. [PMID: 25651868 DOI: 10.1111/mmi.12962] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus nitrosative stress resistance is due in part to flavohemoprotein (Hmp). Although hmp is present in all sequenced S. aureus genomes, 37% of analyzed strains also contain nor, encoding a predicted quinol-type nitric oxide (NO) reductase (saNOR). DAF-FM staining of NO-challenged wild-type, nor, hmp and nor hmp mutant biofilms suggested that Hmp may have a greater contribution to intracellular NO detoxification relative to saNOR. However, saNOR still had a significant impact on intracellular NO levels and complemented NO detoxification in a nor hmp mutant. When grown as NO-challenged static (low-oxygen) cultures, hmp and nor hmp mutants both experienced a delay in growth initiation, whereas the nor mutant's ability to initiate growth was comparable with the wild-type strain. However, saNOR contributed to cell respiration in this assay once growth had resumed, as determined by membrane potential and respiratory activity assays. Expression of nor was upregulated during low-oxygen growth and dependent on SrrAB, a two-component system that regulates expression of respiration and nitrosative stress resistance genes. High-level nor promoter activity was also detectable in a cell subpopulation near the biofilm substratum. These results suggest that saNOR contributes to NO-dependent respiration during nitrosative stress, possibly conferring an advantage to nor+ strains in vivo.
Collapse
Affiliation(s)
- A M Lewis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA
| | | | | | | | | | | |
Collapse
|
86
|
MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii. EUKARYOTIC CELL 2015; 14:396-405. [PMID: 25710964 DOI: 10.1128/ec.00266-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/16/2015] [Indexed: 01/06/2023]
Abstract
Two-component signaling pathways generally include sensor histidine kinases and response regulators. We identified an ortholog of the response regulator protein Skn7 in the insect-pathogenic fungus Metarhizium robertsii, which we named MrSkn7. Gene deletion assays and functional characterizations indicated that MrSkn7 functions as a transcription factor. The MrSkn7 null mutant of M. robertsii lost the ability to sporulate and had defects in cell wall biosynthesis but was not sensitive to oxidative and osmotic stresses compared to the wild type. However, the mutant was able to produce spores under salt stress. Insect bioassays using these spores showed that the virulence of the mutant was significantly impaired compared to that of the wild type due to the failures to form the infection structure appressorium and evade host immunity. In particular, deletion of MrSkn7 triggered cell autolysis with typical features such as cell vacuolization, downregulation of repressor genes, and upregulation of autolysis-related genes such as extracellular chitinases and proteases. Promoter binding assays confirmed that MrSkn7 could directly or indirectly control different putative target genes. Taken together, the results of this study help us understand the functional divergence of Skn7 orthologs as well as the mechanisms underlying the development and control of virulence in insect-pathogenic fungi.
Collapse
|
87
|
Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat Chem Biol 2015; 11:182-8. [PMID: 25689336 DOI: 10.1038/nchembio.1754] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
Abstract
Bacteria have developed resistance against every antibiotic at a rate that is alarming considering the timescale at which new antibiotics are developed. Thus, there is a critical need to use antibiotics more effectively, extend the shelf life of existing antibiotics and minimize their side effects. This requires understanding the mechanisms underlying bacterial drug responses. Past studies have focused on survival in the presence of antibiotics by individual cells, as genetic mutants or persisters. Also important, however, is the fact that a population of bacterial cells can collectively survive antibiotic treatments lethal to individual cells. This tolerance can arise by diverse mechanisms, including resistance-conferring enzyme production, titration-mediated bistable growth inhibition, swarming and interpopulation interactions. These strategies can enable rapid population recovery after antibiotic treatment and provide a time window during which otherwise susceptible bacteria can acquire inheritable genetic resistance. Here, we emphasize the potential for targeting collective antibiotic tolerance behaviors as an antibacterial treatment strategy.
Collapse
|
88
|
Sahukhal GS, Batte JL, Elasri MO. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus. FEMS Microbiol Lett 2015; 362:fnv006. [PMID: 25724778 DOI: 10.1093/femsle/fnv006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host's immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR operon as an additional positive regulator of biofilm formation. In this study, we define the regulatory pathway by which msaABCR controls biofilm formation. We demonstrate that the msaABCR operon is a negative regulator of proteases. The control of protease production mediates the processing of the major autolysin, Atl, and thus regulates the rate of autolysis. In the absence of the msaABCR operon, Atl is processed by proteases at a high rate, leading to increased cell death and a defect in biofilm maturation. We conclude that the msaABCR operon plays a key role in maintaining the balance between autolysis and growth within the staphylococcal biofilm.
Collapse
Affiliation(s)
- Gyan S Sahukhal
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA
| | - Justin L Batte
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA
| | - Mohamed O Elasri
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA
| |
Collapse
|
89
|
The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Curr Top Microbiol Immunol 2015; 409:145-198. [PMID: 26728068 DOI: 10.1007/82_2015_5019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.
Collapse
|
90
|
Asai K, Yamada K, Yagi T, Baba H, Kawamura I, Ohta M. Effect of incubation atmosphere on the production and composition of staphylococcal biofilms. J Infect Chemother 2014; 21:55-61. [PMID: 25454214 DOI: 10.1016/j.jiac.2014.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/19/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are pathogenic bacteria that often cause invasive infections in humans. In this study, we characterized the composition and growth characteristics of staphylococcal biofilms under various incubation atmospheres. We assessed the effect of incubation atmosphere (aerobic, 5% CO2, anaerobic, and microaerobic) on the biofilm production capabilities of S. aureus strains isolated from healthy volunteers and from patients with catheter-related bloodstream infection. In addition, the composition of S. aureus and S. epidermidis biofilms was determined by assessment of biofilm degradation after treatment with DNase I, proteinase K, and dispersin B. The strains obtained from healthy volunteers and patients showed similar biofilm formation capabilities. Biofilms of S. aureus were rich in proteins when developed under ambient atmospheric conditions, 5% CO2, and microaerobic condition, whereas S. epidermidis biofilms contained large amounts of poly-β (1, 6)-N-acetyl-D-glucosamine when developed under ambient atmospheric conditions and microaerobic condition. The biofilm-producing capability of S. epidermidis was considerably higher than that of S. aureus under aerobic condition. Staphylococcal isolates obtained from healthy individuals and patients with catheter-related infections have similar biofilm-forming capabilities. Under microaerobic conditions, S. aureus and S. epidermidis form protein-rich and poly-β (1, 6)-N-acetyl-D-glucosamine-rich biofilms, respectively. These components may play an important role in the development of biofilms inside the body and may be the target molecules to prevent catheter-related infections caused by these organisms.
Collapse
Affiliation(s)
- Kentaro Asai
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Japan
| | - Keiko Yamada
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Japan.
| | - Tetsuya Yagi
- Department of Infectious Diseases, Centre of National University Hospital for Infection Control, Nagoya University Hospital, Japan
| | - Hisashi Baba
- Department of Infectious Diseases, Kanazawa Medical University, Japan
| | - Ichiro Kawamura
- Division of Infectious Diseases, Shizuoka Cancer Center, Japan
| | - Michio Ohta
- Department of Nursing, School of Nursing, Sugiyama Jogakuen University, Japan
| |
Collapse
|
91
|
The effect of skin fatty acids on Staphylococcus aureus. Arch Microbiol 2014; 197:245-67. [PMID: 25325933 PMCID: PMC4326651 DOI: 10.1007/s00203-014-1048-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/19/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS.
Collapse
|
92
|
Sapp AM, Mogen AB, Almand EA, Rivera FE, Shaw LN, Richardson AR, Rice KC. Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus. PLoS One 2014; 9:e108868. [PMID: 25275514 PMCID: PMC4183505 DOI: 10.1371/journal.pone.0108868] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/04/2014] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential relationship between these two enzymes remains to be elucidated.
Collapse
Affiliation(s)
- April M. Sapp
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Austin B. Mogen
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Erin A. Almand
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Frances E. Rivera
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Anthony R. Richardson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
93
|
Holins in bacteria, eukaryotes, and archaea: multifunctional xenologues with potential biotechnological and biomedical applications. J Bacteriol 2014; 197:7-17. [PMID: 25157079 DOI: 10.1128/jb.02046-14] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Holins form pores in the cytoplasmic membranes of bacteria for the primary purpose of releasing endolysins that hydrolyze the cell wall and induce cell death. Holins are encoded within bacteriophage genomes, where they promote cell lysis for virion release, and within bacterial genomes, where they serve a diversity of potential or established functions. These include (i) release of gene transfer agents, (ii) facilitation of programs of differentiation such as those that allow sporulation and spore germination, (iii) contribution to biofilm formation, (iv) promotion of responses to stress conditions, and (v) release of toxins and other proteins. There are currently 58 recognized families of holins and putative holins with members exhibiting between 1 and 4 transmembrane α-helical spanners, but many more families have yet to be discovered. Programmed cell death in animals involves holin-like proteins such as Bax and Bak that may have evolved from bacterial holins. Holin homologues have also been identified in archaea, suggesting that these proteins are ubiquitous throughout the three domains of life. Phage-mediated cell lysis of dual-membrane Gram-negative bacteria also depends on outer membrane-disrupting "spanins" that function independently of, but in conjunction with, holins and endolysins. In this minireview, we provide an overview of their modes of action and the first comprehensive summary of the many currently recognized and postulated functions and uses of these cell lysis systems. It is anticipated that future studies will result in the elucidation of many more such functions and the development of additional applications.
Collapse
|
94
|
Fischer A, Kambara K, Meyer H, Stenz L, Bonetti EJ, Girard M, Lalk M, Francois P, Schrenzel J. GdpS contributes to Staphylococcus aureus biofilm formation by regulation of eDNA release. Int J Med Microbiol 2014; 304:284-99. [DOI: 10.1016/j.ijmm.2013.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/25/2013] [Accepted: 10/27/2013] [Indexed: 11/30/2022] Open
|
95
|
Beliaev AS, Romine MF, Serres M, Bernstein HC, Linggi BE, Markillie LM, Isern NG, Chrisler WB, Kucek LA, Hill EA, Pinchuk GE, Bryant DA, Wiley HS, Fredrickson JK, Konopka A. Inference of interactions in cyanobacterial-heterotrophic co-cultures via transcriptome sequencing. ISME JOURNAL 2014; 8:2243-55. [PMID: 24781900 DOI: 10.1038/ismej.2014.69] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/10/2022]
Abstract
We used deep sequencing technology to identify transcriptional adaptation of the euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 and the marine facultative aerobe Shewanella putrefaciens W3-18-1 to growth in a co-culture and infer the effect of carbon flux distributions on photoautotroph-heterotroph interactions. The overall transcriptome response of both organisms to co-cultivation was shaped by their respective physiologies and growth constraints. Carbon limitation resulted in the expansion of metabolic capacities, which was manifested through the transcriptional upregulation of transport and catabolic pathways. Although growth coupling occurred via lactate oxidation or secretion of photosynthetically fixed carbon, there was evidence of specific metabolic interactions between the two organisms. These hypothesized interactions were inferred from the excretion of specific amino acids (for example, alanine and methionine) by the cyanobacterium, which correlated with the downregulation of the corresponding biosynthetic machinery in Shewanella W3-18-1. In addition, the broad and consistent decrease of mRNA levels for many Fe-regulated Synechococcus 7002 genes during co-cultivation may indicate increased Fe availability as well as more facile and energy-efficient mechanisms for Fe acquisition by the cyanobacterium. Furthermore, evidence pointed at potentially novel interactions between oxygenic photoautotrophs and heterotrophs related to the oxidative stress response as transcriptional patterns suggested that Synechococcus 7002 rather than Shewanella W3-18-1 provided scavenging functions for reactive oxygen species under co-culture conditions. This study provides an initial insight into the complexity of photoautotrophic-heterotrophic interactions and brings new perspectives of their role in the robustness and stability of the association.
Collapse
Affiliation(s)
- Alexander S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Margie F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Margrethe Serres
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hans C Bernstein
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bryan E Linggi
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lye M Markillie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nancy G Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Leo A Kucek
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Grigoriy E Pinchuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Donald A Bryant
- 1] Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA [2] Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jim K Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Allan Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
96
|
Ali S, Duan J, Charles TC, Glick BR. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol 2014; 343:193-8. [DOI: 10.1016/j.jtbi.2013.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/22/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
|
97
|
Abstract
Although the concept of programmed cell death (PCD) in bacteria has been met with scepticism, a growing body of evidence suggests that it can no longer be ignored. Several recent studies indicate that the phenotypic manifestations of apoptosis, which are processes that are associated with ordered cellular disassembly in eukaryotes, are conserved in bacteria. In this Opinion article, I propose a model for the coordinated control of potential bacterial PCD effectors and argue that the processes involved are functionally analogous to eukaryotic PCD systems.
Collapse
Affiliation(s)
- Kenneth W Bayles
- Center for Staphylococcal Research, Department of Pathology & Microbiology, The University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
98
|
Okshevsky M, Meyer RL. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol 2013; 41:341-52. [PMID: 24303798 DOI: 10.3109/1040841x.2013.841639] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The significance of extracellular DNA (eDNA) in biofilms was overlooked until researchers added DNAse to a Pseudomonas aeruginosa biofilm and watched the biofilm disappear. Now, a decade later, the widespread importance of eDNA in biofilm formation is undisputed, but detailed knowledge about how it promotes biofilm formation and conveys antimicrobial resistance is only just starting to emerge. In this review, we discuss how eDNA is produced, how it aids bacterial adhesion, secures the structural stability of biofilms and contributes to antimicrobial resistance. The appearance of eDNA in biofilms is no accident: It is produced by active secretion or controlled cell lysis - sometimes linked to competence development. eDNA adsorbs to and extends from the cell surface, promoting adhesion to abiotic surfaces through acid-base interactions. In the biofilm, is it less clear how eDNA interacts with cells and matrix components. A few eDNA-binding biomolecules have been identified, revealing new concepts in biofilm formation. Being anionic, eDNA chelates cations and restricts diffusion of cationic antimicrobials. Furthermore, chelation of Mg(2+) triggers a genetic response that further increases resistance. The multifaceted role of eDNA makes it an attractive target to sensitize biofilms to conventional antimicrobial treatment or development of new strategies to combat biofilms.
Collapse
Affiliation(s)
- Mira Okshevsky
- Interdisciplinary Nanosicence Center, Aarhus University , Aarhus , Denmark
| | | |
Collapse
|
99
|
Abstract
The cytoplasmic membrane of most bacteria is surrounded by a more or less thick murein layer (peptidoglycan) that protects the protoplast from mechanical damage, osmotic rupture and lysis. When bacteria are dividing processes are initiated stepwise that involve DNA replication, constriction of the membranes, cell growth, biosynthesis of new murein, and finally the generation of two daughter cells. As the daughter cells are still covalently interlinked by the murein network they must be separated by specific peptidoglycan hydrolases, also referred to as autolysins. In staphylococci, the major autolysin (Atl) and its processed products N-acetylmuramoyl-l-alanine amidase (AM) and endo-β-N-acetylglucosaminidase (GL) have been in the research focus for long time. This review addresses phenotypic consequences of atl mutants, impact of Atl in virulence, the mechanism of targeting to the septum region, regulation of atl, the structure of the amidase and the repeat regions, as well as the phylogeny of Atl and its use in Staphylococcus genus and species typing.
Collapse
|
100
|
Shala A, Patel KH, Golemi-Kotra D, Audette GF. Expression, purification, crystallization and preliminary X-ray analysis of the receiver domain of Staphylococcus aureus LytR protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1418-21. [PMID: 24316844 PMCID: PMC3855734 DOI: 10.1107/s1744309113030972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022]
Abstract
The response-regulatory protein LytR belongs to a family of transcription factors involved in the regulation of important virulence factors in pathogenic bacteria. The protein consists of a receiver domain and an effector domain, which play an important role in controlled cell death and lysis. The LytR receiver domain (LytR(N)) has been overexpressed, purified and crystallized using the sitting-drop and hanging-drop vapour-diffusion methods. The crystals grew as needles, with unit-cell parameters a = b = 84.82, c = 157.3 Å, α = β = 90, γ = 120°. LytR(N) crystallized in space group P6122 and the crystals diffracted to a maximum resolution of 2.34 Å. Based on the Matthews coefficient (V(M) = 5.44 Å(3) Da(-1)), one molecule is estimated to be present in the asymmetric unit.
Collapse
Affiliation(s)
- Agnesa Shala
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Kevin H. Patel
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Dasantila Golemi-Kotra
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|