51
|
Park JW, Lee SG, Song JY, Joo JS, Chung MJ, Kim SC, Youn HS, Kang HL, Baik SC, Lee WK, Cho MJ, Rhee KH. Proteomic analysis of Helicobacter pylori cellular proteins fractionated by ammonium sulfate precipitation. Electrophoresis 2008; 29:2891-903. [PMID: 18546177 DOI: 10.1002/elps.200800006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Among 1590 ORFs in the Helicobacter pylori genome, >250 have been identified as authentic genes by proteomic analysis. Low-abundance proteins need to be enriched to a minimal amount for MALDI-TOF analysis and salt precipitation has generally been used for protein enrichment. Here, a whole-cell extract of H. pylori strain 26695 was subjected to protein fractionation with stepwise concentrations of ammonium sulfate and the proteins were displayed by 2-DE. The protein spots were quantified using PDQUEST software and identified by peptide fingerprinting. The 2-DE profiles and intensities of individual protein spots differed among the protein fractions. Out of the 98 identified proteins, 61 were found in the stepwise ammonium sulfate fractions but not in the whole-cell extract. Out of these, 37 proteins, including KdsA, were found exclusively in a single fraction. In contrast, GroEL, UreA, UreB, TrxA, NapA, and FldA were ubiquitously present in all fractions. Iron-containing proteins such as NapA, SodB, CeuE, and Pfr were found predominantly in the 100% saturated ammonium sulfate precipitate. Additionally, 29 proteins were newly identified in this study. These data will facilitate the preparation of significant H. pylori proteins, as well as provide information about low-abundance proteins.
Collapse
Affiliation(s)
- Jeong-Won Park
- Department of Microbiology, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Choi YW, Park SA, Lee HW, Kim DS, Lee NG. Analysis of growth phase-dependent proteome profiles reveals differential regulation of mRNA and protein in Helicobacter pylori. Proteomics 2008; 8:2665-75. [DOI: 10.1002/pmic.200700689] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
53
|
Liu GY, Nie P, Zhang J, Li N. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Flavobacterium columnare. JOURNAL OF FISH DISEASES 2008; 31:269-276. [PMID: 18353018 DOI: 10.1111/j.1365-2761.2007.00898.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Outer membrane proteins (OMPs) of bacteria are key molecules interacting with the host environment. Flavobacterium columnare, a pathogen-causing columnaris disease of fish worldwide, was studied in order to understand the composition of its OMPs. The sarcosine-insoluble membrane fraction of the OMPs was analysed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in combination with reverse-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC MS/MS). Thirty-six proteins were identified, including proteins involved in cell wall/membrane biogenesis, specific transport of various nutrients and in essential metabolism. The present study is the first report on the OMPs of F. columnare, and may serve as the basis for understanding the pathogenesis of the bacterium.
Collapse
Affiliation(s)
- G Y Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Laboratory of Fish Diseases, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | |
Collapse
|
54
|
Development of inducible systems to engineer conditional mutants of essential genes of Helicobacter pylori. Appl Environ Microbiol 2008; 74:2095-102. [PMID: 18245237 DOI: 10.1128/aem.01348-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Escherichia coli-Helicobacter pylori shuttle vector pHeL2 was modified to introduce the inducible LacI(q)-pTac system of E. coli, in which the promoters were engineered to be under the control of H. pylori RNA polymerase. The amiE gene promoter of H. pylori was taken to constitutively express the LacI(q) repressor. Expression of the reporter gene lacZ was driven by either pTac (pILL2150) or a modified version of the ureI gene promoter in which one or two LacI-binding sites and/or mutated nucleotides between the ribosomal binding site and the ATG start codon (pILL2153 and pILL2157) were introduced. Promoter activity was evaluated by measuring beta-galactosidase activity. pILL2150 is a tightly regulated expression system suitable for the analysis of genes with low-level expression, while pILL2157 is well adapted for the controlled expression of genes encoding recombinant proteins in H. pylori. To exemplify the usefulness of these tools, we constructed conditional mutants of the putative essential pbp1 and ftsI genes encoding penicillin-binding proteins 1 and 3 of H. pylori, respectively. Both genes were cloned into pILL2150 and introduced in the parental H. pylori strain N6. The chromosomally harbored pbp1 and ftsI genes were then inactivated by replacing them with a nonpolar kanamycin cassette. Inactivation was strictly dependent upon addition of isopropyl-beta-d-thiogalactopyranoside. Hence, we were able to construct the first conditional mutants of H. pylori. Finally, we demonstrated that following in vitro methylation of the recombinant plasmids, these could be introduced into a large variety of H. pylori isolates with different genetic backgrounds.
Collapse
|
55
|
Godlewska R, Pawlowski M, Dzwonek A, Mikula M, Ostrowski J, Drela N, Jagusztyn-Krynicka EK. Tip-alpha (hp0596 gene product) is a highly immunogenic Helicobacter pylori protein involved in colonization of mouse gastric mucosa. Curr Microbiol 2008; 56:279-86. [PMID: 18172719 DOI: 10.1007/s00284-007-9083-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 11/06/2007] [Indexed: 02/06/2023]
Abstract
A product of the Helicobacter pylori hp0596 gene (Tip-alpha) is a highly immunogenic homodimeric protein, unique for this bacterium. Cell fractionation experiments indicate that Tip-alpha is anchored to the inner membrane. In contrast, the three-dimensional model of the protein suggests that Tip-alpha is soluble or, at least, largely exposed to the solvent. hp0596 gene knockout resulted in a significant decrease in the level of H. pylori colonization as measured by real-time PCR assay. In addition, the Tip-alpha recombinant protein was determined to stimulate macrophage to produce IL-1alpha and TNF-alpha. Both results imply that Tip-alpha is rather loosely connected to the inner membrane and potentially released during infection.
Collapse
Affiliation(s)
- Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
56
|
Suh MJ, Alami H, Clark DJ, Parmar PP, Robinson JM, Huang ST, Fleischmann RD, Peterson SN, Pieper R. Widespread Occurrence of Non-Enzymatic Deamidations of Asparagine Residues in Yersinia pestis Proteins Resulting from Alkaline pH Membrane Extraction Conditions. THE OPEN PROTEOMICS JOURNAL 2008; 1:106-115. [PMID: 20428468 PMCID: PMC2860289 DOI: 10.2174/1875039700801010106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Extraction of crude membrane fractions with alkaline solutions, such as 100-200 mM Na(2)CO(3) (pH ~11), is often used to solubilize peripheral membrane proteins. Integral membrane proteins are largely retained in membrane pellets. We applied this method to the fractionation of membrane proteins of the plague bacterium Yersinia pestis. Extensive horizontal spot trains were observed in 2-DE gels. The pI values of the most basic spots part of such protein spot trains usually matched the computationally predicted pI values. Regular patterns of decreasing spot pI values and in silico analysis with the software ProMoST suggested ;n-1' deamidations of asparagine (N) and/or glutamine (Q) side chains for ;n' observed spots of a protein in a given spot train. MALDI-MS analysis confirmed the occurrence of deamidations, particularly in N side chains part of NG dipeptide motifs. In more than ten cases, tandem MS data for tryptic peptides provided strong evidence for deamidations, with y- and b-ion series increased by 1 Da following N-to-D substitutions. Horizontal spot trains in 2-DE gels were rare when alkaline extraction was omitted during membrane protein sample preparation. This study strongly supports the notion that exposure to alkaline pH solutions is a dominant cause of extensive N and Q side chain deamidations in proteins during sample preparation of membrane extracts. The modifications are of non-enzymatic nature and not physiologically relevant. Therefore, quantitative spot differences within spot trains in differential protein display experiments following the aforementioned sample preparation steps need to be interpreted cautiously.
Collapse
Affiliation(s)
- Moo-Jin Suh
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, U.S.A
| | - Hamid Alami
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, U.S.A
| | - David J. Clark
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, U.S.A
| | - Prashanth P. Parmar
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, U.S.A
| | - Jeffrey M. Robinson
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, U.S.A
| | - Shih-Ting Huang
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, U.S.A
| | | | - Scott N. Peterson
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, U.S.A
| | - Rembert Pieper
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, U.S.A
| |
Collapse
|
57
|
|
58
|
Bernardini G, Braconi D, Santucci A. The analysis of Neisseria meningitidis proteomes: Reference maps and their applications. Proteomics 2007; 7:2933-46. [PMID: 17628027 DOI: 10.1002/pmic.200700094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neisseria meningitidis is an encapsulated Gram-negative bacterium responsible for significant morbidity and mortality worldwide. The availability of meningococcal genome sequences in combination with the rapid growth of proteomic techniques and other high-throughput methods, provided new approaches to the analysis of bacterial system biology. This review considers the meningococcal reference maps so far published as a starting point aimed to elucidate bacterial physiology and pathogenicity, paying particular attention to proteins with potential vaccine and diagnostic applications.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biologia Molecolare, via Fiorentina 1, Università degli Studi di Siena, Siena, Italy
| | | | | |
Collapse
|
59
|
Myers-Morales T, Cowan C, Gray ME, Wulff CR, Parker CE, Borchers CH, Straley SC. A surface-focused biotinylation procedure identifies the Yersinia pestis catalase KatY as a membrane-associated but non-surface-located protein. Appl Environ Microbiol 2007; 73:5750-9. [PMID: 17644638 PMCID: PMC2074897 DOI: 10.1128/aem.02968-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 06/28/2007] [Indexed: 11/20/2022] Open
Abstract
This study identified major surface proteins of the plague bacterium Yersinia pestis. We applied a novel surface biotinylation method, followed by NeutrAvidin (NA) bead capture, on-bead digestion, and identification by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The use of stachyose during biotinylation focused the reaction to the surface. Coupled with NA pulldown and immunoblot analysis, this method determined whether a protein was accessible to the surface. We applied the method to test the hypothesis that the catalase KatY is a surface protein of the plague bacterium Y. pestis. A rabbit serum recognized the catalase KatY as a major putative outer membrane-associated antigen expressed by Y. pestis cells grown at 37 degrees C. Similar findings by other groups had led to speculations that this protein might be exposed to the surface and might be a candidate for evaluation as a protective antigen for an improved plague vaccine. KatY was obtained only in the total membrane fraction, and stachyose greatly reduced its biotinylation as well as that of the periplasmic maltose binding protein, indicating that KatY is not on the bacterial surface. LC-MS-MS analysis of on-bead digests representing ca. 10(9) cells identified highly abundant species, including KatY, Pal, and OmpA, as well as the lipoprotein Pcp, all of which bound in a biotin-specific manner. Pla, Lpp, and OmpX (Ail) bound to the NA beads in a non-biotin-specific manner. There was no contamination from abundant cytoplasmic proteins. We hypothesize that OmpX and Pcp are highly abundant and likely to be important for the Y. pestis pathogenic process. We speculate that a portion of KatY associates with the outer membrane in intact cells but that it is located on the periplasmic side. Consistent with this idea, it did not protect C57BL/6 mice against bubonic plague.
Collapse
Affiliation(s)
- Tanya Myers-Morales
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Affiliation(s)
- Michael F Loughlin
- The University of Nottingham, Division of Food Sciences, School of Biosciences, Sutton Bonnington Campus, Loughborough, Leicestershire, LE12 5RD, UK ;
| |
Collapse
|
61
|
Chung JW, Ng-Thow-Hing C, Budman LI, Gibbs BF, Nash JHE, Jacques M, Coulton JW. Outer membrane proteome ofActinobacillus pleuropneumoniae: LC-MS/MS analyses validatein silico predictions. Proteomics 2007; 7:1854-65. [PMID: 17476711 DOI: 10.1002/pmic.200600979] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Gram-negative bacterial pathogen Actinobacillus pleuropneumoniae causes porcine pneumonia, a highly infectious respiratory disease that contributes to major economic losses in the swine industry. Outer membrane (OM) proteins play key roles in infection and may be targets for drug and vaccine research. Exploiting the genome sequence of A. pleuropneumoniae serotype 5b, we scanned in silico for proteins predicted to be localized at the cell surface. Five genome scanning programs (Proteome Analyst, PSORT-b, BOMP, Lipo, and LipoP) were run to construct a consensus prediction list of 93 OM proteins in A. pleuropneumoniae. An inventory of predicted OM proteins was complemented by proteomic analyses utilizing gel- and solution-based methods, both coupled to LC-MS/MS. Different protocols were explored to enrich for OM proteins; the most rewarding required sucrose gradient centrifugation followed by membrane washes with sodium bromide and sodium carbonate. This protocol facilitated our identification of 47 OM proteins that represent 50% of the predicted OM proteome, most of which have not been characterized. Our study establishes the first OM proteome of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Jacqueline W Chung
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
62
|
Lamberti C, Pessione E, Giuffrida MG, Mazzoli R, Barello C, Conti A, Giunta C. Combined cup loading, bis(2-hydroxyethyl) disulfide, and protein precipitation protocols to improve the alkaline proteome ofLactobacillus hilgardii. Electrophoresis 2007; 28:1633-8. [PMID: 17492720 DOI: 10.1002/elps.200600496] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite the large number of papers dealing with bacterial proteomes, very few include information about proteins with alkaline pI's, because of the limits inherent in 2-DE technology. Nonetheless, analyses of in silico proteomes of many prokaryotes show a bimodal distribution of their proteins based on their pI's; the most crowded areas lying between pI 4-7 and 9-11. The aim of the present research was to set up a general, simple, and standardizable 2-DE protocol suitable for studying the alkaline proteome of Lactobacillus hilgardii, a Gram-positive bacillus isolated from wine. The method has also been tested on a Gram-negative bacterium able to degrade aromatic pollutants, Acinetobacter radioresistens S13. Optimization of the method was mainly focused on improving protein extraction and IEF (pI 6-11) separation protocols. Concerning IEF, different methods for sample loading (in-gel rehydration and cup loading), and different reducing agents (DTT and bis(2-hydroxyethyl) disulfide (HED)) were tested and compared. The proposed protocol was found to resolve efficiently alkaline proteins from both of our Lactobacillus and Acinetobacter strains, in spite of their different external layers, thus, enabling a more comprehensive study of their proteomes.
Collapse
Affiliation(s)
- Cristina Lamberti
- Dipartimento di Biologia Animale e dell'Uomo, Università di Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
63
|
Boonjakuakul JK, Gerns HL, Chen YT, Hicks LD, Minnick MF, Dixon SE, Hall SC, Koehler JE. Proteomic and immunoblot analyses of Bartonella quintana total membrane proteins identify antigens recognized by sera from infected patients. Infect Immun 2007; 75:2548-61. [PMID: 17307937 PMCID: PMC1865797 DOI: 10.1128/iai.01974-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/21/2007] [Accepted: 02/10/2007] [Indexed: 01/24/2023] Open
Abstract
Bartonella quintana is a fastidious, gram-negative, rod-shaped bacterium that causes prolonged bacteremia in immunocompetent humans and severe infections in immunocompromised individuals. We sought to define the outer membrane subproteome of B. quintana in order to obtain insight into the biology and pathogenesis of this emerging pathogen and to identify the predominant B. quintana antigens targeted by the human immune system during infection. We isolated the total membrane proteins of B. quintana and identified 60 proteins by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and peptide mass fingerprinting. Using the newly constructed proteome map, we then utilized two-dimensional immunoblotting with sera from 21 B. quintana-infected patients to identify 24 consistently recognized, immunoreactive B. quintana antigens that have potential relevance for pathogenesis and diagnosis. Among the outer membrane proteins, the variably expressed outer membrane protein adhesins (VompA and VompB), peptidyl-prolyl cis-trans-isomerase (PpI), and hemin-binding protein E (HbpE) were recognized most frequently by sera from patients, which is consistent with surface expression of these virulence factors during human infection.
Collapse
Affiliation(s)
- Jenni K Boonjakuakul
- Division of Infectious Diseases, 521 Parnassus Ave., Room C-443, University of California at San Francisco, San Francisco, CA 94143-0654, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Salzano AM, Arena S, Renzone G, D'Ambrosio C, Rullo R, Bruschi M, Ledda L, Maglione G, Candiano G, Ferrara L, Scaloni A. A widespread picture of theStreptococcus thermophilus proteome by cell lysate fractionation and gel-based/gel-free approaches. Proteomics 2007; 7:1420-33. [PMID: 17407180 DOI: 10.1002/pmic.200601030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among the group of lactic acid bacteria, Streptococcus thermophilus has found a wide application in industrial processes used for the manufacture of dairy products. Taking advantage of different proteome extraction and subfractionation protocols, bacterial cytosolic and membrane proteins were isolated and resolved by independent gel-free and gel-based separation procedures. Whole cytosolic fraction and its acid, basic and low molecular mass protein components were separated by different resolutive 2-DE and tricine 1-DE gels and identified by MALDI-TOF PMF and/or microLC-ESI-IT-MS/MS. Membrane proteins were resolved by 2-DE and SDS-PAGE gels and similarly identified by PMF and TMS analysis. In parallel, whole extract was trypsinized and resulting peptides were identified by shotgun 2-D LC-ESI-IT-MS/MS analysis. Using this combined approach, expression products corresponding to 458 different genes were identified, which cover almost a third of the predicted vegetative proteome. Relative protein concentration and hydrophobicity affected protein detection. Broad recognition was obtained for enzymes involved in carbohydrate, fatty acid, amino acid and nucleotide metabolism, replication, transcription, translation, cell wall synthesis, as well as for proteins affecting bacterial functions important for industrial applications, i.e. milk sugar import and exopolysaccharide biosynthesis. By providing detailed reference electrophoretic/chromatographic maps to be used in future comparative proteomic investigations on bacteria grown under various experimental conditions or on different bacterial strains, our results will favour dedicated studies on S. thermophilus metabolism and its regulation or on detection of biomarkers for selection of optimal strains for industrial applications.
Collapse
Affiliation(s)
- Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo, National Research Council, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Tangwatcharin P, Chanthachum S, Khopaibool P, Griffiths MW. Morphological and physiological responses of Campylobacter jejuni to stress. J Food Prot 2006; 69:2747-53. [PMID: 17133821 DOI: 10.4315/0362-028x-69.11.2747] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Under conditions of stress, cells of Campylobacter assume a coccoid shape that may be an evolutionary strategy evolved by the organism to enable survival between hosts. However, the physiology of Campylobacter as it devolves from spiral to coccoid-shaped morphology is poorly understood. In this study, conditions influencing the survival of Campylobacter jejuni ATCC 35921 in broth were determined. Cells in late log phase were resuspended in broth at 4 or 60 degrees C. The culturability of these cold- or heat-stressed cell suspensions was determined by spread plate counts and the activity of cells by the direct viable count technique and 5-cyano-2,3-ditolyltetrazolium chloride staining. C. jejuni changed form completely from culturable to viable but nonculturable cells (VBNC) within 25 days at 4 degrees C, and 15 min at 60 degrees C. Light microscopy of C. jejuni VBNC cells showed that the spiral-shaped cells became coccoid, and transmission electron microscopy of C. jejuni VBNC cells showed that the outer membrane was lost in aging cell suspensions. Furthermore, a limited proteomic study was carried out to compare C. jejuni proteins that exhibited increased or decreased synthesis on exposure to 60 degrees C.
Collapse
Affiliation(s)
- Pussadee Tangwatcharin
- Department of Food Science and Technology, Prince of Songkla University, Songkhla 90112, Thailand
| | | | | | | |
Collapse
|
66
|
Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 2006; 6:3400-13. [PMID: 16645985 DOI: 10.1002/pmic.200500821] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the absence of a suitable carbohydrate-based vaccine, outer membrane vesicle (OMV) vaccines have been used to disrupt outbreaks of serogroup B meningococcal disease for more than 20 years. Proteomic technology provides physical methods with the potential to assess the composition and consistency of these complex vaccines. 2-DE, combined with MS, were used to generate a proteome map of an OMV vaccine, developed to disrupt a long-running outbreak of group B disease in New Zealand. Seventy four spots from the protein map were identified including the outer membrane protein (OMP) antigens: PorA, PorB, RmpM and OpcA. Protein identification indicates that, in addition to OMPs, OMV vaccines contain periplasmic, membrane-associated and cytoplasmic proteins. 2-D-DIGE technology highlighted differences between preclinical development batches of vaccines from two different manufacturers.
Collapse
Affiliation(s)
- Caroline Vipond
- Department of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, UK.
| | | | | | | | | | | |
Collapse
|
67
|
Cordwell SJ. Technologies for bacterial surface proteomics. Curr Opin Microbiol 2006; 9:320-9. [PMID: 16679049 DOI: 10.1016/j.mib.2006.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 04/27/2006] [Indexed: 01/11/2023]
Abstract
Proteins from bacterial membranes are notoriously difficult to analyze using the traditional technologies encompassed under the term 'proteomics'. This is because of several factors, including the comparatively low abundance of most membrane proteins within a complex mixture containing cytoplasmic metabolic enzymes, the poor solubility of membrane components such as phospholipids, lipopolysaccharides and peptidoglycans, and the inherent hydrophobicity of many integral membrane proteins that contain up to 15 transmembrane-spanning regions. Recent advances in gel-based and chromatographic separations, coupled with protein and peptide labelling and the exquisite sensitivity of mass spectrometry, are finally beginning to overcome these problems. New technologies in membrane proteomics enable comparative analysis of these recalcitrant proteins from bacteria under a variety of biological conditions.
Collapse
Affiliation(s)
- Stuart J Cordwell
- School of Molecular and Microbial Biosciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
68
|
Uwins C, Deitrich C, Argo E, Stewart E, Davidson I, Cash P. Growth-induced changes in the proteome ofHelicobacter pylori. Electrophoresis 2006; 27:1136-46. [PMID: 16523451 DOI: 10.1002/elps.200500655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helicobacter pylori is a major human pathogen that is responsible for a number of gastrointestinal infections. We have used 2-DE to characterise protein synthesis in bacteria grown either on solid agar-based media or in each of two broth culture media (Brucella and brain heart infusion (BHI) broth). Significant differences were observed in the proteomes of bacteria grown either on agar-based or in broth media. Major changes in protein abundance were identified using principal component analysis (PCA), which delineated the profiles derived for the three key growth conditions (i.e. agar plates, Brucella and BHI broth). Proteins detected across the gel series were identified by peptide mass mapping and Edman sequencing. A number of proteins associated with protein synthesis in general as well as specific amino acid synthesis were depressed in broth-grown bacteria compared to plate-grown bacteria. A similar reduction was also observed in the abundance of proteins involved in detoxification. Two of the most abundant spots, identified as UreB and GroEL, in plate-grown bacteria showed a >140-fold drop in abundance in bacteria grown in Brucella broth compared to bacteria grown on agar plates. Two protein spots induced in bacteria grown in broth culture were both identified as glyceraldehyde 3-phosphate dehydrogenase based on their N-terminal amino acid sequences derived by Edman degradation. The underlying causes of the changes in the proteins abundance were not clear, but it was likely that a significant proportion of the changes were due to the alkaline pH of the broth culture media.
Collapse
Affiliation(s)
- Christina Uwins
- Department of Medical Microbiology, School of Medicine, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland
| | | | | | | | | | | |
Collapse
|
69
|
Carlsohn E, Nyström J, Bölin I, Nilsson CL, Svennerholm AM. HpaA is essential for Helicobacter pylori colonization in mice. Infect Immun 2006; 74:920-6. [PMID: 16428735 PMCID: PMC1360314 DOI: 10.1128/iai.74.2.920-926.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection with the human gastric pathogen Helicobacter pylori can give rise to chronic gastritis, peptic ulcer, and gastric cancer. All H. pylori strains express the surface-localized protein HpaA, a promising candidate for a vaccine against H. pylori infection. To study the physiological importance of HpaA, a mutation of the hpaA gene was introduced into a mouse-adapted H. pylori strain. To justify that the interruption of the hpaA gene did not cause any polar effects of downstream genes or was associated with a second site mutation, the protein expression patterns of the mutant and wild-type strains were characterized by two different proteomic approaches. Two-dimensional differential in-gel electrophoresis analysis of whole-cell extracts and subcellular fractionation combined with nano-liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry for outer membrane protein profiling revealed only minor differences in the protein profile between the mutant and the wild-type strains. Therefore, the mutant strain was tested for its colonizing ability in a well-established mouse model. While inoculation with the wild-type strain resulted in heavily H. pylori-infected mice, the HpaA mutant strain was not able to establish colonization. Thus, by combining proteomic analysis and in vivo studies, we conclude that HpaA is essential for the colonization of H. pylori in mice.
Collapse
Affiliation(s)
- Elisabet Carlsohn
- Department of Medical Biochemistry, Göteborg University, Box 440, 405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
70
|
Beswick EJ, Pinchuk IV, Minch K, Suarez G, Sierra JC, Yamaoka Y, Reyes VE. The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production. Infect Immun 2006; 74:1148-55. [PMID: 16428763 PMCID: PMC1360328 DOI: 10.1128/iai.74.2.1148-1155.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis associated with Helicobacter pylori infection is the result of both bacterial factors and the host response. We have previously shown that H. pylori binds to CD74 on gastric epithelial cells. In this study, we sought to identify the bacterial protein responsible for this interaction. H. pylori urease from a pool of bacterial surface proteins was found to coprecipitate with CD74. To determine how urease binds to CD74, we used recombinant urease A and B subunits. Recombinant urease B was found to bind directly to CD74 in immunoprecipitation and flow cytometry studies. By utilizing both recombinant urease subunits and urease B knockout bacteria, the urease B-CD74 interaction was shown to induce NF-kappaB activation and interleukin-8 (IL-8) production. This response was decreased by blocking CD74 with monoclonal antibodies. Further confirmation of the interaction of urease B with CD74 was obtained using a fibroblast cell line transfected with CD74 that also responded with NF-kappaB activation and IL-8 production. The binding of the H. pylori urease B subunit to CD74 expressed on gastric epithelial cells presents a novel insight into a previously unrecognized H. pylori interaction that may contribute to the proinflammatory immune response seen during infection.
Collapse
Affiliation(s)
- Ellen J Beswick
- Department of Pediatrics, Children's Hospital, Room 2.300, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Couturier MR, Tasca E, Montecucco C, Stein M. Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 2006; 74:273-81. [PMID: 16368981 PMCID: PMC1346642 DOI: 10.1128/iai.74.1.273-281.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Development of severe gastric diseases is strongly associated with those strains of Helicobacter pylori that contain the cag pathogenicity island (PAI) inserted into the chromosome. The cag PAI encodes a type IV secretion system that translocates the major disease-associated virulence protein, CagA, into the host epithelial cell. CagA then affects host signaling pathways, leading to cell elongations and inflammation. Since the precise mechanism by which the CagA toxin is translocated by the type IV secretion system remained elusive, we used fusion proteins and immunoprecipitation studies to identify CagA-interacting secretion components. Here we demonstrate that CagA, in addition to other yet-unidentified proteins, interacts with CagF, presumably at the inner bacterial membrane. This interaction is required for CagA translocation, since an isogenic nonpolar cagF mutant was translocation deficient. Our results suggest that CagF may be a protein with unique chaperone-like function that is involved in the early steps of CagA recognition and delivery into the type IV secretion channel.
Collapse
Affiliation(s)
- Marc Roger Couturier
- Department of Medical Microbiology and Immunology, University of Alberta, 1-17 Medical Sciences Building, Edmonton, Alberta T6G 2R3, Canada
| | | | | | | |
Collapse
|
72
|
Boyce JD, Cullen PA, Nguyen V, Wilkie I, Adler B. Analysis of thePasteurella multocida outer membrane sub-proteome and its response to thein vivo environment of the natural host. Proteomics 2006; 6:870-80. [PMID: 16372271 DOI: 10.1002/pmic.200401342] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study describes the identification of outer membrane proteins (OMPs) of the bacterial pathogen Pasteurella multocida and an analysis of how the expression of these proteins changes during infection of the natural host. We analysed the sarcosine-insoluble membrane fractions, which are highly enriched for OMPs, from bacteria grown under a range of conditions. Initially, the OMP-containing fractions were resolved by 2-DE and the proteins identified by MALDI-TOF MS. In addition, the OMP-containing fractions were separated by 1-D SDS-PAGE and protein identifications were made using nano LC MS/MS. Using these two methods a total of 35 proteins was identified from samples obtained from organisms grown in rich culture medium. Six of the proteins were identified only by 2-DE MALDI-TOF MS, whilst 17 proteins were identified only by 1-D LC MS/MS. We then analysed the OMPs from P. multocida which had been isolated from the bloodstream of infected chickens (a natural host) or grown in iron-depleted medium. Three proteins were found to be significantly up-regulated during growth in vivo and one of these (Pm0803) was also up-regulated during growth in iron-depleted medium. After bioinformatic analysis of the protein matches, it was predicted that over one third of the combined OMPs predicted by the bioinformatics sub-cellular localisation tools PSORTB and Proteome Analyst, had been identified during this study. This is the first comprehensive proteomic analysis of the P. multocida outer membrane and the first proteomic analysis of how a bacterial pathogen modifies its outer membrane proteome during infection.
Collapse
Affiliation(s)
- John D Boyce
- Australian Research Council Centre for Structural and Functional Microbial Genomics, Monash University, Victoria, Australia.
| | | | | | | | | |
Collapse
|
73
|
Berven FS, Karlsen OA, Straume AH, Flikka K, Murrell JC, Fjellbirkeland A, Lillehaug JR, Eidhammer I, Jensen HB. Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools. Arch Microbiol 2005; 184:362-77. [PMID: 16311759 DOI: 10.1007/s00203-005-0055-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/13/2005] [Accepted: 11/03/2005] [Indexed: 02/05/2023]
Abstract
High-resolution two-dimensional gel electrophoresis and mass spectrometry has been used to identify the outer membrane (OM) subproteome of the Gram-negative bacterium Methylococcus capsulatus (Bath). Twenty-eight unique polypeptide sequences were identified from protein samples enriched in OMs. Only six of these polypeptides had previously been identified. The predictions from novel bioinformatic methods predicting beta-barrel outer membrane proteins (OMPs) and OM lipoproteins were compared to proteins identified experimentally. BOMP ( http://www.bioinfo.no/tools/bomp ) predicted 43 beta-barrel OMPs (1.45%) from the 2,959 annotated open reading frames. This was a lower percentage than predicted from other Gram-negative proteomes (1.8-3%). More than half of the predicted BOMPs in M. capsulatus were annotated as (conserved) hypothetical proteins with significant similarity to very few sequences in Swiss-Prot or TrEMBL. The experimental data and the computer predictions indicated that the protein composition of the M. capsulatus OM subproteome was different from that of other Gram-negative bacteria studied in a similar manner. A new program, Lipo, was developed that can analyse entire predicted proteomes and give a list of recognised lipoproteins categorised according to their lipo-box similarity to known Gram-negative lipoproteins ( http://www.bioinfo.no/tools/lipo ). This report is the first using a proteomics and bioinformatics approach to identify the OM subproteome of an obligate methanotroph.
Collapse
Affiliation(s)
- Frode S Berven
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5020, Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Post DMB, Zhang D, Eastvold JS, Teghanemt A, Gibson BW, Weiss JP. Biochemical and Functional Characterization of Membrane Blebs Purified from Neisseria meningitidis Serogroup B. J Biol Chem 2005; 280:38383-94. [PMID: 16103114 DOI: 10.1074/jbc.m508063200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies with purified aggregates of endotoxin have revealed the importance of lipopolysaccharide-binding protein (LBP)-dependent extraction and transfer of individual endotoxin molecules to CD14 in Toll-like receptor 4 (TLR4)-dependent cell activation. Endotoxin is normally embedded in the outer membrane of intact Gram-negative bacteria and shed membrane vesicles ("blebs"). However, the ability of LBP and CD14 to efficiently promote TLR4-dependent cell activation by membrane-associated endotoxin has not been studied extensively. In this study, we used an acetate auxotroph of Neisseria meningitidis serogroup B to facilitate metabolic labeling of bacterial endotoxin and compared interactions of purified endotoxin aggregates and of membrane-associated endotoxin with LBP, CD14, and endotoxin-responsive cells. The endotoxin, phospholipid, and protein composition of the recovered blebs indicate that the blebs derive from the bacterial outer membrane. Proteomic analysis revealed an unusual enrichment in highly cationic (pI > 9) proteins. Both purified endotoxin aggregates and blebs activate monocytes and endothelial cells in a LBP-, CD14-, and TLR4/MD-2-dependent fashion, but the blebs were 3-10-fold less potent when normalized for the amount of endotoxin added. Differences in potency correlated with differences in efficiency of LBP-dependent delivery to and extraction of endotoxin by CD14. Both membrane phospholipids and endotoxin are extracted by LBP/soluble CD14 (sCD14) treatment, but only endotoxin.sCD14 reacts with MD-2 and activates cells. These findings indicate that the proinflammatory potency of endotoxin may be regulated not only by the intrinsic structural properties of endotoxin but also by its association with neighboring molecules in the outer membrane.
Collapse
Affiliation(s)
- Deborah M B Post
- The Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | | | |
Collapse
|
75
|
Xia X, Palidwor G. Genomic adaptation to acidic environment: evidence from Helicobacter pylori. Am Nat 2005; 166:776-84. [PMID: 16475092 DOI: 10.1086/497400] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 07/18/2005] [Indexed: 11/03/2022]
Abstract
The origin of new functions is fundamental in understanding evolution, and three processes known as adaptation, preadaptation, and exaptation have been proposed as possible evolutionary pathways leading to the origin of new functions. Here we examine the origin of an acid resistance mechanism in the mammalian gastric pathogen Helicobacter pylori, with reference to these three evolutionary pathways. The mechanism involved is that H. pylori, when exposed to the acidic environment in mammalian stomach, restricts the acute proton entry across its membrane by its increased usage of positively charged amino acids in the inner and outer membrane proteins. The results of our comparative genomic analysis between H. pylori, the two closely related species Helicobacter hepaticus and Campylobacter jejuni, and other relevant proteobacterial species are incompatible with the hypotheses invoking preadaptation or exaptation. The acid resistance mechanism most likely arose by selection favoring an increased usage of positively charged lysine in membrane proteins.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 150 Louis Pasteur, P.O. Box 450, Station A, Ottawa, Ontario K1N 6N5, Canada.
| | | |
Collapse
|
76
|
Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2005; 5:1331-45. [PMID: 15717330 DOI: 10.1002/pmic.200401019] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is one of the most common bacterial pathogens and causes a variety of diseases, such as peptic ulcer or gastric cancer. Despite intensive study of this human pathogen in the last decades, knowledge about its membrane proteins and, in particular, those which are putative components of the type IV secretion system encoded by the cag pathogenicity island (PAI) remains limited. Our aim is to establish a dynamic two-dimensional electrophoresis-polyacrylamide gel electrophoresis (2-DE-PAGE) database with multiple subproteomes of H. pylori (http://www.mpiib-berlin.mpg.de/2D-PAGE) which facilitates identification of bacterial proteins important in pathogen-host interactions. Using a proteomic approach, we investigated the protein composition of two H. pylori fractions: soluble proteins and structure-bound proteins (including membrane proteins). Both fractions differed markedly in the overall protein composition as determined by 2-DE. The 50 most abundant protein spots in each fraction were identified by peptide mass fingerprinting. We detected four cag PAI proteins, numerous outer membrane proteins (OMPs), the vacuolating cytotoxin VacA, other potential virulence factors, and few ribosomal proteins in the structure-bound fraction. In contrast, catalase (KatA), gamma-glutamyltranspeptidase (Ggt), and the neutrophil-activating protein NapA were found almost exclusively in the soluble protein fraction. The results presented here are an important complement to genome sequence data, and the established 2-D PAGE maps provide a basis for comparative studies of the H. pylori proteome. Such subproteomes in the public domain will be effective instruments for identifying new virulence factors and antigens of potential diagnostic and/or curative value against infections with this important pathogen.
Collapse
|
77
|
Sabarth N, Hurvitz R, Schmidt M, Zimny-Arndt U, Jungblut PR, Meyer TF, Bumann D. Identification of Helicobacter pylori surface proteins by selective proteinase K digestion and antibody phage display. J Microbiol Methods 2005; 62:345-9. [PMID: 15939494 DOI: 10.1016/j.mimet.2005.04.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 04/11/2005] [Accepted: 04/26/2005] [Indexed: 01/30/2023]
Abstract
Five surface proteins of Helicobacter pylori were identified by proteinase K treatment of live H. pylori followed by proteome analysis. One of the identified proteins, HopQ, is also recognized by an antibody selected by phage display screening of intact H. pylori.
Collapse
Affiliation(s)
- Nicolas Sabarth
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Schumannstrasse 21/22, D-10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
78
|
Serruto D, Adu-Bobie J, Capecchi B, Rappuoli R, Pizza M, Masignani V. Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. J Biotechnol 2004; 113:15-32. [PMID: 15380644 DOI: 10.1016/j.jbiotec.2004.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 03/09/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
Since its introduction, vaccinology has been very effective in preventing infectious diseases. However, in several cases, the conventional approach to identify protective antigens, based on biochemical, immunological and microbiological methods, has failed to deliver successful vaccine candidates against major bacterial pathogens. The recent development of powerful biotechnological tools applied to genome-based approaches has revolutionized vaccine development, biological research and clinical diagnostics. The availability of a genome provides an inclusive virtual catalogue of all the potential antigens from which it is possible to select the molecules that are likely to be more effective. Here, we describe the use of "reverse vaccinology", which has been successful in the identification of potential vaccines candidates against Neisseria meningitidis serogroup B and review the use of functional genomics approaches as DNA microarrays, proteomics and comparative genome analysis for the identification of virulence factors and novel vaccine candidates. In addition, we describe the potential of these powerful technologies in understanding the pathogenesis of various bacteria.
Collapse
Affiliation(s)
- Davide Serruto
- IRIS, Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|