51
|
Parker JK, Gu R, Estrera GA, Kirkpatrick B, Rose DT, Mavridou DAI, Mondy KE, Davies BW. Carbapenem-Resistant and ESBL-Producing Enterobacterales Emerging in Central Texas. Infect Drug Resist 2023; 16:1249-1261. [PMID: 36891378 PMCID: PMC9987243 DOI: 10.2147/idr.s403448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Purpose Carbapenem-resistant Enterobacterales (CRE) are subject to intense global monitoring in an attempt to maintain awareness of prevalent and emerging resistance mechanisms and to inform treatment and infection prevention strategies. CRE and extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales are not usually examined collectively in regards to their shared pool of resistance determinants. Here, we genetically and phenotypically assess clinical isolates of CRE and extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales in the growing region of Central Texas, where CRE are emergent and occurrence of non-carbapenemase-producing-CRE (non-CP-CRE) infections is increasing. Methods CRE (n=16) and ESBL-producing Enterobacterales (n=116) isolates were acquired from a regional hospital in Central Texas between December 2018 and January 2020. Isolates were assessed genetically and phenotypically using antibiotic susceptibility testing, targeted PCR, and whole genome sequencing. Results CRE infections are increasing in incidence in Central Texas, and Klebsiella pneumoniae is causing the majority of these infections. Moreover, K. pneumoniae sequence type (ST) 307 is commonly found among both non-CP-CRE and EBSL-producing strains. Isolates carry similar plasmids harboring the gene for the ESBL CTX-M-15 and belong to the global lineage, rather than the Texas lineage, of ST307. Antibiotic resistance profiles, sequence data, and clinical records suggest that porin mutations may promote the transition of ST307 isolates from ESBL-producing to non-CP-CRE. In addition to antibiotic resistance mechanisms, several CRE isolates harbor active colicinogenic plasmids, which might influence the competitiveness of these bacteria during patient colonization. Conclusion K. pneumoniae of the global ST307 lineage is circulating in Central Texas and is responsible for both non-CP CRE and ESBL-producing Enterobacterales infections. Enhanced surveillance is needed to understand the possible routes for the emergence of non-CP-CRE from EBSL-producing strains.
Collapse
Affiliation(s)
- Jennifer K Parker
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Richard Gu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Gregory A Estrera
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | | | - Dusten T Rose
- Department of Pharmacy, Ascension Seton, Dell Seton Medical Center at The University of Texas, Austin, TX, USA
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.,John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, USA
| | - Kristin E Mondy
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.,John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
52
|
Brunke MS, Konrat K, Schaudinn C, Piening B, Pfeifer Y, Becker L, Schwebke I, Arvand M. Tolerance of biofilm of a carbapenem-resistant Klebsiella pneumoniae involved in a duodenoscopy-associated outbreak to the disinfectant used in reprocessing. Antimicrob Resist Infect Control 2022; 11:81. [PMID: 35659363 PMCID: PMC9164365 DOI: 10.1186/s13756-022-01112-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background One possible transmission route for nosocomial pathogens is contaminated medical devices. Formation of biofilms can exacerbate the problem. We report on a carbapenemase-producing Klebsiella pneumoniae that had caused an outbreak linked to contaminated duodenoscopes. To determine whether increased tolerance to disinfectants may have contributed to the outbreak, we investigated the susceptibility of the outbreak strain to disinfectants commonly used for duodenoscope reprocessing. Disinfection efficacy was tested on planktonic bacteria and on biofilm. Methods Disinfectant efficacy testing was performed for planktonic bacteria according to EN standards 13727 and 14561 and for biofilm using the Bead Assay for Biofilms. Disinfection was defined as ≥ 5log10 reduction in recoverable colony forming units (CFU). Results The outbreak strain was an OXA-48 carbapenemase-producing K. pneumoniae of sequence type 101. We found a slightly increased tolerance of the outbreak strain in planktonic form to peracetic acid (PAA), but not to other disinfectants tested. Since PAA was the disinfectant used for duodenoscope reprocessing, we investigated the effect of PAA on biofilm of the outbreak strain. Remarkably, disinfection of biofilm of the outbreak strain could not be achieved by the standard PAA concentration used for duodenoscope reprocessing at the time of outbreak. An increased tolerance to PAA was not observed in a K. pneumoniae type strain tested in parallel. Conclusions Biofilm of the K. pneumoniae outbreak strain was tolerant to standard disinfection during duodenoscope reprocessing. This study establishes for the first time a direct link between biofilm formation, increased tolerance to disinfectants, reprocessing failure of duodenoscopes and nosocomial transmission of carbapenem-resistant K. pneumoniae. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01112-z.
Collapse
|
53
|
Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24743. [PMID: 36347819 PMCID: PMC9757020 DOI: 10.1002/jcla.24743] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 10/08/2023] Open
Abstract
Klebsiella pneumoniae is a notorious bacterium in clinical practice. Virulence, carbapenem-resistance and their convergence among K. pneumoniae are extensively discussed in this article. Hypervirulent K. pneumoniae (HvKP) has spread from the Asian Pacific Rim to the world, inducing various invasive infections, such as pyogenic liver abscess, endophthalmitis, and meningitis. Furthermore, HvKP has acquired more and more drug resistance. Among multidrug-resistant HvKP, hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP), and carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) are both devastating for their extreme drug resistance and virulence. The hypervirulence of HvKP is primarily attributed to hypercapsule, macromolecular exopolysaccharides, or excessive siderophores, although it has many other factors, for example, lipopolysaccharides, fimbriae, and porins. In contrast with classical determination of HvKP, that is, animal lethality test, molecular determination could be an optional and practical method after improvement. HvKP, including Hv-CRKP and CR-HvKP, has been progressing. R-M and CRISPR-Cas systems may play pivotal roles in such evolutions. Hv-CRKP and CR-HvKP, in particular the former, should be of severe concern due to their being more and more prevalent.
Collapse
Affiliation(s)
- Piaopiao Dai
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| | - Dakang Hu
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| |
Collapse
|
54
|
Zeng G, Pang Y, Zheng J, Zhuo C, Guo Y, Liang J, Li X, Lei Z, Zhu J, Xu L, Gao Z, Zhuo C, Liu J. Colonization with Carbapenem-Resistant Enterobacteriaceae Contributes to Unfavorable Outcomes in End-Stage Liver Disease Patients. Antibiotics (Basel) 2022; 11:1667. [PMID: 36421311 PMCID: PMC9686982 DOI: 10.3390/antibiotics11111667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 12/25/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are the highest priority pathogens of the World Health Organization, and their prevalence in end-stage liver disease (ESLD) patients is increasing. CRE colonization is an independent risk factor for CRE infections. We aimed to assess risk factors and explore the relationship between CRE colonization, infection, and prognosis in patients with ESLD. A total of 311 patients with ESLD were screened for CRE colonization by fecal swabs from October 2020 to January 2022. Antimicrobial susceptibility was tested using the broth microdilution method. Carbapenem resistance genes, multilocus sequence type, and capsular serotype were analyzed by polymerase chain reaction (PCR). Seventeen CRE strains were detected, among which the most common was Klebsiella pneumoniae. The CRE colonization rate was 5.5%. Artificial liver support was an independent risk factor for CRE colonization. Compared to the non-CRE colonization group, the colonization group had a higher incidence of CRE infection and a worse prognosis. Furthermore, these strains were not closely related, and all were sensitive to polymyxin and tigecycline. There was a high colonization rate in ESLD patients, and colonization strains were highly diverse. CRE colonization deserves attention in these patients, especially when treated with artificial liver support.
Collapse
Affiliation(s)
- Guofen Zeng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Department of Infectious Diseases, The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi 844000, China
| | - Yihua Pang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiaxin Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Chuyue Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Yingyi Guo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jiayin Liang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaojie Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ziying Lei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jianyun Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Lejia Xu
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Chao Zhuo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jing Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
55
|
Molecular patterns of clinically important fluoroquinolone resistance in multidrug-resistant Klebsiella pneumoniae isolates during nosocomial outbreaks in Shanghai, PR China. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction. The soaring resistance of
Klebsiella pneumoniae
to fluoroquinolones in PR China has substantially limited the application of these antimicrobials, especially in those clinical settings that were threatened by persistent carbapenem-resistant
K. pneumoniae
(CRKP), necessitating strict implementation of antimicrobial stewardship and active enhanced surveillance of infection control.
Hypothesis. There is interplay between plasmid-mediated quinolone resistance (PMQR) determinants and quinolone resistance-determining region (QRDR) mutations during the acquisition of a clinically important fluoroquinolone resistance (CI-FR) profile in multidrug-resistant
K. pneumoniae
(MDR-KP) isolates.
Aim. To investigate the high-risk CRKP clones responsible for nosocomial spread and analyse the molecular patterns of CI-FR in MDR-KP isolates in a tertiary hospital in Shanghai, PR China.
Methodology. A total of 34 isolates, including 30 CRKPs, were molecularly characterized. Investigations included antimicrobial susceptibility tests, multilocus sequence typing (MLST) and wzi genotyping, PCR sequencing and phylogenetic analysis for resistance-associated genes, and clinical information retrieval from medical records.
Results. Two high-risk CRKP clones, ST11-wzi64 and ST15-wzi19/wzi24, were identified as being responsible for nosocomial outbreaks in the intensive care unit (ICU) and the neurosurgery department, potentially by the respiratory route. QRDR mutations of both gyrA and parC were detected in isolates of ST15 (S83F/D87A/S80I), ST11 (S83I/D87G/S80I) and ST218 (D87A/S80I), respectively. The PMQR genes, qnrS1, aac(6′)-Ib-cr and oqxAB, were present in 32 (94.1 %) of the isolates alone or in combination, co-occurring with genes (bla) encoding β-lactamases, 16S rRNA methylases and putrescine ABC permeases. AcrR, an AcrAB transcriptional repressor, was insertion-inactivated by the IS5-like element in ST11 isolates. The encoding sequences of OmpK35 and OmpK36 genes were associated with specific STs and wzi alleles. ST11, ST15-wzi19 and ST218 isolates had frameshift disruptions in OmpK35 and specific GD insertions at position 134–135 in OmpK36. The 27 isolates with clinically important ciprofloxacin resistance (MICs ≥2 mg l−1) included 25 isolates (ST15, ST11, ST218) with multiple QRDR mutations, plus 1 with only 2 PMQR determinants (ST290-wzi21) and another with an unknown resistance mechanism (ST65-wzi72). Ciprofloxacin-susceptible isolates maintained intact ompK36 genes, including two CRKPs each with ST13-wzi74 (KPC-2 and NDM-1 coproducers) and ST65-wzi72, plus carbapenem-susceptible isolates (ST15-wzi24, ST65-wzi72, ST107-wzi173).
Conclusions. Under selective pressures, the accumulation of mutations of three types (QRDR, acrR, ompK36) and the acquisition of resistance-conferring genes have continuously contributed to CI-FR in MDR-KP isolates.
Collapse
|
56
|
Zhu W, Liu Y, Chen F, Chen S, Zhu Y, Li H, Wang J, Liu J, Li Y, Yu J, Guan H, Yu J, Shen L. Cooccurrence of Antibiotic Resistance and Hypervirulence in High-Risk Carbapenem-Resistant K14.K64 and Wzi209 Klebsiella pneumoniae Strains Driven by Plasmids and Their Derivatives. Microbiol Spectr 2022; 10:e0254121. [PMID: 35993767 PMCID: PMC9603693 DOI: 10.1128/spectrum.02541-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/25/2022] [Indexed: 01/04/2023] Open
Abstract
Emerging hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is a severe public health problem worldwide. To assess the cooccurrence of CRKP and hv-CRKP, a total of 1,181 CRKP isolates were collected from 2009 to 2018, covering their initial occurrence to outbreaks. Overall, two major capsular serotypes, namely, wzi209-CRKP and K14.K64-CRKP, were identified as being prevalent in pediatric and adult patients, respectively. Most isolates carried blaKPC, and the blaKPC-carrying hybrid plasmid IncFII-IncR, which was stable and transferable, was identified. The conjugation region (traN/traC) of IncFII-IncR was found to be variable, and the genes were used as markers to identify the transmission of strains among patient groups in this study. Notably, hv-CRKP was characterized by screening for four virulence genes (rmpA, iroN, terW, and rmpA2) in all 977 blaKPC-carrying K14.K64-CRKP and wzi209-CRKP strains. Two virulence types, namely, rmpA/iroN/terW/rmpA2 positive and terW/rmpA2 positive, were found. The corresponding virulence plasmids Vir1, i.e., nonconjugative IncFIB(k)-IncHI1B, and Vir2, i.e., conjugative antibiotic-resistant IncFIB-IncHI1B, were further characterized. Both Vir1 and Vir2 were stable, and the transferability of Vir2 was significantly higher than that of IncFII-IncR. However, none of the Vir1- or Vir2-carrying strains exhibited the hypervirulent phenotype. Meanwhile, hv-CRKP (terW/rmpA2 positive) was found in late 2018 among wzi209-CRKP strains. The corresponding Vir2-related fragment was characterized as chromosomally integrated, which dramatically enhanced the virulence of wzi209-CRKP. Transmission of hv-CRKP among patient groups was also confirmed according to virulence elements. Taken together, CRKP and hv-CRKP occurred on a large scale. Plasmids and their derivatives played an important role on this process. Surveillance and intervention of hv-CRKP are urgently needed. IMPORTANCE Currently, an increasing number of hv-CRKP strains have been reported and pose a substantial threat to public health worldwide, because these strains are considered to be simultaneously hypervirulent, carbapenem resistant, and transmissible. In this study, we provided a complete transition process of CRKP and hv-CRKP from their early emergence to outbreak in 10 years. We identified two epidemic groups, K14.K64 (wzi64)-CRKP and wzi209-CRKP, in adult and pediatric patients, respectively. K14.K64 (wzi64)-CRKP was widely present, while wzi209-CRKP was rarely reported as an epidemic type. We discovered a large scale of hv-CRKP transmission from CRKP and determined the importance of antibiotic resistance and virulence plasmids and their derivatives for the transition of CRKP and hv-CRKP. Two virulence plasmids coexist in out hospital, but neither of them enhanced virulence. Notably, we found a newly emerged type of CRKP, hypervirulent wzi209-CRKP, which had dramatically enhanced virulence, making it a great threat to human health.
Collapse
Affiliation(s)
- Weinan Zhu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Hu Li
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Wang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxian Liu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanrui Li
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Yu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Guan
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yu
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Laboratory Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Xin Hua Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
57
|
Cho YY, Kim JH, Kim H, Lee J, Im SJ, Ko KS. Comparison of Virulence between Two Main Clones (ST11 and ST307) of Klebsiella pneumoniae Isolates from South Korea. Microorganisms 2022; 10:microorganisms10091827. [PMID: 36144429 PMCID: PMC9504348 DOI: 10.3390/microorganisms10091827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigate the characteristics of two main clones of carbapenemase-producing Klebsiella pneumoniae isolates from South Korea, ST11 and ST307, including carbapenem-susceptible isolates. Antibiotic susceptibility, serotype or wzi allelic type, the presence of virulence genes, and virulence with respect to serum resistance and macrophage internalization were determined for ST11 and ST307 isolates. ST11 isolates had a wide range of characteristics, including serotype and virulence, compared with those of homogeneous ST307 isolates. The wzi14 or K14 type had higher virulence than that of other serotypes among the ST11 isolates, and the homogeneous ST307 isolates showed similar virulence level as that of the wzi14-type ST11 isolates. Our data suggest that it is necessary to monitor not only the introduction and spread of a specific clone, but also its detailed serotype.
Collapse
Affiliation(s)
- Yun Young Cho
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jee Hong Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hyunkeun Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Junghwa Lee
- Department of Precision Medicine, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Se Jin Im
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Correspondence: (S.J.I.); (K.S.K.); Tel.: +82-31-299-6125 (S.J.I.); +82-31-299-6223 (K.S.K.)
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Correspondence: (S.J.I.); (K.S.K.); Tel.: +82-31-299-6125 (S.J.I.); +82-31-299-6223 (K.S.K.)
| |
Collapse
|
58
|
Characterization of Novel Bacteriophage vB_KpnP_ZX1 and Its Depolymerases with Therapeutic Potential for K57 Klebsiella pneumoniae Infection. Pharmaceutics 2022; 14:pharmaceutics14091916. [PMID: 36145665 PMCID: PMC9505181 DOI: 10.3390/pharmaceutics14091916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae, ever discovered. Phage vB_KpnP_ZX1 did not show ideal bactericidal effect on K. pneumoniae 111-2, but TEM showed that the depolymerase Dep_ZX1 encoded on the short tail fiber protein has efficient capsule degradation activity. In vitro antibacterial results show that purified recombinant Dep_ZX1 can significantly prevent the formation of biofilm, degrade the formed biofilm, and improve the sensitivity of the bacteria in the biofilm to the antibiotics kanamycin, gentamicin, and streptomycin. Furthermore, the results of animal experiments show that 50 µg Dep_ZX1 can protect all K. pneumoniae 111-2-infected mice from death, whereas the control mice infected with the same dose of K. pneumoniae 111-2 all died. The degradation activity of Dep_ZX1 on capsular polysaccharide makes the bacteria weaken their resistance to immune cells, such as complement-mediated serum killing and phagocytosis, which are the key factors for its therapeutic action. In conclusion, Dep_ZX1 is a promising anti-virulence agent for the K57-type K. pneumoniae infection or biofilm diseases.
Collapse
|
59
|
The Molecular Epidemiology of Prevalent Klebsiella pneumoniae Strains and Humoral Antibody Responses against Carbapenem-Resistant K. pneumoniae Infections among Pediatric Patients in Shanghai. mSphere 2022; 7:e0027122. [PMID: 36069436 PMCID: PMC9599505 DOI: 10.1128/msphere.00271-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has caused wide dissemination among pediatric patients globally and thus has aroused public concern. Here, we investigated the clinical epidemiological characteristics of 140 nonreplicate clinical K. pneumoniae strains isolated from pediatric patients between January and December 2021. Of all isolates, 16.43% (23 of 140) were CRKP strains, which predominantly contained KPC carbapenemase. wzi sequencing demonstrated that KL47 (65.22%, 15 of 23) was the most frequent capsular type, followed by KL64 (17.39%, 4 of 23). A total of 23 CRKP strains were classified into three different O-genotypes, including OL101 (65.22%, 15 of 23), O1 (26.09%, 6 of 23), and O3 (8.7%, 2 of 23). Interestingly, KL47 strains were strongly associated with OL101, while KL64 strains were all linked with O1. Some capsule-deficient strains were identified by serological typing, phage-typing, depolymerase-typing, and uronic acid assay. In this study, compared with healthy children, higher titers of anti-capsular polysaccharides (CPS) IgG were first detected in the sera of K47 and K64 K. pneumoniae-infected children, which had the effective bactericidal activity against corresponding serotype K. pneumoniae strains. These findings will facilitate the development of novel therapeutic and vaccine strategies against K. pneumoniae infection in children. IMPORTANCE The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) strains resistant to numerous antibiotics and the limited therapeutic options available have become an urgent health threat to the immunocompromised pediatric population. Vaccines and antibodies, especially those targeting capsular polysaccharides, may be novel and effective prevention and treatment options. Thus, it is important to understand the spread of CRKP in pediatric populations. This research presents OL101:KL47 and O1:KL64 as the predominant combinations among CRKP strains in children in Shanghai, China. The primary carbapenemase gene is KPC in CRKP strains. Additionally, this study found elevated levels of anti-CPS IgG against K47 and K64 K. pneumoniae strains in pediatric patients for the first time. The significant bactericidal activity of these anti-CPS IgGs was confirmed.
Collapse
|
60
|
Perini M, Piazza A, Panelli S, Papaleo S, Alvaro A, Vailati F, Corbella M, Saluzzo F, Gona F, Castelli D, Farina C, Marone P, Cirillo DM, Cavallero A, Zuccotti GV, Comandatore F. Hypervariable-Locus Melting Typing: a Novel Approach for More Effective High-Resolution Melting-Based Typing, Suitable for Large Microbiological Surveillance Programs. Microbiol Spectr 2022; 10:e0100922. [PMID: 35913212 PMCID: PMC9430602 DOI: 10.1128/spectrum.01009-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogen typing is pivotal to detecting the emergence of high-risk clones in hospital settings and to limit their spread. Unfortunately, the most commonly used typing methods (i.e., pulsed-field gel electrophoresis [PFGE], multilocus sequence typing [MLST], and whole-genome sequencing [WGS]) are expensive or time-consuming, limiting their application to real-time surveillance. High-resolution melting (HRM) can be applied to perform cost-effective and fast pathogen typing, but developing highly discriminatory protocols is challenging. Here, we present hypervariable-locus melting typing (HLMT), a novel approach to HRM-based typing that enables the development of more effective and portable typing protocols. HLMT types the strains by assigning them to melting types (MTs) on the basis of a reference data set (HLMT-assignment) and/or by clustering them using melting temperatures (HLMT-clustering). We applied the HLMT protocol developed on the capsular gene wzi for Klebsiella pneumoniae on 134 strains collected during surveillance programs in four hospitals. Then, we compared the HLMT results to those obtained using wzi, MLST, WGS, and PFGE typing. HLMT distinguished most of the K. pneumoniae high-risk clones with a sensitivity comparable to that of PFGE and MLST+wzi. It also drew surveillance epidemiological curves comparable to those obtained using MLST+wzi, PFGE, and WGS typing. Furthermore, the results obtained using HLMT-assignment were consistent with those of wzi typing for 95% of the typed strains, with a Jaccard index value of 0.9. HLMT is a fast and scalable approach for pathogen typing, suitable for real-time hospital microbiological surveillance. HLMT is also inexpensive, and thus, it is applicable for infection control programs in low- and middle-income countries. IMPORTANCE In this work, we describe hypervariable-locus melting typing (HLMT), a novel fast approach to pathogen typing using the high-resolution melting (HRM) assay. The method includes a novel approach for gene target selection, primer design, and HRM data analysis. We successfully applied this method to distinguish the high-risk clones of Klebsiella pneumoniae, one of the most important nosocomial pathogens worldwide. We also compared HLMT to typing using WGS, the capsular gene wzi, MLST, and PFGE. Our results show that HLMT is a typing method suitable for real-time epidemiological investigation. The application of HLMT to hospital microbiology surveillance can help to rapidly detect outbreak emergence, improving the effectiveness of infection control strategies.
Collapse
Affiliation(s)
- Matteo Perini
- Department of Biomedical and Clinical Sciences, Romeo and Enrica Invernizzi Pediatric Clinical Research Center, Università Di Milano, Milan, Italy
| | - Aurora Piazza
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Simona Panelli
- Department of Biomedical and Clinical Sciences, Romeo and Enrica Invernizzi Pediatric Clinical Research Center, Università Di Milano, Milan, Italy
| | - Stella Papaleo
- Department of Biomedical and Clinical Sciences, Romeo and Enrica Invernizzi Pediatric Clinical Research Center, Università Di Milano, Milan, Italy
| | - Alessandro Alvaro
- Department of Biomedical and Clinical Sciences, Romeo and Enrica Invernizzi Pediatric Clinical Research Center, Università Di Milano, Milan, Italy
| | | | - Marta Corbella
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Floriana Gona
- Laboratory Microbiology and Virology, Ospedale San Raffaele Dibit, Milan, Italy
| | - Daniele Castelli
- Laboratory of Microbiology, ASST Monza, San Gerardo Hospital, Monza, Italy
| | - Claudio Farina
- Microbiology Institute, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Piero Marone
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Cavallero
- Laboratory of Microbiology, ASST Monza, San Gerardo Hospital, Monza, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Romeo and Enrica Invernizzi Pediatric Clinical Research Center, Università Di Milano, Milan, Italy
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, Università Di Milano, Milan, Italy
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences, Romeo and Enrica Invernizzi Pediatric Clinical Research Center, Università Di Milano, Milan, Italy
| |
Collapse
|
61
|
Banerjee K, Motley MP, Boniche-Alfaro C, Bhattacharya S, Shah R, Ardizzone A, Fries BC. Patient-Derived Antibody Data Yields Development of Broadly Cross-Protective Monoclonal Antibody against ST258 Carbapenem-Resistant Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0176022. [PMID: 35862974 PMCID: PMC9430753 DOI: 10.1128/spectrum.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The most pressing challenge for the development of anti-capsular antibodies is maximizing coverage against the heterogenous capsular polysaccharide (CPS) of carbapenem-resistant Klebsiella pneumoniae (CR-Kp). So far, only CR-Kp with wzi154 CPS has been successfully targeted by antibodies. Here, we present murine antibody 24D11, which was developed by vaccinating mice with purified wzi50-type CPS. Cross-reactivity and protective efficacy of MAb 24D11 were confirmed against CR-Kp that express the 3 most prevalent CPS types (wzi29, wzi154, wzi50) using both in vitro and in vivo infection models. 24D11 induced complement-mediated and independent opsonophagocytosis in macrophages as well as killing of all CR-Kp strains in whole blood cells derived from healthy donors. In a murine intratracheal infection model, 24D11 reduced lung burden and dissemination of CR-Kp strains when administered 4 h pre- or postinfection. The protective efficacy of 24D11 remained effective in neutropenic mice. This is the first antibody which exhibits cross-protective efficacy against clade 1 and 2 ST258 CR-Kp strains. It overcomes a major barrier to successfully target wzi29, a major CPS expressed by ST258 CR-Kp. The finding that 24D11 also exhibits potent protective efficacy against wzi154 CR-Kp strains highlights its high potential as a lead agent for the development of broadly active immunotherapy. IMPORTANCE Here, we present in vitro and in vivo data for the wzi50 CPS-specific monoclonal antibody MAb 24D11, demonstrating its cross-protective efficacy against three prominent win types (wzi29, wzi154, and wzi50) of the carbapenem-resistant clonal group CG258. In a murine pulmonary infection model, MAb 24D11 reduced bacterial lung burden and dissemination to other organs even if administered 4 h postinfection. Its protective efficacy was also observed in neutropenic mice, which highlights its potential value in clinical settings where oncology patients with CG258 infections may also be neutropenic.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Michael P. Motley
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Camila Boniche-Alfaro
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Somanon Bhattacharya
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Raj Shah
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Andrew Ardizzone
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
62
|
Lin J, Huang Y, Qian L, Pan X, Song Y. Liver Abscess Combined with Endogenous Endophthalmitis Caused by Genotype ST25 Serotype K2 Hypervirulent Klebsiella pneumoniae: A Case Report. Infect Drug Resist 2022; 15:4557-4561. [PMID: 36003987 PMCID: PMC9393113 DOI: 10.2147/idr.s376443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
At present, invasive syndrome caused by hypervirulent Klebsiella pneumoniae (HvKp) is a widespread concern, and HvKp strains of different genotypes have been isolated. Here, we report a case of community-acquired liver abscess and endogenous endophthalmitis caused by a genotype ST25 serotype K2 (ST25-K2) HvKp strain in China. A 51-year-old man with diabetes was transferred to our hospital from a local community hospital with persistent fever for > 20 days and blurred vision in his left eye. A detailed examination revealed a liver abscess, endogenous endophthalmitis, and pneumonia. Bacterial cultures of pus from the liver abscess and the vitreous abscess of the left eye yielded Klebsiella pneumoniae (Kp), which was sensitive to the recommended drugs. In addition to positive string tests, a genetic analysis showed that the strain belonged to sequence type 25 (ST25) and serotype K2, and carried already-reported virulence genes, including iucA, rmpA2, rmpA, aerobactin, and entB. The pathogenic agent isolated from this patient was identified as HvKp. The patient’s general condition improved after a combination of treatments, including antimicrobial therapy, abscess drainage, and nutritional support. Unfortunately, the patient lost the vision in his left eye and developed secondary glaucoma, resulting in inevitable enucleation. Sequence 25 serotype K2 HvKp strains have been previously associated with nosocomial infections, but none associated with community-acquired liver abscess combined with endogenous endophthalmitis has yet been reported. Clinicians must be alert to the possibility of genotype ST25-K2 HvKp infection in patients with community-acquired liver abscess combined with an invasive infection, such as ocular discomfort.
Collapse
Affiliation(s)
- Jian Lin
- Department of Infectious Diseases, Tongling People's Hospital, Tongling, Anhui, 244000, People's Republic of China
| | - Yize Huang
- Department of Infectious Diseases, Tongling People's Hospital, Tongling, Anhui, 244000, People's Republic of China
| | - Li Qian
- Department of Ophthalmology, Tongling People's Hospital, Tongling, Anhui, 244000, People's Republic of China
| | - Xiaolong Pan
- Medical Laboratories, Tongling People's Hospital, Tongling, Anhui, 244000, People's Republic of China
| | - Youliang Song
- Department of Infectious Diseases, Tongling People's Hospital, Tongling, Anhui, 244000, People's Republic of China
| |
Collapse
|
63
|
Chen H, Fang L, Chen W, Yang Q, Li D, Hu D, Zhang J. Pyogenic liver abscess-caused Klebsiella pneumoniae in a tertiary hospital in China in 2017: implication of hypervirulent carbapenem-resistant strains. BMC Infect Dis 2022; 22:685. [PMID: 35945499 PMCID: PMC9361654 DOI: 10.1186/s12879-022-07648-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background To investigate the epidemiology of Klebsiella pneumoniae (K. pneumoniae) inducing pyogenic liver abscess (PLA) in east China and the role of hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP). Methods Forty-three K. pneumoniae strains were collected from 43 patients with PLA at Hangzhou, China in 2017. Antimicrobial susceptibility tests, string test, multilocus sequence typing, pulsed-field gel electrophoresis, mobile genetic elements typing, regular PCR and sequencing, and Galleria mellonella (G. mellonella) lethality test were used to elucidate the epidemiology. Clinical data were collected. Results K. pneumoniae strains with serotypes K1 and K2 accounted for 69.8%, which shared 46.5% and 23.3% respectively. K. pneumoniae strains with clonal group 23 were predominant with a rate of 34.9%. Such antimicrobials showed susceptible rates over 80.0%: cefuroxime, cefotaxime, gentamycin, ticarcillin/clavulanate, ceftazidime, cefoperazone/tazobactam, cefepime, aztreonam, imipenem, meropenem, amikacin, tobramycin, ciprofloxacin, levofloxacin, doxycycline, minocycline, tigecycline, chloramphenicol, and trimethoprim-sulfamethoxazole. PFGE dendrogram showed 29 clusters for the 43 K. pneumoniae strains. Three Hv-CRKP strains were confirmed by G. mellonella lethality test, showing a constituent ratio of 7.0% (3/43). Totally three deaths were found, presenting a rate of 7.0% (3/43). The three died patients were all infected with Hv-CRKP. Conclusions K1 and K2 are the leading serotypes of K. pneumoniae causing PLA, which show highly divergent genetic backgrounds. Aminoglycosides, Generation 2nd to 4th cephalosporins, β-lactamase/β-lactamase inhibitors, carbapenems, fluoroquinolones are empirical choices. Hv-CRKP may confer an urgent challenge in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07648-0.
Collapse
Affiliation(s)
- Hongchao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Lanfang Fang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Wenjie Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Dan Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Dakang Hu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, 318000, China.
| | - Jin Zhang
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, 318000, China.
| |
Collapse
|
64
|
Li M, Wang H, Chen L, Guo G, Li P, Ma J, Chen R, Du H, Liu Y, Zhang W. Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice. Virol Sin 2022; 37:538-546. [PMID: 35513275 PMCID: PMC9437526 DOI: 10.1016/j.virs.2022.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is one of the major pathogens causing global multidrug-resistant infections. Therefore, strategies for preventing and controlling the infections are urgently needed. Phage depolymerase, often found in the tail fiber protein or the tail spike protein, is reported to have antibiofilm activity. In this study, phage P560 isolated from sewage showed specific for capsule locus type KL47 K. pneumoniae, and the enlarged haloes around plaques indicated that P560 encoded a depolymerase. The capsule depolymerase, ORF43, named P560dep, derived from phage P560 was expressed, purified, characterized and evaluated for enzymatic activity as well as specificity. We reported that the capsule depolymerase P560dep, can digest the capsule polysaccharides on the surface of KL47 type K. pneumoniae, and the depolymerization spectrum of P560dep matched to the host range of phage P560, KL47 K. pneumoniae. Crystal violet staining assay showed that P560dep was able to significantly inhibit biofilm formation. Further, a single dose (50 μg/mouse) of depolymerase intraperitoneal injection protected 90%-100% of mice from lethal challenge before or after infection by KL47 carbapenem-resistant K. pneumoniae. And pathological changes were alleviated in lung and liver of mice infected by KL47 type K. pneumoniae. It is demonstrated that depolymerase P560dep as an attractive antivirulence agent represents a promising tool for antimicrobial therapy.
Collapse
Affiliation(s)
- Min Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China
| | - Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
65
|
Huang X, Li X, An H, Wang J, Ding M, Wang L, Li L, Ji Q, Qu F, Wang H, Xu Y, Lu X, He Y, Zhang JR. Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog 2022; 18:e1010693. [PMID: 35914009 PMCID: PMC9342791 DOI: 10.1371/journal.ppat.1010693] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC’s capture, whereas the low-virulence (LV) counterparts confer partial protection against KC’s capture. Moreover, KC’s capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination. Klebsiella pneumoniae is a major human pathogen. While capsule is the main virulence factor of the pathogen, only several of more than 80 capsule serotypes are frequently identified in invasive infections. However, it remains unclear how capsule contributes to K. pneumoniae virulence. Here we show that capsule type defines K. pneumoniae virulence by differential escape of immune surveillance in the liver. While low-virulence (LV) types are captured by Kupffer cells (KCs), high-virulence (HV) types circumvent the anti-bacterial machinery. Further, inactivated K. pneumoniae vaccine enables KCs to capture the HV K. pneumoniae and protects mice from lethal infection. Our findings explain the clinical prevalence of HV capsule types, and provide promising insights for future vaccine development.
Collapse
Affiliation(s)
- Xueting Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiuyuan Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Lijun Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Lulu Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Quanjiang Ji
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Fen Qu
- The Center of Clinical Diagnosis Laboratory, 302 Hospital of PLA, Beijing, China
- China Aviation General Hospital of China Medical University, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinxin Lu
- Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
66
|
Vornhagen J, Roberts EK, Unverdorben L, Mason S, Patel A, Crawford R, Holmes CL, Sun Y, Teodorescu A, Snitkin ES, Zhao L, Simner PJ, Tamma PD, Rao K, Kaye KS, Bachman MA. Combined comparative genomics and clinical modeling reveals plasmid-encoded genes are independently associated with Klebsiella infection. Nat Commun 2022; 13:4459. [PMID: 35915063 PMCID: PMC9343666 DOI: 10.1038/s41467-022-31990-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Members of the Klebsiella pneumoniae species complex frequently colonize the gut and colonization is associated with subsequent infection. To identify genes associated with progression from colonization to infection, we undertook a case-control comparative genomics study. Concordant cases (N = 85), where colonizing and invasive isolates were identical strain types, were matched to asymptomatically colonizing controls (N = 160). Thirty-seven genes are associated with infection, 27 of which remain significant following adjustment for patient variables and bacterial phylogeny. Infection-associated genes are not previously characterized virulence factors, but instead a diverse group of stress resistance, regulatory and antibiotic resistance genes, despite careful adjustment for antibiotic exposure. Many genes are plasmid borne, and for some, the relationship with infection is mediated by gut dominance. Five genes were validated in a geographically-independent cohort of colonized patients. This study identifies several genes reproducibly associated with progression to infection in patients colonized by diverse Klebsiella.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily K Roberts
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lavinia Unverdorben
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sophia Mason
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alieysa Patel
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Crawford
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Caitlyn L Holmes
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yuang Sun
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra Teodorescu
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Evan S Snitkin
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MI, USA
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MI, USA
| | - Krishna Rao
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Keith S Kaye
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
67
|
Hao Y, Jiang Y, Ishaq HM, Liu W, Zhao H, Wang M, Yang F. Molecular Characterization of Klebsiella pneumoniae Isolated from Sputum in a Tertiary Hospital in Xinxiang, China. Infect Drug Resist 2022; 15:3829-3839. [PMID: 35880230 PMCID: PMC9307913 DOI: 10.2147/idr.s370006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background In clinical practice, Klebsiella pneumoniae (K. pneumoniae) is a common opportunistic pathogen responsible for nosocomial infection. This study aimed to analyze the trend of antimicrobial susceptibility and virulent characteristics of K. pneumoniae isolated from sputum. In clinics, data of the current study will help in the clinical treatment of K. pneumoniae infection. Results The current research showed the resistance rates of the 20 K. pneumoniae isolates against 13 antibiotics ranged from 15.0% to 80.0%. The detection rate of extended spectrum β-lactamases (ESBLs) was up to 55%, while blaSHV was the most prevalent ESBLs genes. Four strains (25.0%) of K. pneumoniae presented hypermucoviscous phenotype (HMV). Moreover, 18 strains (90.0%) showed the stronger biofilm-forming ability. wzi, wabG, fimH, mrkD were the most prevalent virulence genes in current research. Ten strains were found capsule typing and the higher genetic diversity of colonizing K. pneumoniae in this region. K19 exhibited a strong positive correlation with imipenem resistance, while K1 showed strong correlations with magA . Furthermore, HMV phenotype showed significantly negative correlations with multidrug-resistant. Conclusion In the hospital, the antibiotic resistance of K. pneumoniae (isolated from sputum samples) has a serious concern. Additionally, strains of K. pneumoniae show the higher genetic diversity.
Collapse
Affiliation(s)
- Yuqi Hao
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yong'ang Jiang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Wenke Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Huajie Zhao
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Laboratory Medicine, Xinxiang Medical University,, Xinxiang, People's Republic of China
| | - Fan Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
68
|
Yang C, Yang M, Zhao W, Ding Y, Wang Y, Li J. Establishing a Klebsiella pneumoniae-Based Cell-Free Protein Synthesis System. Molecules 2022; 27:molecules27154684. [PMID: 35897861 PMCID: PMC9330377 DOI: 10.3390/molecules27154684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cell-free protein synthesis (CFPS) systems are emerging as powerful platforms for in vitro protein production, which leads to the development of new CFPS systems for different applications. To expand the current CFPS toolkit, here we develop a novel CFPS system derived from a chassis microorganism Klebsiella pneumoniae, an important industrial host for heterologous protein expression and the production of many useful chemicals. First, we engineered the K. pneumoniae strain by deleting a capsule formation-associated wzy gene. This capsule-deficient strain enabled easy collection of the cell biomass for preparing cell extracts. Then, we optimized the procedure of cell extract preparation and the reaction conditions for CFPS. Finally, the optimized CFPS system was able to synthesize a reporter protein (superfolder green fluorescent protein, sfGFP) with a maximum yield of 253 ± 15.79 μg/mL. Looking forward, our K. pneumoniae-based CFPS system will not only expand the toolkit for protein synthesis, but also provide a new platform for constructing in vitro metabolic pathways for the synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - Miaomiao Yang
- Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China;
- Department of Biological Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wanhua Zhao
- College of Life Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (W.Z.); (Y.D.)
| | - Yue Ding
- College of Life Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (W.Z.); (Y.D.)
| | - Yu Wang
- College of Life Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (W.Z.); (Y.D.)
- Correspondence: (Y.W.); (J.L.)
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
- Correspondence: (Y.W.); (J.L.)
| |
Collapse
|
69
|
Al Fadhli AH, Jamal WY, Rotimi VO. Elucidating the virulence genes harboured by carbapenemase- and non-carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae rectal isolates from patients admitted to intensive care units using whole-genome sequencing in Kuwait. J Med Microbiol 2022; 71. [PMID: 35819900 DOI: 10.1099/jmm.0.001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Klebsiella pneumoniae is a Gram-negative pathogen responsible for community- and nosocomial-acquired infections. The presence of an accessory genome determines the bacterial pathogenicity and the host immune response, and thus indicates multidrug-resistant strains or more virulent groups. Little is known about the virulence genes in K. pneumoniae in Kuwait.Hypothesis/Gap Statement. The diversity of virulence genes and capsule loci in K. pneumoniae isolates warrants further genomic studies to better understand their transmission within the hospitals in Kuwait.Aim. We aimed to investigate the virulence genes harboured by K. pneumoniae isolated from rectal swabs of intensive care unit (ICU) patients in two Kuwaiti teaching hospitals.Methodology. Six isolates from patients in the ICUs of Al Razi and Mubarak hospitals, designated RZH144, RZH132 RZH108 and RZH173, and MKH381 and MKH347, respectively, were subjected to whole-genome sequencing (WGS) assays. RZH144 and RZH132 were non-carbapenemase-producing K. pneumoniae (NCKP) isolates negative for genes encoding carbapenemase production by PCR assays, and the remaining four were carbapenemase-producing K. pneumoniae (CPKP) isolates. Isolates were characterized by phenotypic, PCR and WGS methods. Susceptibility testing was performed by E test and clonality by multilocus sequence typing. Analysis of the isolates' assembled contigs was carried out using Kleborate (https://pathogen.watch).Results. An NCPE RZH132 K. pneumoniae isolate belonged to ST231-wzi104 and harboured gene clusters encoding the biosynthesis of the siderophore aerobactin (iuc5) on 62-3LV. The capsular locus variants were KL51 and O locus O1v2. Another NCPKP RZH144 isolate was confirmed as ST43-wzi412 and harboured KL61 and O1v1. The four CPKP isolates harboured two virulence loci - ybt14 and iuc5 - encoding the siderophores yersiniabactin and aerobactin, respectively. They belonged to ST231-wzi104 and harboured yersiniabactin on ICEKp5. The sequence type of ybt was YbST145-1LV. Strain RZ108 was devoid of virulence loci. Its sequence type was ST15-wzi151 and harboured KL48 and O1V1. ST231 clonal lineage isolates shared common virulence plasmid variants.Conclusion. The CPKP ST231 had the highest virulence score and contained iuc5, which was found for the first time in ST231-CPKP isolates in Kuwait.
Collapse
Affiliation(s)
- Amani H Al Fadhli
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Wafaa Y Jamal
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Vincent O Rotimi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
70
|
Huang PH, Chen WY, Chou SH, Wang FD, Lin YT. Risk Factors for the Development of Colistin Resistance during Colistin Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Microbiol Spectr 2022; 10:e0038122. [PMID: 35652641 PMCID: PMC9241908 DOI: 10.1128/spectrum.00381-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Colistin is one of the last-resort options for carbapenem-resistant Klebsiella pneumoniae (CRKP) infections if novel antibiotics are unavailable, where the development of colistin resistance during treatment represents a major challenge for clinicians. We aimed to investigate the risk factors associated with the development of colistin resistance in patients with CRKP infections following colistin treatment. We conducted a retrospective case-control study of patients with CRKP strains available before and after colistin treatment at a medical center in Taiwan, between October 2016 and November 2020. Cases (n = 35) included patients with an initial colistin-susceptible CRKP (ColS-CRKP) strain and a subsequent colistin-resistant CRKP (ColR-CRKP) strain. Controls (n = 18) included patients with ColS-CRKP as both the initial and subsequent strains. The 30-day mortality rate after the subsequent CRKP isolation was not different between cases and controls (12/35 [34%] versus 5/18 [28%] [P = 0.631]). blaKPC (n = 38) and blaOXA-48 (n = 11) accounted for the major mechanisms of carbapenem resistance. Alterations in mgrB were found in 18/35 (51%) ColR-CRKP strains, and mcr-1 was not detected in any of the strains. More patients received combination therapy in the control group than in the case group (17/18 versus 21/35 [P = 0.008]). The logistic regression model indicated that combination therapy with tigecycline was protective against the acquisition of colistin resistance (odds ratio, 0.17; 95% confidence interval, 0.05 to 0.62 [P = 0.008]). We observed that the inclusion of tigecycline in colistin treatment mitigated the risk of acquiring colistin resistance. These results offer insight into using the combination of tigecycline and colistin for the treatment of CRKP infections in antimicrobial stewardship. IMPORTANCE Treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections is challenging due to the limited options of antibiotics. Colistin is one of the last-resort antibiotics if novel antimicrobial agents are not available. It is crucial to identify modifiable clinical factors associated with the emergence of resistance during colistin treatment. Here, we found that the addition of tigecycline to colistin treatment prevented the acquisition of colistin resistance. Colistin-tigecycline combination therapy is therefore considered a hopeful option in antimicrobial stewardship to treat CRKP infections.
Collapse
Affiliation(s)
- Po-Han Huang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Yin Chen
- Division of Infectious Diseases, Department of Paediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
71
|
Hua Y, Wu Y, Guo M, Ma R, Li Q, Hu Z, Chen H, Zhang X, Li H, Li Q, He P. Characterization and Functional Studies of a Novel Depolymerase Against K19-Type Klebsiella pneumoniae. Front Microbiol 2022; 13:878800. [PMID: 35814656 PMCID: PMC9257171 DOI: 10.3389/fmicb.2022.878800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP), a pathogen that causes severe nosocomial infections and yields a high mortality rate, poses a serious threat to global public health due to its high antimicrobial resistance. Bacteriophages encode polysaccharide-degrading enzymes referred to as depolymerases that cleave the capsular polysaccharide (CPS), one of the main virulence factors of K. pneumoniae. In this study, we identified and characterized a new capsule depolymerase K19-Dpo41 from K. pneumoniae bacteriophage SH-KP156570. Our characterization of K19-Dpo41 demonstrated that this depolymerase showed specific activities against K19-type K. pneumoniae. K19-Dpo41-mediated treatments promoted the sensitivity of a multidrug-resistant K19-type K. pneumoniae strain to the bactericidal effect of human serum and significantly increased the survival rate of Galleria mellonella infected with K19-type K. pneumoniae. Our results provided strong primary evidence that K19-Dpo41 was not only effective in capsular typing of K19-type K. pneumoniae but promising in terms of developing new alternative therapeutic strategies against K19-type CRKP infections in the future.
Collapse
Affiliation(s)
- Yunfen Hua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqin Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minjie Guo
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, United States
| | - Ruijing Ma
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Qingchuan Li
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheyuan Hu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongrui Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingtian Li,
| | - Ping He
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Ping He,
| |
Collapse
|
72
|
Ouyang P, Jiang B, Peng N, Wang J, Cai L, Wu Y, Ye J, Chen Y, Yuan H, Tan C, Tan L, Xie L. Characteristics of ST11 KPC-2-producing carbapenem-resistant hypervirulent Klebsiella pneumoniae causing nosocomial infection in a Chinese hospital. J Clin Lab Anal 2022; 36:e24476. [PMID: 35522153 PMCID: PMC9169163 DOI: 10.1002/jcla.24476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/30/2022] [Accepted: 04/24/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The purpose of our study is to analyze the microbiological and clinical characteristics of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) that causes nosocomial infection. METHODS We collected the carbapenem-resistant K. pneumoniae (CRKP) strains that caused nosocomial infection in a hospital in China and collected the relevant clinical data. We characterized these strains for their antimicrobial and virulence-associated phenotype and genotype and analyzed the clonal relatedness. We screened hypervirulent strains and compared them with non-hypervirulent strains. RESULTS We retrospectively analyzed 62 CRKP strains that caused nosocomial infection in a tertiary hospital within 1 year, of which 41 (41/62, 66.1%) CRKP were considered as CR-hvKP. All CR-hvKP strains were multi-drug resistance (MDR) and the vast majority of isolates (39/41, 95.1%) were ST11 KPC-2-producing strains. Two hypermucoviscous isolates and 4 capsular types were found in 41 CR-hvKP. Twenty-nine isolates (29/41, 70.7%) showed hypervirulence in Galleria mellonella infection model. PFGE showed that ST11-KL47 CR-hvKP and ST11-KL64 CR-hvKP exhibited a high degree of clonality, while non-hypervirulent strains were not significant. CR-hvKP had higher positive rates of blaKPC-2 and blaCTX-M-65 and higher levofloxacin resistance (p < 0.001, p = 0.005 and p = 0.046, respectively) when compared to the non-hypervirulent strains. There was no significant difference between the two groups in terms of in-hospital mortality (7/41, 17.1% vs 5/21, 23.8%, p = 0.743). CONCLUSION Our research finds that ST11 KPC-2-producing CR-hvKP is the main type of CRKP that caused nosocomial infection, and clonal spread has occurred. We provide more information about CR-hvKP in health care.
Collapse
Affiliation(s)
- Pengwen Ouyang
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Bin Jiang
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Na Peng
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Juan Wang
- Department of Microbiology LaboratoryCenter for Disease Control and Prevention of Hunan ProvinceChangshaChina
| | - Liang Cai
- Department of Microbiology LaboratoryCenter for Disease Control and Prevention of Hunan ProvinceChangshaChina
| | - Yi Wu
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Jianrong Ye
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Yiping Chen
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Hao Yuan
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Chaochao Tan
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Liming Tan
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Liangyi Xie
- Department of Clinical LaboratoryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| |
Collapse
|
73
|
Hu D, Chen W, Zhang Q, Li M, Yang Z, Wang Y, Huang Y, Li G, Tian D, Fu P, Wang W, Ren P, Mu Q, Yu L, Jiang X. Prevalence of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae and Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae in China Determined via Mouse Lethality Tests. Front Cell Infect Microbiol 2022; 12:882210. [PMID: 35719357 PMCID: PMC9199425 DOI: 10.3389/fcimb.2022.882210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Objective To investigate the epidemiology of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-HvKP) and hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKP). Methods Totally 436 K. pneumoniae strains were collected from 7 hospitals in mainland China between 2017.01 and 2018.02. Sequence types, serotypes, antimicrobial-resistance and virulence genes were analyzed. Additionally, string test, capsule stain, Periodic Acid Schiff stain, fitness analysis, quantitative real-time PCR and mouse lethality test were also performed. Molecular combinations were used to screen putative blaKPC(+)-HvKP and Hv-blaKPC(+)-KP, followed by the confirmation of mouse lethality test. Results Diverse detection rates were found for the virulence genes, ranging from c-rmpA (0.0%) to entB (100.0%). According to the molecular criteria, 127, 186, 9 and 26 strains were putatively denoted as HvKP, blaKPC(+)-KP, blaKPC(+)-HvKP and Hv-blaKPC(+)-KP. Mouse lethality test confirmed 2 blaKPC(+)-HvKP strains (JS184 and TZ20) and no Hv-blaKPC(+)-KP. JS184 showed K2 serotype, thin capsule, positive exopolysaccharid and string test. TZ20 presented K20 serotype, thin capsule, negative exopolysaccharide and string test. Compared with the positive control NTUH-K2044, equal galF expression and growth curves were confirmed for JS184 and TZ20. Conclusions Molecular determination of CR-HvKP and Hv-CRKP brings remarkable bias compared with mouse lethality test. The exact prevalence of CR-HvKP is less than 1.0%, which of Hv-CRKP is much lower.
Collapse
Affiliation(s)
- Dakang Hu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjie Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Laboratory Medicine, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zehua Yang
- Department of Laboratory Medicine, Sixth Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yunkun Huang
- Department of Laboratory Medicine, Kunming Yan’an Hospital, Kunming, China
| | - Gang Li
- Department of Laboratory Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Dongxing Tian
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Pan Fu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Microbiology Department. Children’s Hospital of Fudan University, Shanghai, China
| | - Weiwen Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Ren
- Zhejiang Provincial Demonstration Centre of Laboratory Medicine Experimental Teaching, Wenzhou Medical University, Wenzhou, China
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Lianhua Yu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
- *Correspondence: Xiaofei Jiang, ; Lianhua Yu,
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiaofei Jiang, ; Lianhua Yu,
| |
Collapse
|
74
|
Wu X, Liu J, Feng J, Shabbir MAB, Feng Y, Guo R, Zhou M, Hou S, Wang G, Hao H, Cheng G, Wang Y. Epidemiology, Environmental Risks, Virulence, and Resistance Determinants of Klebsiella pneumoniae From Dairy Cows in Hubei, China. Front Microbiol 2022; 13:858799. [PMID: 35602033 PMCID: PMC9117759 DOI: 10.3389/fmicb.2022.858799] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen, which causes serious infections in humans and animals. To investigate the antimicrobial resistance pattern and virulence profile of K. pneumoniae, a total of 887 samples were collected from both the healthy and mastitis cows and the bedding, feed, feces, air, drinking water, spraying water, washing water, and milk cup swabs from five dairy farms in Hubei, China, during 2019 and 2020. K. pneumoniae was isolated and identified using PCR of the khe and 16S rDNA sequencing. A genotypic characterization was performed for K. pneumoniae isolates using wzi typing and multilocus sequence typing (MLST). Antimicrobial resistances were confirmed using broth microdilution against 17 antimicrobial agents and resistance and virulence genes were determined by PCR. The prevalence of K. pneumoniae was 26.94% (239/887) distributed in 101 wzi allele types (199/239, 83.26%) and 100 sequence types (STs) (209/239, 87.45%), including 5 new wzi allele type and 25 new STs. Phylogenetic analysis showed that K. pneumoniae isolated from milk, nipple swab, feed, and feces is classified in the same clone complex. By comparing with the PubMLST database, at least 67 STs have the risk of spreading in different species and regions. Interestingly, 60 STs have been isolated from humans. The isolates were highly sensitive to meropenem and colistin, but resistant to ampicillin (100%), sulfisoxazole (94.56%), cephalothin (47.28%), streptomycin (30.13%), and so on. Noteworthy, multidrug-resistant (MDR) rate was found to be 43.93% in this study. By PCR, 30 of 68 antimicrobial resistance (AMR) genes were identified; the prevalence rate of blaTEM, blaSHV, strA, strB, aadA1, and aac(6′)-Ib-cr was more than 50%. Eleven CTX-M-producing K. pneumoniae were found. The detection rate of fimH, mrkD, uge, wabG, entB, iutA, iroN, and ureA was over 85%. This study reinforces the epidemiological importance of K. pneumoniae in food-producing animals in Hubei. The emergence and spread of environmental MDR K. pneumoniae may pose a potential threat to food safety and public health.
Collapse
Affiliation(s)
- Xiangyun Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Jiayi Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Jiawei Feng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | | | - Yali Feng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Rui Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Meifang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Sulin Hou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Guiqiang Wang
- Hubei Livestock and Poultry Breeding Centre, Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yulian Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
75
|
In Vitro and In Vivo Assessments of Two Newly Isolated Bacteriophages against an ST13 Urinary Tract Infection Klebsiella pneumoniae. Viruses 2022; 14:v14051079. [PMID: 35632820 PMCID: PMC9144312 DOI: 10.3390/v14051079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance represents a major public health concern requiring new alternatives including phage therapy. Klebsiella pneumoniae belongs to the ESKAPE bacteria and can cause urinary tract infections (UTIs). The aims of this study were to isolate and characterize new bacteriophages against a K. pneumoniae strain isolated from UTIs and to assess their efficacy in vitro and in vivo in a Galleria (G.) mellonella larvae model. For this purpose, two bacteriophages were newly isolated against an ST13 K. pneumoniae strain isolated from a UTI and identified as K3 capsular types by wzi gene PCR. Genomic analysis showed that these bacteriophages, named vB_KpnP_K3-ULINTkp1 and vB_KpnP_K3-ULINTkp2, belong to the Drulisvirus genus. Bacteriophage vB_KpnP_K3-ULINTkp1 had the narrowest host spectrum (targeting only K3), while vB_KpnP_K3-ULINTkp2 also infected other Klebsiella types. Short adsorption times and latent periods were observed for both bacteriophages. In vivo experiments showed their ability to replicate in G. mellonella larvae and to decrease host bacterial titers. Moreover, both bacteriophages improved the survival of the infected larvae. In conclusion, these two bacteriophages had different in vitro properties and showed in vivo efficacy in a G. mellonella model with a better efficiency for vB_KpnP_K3-ULINTkp2.
Collapse
|
76
|
Sundaresan AK, Vincent K, Mohan GBM, Ramakrishnan J. Association of Sequence types, Antimicrobial Resistance and Virulence Genes in Indian isolates of Klebsiella pneumoniae: A Comparative Genomics Study. J Glob Antimicrob Resist 2022; 30:431-441. [DOI: 10.1016/j.jgar.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022] Open
|
77
|
Elbaradei A, Sayedahmed MS, El-Sawaf G, Shawky SM. Screening of mcr-1 among Gram-Negative Bacteria from Different Clinical Samples from ICU Patients in Alexandria, Egypt: One-Year Study. Pol J Microbiol 2022; 71:83-90. [PMID: 35635164 PMCID: PMC9152917 DOI: 10.33073/pjm-2022-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/12/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance represents a global dilemma. Our present study aimed to investigate the presence of mcr-1 among different Gram-negative bacteria including Enterobacteriaceae (except intrinsically resistant to colistin) and Pseudomonas aeruginosa. Gram-negative bacterial isolates were collected from different ICUs in several Alexandria hospitals from June 2019 to June 2020. The identification of these Gram-negative isolates was made using the VITEK-2® system (BioMérieux, France). SYBR Green-based PCR was used to screen for the presence of mcr-1 using a positive control that we amplified and sequenced earlier in our pilot study. All isolates were screened for the presence of mcr-1 regardless of their colistin susceptibility. Isolates that harbored mcr-1 were tested for colistin susceptibility and for the presence of some beta-lactamase genes. Klebsiella pneumoniae isolates harboring mcr-1 were capsule typed using the wzi sequence analysis. Four hundred eighty isolates were included in this study. Only six isolates harbored mcr-1.1. Of these, four were resistant to colistin, while two (K. pneumoniae and P. aeruginosa) were susceptible to colistin. Five of the six isolates were resistant to carbapenems. They harbored blaOXA-48, and three of them co-harbored blaNDM-1. K-58 was the most often found among our K. pneumoniae harboring mcr-1.1. To our knowledge, this is the first time to report colistin susceptible P. aeruginosa and K. pneumoniae harboring the mcr-1.1 gene in Egypt. Further studies are needed to investigate the presence of the mcr genes among colistin susceptible isolates to shed more light on its significance as a potential threat. ![]()
Collapse
Affiliation(s)
- Amira Elbaradei
- Department of Microbiology and Immunology, Faculty of Pharmacy , Pharos University in Alexandria , Alexandria , Egypt
- Alexandria University Hospital , Alexandria University , Alexandria , Egypt
| | - Mahrous S. Sayedahmed
- Department of Microbiology, Medical Research Institute , Alexandria University , Alexandria , Egypt
| | - Gamal El-Sawaf
- Department of Microbiology, Medical Research Institute , Alexandria University , Alexandria , Egypt
| | - Sherine M. Shawky
- Department of Microbiology, Medical Research Institute , Alexandria University , Alexandria , Egypt
| |
Collapse
|
78
|
Yin C, Yang W, Lv Y, Zhao P, Wang J. Clonal spread of carbapenemase-producing Enterobacteriaceae in a region, China. BMC Microbiol 2022; 22:81. [PMID: 35350977 PMCID: PMC8962535 DOI: 10.1186/s12866-022-02497-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background The increasing number of carbapenemase-producing Enterobacterales (CPE) has become a serious problem globally. This study aimed to elucidate their geographically epidemiological characteristics. Methods Resistance genes were identified by polymerase chain reaction (PCR) and sequencing. Bacterial genotyping was studied using multilocus sequence typing (MLST) and wzi typing. The transferability of carbapenemase genes was determined by a broth mating method. The relationships between the rates of antimicrobial consumption and the prevalence of CRE were performed by Pearson's or Spearman's correlation analyses. Results A total of 930 phenotypically confirmed carbapenem-resistant Enterobacterales (CRE) isolates collected from 19 hospitals were genotypically characterized. K. pneumoniae (KP) and E. coli isolates were 785 (85.14%) and 96 (10.41%) among 922 CPE isolates. Two major carbapenemase genes blaKPC-2 and blaNDM in CPE isolates accounted for 84.6% (n = 780) and 13.77% (n = 127). ST11 comprised 86.83% (633/729) of KPC-2 KP isolates. Different combinations of extended spectrum-β-lactamase (ESBL) genes of blaSHV, blaCTX, and blaTEM were found in KPC-2 producing KP isolates, and blaCTM-M-14/15, blaSHV-11/12 and blaTEM-1 were common ESBL genotypes. The wzi typing method could further subdivide ST11 KP group into at least five subgroups, among which wzi209 (69.83%, 442/633) was the most frequently isolated, followed by wzi141 (25.28%, 160/633). Conjugation assays showed that high conjugation rates were observed in CPE (15.24%, 32/210) for NDM plasmids, but relatively low (8.1%, 17/210) for KPC-2 plasmids. Different STs, different wzis and temperature could influence plasmid conjugation efficiency. No associations between the rates of antibiotics consumption and CPE prevalence were observed. The number of intra-hospital and inter-hospital transfers of CPE patients increased gradually from 18 (17.82%, 101) and 12 (11.88%, 101) in 2015 to 63 (30.73%, 205) and 51 (24.88%, 205) in 2018 (p = 0.016 and p = 0.008), respectively. Evidence-based measures could effectively reduce the prevalence of ST11-wzi209 clone but failed to control the dissemination of ST11-wzi141 KP clone. Conclusions Clonal spread of CPE, especially KPC-2 ST11 KP was the key factor contributing to the CPE increase in the region. Continued vigilance for the importations should be maintained. Coordinated regional interventions are urgently needed to reduce CPE threat.
Collapse
|
79
|
Liao CH, Huang YT, Hsueh PR. Multicenter Surveillance of Capsular Serotypes, Virulence Genes, and Antimicrobial Susceptibilities of Klebsiella pneumoniae Causing Bacteremia in Taiwan, 2017–2019. Front Microbiol 2022; 13:783523. [PMID: 35369508 PMCID: PMC8971976 DOI: 10.3389/fmicb.2022.783523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
We conducted a longitudinal epidemiological surveillance of hypervirulent Klebsiella pneumoniae (hvKP) in Taiwan. Bacteremic KP isolates collected from 16 hospitals in Taiwan between 2017 and 2019 were collected, and the virulent serotypes (K1, K2, K20, K54, and K57), antimicrobial susceptibilities, and virulence genes of these isolates were investigated. During the 3-year period, 1,310 bacteremic KP isolates were collected, of which 27.5% belonged to virulent serotypes, including K1 (n = 162), K2 (n = 74), K57 (n = 56), K54 (n = 41), and K20 (n = 27). K1 was the most prevalent capsular serotype, with an annual prevalence of 11–15%, and was equally distributed across the four geographic areas. The prevalence of K2 declined significantly in 2019. According to wzi-K typing results, 87% of K1 isolates were classified as wzi-1. Among K2 isolates, wzi-72 (55.4%) and wzi-2 (41.9%) were the most common, whereas wzi-206 was the most prevalent (48.2%) among K57 isolates, followed by wzi-77 (25.0%). Wzi-115 accounted for 85.4% of the K54 isolates, whereas wzi-95 accounted for 92.6% of K20 isolates. rmpA was present in 99.4% of K1, 98.6% of K2, 89.3% of K57, 78.0% of K54, and 84.0% of K20 isolates. rmpA2 was present in 100% of K1 and 98.6% of K2 isolates but was only present in 64.3% of K57, 58.5% of K54, and 74.1% of K20 isolates. K1 remains the dominant hvKP serotype and is associated with most virulence genes in Taiwan. Further studies are required to elucidate the significance of other virulent serotypes.
Collapse
Affiliation(s)
- Chun-Hsing Liao
- Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Ren Hsueh
- Ph.D. Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
80
|
Zhang Z, Zhang L, Dai H, Zhang H, Song Y, An Q, Wang J, Xia Z. Multidrug-Resistant Klebsiella pneumoniae Complex From Clinical Dogs and Cats in China: Molecular Characteristics, Phylogroups, and Hypervirulence-Associated Determinants. Front Vet Sci 2022; 9:816415. [PMID: 35359688 PMCID: PMC8960377 DOI: 10.3389/fvets.2022.816415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae complex is an increasingly important bacterial pathogen that is capable of causing severe organs and life-threatening disease. This study aimed to investigate the multidrug resistance, phylogroups, molecular characterization, and hypervirulence-associated determinants of the complex, which were isolated from clinical diseased dogs and cats. A total of 35 K. pneumoniae complex (2.3%; 95% confidence interval, 1.6–3.2) isolates were identified from 1,500 samples, all of which were collected randomly from veterinary hospitals in the 12 regions across China. Antimicrobial susceptibility testing showed that isolates were extremely resistant to amoxicillin–clavulanate (82.9%) and trimethoprim–sulfamethoxazole (77.1%). The rate of multidrug-resistant reached an astonishing 82.9% and found a carbapenemase-producing strain carrying IncX3-blaNDM−5 derived a cat from Zhejiang. The prevalence rates of extended-spectrum β-lactamase gene blaCTX−M and plasmid-mediated quinolone resistance gene aac(6')Ib-cr were 51.4% and 45.7%, respectively. The resistance gene aph(3')-Ia of isolates from cats was more significantly (p < 0.05) prevalent than that from dogs. Likewise, K. pneumoniae complex harbored hypervirulence-associated genes ybt (11.4%), iuc (5.7%), and iroB (2.9%). Three (8.6%) of the 35 isolates were determined as hypermucoviscous by the string test. Lipopolysaccharide serotype O1v2 had the highest percentage of 25.7%, but capsular serotypes presented diversity distribution among the isolates. The core–genome phylogenetic tree demonstrated most of the isolates belonged to the KpI phylogroup (91.4%). Multilocus sequence typing analysis identified 25 different STs; ST15 and ST37 were the most abundant accounting for isolates, followed by ST307, ST656, ST1408, and ST4566. In addition, the prevalence of IncFIB-type plasmid for cat isolates was significantly higher (p < 0.05) than that for dogs. Sequences of IncX3 in blaNDM−5-positive strain contained regions showing >99% nucleotide sequence identity to the reference plasmid pNDM-MGR194 from the human.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Liu Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Hegen Dai
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haixia Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Song
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi An
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Jianzhong Wang ;
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Zhaofei Xia
| |
Collapse
|
81
|
Chen X, Tang Q, Li X, Zheng X, Li P, Li M, Wu F, Xu Z, Lu R, Zhang W. Isolation, characterization, and genome analysis of bacteriophage P929 that could specifically lyase the KL19 capsular type of Klebsiella pneumoniae. Virus Res 2022; 314:198750. [DOI: 10.1016/j.virusres.2022.198750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/09/2023]
|
82
|
Chen D, Zhang Y, Wu J, Li J, Chen H, Zhang X, Hu X, Chen F, Yu R. Analysis of hypervirulent
Klebsiella pneumoniae
and classic
Klebsiella pneumoniae
infections in a Chinese hospital. J Appl Microbiol 2022; 132:3883-3890. [PMID: 35129244 PMCID: PMC9305427 DOI: 10.1111/jam.15476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Aims To evaluate the clinical and genetic virulence characteristics of critically ill patients with hypervirulent Klebsiella pneumoniae (hvKP) and classic KP (cKP) infection. Methods and Results The patients included in this retrospective study (n = 225) were grouped according to their hvKP (n = 114) or cKP (n = 111) status, and their clinical characteristics were analysed and compared. Cox multivariate analysis was conducted to determine the risk factors for hvKP infection. Length of hospital stay, length of intensive care unit stay, duration of mechanical ventilation and 28‐day survival rate were similar between the groups. However, the incidence of septic shock was higher in the hvKP group (16.7%) than in the cKP group (8.1%). Conclusions There was a high rate of hvKP infection in this population. Compared to patients with cKP infection, those with hvKP infection showed a higher probability of having septic shock; nevertheless, survival and length of hospital stay were similar between the groups. Risk factors for hvKP infection included hospital‐acquired infection and renal insufficiency. Significance and Impact of the Study This study presents relevant information on the characteristics of hvKP infection in a Chinese population, and this promotes early diagnosis and supports the view that the prevalence of hvKP is high in China.
Collapse
Affiliation(s)
- Dongjie Chen
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Clinical Microbiology Laboratory Fujian Fuzhou China
| | - Yingrui Zhang
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Jiafang Wu
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Jun Li
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Han Chen
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Xiaoguang Zhang
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Xinlan Hu
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Clinical Microbiology Laboratory Fujian Fuzhou China
| | - Falin Chen
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Clinical Microbiology Laboratory Fujian Fuzhou China
| | - Rongguo Yu
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| |
Collapse
|
83
|
Würstle S, Stender J, Hammerl JA, Vogele K, Rothe K, Willy C, Bugert JJ. Practical Assessment of an Interdisciplinary Bacteriophage Delivery Pipeline for Personalized Therapy of Gram-Negative Bacterial Infections. Pharmaceuticals (Basel) 2022; 15:186. [PMID: 35215298 PMCID: PMC8879309 DOI: 10.3390/ph15020186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022] Open
Abstract
Despite numerous advances in personalized phage therapy, smooth logistics are challenging, particularly for multidrug-resistant Gram-negative bacterial infections requiring high numbers of specific lytic phages. We conducted this study to pave the way for efficient logistics for critically ill patients by (1) closely examining and improving a current pipeline under realistic conditions, (2) offering guidelines for each step, leading to safe and high-quality phage supplies, and (3) providing a tool to evaluate the pipeline's efficiency. Due to varying stipulations for quality and safety in different countries, we focused the pipeline on all steps up to a required phage product by a cell-free extract system. The first of three study runs included patients with respiratory bacterial infections from four intensive care units, and it revealed a cumulative time of up to 23 days. Ultimately, adjustment of specific set points of the vulnerable components of the pipeline, phage isolation, and titration increased the pipeline's efficiency by 15% and decreased the maximum required time to 13 days. We present a site-independent practical approach to establish and optimize pipelines for personalized phage delivery, the co-organization of pipeline components between different institutions, non-binding guidelines for every step, and an efficiency check for phage laboratories.
Collapse
Affiliation(s)
- Silvia Würstle
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jana Stender
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Jens André Hammerl
- Unit Epidemiology, Zoonoses and Antimicrobial Resistances, Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | - Kilian Vogele
- Physics of Synthetic Biological Systems-E14, Physics-Department and ZNN, Technical University Munich, 85748 Munich, Germany;
| | - Kathrin Rothe
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Christian Willy
- Trauma & Orthopaedic Surgery, Septic & Reconstructive Surgery, Research and Treatment Centre Septic Defect Wounds, Bundeswehr (Military) Academic Hospital Berlin, 10115 Berlin, Germany;
| | | |
Collapse
|
84
|
NDM-1 Introduction in Portugal through a ST11 KL105 Klebsiella pneumoniae Widespread in Europe. Antibiotics (Basel) 2022; 11:antibiotics11010092. [PMID: 35052969 PMCID: PMC8773016 DOI: 10.3390/antibiotics11010092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022] Open
Abstract
The changing epidemiology of carbapenem-resistant Klebsiella pneumoniae in Southern European countries is challenging for infection control, and it is critical to identify and track new genetic entities (genes, carbapenemases, clones) quickly and with high precision. We aimed to characterize the strain responsible for the first recognized outbreak by an NDM-1-producing K. pneumoniae in Portugal, and to elucidate its diffusion in an international context. NDM-1-producing multidrug-resistant K. pneumoniae isolates from hospitalized patients (2018–2019) were characterized using FTIR spectroscopy, molecular typing, whole-genome sequencing, and comparative genomics with available K. pneumoniae ST11 KL105 genomes. FT-IR spectroscopy allowed the rapid (ca. 4 h after incubation) identification of the outbreak strains as ST11 KL105, supporting outbreak control. Epidemiological information supports a community source but without linkage to endemic regions of NDM-1 producers. Whole-genome comparison with previous DHA-1-producing ST11 KL105 strains revealed the presence of different plasmid types and antibiotic resistance traits, suggesting the entry of a new strain. In fact, this ST11 KL105 clade has successfully disseminated in Europe with variable beta-lactamases, but essentially as ESBL or DHA-1 producers. We expand the distribution map of NDM-1-producing K. pneumoniae in Europe, at the expense of a successfully established ST11 KL105 K. pneumoniae clade circulating with variable plasmid backgrounds and beta-lactamases. Our work further supports the use of FT-IR as an asset to support quick infection control.
Collapse
|
85
|
Early Response of Antimicrobial Resistance and Virulence Genes Expression in Classical, Hypervirulent, and Hybrid hvKp-MDR Klebsiella pneumoniae on Antimicrobial Stress. Antibiotics (Basel) 2021; 11:antibiotics11010007. [PMID: 35052884 PMCID: PMC8773033 DOI: 10.3390/antibiotics11010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae is an increasingly important hospital pathogen. Classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp) are two distinct evolutionary genetic lines. The recently ongoing evolution of K. pneumoniae resulted in the generation of hybrid hvKP-MDR strains. K. pneumoniae distinct isolates (n = 70) belonged to 20 sequence types with the prevalence of ST395 (27.1%), ST23 (18.6%), ST147 (15.7%), and ST86 (7.1%), and 17 capsular types with the predominance of K2 (31.4%), K57 (18.6%), K64 (10.0%), K1 (5.7%) were isolated from patients of the Moscow neurosurgery ICU in 2014-2019. The rate of multi-drug resistant (MDR) and carbapenem-resistant phenotypes were 84.3% and 45.7%, respectively. Whole-genome sequencing of five selected strains belonging to cKp (ST395K47 and ST147K64), hvKp (ST86K2), and hvKp-MDR (ST23K1 and ST23K57) revealed blaSHV, blaTEM, blaCTX, blaOXA-48, and blaNDM beta-lactamase genes; acr, oqx, kpn, kde, and kex efflux genes; and K. pneumoniae virulence genes. Selective pressure of 100 mg/L ampicillin or 10 mg/L ceftriaxone induced changes of expression levels for named genes in the strains belonging to cKp, hvKp, and hybrid hvKp-MDR. Obtained results seem to be important for epidemiologists and clinicians for enhancing knowledge about hospital pathogens.
Collapse
|
86
|
Zafer MM, El Bastawisie MM, Wassef M, Hussein AF, Ramadan MA. Epidemiological features of nosocomial Klebsiella pneumoniae: virulence and resistance determinants. Future Microbiol 2021; 17:27-40. [PMID: 34877876 DOI: 10.2217/fmb-2021-0092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: The authors aimed to examine antibiotic resistance genes and representative virulence determinants among 100 Klebsiella pneumoniae isolates with an emphasis on capsular serotypes and clonality of some of the isolates. Methods: PCR amplification of (rmpA, rmpA2, iutA, iroN and IncHI1B plasmid) and (NDM, OXA-48, KPC, CTX-M-15, VIM, IMP, SPM) was conducted. Wzi sequencing and multilocus sequence typing (MLST) were performed. Results: K2 was the only detected serotype in the authors' collection. RMPA2 was the most common capsule-associated virulence gene detected. All studied isolates harbored OXA-48-like (100%) and NDM (43%) (n = 43). ST147 was the most common sequence type. Conclusion: This work provides insight into the evolution of the coexistence of virulence and resistance genes in a tertiary healthcare setting in Cairo, Egypt.
Collapse
Affiliation(s)
- Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Maha M El Bastawisie
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Mona Wassef
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amira Fa Hussein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
87
|
Hypervirulent Klebsiella pneumoniae Infections in Pediatric Populations in Beijing (2017-2019): Clinical Characteristics, Molecular Epidemiology and Antimicrobial Susceptibility. Pediatr Infect Dis J 2021; 40:1059-1063. [PMID: 34269324 DOI: 10.1097/inf.0000000000003253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypervirulent variants of Klebsiella pnuemoniae (hvKp) are emerging globally causing life-threatening infectious diseases; however, comprehensive studies on pediatric hvKp strains and related infections are still lacking. METHODS Clinical data were collected from medical records. Genotype (multilocus sequence typing), capsular serotype, virulence gene profile and carbapenemase of the isolates were determined by PCR and DNA sequencing. Broth microdilution method was adopted to test the antimicrobial susceptibility. Hypermucoviscosity phenotype and the virulence of the strains were evaluated by string test and Galleria mellonella larvae killing assay. RESULTS Among 319 K. pneumoniae strains, 26 (8.2%) hvKp were identified, the detection rates in 2017, 2018 and 2019 were 1.8%, 5.2% and 11.3%. The majority of hvKp infections were found in school-age children and adolescents (57.7%). Pneumonia was the most common diagnosis (38.5%). Single fatal case was hvKp caused liver abscess complicated with bacteremia. hvKp were dominated by ST23 (30.8%) and ST11 (30.8%). Eight carbapenem-resistant hvKp (CR-hvKp) were found, which all belonged to ST11. Virulence gene profile revealed that ST11 hvKp might carry incomplete pLVPK-like plasmids, but they exhibited comparable in vivo virulence to the other hvKp. CONCLUSIONS The infections caused by hvKp are not frequent among pediatric populations, but the detection rate of hvKp in pediatric populations is increasing rapidly in recent years. The emerging and dissemination of ST11 CR-hvKp should be monitored continuously.
Collapse
|
88
|
Xiong L, Su L, Tan H, Zhao W, Li S, Zhu Y, Lu L, Huang Z, Li B. Molecular Epidemiological Analysis of ST11-K64 Extensively Drug-Resistant Klebsiella pneumoniae Infections Outbreak in Intensive Care and Neurosurgery Units Based on Whole-Genome Sequencing. Front Microbiol 2021; 12:709356. [PMID: 34646245 PMCID: PMC8504482 DOI: 10.3389/fmicb.2021.709356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Klebsiella pneumoniae (Kp) is the primary causative bacteria for nosocomial infections and hospital outbreaks. In particular, extensively drug-resistant K. pneumoniae (XDRKp) causes severe clinical infections in hospitalized patients. Here, we used pulsed-field gel electrophoresis (PFGE), drug susceptibility tests, and the whole-genome sequencing (WGS) technology to examine genetic relatedness and phenotypic traits of the strains isolated during an outbreak period. Based on PFGE, a distinct clones cluster comprised of eight XDRKp was observed. These strains were confirmed as ST11-K64 via multiple-locus sequence typing database of Kp. The strains also had genes related to the regulation of biofilm biosynthesis (type 1 & 3 fimbriae, type IV pili biosynthesis, RcsAB, and type VI secretion system) and multiple drug resistance (β-lactamase and aminoglycoside antibiotic resistance). WGS data based on core-single nucleotide polymorphisms and epidemiological investigation showed that the neurosurgery unit was likely the source of the outbreak, the strain was likely to have been transmitted to the ICU through patients. In addition, the two highly probable transmission routes were in the ICU (exposure through shared hospital beds) and the neurosurgery units (all cases were treated by the same rehabilitation physician and were most likely infected during the physical therapy). Notably, the bed mattress had played a crucial transmission role of this outbreak, served as a pathogen reservoir.
Collapse
Affiliation(s)
- Liuxin Xiong
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, China
| | - Lebin Su
- Microbiological Laboratory, Zhaoqing Center for Disease Control and Prevention, Zhaoqing, China
| | - Hanqing Tan
- Microbiological Laboratory, Zhaoqing Center for Disease Control and Prevention, Zhaoqing, China
| | - Wansha Zhao
- Microbiological Laboratory, Zhaoqing Center for Disease Control and Prevention, Zhaoqing, China
| | - Shuying Li
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, China
| | - Yingmei Zhu
- Microbiological Laboratory, Zhaoqing Center for Disease Control and Prevention, Zhaoqing, China
| | - Limiao Lu
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, China
| | - Zhiwei Huang
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, China
| | - Baisheng Li
- Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
89
|
Opoku-Temeng C, Malachowa N, Kobayashi SD, DeLeo FR. Innate Host Defense against Klebsiella pneumoniae and the Outlook for Development of Immunotherapies. J Innate Immun 2021; 14:167-181. [PMID: 34628410 DOI: 10.1159/000518679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative commensal bacterium and opportunistic pathogen. In healthy individuals, the innate immune system is adept at protecting against K. pneumoniae infection. Notably, the serum complement system and phagocytic leukocytes (e.g., neutrophils) are highly effective at eliminating K. pneumoniae and thereby preventing severe disease. On the other hand, the microbe is a major cause of healthcare-associated infections, especially in individuals with underlying susceptibility factors, such as pre-existing severe illness or immune suppression. The burden of K. pneumoniae infections in hospitals is compounded by antibiotic resistance. Treatment of these infections is often difficult largely because the microbes are usually resistant to multiple antibiotics (multidrug resistant [MDR]). There are a limited number of treatment options for these infections and new therapies, and preventative measures are needed. Here, we review host defense against K. pneumoniae and discuss recent therapeutic measures and vaccine approaches directed to treat and prevent severe disease caused by MDR K. pneumoniae.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
90
|
Zhang W, Feng Y, Zhao H, Yan C, Feng J, Gan L, Cui J, Liu S, Zhang R, Du S, Li N, Xu W, Han J, Li R, Xue G, Yuan J. A Recombinase Aided Amplification Assay for Rapid Detection of the Klebsiella pneumoniae Carbapenemase Gene and Its Characteristics in Klebsiella pneumoniae. Front Cell Infect Microbiol 2021; 11:746325. [PMID: 34616692 PMCID: PMC8488121 DOI: 10.3389/fcimb.2021.746325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase genes (blaKPC) play an important role in carbapenem-resistant Enterobacteriaceae in China. A rapid detection method for blaKPC genes and investigations into the molecular characteristics of blaKPC positive Klebsiella pneumoniae were necessary. In this study, an easy and rapid recombinase aided amplification assay (RAA) for blaKPC was established. This protocol could be completed at 39°C in 15–20 min. The sensitivity of this assay was determined as 48 copies per reaction, and the specificity was 100%. The blaKPC RAA method could be used for clinical diagnosis and epidemiological investigation. Among 801 fecal samples from inpatients, 34 blaKPC positive isolates were identified from each sample, of which 23 isolates were K. pneumoniae. ST11 with blaKPC-2 was the most prevalent type. All these strains were multidrug resistant and carried various virulence genes. Fecal carriage of blaKPC positive carbapenem-resistant K.pneumoniae poses significant challenges for public health control.
Collapse
Affiliation(s)
- Weiwei Zhang
- The Second Affiliated Hospital of Dalian Medical University, Liaoning, China.,Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shiyu Liu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shuheng Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Nannan Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Wenjian Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Juqiang Han
- Department of Daily Clinic, Seventh Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Rongkuan Li
- The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
91
|
Guo Y, Liu N, Lin Z, Ba X, Zhuo C, Li F, Wang J, Li Y, Yao L, Liu B, Xiao S, Jiang Y, Zhuo C. Mutations in porin LamB contribute to ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae. Emerg Microbes Infect 2021; 10:2042-2051. [PMID: 34551677 PMCID: PMC8567916 DOI: 10.1080/22221751.2021.1984182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ceftazidime-avibactam (CAZ-AVI) shows promising activity against carbapenem-resistant Klebsiella pneumoniae (CRKP), however, CAZ-AVI resistance have emerged recently. Mutations in KPCs, porins OmpK35 and/or OmpK36, and PBPs are known to contribute to the resistance to CAZ-AVI in CRKP. To identify novel CAZ-AVI resistance mechanism, we generated 10 CAZ-AVI-resistant strains from 14 CAZ-AVI susceptible KPC-producing K. pneumoniae (KPC-Kp) strains through in vitro multipassage resistance selection using low concentrations of CAZ-AVI. Comparative genomic analysis for the original and derived mutants identified CAZ-AVI resistance-associated mutations in KPCs, PBP3 (encoded by ftsI), and LamB, an outer membrane maltoporin. CAZ-AVI susceptible KPC-Kp strains became resistant when complemented with mutated blaKPC genes. Complementation experiments also showed that a plasmid borne copy of wild-type lamB or ftsI gene reduced the MIC value of CAZ-AVI in the induced resistant strains. In addition, blaKPC expression level increased in four of the six CAZ-AVI-resistant strains without KPC mutations, indicating a probable association between increased blaKPC expression and increased resistance in these strains. In conclusion, we here identified a novel mechanism of CAZ-AVI resistance associated with mutations in porin LamB in KPC-Kp.
Collapse
Affiliation(s)
- Yingyi Guo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ningjing Liu
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhiwei Lin
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Guangdong, People's Republic of China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chuyue Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Feifeng Li
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiong Wang
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yitan Li
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Guangdong, People's Republic of China
| | - Likang Yao
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Baomo Liu
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shunian Xiao
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ying Jiang
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
92
|
Flores-Valdez M, Ares MA, Rosales-Reyes R, Torres J, Girón JA, Weimer BC, Mendez-Tenorio A, De la Cruz MA. Whole Genome Sequencing of Pediatric Klebsiella pneumoniae Strains Reveals Important Insights Into Their Virulence-Associated Traits. Front Microbiol 2021; 12:711577. [PMID: 34489901 PMCID: PMC8418058 DOI: 10.3389/fmicb.2021.711577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Klebsiella pneumoniae is recognized as a common cause of nosocomial infections and outbreaks causing pneumonia, septicemia, and urinary tract infections. This opportunistic bacterium shows an increasing acquisition of antibiotic-resistance genes, which complicates treatment of infections. Hence, fast reliable strain typing methods are paramount for the study of this opportunistic pathogen’s multi-drug resistance genetic profiles. In this study, thirty-eight strains of K. pneumoniae isolated from the blood of pediatric patients were characterized by whole-genome sequencing and genomic clustering methods. Genes encoding β-lactamase were found in all the bacterial isolates, among which the blaSHV variant was the most prevalent (53%). Moreover, genes encoding virulence factors such as fimbriae, capsule, outer membrane proteins, T4SS and siderophores were investigated. Additionally, a multi-locus sequence typing (MLST) analysis revealed 24 distinct sequence types identified within the isolates, among which the most frequently represented were ST76 (16%) and ST70 (11%). Based on LPS structure, serotypes O1 and O3 were the most prevalent, accounting for approximately 63% of all infections. The virulence capsular types K10, K136, and K2 were present in 16, 13, and 8% of the isolates, respectively. Phylogenomic analysis based on virtual genome fingerprints correlated with the MLST data. The phylogenomic reconstruction also denoted association between strains with a higher abundance of virulence genes and virulent serotypes compared to strains that do not possess these traits. This study highlights the value of whole-genomic sequencing in the surveillance of virulence attributes among clinical K. pneumoniae strains.
Collapse
Affiliation(s)
- Mauricio Flores-Valdez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional De Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional De Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
93
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
94
|
Fursova NK, Astashkin EI, Ershova ON, Aleksandrova IA, Savin IA, Novikova TS, Fedyukina GN, Kislichkina AA, Fursov MV, Kuzina ES, Biketov SF, Dyatlov IA. Multidrug-Resistant Klebsiella pneumoniae Causing Severe Infections in the Neuro-ICU. Antibiotics (Basel) 2021; 10:antibiotics10080979. [PMID: 34439029 PMCID: PMC8389041 DOI: 10.3390/antibiotics10080979] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was the identification of genetic lineages and antimicrobial resistance (AMR) and virulence genes in Klebsiella pneumoniae isolates associated with severe infections in the neuro-ICU. Susceptibility to antimicrobials was determined using the Vitek-2 instrument. AMR and virulence genes, sequence types (STs), and capsular types were identified by PCR. Whole-genome sequencing was conducted on the Illumina MiSeq platform. It was shown that K. pneumoniae isolates of ST14K2, ST23K57, ST39K23, ST76K23, ST86K2, ST218K57, ST219KL125/114, ST268K20, and ST2674K47 caused severe systemic infections, including ST14K2, ST39K23, and ST268K20 that were associated with fatal incomes. Moreover, eight isolates of ST395K2 and ST307KL102/149/155 were associated with manifestations of vasculitis and microcirculation disorders. Another 12 K. pneumoniae isolates of ST395K2,KL39, ST307KL102/149/155, and ST147K14/64 were collected from patients without severe systemic infections. Major isolates (n = 38) were XDR and MDR. Beta-lactamase genes were identified: blaSHV (n = 41), blaCTX-M (n = 28), blaTEM (n = 21), blaOXA-48 (n = 21), blaNDM (n = 1), and blaKPC (n = 1). The prevalent virulence genes were wabG (n = 41), fimH (n = 41), allS (n = 41), and uge (n = 34), and rarer, detected only in the genomes of the isolates causing severe systemic infections-rmpA (n = 8), kfu (n = 6), iroN (n = 5), and iroD (n = 5) indicating high potential of the isolates for hypervirulence.
Collapse
Affiliation(s)
- Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (T.S.N.)
- Correspondence:
| | - Evgenii I. Astashkin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (T.S.N.)
| | - Olga N. Ershova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (O.N.E.); (I.A.A.); (I.A.S.)
| | - Irina A. Aleksandrova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (O.N.E.); (I.A.A.); (I.A.S.)
| | - Ivan A. Savin
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (O.N.E.); (I.A.A.); (I.A.S.)
| | - Tatiana S. Novikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (T.S.N.)
| | - Galina N. Fedyukina
- Department of Immunobiochemistry of Pathogenic Microorganisms, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (G.N.F.); (S.F.B.)
| | - Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| | - Mikhail V. Fursov
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (M.V.F.); (E.S.K.)
| | - Ekaterina S. Kuzina
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (M.V.F.); (E.S.K.)
| | - Sergei F. Biketov
- Department of Immunobiochemistry of Pathogenic Microorganisms, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (G.N.F.); (S.F.B.)
| | - Ivan A. Dyatlov
- Department of Administration, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| |
Collapse
|
95
|
Hao M, Schuyler J, Zhang H, Shashkina E, Du H, Fouts DE, Satlin M, Kreiswirth BN, Chen L. Apramycin resistance in epidemic carbapenem-resistant Klebsiella pneumoniae ST258 strains. J Antimicrob Chemother 2021; 76:2017-2023. [PMID: 33942093 DOI: 10.1093/jac/dkab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent studies indicated that the monosubstituted deoxystreptamine aminoglycoside apramycin is a potent antibiotic against a wide range of MDR Gram-negative pathogens. OBJECTIVES To evaluate the in vitro activity of apramycin against carbapenem-resistant Klebsiella pneumoniae (CRKp) isolates from New York and New Jersey, and to explore mechanisms of apramycin resistance. METHODS Apramycin MICs were determined by broth microdilution for 155 CRKp bloodstream isolates collected from 2013 to 2018. MLST STs, wzi capsular types and apramycin resistance gene aac(3')-IV were examined by PCR and Sanger sequencing. Selected isolates were further characterized by conjugation experiments and WGS. RESULTS Apramycin MIC50/90 values were 8 and >128 mg/L for CRKp isolates, which are much higher than previously reported. Twenty-four isolates (15.5%) were apramycin resistant (MIC ≥64 mg/L) and they were all from the K. pneumoniae ST258 background. The 24 apramycin-resistant K. pneumoniae ST258 strains belonged to six different capsular types and 91.7% of them harboured the apramycin resistance gene aac(3')-IV. Sequencing analysis showed that different ST258 capsular type strains shared a common non-conjugative IncR plasmid, co-harbouring aac(3')-IV and blaKPC. A novel IncR and IncX3 cointegrate plasmid, p59494-RX116.1, was also identified in an ST258 strain, demonstrating how apramycin resistance can be spread from a non-conjugative plasmid through cointegration. CONCLUSIONS We described a high apramycin resistance rate in clinical CRKp isolates in the New York/New Jersey region, mainly among the epidemic K. pneumoniae ST258 strains. The high resistance rate in an epidemic K. pneumoniae clone raises concern regarding the further optimization and development of apramycin and apramycin-like antibiotics.
Collapse
Affiliation(s)
- Mingju Hao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Jessica Schuyler
- School of Graduate Studies, Rutgers University, Newark, NJ, USA.,Center for Discovery and Innovation, Hackensack-Meridian Health, Nutley, NJ, USA
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Elena Shashkina
- Center for Discovery and Innovation, Hackensack-Meridian Health, Nutley, NJ, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | - Michael Satlin
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack-Meridian Health, Nutley, NJ, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack-Meridian Health, Nutley, NJ, USA.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| |
Collapse
|
96
|
Gorodnichev RB, Volozhantsev NV, Krasilnikova VM, Bodoev IN, Kornienko MA, Kuptsov NS, Popova AV, Makarenko GI, Manolov AI, Slukin PV, Bespiatykh DA, Verevkin VV, Denisenko EA, Kulikov EE, Veselovsky VA, Malakhova MV, Dyatlov IA, Ilina EN, Shitikov EA. Novel Klebsiella pneumoniae K23-Specific Bacteriophages From Different Families: Similarity of Depolymerases and Their Therapeutic Potential. Front Microbiol 2021; 12:669618. [PMID: 34434173 PMCID: PMC8381472 DOI: 10.3389/fmicb.2021.669618] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance is a major public health concern in many countries worldwide. The rapid spread of multidrug-resistant (MDR) bacteria is the main driving force for the development of novel non-antibiotic antimicrobials as a therapeutic alternative. Here, we isolated and characterized three virulent bacteriophages that specifically infect and lyse MDR Klebsiella pneumoniae with K23 capsule type. The phages belonged to the Autographiviridae (vB_KpnP_Dlv622) and Myoviridae (vB_KpnM_Seu621, KpS8) families and contained highly similar receptor-binding proteins (RBPs) with polysaccharide depolymerase enzymatic activity. Based on phylogenetic analysis, a similar pattern was also noted for five other groups of depolymerases, specific against capsule types K1, K30/K69, K57, K63, and KN2. The resulting recombinant depolymerases Dep622 (phage vB_KpnP_Dlv622) and DepS8 (phage KpS8) demonstrated narrow specificity against K. pneumoniae with capsule type K23 and were able to protect Galleria mellonella larvae in a model infection with a K. pneumoniae multidrug-resistant strain. These findings expand our knowledge of the diversity of phage depolymerases and provide further evidence that bacteriophages and phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.
Collapse
Affiliation(s)
- Roman B. Gorodnichev
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Nikolay V. Volozhantsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Valentina M. Krasilnikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Ivan N. Bodoev
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Maria A. Kornienko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Nikita S. Kuptsov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Anastasia V. Popova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Galina I. Makarenko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexander I. Manolov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Pavel V. Slukin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Dmitry A. Bespiatykh
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Vladimir V. Verevkin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Egor A. Denisenko
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Eugene E. Kulikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Vladimir A. Veselovsky
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Maja V. Malakhova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Ivan A. Dyatlov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Elena N. Ilina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Egor A. Shitikov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
97
|
Moussa J, Abboud E, Tokajian S. The dissemination of antimicrobial resistance determinants in surface water sources in lebanon. FEMS Microbiol Ecol 2021; 97:6332278. [PMID: 34329434 DOI: 10.1093/femsec/fiab113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
The prevalence of antibiotic-resistant bacteria in surface water in Lebanon is a growing concern and understanding the mechanisms of the spread of resistance determinants is essential. We aimed at studying the occurrence of resistant bacteria and determinants in surface water sources in Lebanon and understanding their mobilization and transmission. Water samples were collected from five major rivers in Lebanon. Ninety-one isolates were recovered by incubating at 37°C on Blood and MacConkey agar out of which 25 were multi-drug resistant (MDR) and accordingly were further characterized. Escherichia coli and Klebsiella pneumoniae were the most common identified MDR isolates. Conjugation assays coupled with in silico plasmid analysis were performed and validated using PCR-based replicon typing (PBRT) to identify and confirm incompatibility groups and the localization of β-lactamase encoding genes. E. coli EC23 carried a blaNDM-5 gene on a conjugative, multireplicon plasmid, while blaCTX-M-15 and blaTEM-1B were detected in the majority of the MDR isolates. Different sequence types (STs)were identified including the highly virulent E. coli ST131. Our results showed a common occurrence of bacterial contaminants in surface water and an increase in the risk for the dissemination of resistance determinants exacerbated with the ongoing intensified population mobility in Lebanon and the widespread lack of wastewater treatment.
Collapse
Affiliation(s)
- Jennifer Moussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Edmond Abboud
- Laboratory department, the Middle East Institute of Health University Center, Bsalim, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| |
Collapse
|
98
|
Ribeiro S, Mourão J, Novais Â, Campos J, Peixe L, Antunes P. From farm to fork: Colistin voluntary withdrawal in Portuguese farms reflected in decreasing occurrence of mcr-1-carrying Enterobacteriaceae from chicken meat. Environ Microbiol 2021; 23:7563-7577. [PMID: 34327794 DOI: 10.1111/1462-2920.15689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022]
Abstract
Expansion of mcr-carrying Enterobacteriaceae (MCR-E) is a well-recognized problem affecting animals, humans and the environment. Ongoing global control actions involve colistin restrictions among food-animal production, but their impact on poultry-derived products is largely unknown, justifying comprehensive farm-to-fork studies. Occurrence of MCR-E among 53 chicken-meat batches supplied from 29 Portuguese farms shortly after colistin withdrawal was evaluated. Strains (FT-IR/MLST/WGS), mcr plasmids and their adaptive features were characterized by cultural, molecular and genomic approaches. We found high rates of chicken-meat batches (80%-100% - 4 months; 12% - the last month) with multiple MDR + mcr-1-carrying Escherichia coli (Ec-including ST117 and ST648-Cplx) and Klebsiella pneumoniae (Kp-ST147-O5:K35) clones, some of them persisting over time. The mcr-1 was located in the chromosome (Ec-ST297/16-farms) or dispersed IncX4 (Ec-ST602/ST6469/5-farms), IncHI2-ST2/ST4 (Ec-ST533/ST6469/5 farms and Kp-ST147/6-farms) or IncI2 (Ec-ST117/1-farm) plasmids. WGS revealed high load and diversity in virulence, antibiotic resistance and metal tolerance genes. This study supports colistin withdrawal potential efficacy in poultry production and highlights both poultry-production chain as a source of mcr-1 and the risk of foodborne transmission to poultry-meat consumers. Finally, in the antibiotic reduction/replacement context, other potential co-selective pressures (e.g., metals-Cu as feed additives) need to be further understood to guide concerted, effective and durable actions under 'One Health' perspective.
Collapse
Affiliation(s)
- Sofia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Joana Mourão
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Joana Campos
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,INEB-Institute of Biomedical Engineering, i3S-Institute for Research & Innovation in Health, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Patrícia Antunes
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, 4150-180, Portugal
| |
Collapse
|
99
|
Two Distinct Genotypes of KPC-2-Producing Klebsiella pneumoniae Isolates from South Korea. Antibiotics (Basel) 2021; 10:antibiotics10080911. [PMID: 34438961 PMCID: PMC8388746 DOI: 10.3390/antibiotics10080911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the characteristics of KPC-2-producing Klebsiella pneumoniae (KP-Kp) isolates from a hospital in South Korea. Among the 37 KP-Kp isolates, two main clones were identified-ST11 and ST307. ST11 isolates showed higher minimum inhibitory concentrations for carbapenems than ST307 isolates. All ST307 isolates were resistant to gentamicin and trimethoprim-sulfamethoxazole, but ST11 isolates were not. However, most tigecycline-resistant or colistin-resistant isolates belonged to ST11. The two KP-Kp clones showed different combinations of wzi and K serotypes. Plasmids from ST11 KP-Kp isolates exhibited diverse incompatibility types. Serum resistance and macrophage infection assays indicated that ST11 may be more virulent than ST307. The changes in the main clones of KP-Kp isolates over time as well as the different characteristics of these clones, including virulence, suggest the need for their continuous monitoring.
Collapse
|
100
|
Zhou C, Wu Q, He L, Zhang H, Xu M, Yuan B, Jin Z, Shen F. Clinical and Molecular Characteristics of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae Isolates in a Tertiary Hospital in Shanghai, China. Infect Drug Resist 2021; 14:2697-2706. [PMID: 34285522 PMCID: PMC8286785 DOI: 10.2147/idr.s321704] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background The convergence of carbapenem-resistance and hypervirulence in Klebsiella pneumoniae has led to a significant public health challenge. In recent years, there have been more and more reports on carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) isolates. Materials and Methods Clinical data of patients infected with CR-hvKP from January 2019 to December 2020 in a tertiary hospital were retrospectively evaluated. The number of isolates of Klebsiella pneumoniae, hypermucoviscous Klebsiella pneumoniae (hmKP), carbapenem-resistant hypermucoviscous Klebsiella pneumoniae (CR-hmKP) and carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) collected during the period of 2 years was calculated. The antimicrobial resistance gene, virulence-associated gene, capsular serotype gene and multilocus sequence typing (MLST) of CR-hvKP isolates were detected by PCR. Results During the study period, a total of 1081 isolates of non-repeat Klebsiella pneumoniae were isolated, including 392 isolates of hypermucoviscous Klebsiella pneumoniae (36.3%), 39 isolates of CR-hmKP (3.6%), and 16 isolates of CR-hvKP (1.5%). About 31.2% (5/16) of CR-hvKP were isolated from 2019, and 68.8% (11/16) of CR-hvKP were isolated from 2020. Among the 16 isolates of CR-hvKP, 13 isolates were ST11 and serotype K64, 1 isolate was ST11 and serotype K47, 1 isolate was ST23 and serotype K1, and 1 isolate was ST86 and serotype K2. The virulence-associated genes entB, fimH, rmpA2, iutA, iucA were present in all of 16 CR-hvKP isolates, followed by mrkD (n=14), rmpA (n=13), aerobactin (n=2), allS (n=1). Sixteen CR-hvKP isolates all carry carbapenemase gene bla KPC-2 and extended-spectrum β-lactamase gene bla SHV. ERIC-PCR DNA fingerprinting results showed that 16 CR-hvKP isolates were highly polymorphic, and there were significant differences in bands among the isolates, presenting a sporadic state. Conclusion Although CR-hvKP was sporadically distributed, it showed an increasing trend year by year. Therefore, clinical attention should be paid, and necessary measures should be taken to avoid the cloning and transmission of superbacterium CR-hvKP.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qiang Wu
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Leqi He
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hui Zhang
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Maosuo Xu
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Baoyu Yuan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi Jin
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Fang Shen
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|