51
|
Chumbe A, Izquierdo-Lara R, Tataje L, Gonzalez R, Cribillero G, González AE, Fernández-Díaz M, Icochea E. Pathotyping and Phylogenetic Characterization of Newcastle Disease Viruses Isolated in Peru: Defining Two Novel Subgenotypes Within Genotype XII. Avian Dis 2017; 61:16-24. [PMID: 28301239 DOI: 10.1637/11456-062016-reg] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infections of poultry with virulent strains of avian paramyxovirus 1 (APMV-1), also known as Newcastle disease viruses (NDVs), cause Newcastle disease (ND). This highly contagious disease affects poultry and many other species of birds worldwide. In countries where the disease is prevalent, constant monitoring and characterization of isolates causing outbreaks are necessary. In this study, we report the results of pathogenicity testing and phylogenetic analyses of seven NDVs isolated from several regions of Peru between 2004 and 2015. Six viruses had intracerebral pathogenicity indices (ICPIs) of between 1.75 and 1.88, corresponding to a velogenic pathotype. The remaining virus had an ICPI of 0.00, corresponding to a lentogenic pathotype. These results were consistent with amino acid sequences at the fusion protein (F) cleavage site. All velogenic isolates had the polybasic amino acid sequence 112RRQKR↓F117 at the F cleavage site. Phylogenetic analyses of complete F gene sequences showed that all isolates are classified in class II of APMV-1. The velogenic viruses are classified in genotype XII, while the lentogenic virus is classified in genotype II, closely related to the LaSota vaccine strain. Moreover, tree topology, bootstrap values, and genetic distances observed within genotype XII resulted in the identification of novel subgenotypes XIIa (in South America) and XIIb (in China) and possibly two clades within genotype XIIa. All velogenic Peruvian viruses belonged to subgenotype XIIa. Overall, our results confirm the presence of genotype XII in Peru and suggest that it is the prevalent genotype currently circulating in our country. The phylogenetic characterization of these isolates helps to characterize the evolution of NDV and may help with the development of vaccines specific to our regional necessities.
Collapse
Affiliation(s)
- Ana Chumbe
- A FARVET S.A.C., Chincha Alta, Ica, Peru.,B Laboratory of Avian Pathology, Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
| | - Ray Izquierdo-Lara
- A FARVET S.A.C., Chincha Alta, Ica, Peru.,B Laboratory of Avian Pathology, Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
| | | | - Rosa Gonzalez
- B Laboratory of Avian Pathology, Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
| | - Giovana Cribillero
- B Laboratory of Avian Pathology, Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
| | - Armando E González
- B Laboratory of Avian Pathology, Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
| | | | - Eliana Icochea
- B Laboratory of Avian Pathology, Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
| |
Collapse
|
52
|
Phylogenetic and pathogenic characterization of a pigeon paramyxovirus type 1 isolate reveals cross-species transmission and potential outbreak risks in the northwest region of China. Arch Virol 2017; 162:2755-2767. [PMID: 28597087 DOI: 10.1007/s00705-017-3422-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Pigeon paramyxovirus type-1 (PPMV-1) is enzootic in pigeons, causing severe economic loss in the poultry industry in many countries. However, the exact epidemic process of PPMV-1 transmission is still unclear. In this study, we analyzed the complete genome of the PPMV-1/SX-01/15 isolate. Sequence results show that the virus genome contains 15,192 nucleotides, with the gene order 3'-NP-P-M-F-HN-L-5'. Phylogenetic analysis revealed that this genome belongs to subgenotype VIc in class II. The mean death time (MDT) and intracerebral pathogenicity index (ICPI) were 62.4 h and 1.13, respectively, indicating that this isolate is a mesogenic PPMV-1 strain. To our knowledge, this is the first report of a subgenotype VIc mesogenic PPMV-1 strain circulating in commercial pigeon flocks in the northwest region of China. In a comparative infection experiment, the morbidity and mortality rates were 100% and 80%, respectively, in 4-week-old pigeons, whereas they were 50% and 30%, respectively, in 5-week-old chickens. Furthermore, this virus caused severe neurological symptoms in a 4-week-old pigeon and mild neurological symptoms in a 5-week-old chicken. A histopathological examination of the brain showed a classical nonsuppurative encephalitis lesion. The pattern of viral shedding, and viral load, and virus distribution differed between infected chickens and pigeons. Genomic characteristics suggest that there was cross-species transmission of PPMV-1 subgenotype VIc in this region at least from the years 2006 to 2015.
Collapse
|
53
|
Liu H, Albina E, Gil P, Minet C, de Almeida RS. Two-plasmid system to increase the rescue efficiency of paramyxoviruses by reverse genetics: The example of rescuing Newcastle Disease Virus. Virology 2017; 509:42-51. [PMID: 28595094 DOI: 10.1016/j.virol.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/28/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Within paramyxoviruses, conventional reverse genetics require the transfection of a minimum of four plasmids: three to reconstruct the viral polymerase complex that replicates and expresses the virus genome delivered by a fourth plasmid. The successful transfection of four or more plasmids of different sizes into one cell and the subsequent generation of at least one viable and replicable viral particle is a rare event, which explains the low rescue efficiency, especially of low virulent viruses with reduced replication efficiency in cell lines. In this study, we report on an improved reverse genetics system developed for an avian paramyxovirus, Newcastle Disease Virus (NDV), in which the number of plasmids was reduced from four to two. Compared to the conventional method, the 2-plasmid system enables earlier and increased production of rescued viruses and, in addition, makes it possible to rescue viruses that it was not possible to rescue using the 4-plasmid system.
Collapse
Affiliation(s)
- Haijin Liu
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; INRA, UMR1309 ASTRE, F-34398 Montpellier, France
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; INRA, UMR1309 ASTRE, F-34398 Montpellier, France.
| | - Patricia Gil
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; INRA, UMR1309 ASTRE, F-34398 Montpellier, France
| | - Cécile Minet
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; INRA, UMR1309 ASTRE, F-34398 Montpellier, France; CIRAD, UMR INTERTRYP, F-34398 Montpellier, France
| | | |
Collapse
|
54
|
Bergfeld J, Meers J, Bingham J, Harper J, Payne J, Lowther S, Marsh G, Tachedjian M, Middleton D. An Australian Newcastle Disease Virus With a Virulent Fusion Protein Cleavage Site Produces Minimal Pathogenicity in Chickens. Vet Pathol 2017; 54:649-660. [PMID: 28494702 DOI: 10.1177/0300985817705173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Newcastle disease is an important disease of poultry caused by virulent strains of Newcastle disease virus (NDV). During the 1998 to 2002 outbreaks of Newcastle disease in Australia, it was observed that the mild clinical signs seen in some chickens infected with NDV did not correlate with the viruses' virulent fusion protein cleavage site motifs or standard pathogenicity indices. The pathogenicity of 2 Australian NDV isolates was evaluated in experimentally challenged chickens based on clinical evaluation, histopathology, immunohistochemistry, and molecular techniques. One of these virus isolates, Meredith/02, was shown to induce only very mild clinical signs with no mortalities in an experimental setting, in contrast to the velogenic Herts 33/56 and Texas GB isolates. This minimal pathogenicity was associated with decreased virus replication and antigen distribution in tissues. This demonstrates that the Australian Meredith/02 NDV, despite possessing a virulent fusion protein cleavage site, did not display a velogenic phenotype.
Collapse
Affiliation(s)
- Jemma Bergfeld
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Joanne Meers
- 2 School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - John Bingham
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jennifer Harper
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jean Payne
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Sue Lowther
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Glenn Marsh
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Mary Tachedjian
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Deborah Middleton
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
55
|
Ren S, Xie X, Wang Y, Tong L, Gao X, Jia Y, Wang H, Fan M, Zhang S, Xiao S, Wang X, Yang Z. Molecular characterization of a Class I Newcastle disease virus strain isolated from a pigeon in China. Avian Pathol 2017; 45:408-17. [PMID: 26950543 DOI: 10.1080/03079457.2016.1153036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Constant monitoring is performed to elucidate the role of natural hosts in the ecology of Newcastle disease virus (NDV). In this study, an NDV strain isolated from an asymptomatic pigeon was sequenced and analysed. Results showed that the full-length genomes of this isolate were 15,198 nucleotides with the gene order of 3'-NP-P-M-F-HN-L-5'. This NDV isolate was lentogenic, with an intracerebral pathogenicity index of 0.00 and a mean time of death more than 148 h. The isolate possessed a motif of -(112)E-R-Q-E-R-L(117)- at the F protein cleavage site. In addition, 7 and 13 amino acid substitutions were identified in the functional domains of fusion protein (F) and haemagglutinin-neuraminidase protein (HN) proteins, respectively. Analysis of the amino acids of neutralizing epitopes of F and HN proteins showed 3 and 10 amino acid substitutions, respectively, in the isolate. Phylogenetic analysis classified the isolate into genotype Ib in Class I. This isolate shared high homologies with the NDV strains isolated from wild birds and waterfowl in southern and eastern parts of China from 2005 to 2013. To our knowledge, this study is the first to report a NDV strain isolated from pigeon that belongs to genotype Ib in Class I, rather than to the traditional genotype VI or other sub-genotypes in Class II. This study provides information to elucidate the distribution and evolution of Class I viruses for further NDV prevention.
Collapse
Affiliation(s)
- Shanhui Ren
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Xiumei Xie
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Yanping Wang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Lina Tong
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Xiaolong Gao
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Yanqing Jia
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Haixin Wang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Mengfei Fan
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Shuxia Zhang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Sa Xiao
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Xinglong Wang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Zengqi Yang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| |
Collapse
|
56
|
Kumar CS, Kumar S. Synonymous codon usage of genes in polymerase complex of Newcastle disease virus. J Basic Microbiol 2017; 57:481-503. [PMID: 28387456 DOI: 10.1002/jobm.201600740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 11/10/2022]
Abstract
Newcastle disease virus (NDV) is pathogenic to both avian and non-avian species but extensively finds poultry as its primary host and causes heavy economic losses in the poultry industry. In this study, a total of 186 polymerase complex comprising of nucleoprotein (N), phosphoprotein (P), and large polymerase (L) genes of NDV was analyzed for synonymous codon usage. The relative synonymous codon usage and effective number of codons (ENC) values were used to estimate codon usage variation in each gene. Correspondence analysis (COA) was used to study the major trend in codon usage variation. Analyzing the ENC plot values against GC3s (at synonymous third codon position) we concluded that mutational pressure was the main factor determining codon usage bias than translational selection in NDV N, P, and L genes. Moreover, correlation analysis indicated, that aromaticity of N, P, and L genes also influenced the codon usage variation. The varied distribution of pathotypes for N, P, and L gene clearly suggests that change in codon usage for NDV is pathotype specific. The codon usage preference similarity in N, P, and L gene might be detrimental for polymerase complex functioning. The study represents a comprehensive analysis to date of N, P, and L genes codon usage pattern of NDV and provides a basic understanding of the mechanisms for codon usage bias.
Collapse
Affiliation(s)
- Chandra Shekhar Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
57
|
Full Genomic Characterization of a Lentogenic Newcastle Disease Virus Isolated from Farm-Reared Ostriches ( Struthio camelus) in Northwest China. GENOME ANNOUNCEMENTS 2017; 5:5/6/e01590-16. [PMID: 28183763 PMCID: PMC5331503 DOI: 10.1128/genomea.01590-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To our knowledge, our study is the first to report the whole-genome sequence of an ostrich-origin Newcastle disease virus (NDV) isolate, abbreviated as Ostrich/SX-01/06. Phylogenetic analysis revealed that this isolate belongs to the subgenotype c in class II. The identification of the complete genome will provide useful information regarding ostrich diseases, especially NDV.
Collapse
|
58
|
Yu XH, Cheng JL, Xue J, Jin JH, Song Y, Zhao J, Zhang GZ. Roles of the Polymerase-Associated Protein Genes in Newcastle Disease Virus Virulence. Front Microbiol 2017; 8:161. [PMID: 28220114 PMCID: PMC5292418 DOI: 10.3389/fmicb.2017.00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/20/2017] [Indexed: 11/19/2022] Open
Abstract
The virulence of Newcastle disease virus varies greatly and is determined by multiple genetic factors. In this study, we systematically evaluated the roles of the polymerase-associated (NP, P and L) protein genes in genotype VII NDV virulence after confirming the envelope-associated (F and HN) proteins contributed greatly to NDV virulence. The results revealed that the polymerase-associated protein genes individually had certain effect on virulence, while transfer of these three genes in combination significantly affected the chimeric virus virulence, especially when the L gene was involved. These results indicated that the L protein was a major contributor to NDV virulence when combined with the homologous NP and P proteins. We also investigated viral RNA synthesis using NDV minigenome systems to assess the interaction between the NP, P, and L proteins, which showed that the activity of the polymerase-associated proteins were directly related to viral RNA transcription and replication.
Collapse
Affiliation(s)
- Xiao-Hui Yu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Jin-Long Cheng
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Ji-Hui Jin
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Yang Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Guo-Zhong Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| |
Collapse
|
59
|
Hemmatzadeh F, Kazemimanesh M. Detection of specific antigens of Newcastle disease virus using an absorbed Western blotting method. IRANIAN JOURNAL OF VETERINARY RESEARCH 2017; 18:92-96. [PMID: 28775747 PMCID: PMC5534250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 11/01/2016] [Accepted: 11/26/2016] [Indexed: 06/07/2023]
Abstract
Newcastle disease virus (NDV) is an economically important poultry pathogen with a worldwide distribution that may infect a wide range of domestic and wild avian species. The identification of different pathotypes of NDVs plays an important role in the diagnosis and development of vaccines to control and eradicate NDV infections. In our previous study, we showed that mono-specific antibodies can differentiate velogenic and lentogenic strains of NDV in Agar Gel Immuno-Diffusion tests. To evaluate the ability of the specific antibodies to detect NDV specific antigens, this study was conducted with a range of NDV isolates. The samples included 9 NDV neuropathogenic/velogenic isolates from diseased chickens collected from poultry farms in central and northern parts of Iran plus La-Sota and B1 vaccine strains. All samples were propagated in embryonated chicken eggs and concentrated and purified by ultra-centrifugation. All samples were subjected to 12.5% SDS-PAGE and Western blotting using the specific antibodies mentioned previously. In SDS-PAGE all velogenic and vaccine strains showed the same electrophoretic pattern. The detected bands included 15, 38, 46, 48, 53, 55, 68, 74 and 220 kDa proteins. In Western blotting analysis, the mono-specific antibodies reacted specifically to the viral proteins with 15, 38, 48, 55, 74 and 220 kDa and non-specifically to the viral protein with 53 kDa. The results suggest that specific anti-NDV antibodies can react specifically to glycoproteins (haemagglutin-neuraminidase and fusion proteins) but not to internal proteins (nucleoprotein or matrix protein) of NDV strains.
Collapse
Affiliation(s)
- F. Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia;
| | - M. Kazemimanesh
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
60
|
Genomic characterization of a wild-bird-origin pigeon paramyxovirus type 1 (PPMV-1) first isolated in the northwest region of China. Arch Virol 2016; 162:749-761. [DOI: 10.1007/s00705-016-3156-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
|
61
|
Jin J, Zhao J, Ren Y, Zhong Q, Zhang G. Contribution of HN protein length diversity to Newcastle disease virus virulence, replication and biological activities. Sci Rep 2016; 6:36890. [PMID: 27833149 PMCID: PMC5105081 DOI: 10.1038/srep36890] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Abstract
To evaluate the contribution of length diversity in the hemagglutinin-neuraminidase (HN) protein to the pathogenicity, replication and biological characteristics of Newcastle disease virus (NDV), we used reverse genetics to generate a series of recombinant NDVs containing truncated or extended HN proteins based on an infectious clone of genotype VII NDV (SG10 strain). The mean death times and intracerebral pathogenicity indices of these viruses showed that the different length mutations in the HN protein did not alter the virulence of NDV. In vitro studies of recombinant NDVs containing truncated or extended HN proteins revealed that the extension of HN protein increased its hemagglutination titer, receptor-binding ability and impaired its neuraminidase activity, fusogenic activity and replication ability. Furthermore, the hemadsorption, neuraminidase and fusogenic promotion activities at the protein level were consistent with those of viral level. Taken together, our results demonstrate that the HN biological activities affected by the C-terminal extension are associated with NDV replication but not the virulence.
Collapse
Affiliation(s)
- Jihui Jin
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yingchao Ren
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qi Zhong
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology and Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
62
|
Morla S, Shah M, Kaore M, Kurkure NV, Kumar S. Molecular characterization of genotype XIIIb Newcastle disease virus from central India during 2006–2012: Evidence of its panzootic potential. Microb Pathog 2016; 99:83-86. [DOI: 10.1016/j.micpath.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/28/2022]
|
63
|
Bu X, Zhao Y, Zhang Z, Wang M, Li M, Yan Y. Recombinant Newcastle disease virus (rL-RVG) triggers autophagy and apoptosis in gastric carcinoma cells by inducing ER stress. Am J Cancer Res 2016; 6:924-936. [PMID: 27293989 PMCID: PMC4889710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/10/2016] [Indexed: 06/06/2023] Open
Abstract
We have reported that the recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing the rabies virus glycoprotein (rL-RVG) could induce autophagy and apoptosis in gastric carcinoma cells. In the present study, we explored the upstream regulators, endoplasmic reticulum (ER) stress that induce autophagy and apoptosis and the relationships among them. For this purpose, SGC-7901 and HGC cells were infected with rL-RVG. NDV LaSota strain and phosphate-buffered saline (PBS) were treated as the control groups. Western blotting and immunofluorescence microscopy were used to detect the expression of the ER stress-related proteins glucose-regulated protein 78 (GRP78) and the transcription factor GADD153 (CHOP), among others. The expression of beclin-1 and the conversion of light chain (LC) 3-I were used to determine the occurrence of autophagy, and flow cytometry (FCM) and western blotting were used to examine apoptosis-related protein expression. Transmission electron microscopy was also performed to monitor the ultrastructure of the cells. Moreover, small interfering (si) RNA was used to knock down CHOP expression. rL-RVG treatment increased the expression of ER stress-related proteins, such as GRP78, CHOP, activating transcriptional factor 6 (ATF6), X-box-binding protein 1 (XBP-1), and phosphorylated eukaryotic initiation factor 2 (p-eIF2α), in a time- and concentration-dependent manner, and knockdown of CHOP reduced LC3-II conversion and beclin-1 expression. When ER stress was inhibited with 4-PBA, the expression of both autophagy-related proteins and apoptosis-related proteins markedly decreased. Interestingly, inhibition of autophagy with 3-methyladenine (3MA) decreased not only apoptosis-related protein expression but also ER stress-related protein expression. Moreover, we found that downregulation of the c-Jun N-terminal kinase (JNK) pathway by SP600125 reduced LC3-II conversion, beclin-1 expression and caspase-3 activation. Collectively, the results suggest that rL-RVG increased ER stress in three branch pathways (ATF6, inositol-requiring enzyme 1 (IRE1), and PKR-like ER protein kinase (PERK)) that are upstream regulators of autophagy and apoptosis. Moreover, the IRE1-JNK pathway played an important role in switching ER stress to autophagy. These findings will provide molecular bases for developing rL-RVG into a drug candidate for the treatment of gastric carcinoma.
Collapse
Affiliation(s)
- Xuefeng Bu
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Yinghai Zhao
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
- Clinical Medicine College of Jiangsu UniversityZhenjiang, China
| | - Zhijian Zhang
- Clinical Medicine College of Jiangsu UniversityZhenjiang, China
| | - Mubin Wang
- Clinical Medicine College of Jiangsu UniversityZhenjiang, China
| | - Mi Li
- Clinical Medicine College of Jiangsu UniversityZhenjiang, China
| | - Yulan Yan
- Department of Internal Medicine, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, China
| |
Collapse
|
64
|
Yin R, Liu X, Bi Y, Xie G, Zhang P, Meng X, Ai L, Xu R, Sun Y, Stoeger T, Ding Z. Expression of Raf kinase inhibitor protein is downregulated in response to Newcastle disease virus infection to promote viral replication. J Gen Virol 2015; 96:2579-2586. [PMID: 26297355 DOI: 10.1099/jgv.0.000228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Newcastle disease virus (NDV) causes a severe and economically significant disease affecting almost the entire poultry industry worldwide. However, factors that affect NDV replication in host cells are poorly understood. Raf kinase inhibitory protein (RKIP) is a physiological inhibitor of c-RAF kinase and NF-κB signalling, known for their functions in the control of immune response as well as tumour invasion and metastasis. In the present study, we investigated the consequences of overexpression of host RKIP during viral infection. We demonstrate that NDV infection represses RKIP expression thereby promoting virus replication. Experimental upregulation of RKIP in turn acts as a potential antiviral defence mechanism in host cells that restricts NDV replication by repressing the activation of Raf/MEK/ERK and IκBα/NF-κB signalling pathways. Our results not only extend the concept of linking NDV-host interactions, but also reveal RKIP as a new class of protein-kinase-inhibitor protein that affects NDV replication with therapeutic potential.
Collapse
Affiliation(s)
- Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China
| | - Xinxin Liu
- College of Quartermaster Technology Science, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Guangyao Xie
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China
| | - Pingze Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China
| | - Xin Meng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China
| | - Lili Ai
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China
| | - Rongyi Xu
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China
| | - Yuzhang Sun
- China Animal Health and Epidemiology Center, Qingdao, Nanjing Road 369, Qingdao, Shandong 266032, PR China
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg/Munich, Germany
| | - Zhuang Ding
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China
| |
Collapse
|
65
|
Delayed Newcastle disease virus replication using RNA interference to target the nucleoprotein. Biologicals 2015; 43:274-80. [PMID: 26050911 PMCID: PMC7106533 DOI: 10.1016/j.biologicals.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/21/2015] [Accepted: 03/26/2015] [Indexed: 01/05/2023] Open
Abstract
Each year millions of chickens die from Newcastle disease virus (NDV) worldwide leading to severe economic and food losses. Current vaccination campaigns have limitations especially in developing countries, due to elevated costs, need of trained personnel for effective vaccine administration, and functional cold chain network to maintain vaccine viability. These problems have led to heightened interest in producing new antiviral strategies, such as RNA interference (RNAi). RNAi methodology is capable of substantially decreasing viral replication at a cellular level, both in vitro and in vivo. In this study, we utilize microRNA (miRNA)-expressing constructs (a type of RNA interference) in an attempt to target and knockdown five NDV structural RNAs for nucleoprotein (NP), phosphoprotein (P), matrix (M), fusion (F), and large (L) protein genes. Immortalized chicken embryo fibroblast cells (DF-1) that transiently expressed miRNA targeting NP mRNA, showed increased resistance to NDV-induced cytopathic effects, as determined by cell count, relative to the same cells expressing miRNA against alternative NDV proteins. Upon infection with NDV, DF-1 cells constitutively expressing the NP miRNA construct had improved cell survival up to 48 h post infection (h.p.i) and decreased viral yield up to 24 h.p.i. These results suggest that overexpression of the NP miRNA in cells and perhaps live animal may provide resistance to NDV.
Collapse
|
66
|
Awu A, Shao MY, Liu MM, Hu YX, Qin ZM, Tian FL, Zhang GZ. Characterization of two pigeon paramyxovirus type 1 isolates in China. Avian Pathol 2015; 44:204-11. [PMID: 25735628 DOI: 10.1080/03079457.2015.1025255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
For over three decades, there has been a continuing panzootic caused by a virulent variant avian paramyxovirus type 1 strain, the so-called pigeon paramyxovirus type 1. It is found primarily in racing pigeons, but it has also spread to wild birds and poultry. In this study, two pigeon paramyxovirus type 1 strains, SD12 and BJ13, obtained from diseased pigeons in China, were characterized. Phylogenetic analysis based on complete sequences allowed characterization of both strains as genotype VI, class II. Further phylogenetic analysis of a 374-nucleotide section of the fusion gene showed that SD12 fell into lineage VIbii-d and BJ13 into VIbii-f. The deduced amino acid sequence of the cleavage site of the fusion protein confirmed that both isolates contained the virulent motif (112)K/RRQKR↓F(117) at the cleavage site. Nevertheless, the values of intracerebral pathogenicity indices showed the SD12 isolate to be a velogenic strain and BJ13 isolate to be a mesogenic strain. The SD12 isolate was further investigated via clinical observation, RNA detection, histopathology and viral serology in experimentally infected 3-week-old chickens. It showed a mild pathological phenotype in chickens, with viral replication restricted to a few tissues. The molecular mechanism for the SD12 isolate to have a virulent motif but low levels of virulence for chickens requires further study.
Collapse
Affiliation(s)
- Abie Awu
- a Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture , College of Veterinary Medicine, China Agricultural University , Beijing , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
67
|
Tayeb S, Zakay-Rones Z, Panet A. Therapeutic potential of oncolytic Newcastle disease virus: a critical review. Oncolytic Virother 2015; 4:49-62. [PMID: 27512670 PMCID: PMC4918379 DOI: 10.2147/ov.s78600] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Newcastle disease virus (NDV) features a natural preference for replication in many tumor cells compared with normal cells. The observed antitumor effect of NDV appears to be a result of both selective killing of tumor cells and induction of immune responses. Genetic manipulations to change viral tropism and arming the virus with genes encoding for cytokines improved the oncolytic capacity of NDV. Several intracellular proteins in tumor cells, including antiapoptotic proteins (Livin) and oncogenic proteins (H-Ras), are relevant for the oncolytic activity of NDV. Defects in the interferon system, found in some tumor cells, also contribute to the oncolytic selectivity of NDV. Notwithstanding, NDV displays effective oncolytic activity in many tumor types, despite having intact interferon signaling. Taken together, several cellular systems appear to dictate the selective oncolytic activity of NDV. Some barriers, such as neutralizing antibodies elicited during NDV treatment and the extracellular matrix in tumor tissue appear to interfere with spread of NDV and reduce oncolysis. To further understand the oncolytic activity of NDV, we compared two NDV strains, ie, an attenuated virus (NDV-HUJ) and a pathogenic virus (NDV-MTH-68/H). Significant differences in amino acid sequence were noted in several viral proteins, including the fusion precursor (F0) glycoprotein, an important determinant of replication and pathogenicity. However, no difference in the oncolytic activity of the two strains was noted using human tumor tissues maintained as organ cultures or in mouse tumor models. To optimize virotherapy in clinical trials, we describe here a unique organ culture methodology, using a biopsy taken from a patient’s tumor before treatment for ex vivo infection with NDV to determine the oncolytic potential on an individual basis. In conclusion, oncolytic NDV is an excellent candidate for cancer therapy, but more knowledge is needed to ensure success in clinical trials.
Collapse
Affiliation(s)
- Shay Tayeb
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel; Department of Biochemistry and Molecular Biology, The Chanock Center for Virology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry and Molecular Biology, The Chanock Center for Virology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry and Molecular Biology, The Chanock Center for Virology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
68
|
Abstract
Newcastle disease (ND) is a highly contagious and devastating viral disease of poultry and other birds that has a worldwide distribution. ND in pigeons is called paramyxovirosis and is caused by antigenic "pigeon variant" of the virus (pigeon paramyxovirus type 1, PPMV-1). During PPMV-1 infections, central nervous system symptoms and sometimes high mortality are observed. In the case of infection with viscerotropic strains which exhibit specific affinity for the kidneys, the first observed sign is polyuria, and neural symptoms appear only in individual birds in the flock. Due to the similarity of symptoms of paramyxovirosis to the pigeon herpes virus infection (PHV), sodium chloride poisoning, overdose of ronidazole or vitamin B1 deficiency, it is necessary to perform laboratory tests to make a correct diagnosis. After virus isolation PPMV-1 can be detected initially by haemagglutination assay (HA). PPMV-1 can be confirmed by conventional serological tests such a haemagglutination inhibition test (HI) or molecular-based techniques. In the prophylaxis of paramyxovirosis in pigeons, inactivated vaccines are used, administered by subcutaneous injection in various prevention programs. However, vaccination should be only one component of a strategy of PPMV-1 control, on a par with effective biosecurity and proper, effective methods of prevention and diagnostics of paramyxovirosis.
Collapse
|
69
|
Chong YL, Kim O, Poss M. Lineage diversification of pigeon paramyxovirus effect re-emergence potential in chickens. Virology 2014; 462-463:309-17. [PMID: 25010480 DOI: 10.1016/j.virol.2014.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 11/17/2022]
Abstract
Genotype VI-paramyxovirus (GVI-PMV1) is a major cause of epidemic Newcastle-like disease in Columbiformes. This genotype of avian paramyxovirus type 1 has diversified rapidly since its introduction into the US in 1982 resulting in two extant lineages, which have different population growth properties. Although some GVI-PMV1s replicate poorly in chickens, it is possible that variants with different replicative or pathogenic potential in chickens exist among the genetically-diverse GVI-PMV1s strains. To determine if variants of Columbiform GVI-PMV1 with different phylogenetic affiliations have distinct phenotypic properties in chickens, we investigated the replicative properties of 10 naturally circulating pigeon-derived isolates representing four subgroups of GVI-PMV1 in primary chicken lung epithelial cells and in chicken embryos. Our data demonstrate that GVI-PMV1 variants have different infection phenotypes in their chicken source host and that properties reflect subgroup affiliation. These subgroup replicative properties are consistent with observed dynamics of viral population growth.
Collapse
Affiliation(s)
- Yee Ling Chong
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Oekyung Kim
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mary Poss
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
70
|
Evaluation of the contributions of individual viral genes to newcastle disease virus virulence and pathogenesis. J Virol 2014; 88:8579-96. [PMID: 24850737 DOI: 10.1128/jvi.00666-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Naturally occurring Newcastle disease virus (NDV) strains vary greatly in virulence. The presence of multibasic residues at the proteolytic cleavage site of the fusion (F) protein has been shown to be a primary determinant differentiating virulent versus avirulent strains. However, there is wide variation in virulence among virulent strains. There also are examples of incongruity between cleavage site sequence and virulence. These observations suggest that additional viral factors contribute to virulence. In this study, we evaluated the contribution of each viral gene to virulence individually and in different combinations by exchanging genes between velogenic (highly virulent) strain GB Texas (GBT) and mesogenic (moderately virulent) strain Beaudette C (BC). These two strains are phylogenetically closely related, and their F proteins contain identical cleavage site sequences, (112)RRQKR↓F(117). A total of 20 chimeric viruses were constructed and evaluated in vitro, in 1-day-old chicks, and in 2-week-old chickens. The results showed that both the envelope-associated and polymerase-associated proteins contribute to the difference in virulence between rBC and rGBT, with the envelope-associated proteins playing the greater role. The F protein was the major individual contributor and was sometimes augmented by the homologous M and HN proteins. The dramatic effect of F was independent of its cleavage site sequence since that was identical in the two strains. The polymerase L protein was the next major individual contributor and was sometimes augmented by the homologous N and P proteins. The leader and trailer regions did not appear to contribute to the difference in virulence between BC and GBT. IMPORTANCE This study is the first comprehensive and systematic study of NDV virulence and pathogenesis. Genetic exchanges between a mesogenic and a velogenic strain revealed that the fusion glycoprotein is the major virulence determinant regardless of the identical virulence protease cleavage site sequence present in both strains. The contribution of the large polymerase protein to NDV virulence is second only to that of the fusion glycoprotein. The identification of virulence determinants is of considerable importance, because of the potential to generate better live attenuated NDV vaccines. It may also be possible to apply these findings to other paramyxoviruses.
Collapse
|
71
|
Zhang S, Sun Y, Chen H, Dai Y, Zhan Y, Yu S, Qiu X, Tan L, Song C, Ding C. Activation of the PKR/eIF2α signaling cascade inhibits replication of Newcastle disease virus. Virol J 2014; 11:62. [PMID: 24684861 PMCID: PMC3994276 DOI: 10.1186/1743-422x-11-62] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/27/2014] [Indexed: 12/15/2022] Open
Abstract
Background Newcastle Disease virus (NDV) causes severe and economically significant disease in almost all birds. However, factors that affect NDV replication in host cells are poorly understood. NDV generates long double-stranded RNA (dsRNA) molecules during transcription of single-stranded genomic RNA. Protein kinase R (PKR) is activated by dsRNA. The aim of this study was to elucidate the role of PKR in NDV infection. Results NDV infection led to the activation of dsRNA-dependent PKR and phosphorylation of its substrate, translation initiation factor eIF2α, in a dose-dependent manner by either the lentogenic strain LaSota or a velogenic strain Herts/33. PKR activation coincided with the accumulation of dsRNA induced by NDV infection. PKR knockdown remarkably decreased eIF2α phosphorylation as well as IFN-β mRNA levels, leading to the augmentation of extracellular virus titer. Furthermore, siRNA knockdown or phosphorylation of eIF2α or okadaic acid treatment significantly impaired NDV replication, indicating the critical role of the PKR/eIF2α signaling cascade in NDV infection. Conclusion PKR is activated by dsRNA generated by NDV infection and inhibits NDV replication by eIF2α phosphorylation. This study provides insight into NDV-host interactions for the development of candidate antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No,518 Ziyue Road, Shanghai 200241, China.
| |
Collapse
|
72
|
Newcastle disease virus: current status and our understanding. Virus Res 2014; 184:71-81. [PMID: 24589707 PMCID: PMC7127793 DOI: 10.1016/j.virusres.2014.02.016] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
Newcastle disease (ND) is one of the highly pathogenic viral diseases of avian species. ND is economically significant because of the huge mortality and morbidity associated with it. The disease is endemic in many third world countries where agriculture serves as the primary source of national income. Newcastle disease virus (NDV) belongs to the family Paramyxoviridae and is well characterized member among the avian paramyxovirus serotypes. In recent years, NDV has lured the virologists not only because of its pathogenic potential, but also for its oncolytic activity and its use as a vaccine vector for both humans and animals. The NDV based recombinant vaccine offers a pertinent choice for the construction of live attenuated vaccine due to its modular nature of transcription, minimum recombination frequency, and lack of DNA phase during replication. Our current understanding about the NDV biology is expanding rapidly because of the availability of modern molecular biology tools and high-throughput complete genome sequencing.
Collapse
|
73
|
Ji X, Wang Q, Li X, Qi X, Wang Y, Gao H, Gao Y, Wang X. A 19-nucleotide insertion in the leader sequence of avian leukosis virus subgroup J contributes to its replication in vitro but is not related to its pathogenicity in vivo. PLoS One 2014; 9:e84797. [PMID: 24465434 PMCID: PMC3896346 DOI: 10.1371/journal.pone.0084797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/25/2013] [Indexed: 01/09/2023] Open
Abstract
Subgroup J avian leukosis virus (ALV-J) was first isolated from meat-type chickens that had developed myeloid leukosis and since 2008, ALV-J infections in chickens have become widespread in China. A comparison of the sequence of ALV-J epidemic isolates with HPRS-103, the ALV-J prototype virus, revealed several distinct features, one of which is a 19-nucleotide (nt) insertion in the leader sequence. To determine the role of the 19-nt insertion in ALV-J pathogenicity, a pair of viruses were constructed and rescued. The first virus was an ALV-J Chinese isolate (designated rSD1009) containing the 19-nt insertion in its leader sequence. The second virus was a clone, in which the leader sequence had a deleted 19-nt sequence (designated rSD1009△19). Compared with rSD1009△19, rSD1009 displayed a moderate growth advantage in vitro. However, no differences were demonstrated in either viral replication or oncogenicity between the two rescued viruses in chickens. These results indicated that the 19-nt insertion contributed to ALV-J replication in vitro but was not related to its pathogenicity in vivo.
Collapse
Affiliation(s)
- Xiaolin Ji
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaofei Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: ;
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: ;
| |
Collapse
|
74
|
Guo H, Liu X, Xu Y, Han Z, Shao Y, Kong X, Liu S. A comparative study of pigeons and chickens experimentally infected with PPMV-1 to determine antigenic relationships between PPMV-1 and NDV strains. Vet Microbiol 2014; 168:88-97. [DOI: 10.1016/j.vetmic.2013.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 11/26/2022]
|
75
|
Briand FX, Massin P, Jestin V. Characterisation of a type 1 Avian Paramyxovirus belonging to a divergent group. Vet Microbiol 2013; 168:25-33. [PMID: 24238668 DOI: 10.1016/j.vetmic.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 11/24/2022]
Abstract
Newcastle disease, induced by a type 1 Avian Paramyxovirus (APMV-1), is one of the most serious poultry diseases. APMV-1 are divided into two classes based on genetic analysis: class II strains have been recovered from wild or domestic birds and include virulent and avirulent isolates whereas class I strains have been mainly isolated from wild birds and are avirulent. Within class I, a new proposed genotype has recently been reported. The only full genome strain of this group is presently characterised from the point of view of codon usage with reference to class I and class II specificities. Class-specific residues were identified on HN and F proteins that are the two major proteins involved in cell attachment and pathogenicity. Comparison of protein patterns and codon usage for this newly identified APMV-1 strain indicates it is similar to class I viruses but contains a few characteristics close to the viruses of class II. Transmission of viruses from this recently identified divergent group from wild birds to domestic birds could have a major impact on the domestic poultry industry.
Collapse
Affiliation(s)
- François-Xavier Briand
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Avian and Rabbit Virology, Immunology and Parasitology Unit, BP 53, 22440 Ploufragan, France; European University of Brittany, France.
| | - Pascale Massin
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Avian and Rabbit Virology, Immunology and Parasitology Unit, BP 53, 22440 Ploufragan, France; European University of Brittany, France
| | - Véronique Jestin
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Avian and Rabbit Virology, Immunology and Parasitology Unit, BP 53, 22440 Ploufragan, France; European University of Brittany, France
| |
Collapse
|
76
|
Characterization of genotype IX Newcastle disease virus strains isolated from wild birds in the northern Qinling Mountains, China. Virus Genes 2013; 48:48-55. [DOI: 10.1007/s11262-013-0987-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
77
|
Liu H, Zhang P, Wu P, Chen S, Mu G, Duan X, Hao H, Du E, Wang X, Yang Z. Phylogenetic characterization and virulence of two Newcastle disease viruses isolated from wild birds in China. INFECTION GENETICS AND EVOLUTION 2013; 20:215-24. [PMID: 23999544 DOI: 10.1016/j.meegid.2013.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/19/2013] [Accepted: 08/25/2013] [Indexed: 11/19/2022]
Abstract
Wild birds are considered as a natural reservoir of Newcastle disease virus (NDV). However, there is no information about genotype IX NDV from wild birds, especially from Columbiformes. In this study, two genotype IX NDV viruses were isolated from wild birds. One was from Eurasian Blackbird, while the other was from Spotted-necked dove. After purification by plaque technique, complete genomes of both viruses were sequenced. Phylogenetic analysis of partial fusion (F) gene and complete genome indicated both strains belonged to genotype IX. Based on intracerebral pathogenicity index (ICPI), the virus from Eurasian Blackbird was velogenic virus, while the strain from Spotted-necked dove was lentogenic virus. However, both strains showed one of velogenic cleavage sites. In addition, the strain from Eurasian Blackbird showed greater replication ability and generated larger fusion foci in vitro than that of strain from Spotted-necked dove. Comparing all the corresponding protein sequences of both strains, there were only 9 different amino acid residues between them. Furthermore, after analysis of these differences, the information about lentogenic NDV with multi-basic cleavage site was presented.
Collapse
Affiliation(s)
- Haijin Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Complete genome sequences of newcastle disease virus strains isolated from three different poultry species in china. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00198-12. [PMID: 23950112 PMCID: PMC3744668 DOI: 10.1128/genomea.00198-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In 2000, three Newcastle disease virus (NDV) strains were isolated from outbreaks of infection in layers, ducklings, and geese in the same region of China during the same time period. Here, we report their complete genome sequences, which belong to the NDV genotype VIId. This discovery might provide clues as to the evolution of the NDVs of different avian origins.
Collapse
|
79
|
Zhang X, Liu H, Liu P, Peeters BPH, Zhao C, Kong X. Recovery of avirulent, thermostable Newcastle disease virus strain NDV4-C from cloned cDNA and stable expression of an inserted foreign gene. Arch Virol 2013; 158:2115-20. [DOI: 10.1007/s00705-013-1723-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
|
80
|
A 205-nucleotide deletion in the 3' untranslated region of avian leukosis virus subgroup J, currently emergent in China, contributes to its pathogenicity. J Virol 2012; 86:12849-60. [PMID: 22993155 DOI: 10.1128/jvi.01113-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the past 5 years, an atypical clinical outbreak of avian leukosis virus subgroup J (ALV-J), which contains a unique 205-nucleotide deletion in its 3' untranslated region (3'UTR), has become epidemic in chickens in China. To determine the role of the 205-nucleotide deletion in the pathogenicity of ALV-J, a pair of viruses were constructed and rescued. The first virus was an ALV-J Chinese isolate (designated HLJ09SH01) containing the 205-nucleotide deletion in its 3'UTR. The second virus was a chimeric clone in which the 3'UTR contains a 205-nucleotide sequence corresponding to a region of the ALV-J prototype virus. The replication and pathogenicity of the rescued viruses (rHLJ09SH01 and rHLJ09SH01A205) were investigated. Compared to rHLJ09SH01A205, rHLJ09SH01 showed a moderate growth advantage in vitro and in vivo, in addition to exhibiting a higher oncogenicity rate and lethality rate in layers and broilers. Increased vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth receptor subtype 2 (VEGFR-2) expression was induced by rHLJ09SH01 more so than by rHLJ09SH01A205 during early embryonic vascular development, but this increased expression disappeared when the expression levels were normalized to the viral levels. This finding suggests that the expression of VEGF-A and VEGFR-2 is associated with viral replication and may also represent a novel molecular mechanism underlying the oncogenic potential of ALV-J. Overall, our findings not only indicate that the unique 205-nucleotide deletion in the ALV-J genome occurred naturally in China and contributes to increased pathogenicity but also point to the possible mechanism of ALV-J-induced oncogenicity.
Collapse
|
81
|
Hu Z, Hu J, Hu S, Liu X, Wang X, Zhu J, Liu X. Strong innate immune response and cell death in chicken splenocytes infected with genotype VIId Newcastle disease virus. Virol J 2012; 9:208. [PMID: 22988907 PMCID: PMC3489799 DOI: 10.1186/1743-422x-9-208] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 06/20/2012] [Indexed: 12/20/2022] Open
Abstract
Background Genotype VIId Newcastle disease virus (NDV) isolates induce more severe damage to lymphoid tissues, especially to the spleen, when compared to virulent viruses of other genotypes. However, the biological basis of the unusual pathological changes remains largely unknown. Methods Virus replication, cytokine gene expression profile and cell death response in chicken splenocytes infected with two genotype VIId NDV strains (JS5/05 and JS3/05), genotype IX NDV strain F48E8 and genotype IV NDV strain Herts/33 were evaluated. Statistical significance of differences between experimental groups was determined using the Independent-Samples T test. Results JS5/05 and JS3/05 caused hyperinduction of type I interferons (IFNs) (IFN-α and -β) during detection period compared to F48E8 and Herts/33. JS5/05 increased expression level of IFN-γ gene at 6 h post-inoculation (pi) and JS3/05 initiated sustained activation of IFN-γ within 24 h pi, whereas transcriptional levels of IFN-γ remained unchanged at any of the time points during infection of F48E8 and Herts/33. In addition, compared to F48E8 and Herts/33, JS3/05 and JS5/05 significantly increased the amount of free nucleosomal DNA in splenocytes at 6 and 24 h pi respectively. Annexin-V and Proidium iodid (PI) double staining of infected cells showed that cell death induced by JS3/05 and JS5/05 was characterized by marked necrosis compared to F48E8 and Herts/33 at 24 h pi. These results indicate that genotype VIId NDV strains JS3/05 and JS5/05 elicited stronger innate immune and cell death responses in chicken splenocytes than F48E8 and Herts/33. JS5/05 replicated at a significantly higher efficiency in splenocytes than F48E8 and Herts/33. Early excessive cell death induced by JS3/05 infection partially impaired virus replication. Conclusions Viral dysregulaiton of host response may be relevant to the severe pathological manifestation in the spleen following genotype VIId NDV infection.
Collapse
Affiliation(s)
- Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou Jiangsu Province, 225009, China
| | | | | | | | | | | | | |
Collapse
|
82
|
Absalón AE, Mariano-Matías A, Vásquez-Márquez A, Morales-Garzón A, Cortés-Espinosa DV, Ortega-García R, Lucio-Decanini E. Complete genome sequence of a velogenic Newcastle disease virus isolated in Mexico. Virus Genes 2012; 45:304-10. [PMID: 22821201 DOI: 10.1007/s11262-012-0782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022]
Abstract
In Mexico, the number of cases of the highly virulent Newcastle disease virus is increasing. In 2005, an outbreak of Newcastle disease occurred on an egg laying hen farm in the state of Puebla despite vaccination with the LaSota strain. Farmers experienced a major drop in egg production as a consequence of a field challenge virus. In this study, we characterize the virus, APMV1/chicken/Mexico/P05/2005, responsible for the outbreak. The virus is categorized as a velogenic virus with an intracranial pathogenicity index of 1.99 and a chicken embryo mean death time of 36 h. The complete genome length of the virus was sequenced as consisting of 15,192 bp. In addition, phylogenetic analysis classified the virus as a member of the class II, genotype V. The highly pathogenic nature of the virus has been linked to the amino acid sequence at the fusion protein cleavage site, which contains multiple basic amino acids (RRQKR↓F).
Collapse
Affiliation(s)
- Angel E Absalón
- Centro de Investigación en Biotecnología Aplicada, IPN, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala, Mexico.
| | | | | | | | | | | | | |
Collapse
|
83
|
Ge S, Zheng D, Zhao Y, Liu H, Liu W, Sun Q, Li J, Yu S, Zuo Y, Han X, Li L, Lv Y, Wang Y, Liu X, Wang Z. Evaluating viral interference between Influenza virus and Newcastle disease virus using real-time reverse transcription-polymerase chain reaction in chicken eggs. Virol J 2012; 9:128. [PMID: 22748105 PMCID: PMC3439397 DOI: 10.1186/1743-422x-9-128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 06/09/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Simultaneous and sequential allantoic cavity inoculations of Specific-pathogen-free (SPF) chicken eggs with Influenza virus (AIV) and Newcastle disease virus (NDV) demonstrated that the interaction of AIV and NDV during co-infection was variable. Our research revisited the replication interference potential of AIV and NDV using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) for AIV and NDV to specifically detect the viral genomes in mixed infections. RESULTS Data from this survey showed that when different doses of NDV (Lasota or F48E8) and AIV (F98 or H5N1) were simultaneously inoculated into embryonating chicken eggs (ECE), interference with the growth of NDV occurred, while interference with the growth of AIV did not occur. When equal amount of the two viruses were sequentially employed, the degree of interference was dependent upon the time of superinfection and the virulence of virus. CONCLUSION AIV have a negative impact on NDV growth if they are inoculated simultaneously or sequentially and that the degree of interference depended upon the quantity and relative virulence of the virus strains used; however, interference with AIV was not observed. Only if NDV were inoculated at an earlier time will NDV able to interfere with the growth of AIV.
Collapse
Affiliation(s)
- Shengqiang Ge
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Dongxia Zheng
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Yunling Zhao
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Qing Sun
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jinming Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Songmei Yu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Xiuju Han
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Lin Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Yan Lv
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Yingli Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| |
Collapse
|
84
|
Development of a novel real-time PCR-based strategy for simple and rapid molecular pathotyping of Newcastle disease virus. Arch Virol 2012; 157:833-44. [PMID: 22302287 DOI: 10.1007/s00705-012-1231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/12/2011] [Indexed: 02/01/2023]
Abstract
A novel real-time PCR strategy was applied to simultaneously detect and to discriminate low-pathogenic lentogenic and virulent meso/velogenic Newcastle disease virus (NDV). The pathotyping is achieved by a three-step semi-nested PCR. A pre-amplification of the cleavage site (CS) region of the F gene is followed by a two-level duplex real-time PCR directly targeting the CS, combining detection and pathotyping in a single tube. A wide range of NDV isolates spanning all genotypes were successfully detected and pathotyped. Clinical samples from outbreaks in Sweden in 2010 that were positive by the novel PCR method were also successfully pathotyped. The method is time-saving, reduces labour and costs and provides opportunities for rapid diagnosis at remote locations and in the field. Since the same strategy was also recently applied to avian influenza virus pathotyping, it shows promise of finding broad utility in diagnostics of infectious diseases caused by different RNA viruses in various hosts.
Collapse
|
85
|
Zamarin D, Palese P. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 2012; 7:347-67. [PMID: 22393889 DOI: 10.2217/fmb.12.4] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus, which has been demonstrated to possess significant oncolytic activity against mammalian cancers. This review summarizes the research leading to the elucidation of the mechanisms of NDV-mediated oncolysis, as well as the development of novel oncolytic agents through the use of genetic engineering. Clinical trials utilizing NDV strains and NDV-based autologous tumor cell vaccines will expand our knowledge of these novel anticancer strategies and will ultimately result in the successful use of the virus in the clinical setting.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
86
|
Ramp K, Topfstedt E, Wäckerlin R, Höper D, Ziller M, Mettenleiter TC, Grund C, Römer-Oberdörfer A. Pathogenicity and immunogenicity of different recombinant Newcastle disease virus clone 30 variants after in ovo vaccination. Avian Dis 2012; 56:208-17. [PMID: 22545548 DOI: 10.1637/9870-080311-reg.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Even though Newcastle disease virus (NDV) live vaccine strains can be applied to 1-day-old chickens, they are pathogenic to chicken embryos when given in ovo 3 days before hatch. Based on the reverse genetics system, we modified recombinant NDV (rNDV) established from lentogenic vaccine strain Clone 30 by introducing specific mutations within the fusion (F) and hemagglutinin-neuraminidase (HN) proteins, which have recently been suggested as being responsible for attenuation of selected vaccine variants (Mast et al. Vaccine 24:1756-1765, 2006) resulting in rNDV49. Another recombinant (rNDVGu) was generated to correct sequence differences between rNDV and vaccine strain NDV Clone 30. Recombinant viruses rNDV, rNDV49, and rNDVGu have reduced virulence compared with NDV Clone 30, represented by lower intracerebral pathogenicity indices and elevated mean death time. After in ovo inoculation, hatchability was comparable for all infected groups. However, only one chicken from the NDV Clone 30 group survived a 21-day observation period; whereas, the survival rate of hatched chicks from groups receiving recombinant NDV was between 40% and 80%, with rNDVGu being the most pathogenic virus. Furthermore, recombinant viruses induced protection against challenge infection with virulent NDV 21 days post hatch. Differences in antibody response of recombinant viruses indicate that immunogenicity is correlated to virulence. In summary, our data show that point mutations can reduce virulence of NDV. However, alteration of specific amino acids in F and HN proteins of rNDV did not lead to further attenuation as indicated by their pathogenicity for chicken after in ovo inoculation.
Collapse
Affiliation(s)
- Kristina Ramp
- Institute of Molecular Biology, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Mutation of the f-protein cleavage site of avian paramyxovirus type 7 results in furin cleavage, fusion promotion, and increased replication in vitro but not increased replication, tissue tropism, or virulence in chickens. J Virol 2012; 86:3828-38. [PMID: 22258248 DOI: 10.1128/jvi.06765-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We constructed a reverse genetics system for avian paramyxovirus serotype 7 (APMV-7) to investigate the role of the fusion F glycoprotein in tissue tropism and virulence. The AMPV-7 F protein has a single basic residue arginine (R) at position -1 in the F cleavage site sequence and also is unusual in having alanine at position +2 (LPSSR↓FA) (underlining indicates the basic amino acids at the F protein cleavage site, and the arrow indicates the site of cleavage.). APMV-7 does not form syncytia or plaques in cell culture, but its replication in vitro does not depend on, and is not increased by, added protease. Two mutants were successfully recovered in which the cleavage site was modified to mimic sites that are found in virulent Newcastle disease virus isolates and to contain 4 or 5 basic residues as well as isoleucine in the +2 position: (RRQKR↓FI) or (RRKKR↓FI), named Fcs-4B or Fcs-5B, respectively. In cell culture, one of the mutants, Fcs-5B, formed protease-independent syncytia and grew to 10-fold-higher titers compared to the parent and Fcs-4B viruses. This indicated the importance of the single additional basic residue (K) at position -3. Syncytium formation and virus yield of the Fcs-5B virus was impaired by the furin inhibitor decanoyl-RVKR-CMK, whereas parental APMV-7 was not affected. APMV-7 is avirulent in chickens and is limited in tropism to the upper respiratory tract of 1-day-old and 2-week-old chickens, and these characteristics were unchanged for the two mutant viruses. Thus, the acquisition of furin cleavability by APMV-7 resulted in syncytium formation and increased virus yield in vitro but did not alter virus yield, tropism, or virulence in chickens.
Collapse
|
88
|
Dortmans JCFM, Koch G, Rottier PJM, Peeters BPH. Virulence of Newcastle disease virus: what is known so far? Vet Res 2011; 42:122. [PMID: 22195547 PMCID: PMC3269386 DOI: 10.1186/1297-9716-42-122] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/23/2011] [Indexed: 12/22/2022] Open
Abstract
In the last decade many studies have been performed on the virulence of Newcastle disease virus (NDV). This is mainly due to the development of reverse genetics systems which made it possible to genetically modify NDV and to investigate the contribution of individual genes and genome regions to its virulence. However, the available information is scattered and a comprehensive overview of the factors and conditions determining NDV virulence is lacking. This review summarises, compares and discusses the available literature and shows that virulence of NDV is a complex trait determined by multiple genetic factors.
Collapse
Affiliation(s)
- Jos C F M Dortmans
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
89
|
Abstract
Junín virus is the causative agent for Argentine hemorrhagic fever, and its natural host is the New World rodent Calomys musculinus. The virus is transmitted to humans by aerosolization, and it is believed that many of the clinical symptoms are caused by cytokines produced by sentinel cells of the immune system. Here we used the Junín virus vaccine strain Candid 1 to determine whether mouse cells could be used to study virus entry and antiviral innate immune responses. We show that Candid 1 can infect and propagate in different mouse-derived cell lines through a low-pH-dependent, transferrin receptor 1-independent mechanism, suggesting that there is a second entry receptor. In addition, Candid 1 induced expression of the antiviral cytokines tumor necrosis factor alpha and beta interferon in macrophages, and this induction was independent of viral replication. Using Candid 1, as well as virus-like particles bearing the viral glycoprotein, to infect different primary cells and established macrophage cell lines with deletions in the Toll-like receptor (TLR) pathway, we show that TLR2 is a cellular sensor of both the Parodi and Candid 1 viral glycoproteins. Because Junín virus is highly lethal in humans, the use of an experimentally tractable model system, such as the mouse, could provide a better understanding of the antiviral innate cellular responses to Junín virus and the role of these responses in pathogenesis.
Collapse
|
90
|
Dortmans JCFM, Koch G, Rottier PJM, Peeters BPH. A comparative infection study of pigeon and avian paramyxovirus type 1 viruses in pigeons: evaluation of clinical signs, virus shedding and seroconversion. Avian Pathol 2011; 40:125-30. [PMID: 21500031 DOI: 10.1080/03079457.2010.542131] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pathogenesis of pigeon paramyxovirus type 1 (PPMV-1) isolate AV324/96 and of its recombinant derivative, rgAV324, was studied in pigeons. For comparison, the virulent chicken virus FL-Herts, which is a recombinant derivative of strain Herts/33, was also included. After inoculation by the combined intraocular, intranasal and intratracheal route, clinical signs, virus shedding and serological responses were examined. Clinical signs were observed only in the FL-Herts-infected group. All virus-inoculated pigeons had positive tracheal swabs until 5 days post infection. However, only the AV324/96-infected and rgAV324-infected birds, and not the FL-Herts-infected birds, shed virus in the cloaca. The AV324/96-infected pigeons showed higher mean antibody titres than the rgAV324-infected birds, whereas the antibody titres of the FL-Herts-infected group were rather low. The results show that the pigeon strain AV324 is not virulent for pigeons, but underlines the potential risk of poultry becoming infected by PPMV-1 shed by non-symptomatic pigeons.
Collapse
Affiliation(s)
- J C F M Dortmans
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | | | | | | |
Collapse
|
91
|
Roles of the fusion and hemagglutinin-neuraminidase proteins in replication, tropism, and pathogenicity of avian paramyxoviruses. J Virol 2011; 85:8582-96. [PMID: 21680512 DOI: 10.1128/jvi.00652-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulent and moderately virulent strains of Newcastle disease virus (NDV), representing avian paramyxovirus serotype 1 (APMV-1), cause respiratory and neurological disease in chickens and other species of birds. In contrast, APMV-2 is avirulent in chickens. We investigated the role of the fusion (F) and hemagglutinin-neuraminidase (HN) envelope glycoproteins in these contrasting phenotypes by designing chimeric viruses in which the F and HN glycoproteins or their ectodomains were exchanged individually or together between the moderately virulent, neurotropic NDV strain Beaudette C (BC) and the avirulent APMV-2 strain Yucaipa. When we attempted to exchange the complete F and HN glycoproteins individually and together between the two viruses, the only construct that could be recovered was recombinant APMV-2 strain Yucaipa (rAPMV-2), containing the NDV F glycoprotein in place of its own. This substitution of NDV F into APMV-2 was sufficient to confer the neurotropic, neuroinvasive, and neurovirulent phenotypes, in spite of all being at reduced levels compared to what was seen for NDV-BC. When the ectodomains of F and HN were exchanged individually and together, two constructs could be recovered: NDV, containing both the F and HN ectodomains of APMV-2; and APMV-2, containing both ectodomains of NDV. This supported the idea that homologous cytoplasmic tails and matched F and HN ectodomains are important for virus replication. Analysis of these viruses for replication in vitro, syncytium formation, mean embryo death time, intracerebral pathogenicity index, and replication and tropism in 1-day-old chicks and 2-week-old chickens showed that the two contrasting phenotypes of NDV and APMV-2 could largely be transferred between the two backbones by transfer of homotypic F and HN ectodomains. Further analysis provided evidence that the homologous stalk domain of NDV HN is essential for virus replication, while the globular head domain of NDV HN could be replaced with that of APMV-2 with only a minimal attenuating effect. These results demonstrate that the F and HN ectodomains together determine the cell fusion, tropism, and virulence phenotypes of NDV and APMV-2 and that the regions of HN that are critical to replication and the species-specific phenotypes include the cytoplasmic tail and stalk domain but not the globular head domain.
Collapse
|
92
|
Caspase- and p38-MAPK-dependent induction of apoptosis in A549 lung cancer cells by Newcastle disease virus. Arch Virol 2011; 156:1335-44. [DOI: 10.1007/s00705-011-0987-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
|
93
|
Mutations in the fusion protein cleavage site of avian paramyxovirus serotype 2 increase cleavability and syncytium formation but do not increase viral virulence in chickens. J Virol 2011; 85:5394-405. [PMID: 21450835 DOI: 10.1128/jvi.02696-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian paramyxovirus serotype 2 (APMV-2) is one of the nine serotypes of APMV, which infect a wide variety of avian species around the world. In this study, we constructed a reverse genetics system for recovery of infectious recombinant APMV-2 strain Yucaipa (APMV-2/Yuc) from cloned cDNA. The rescued recombinant virus (rAPMV-2) resembled the biological virus in growth properties in vitro and in pathogenicity in vivo. The reverse genetics system was used to analyze the role of the cleavage site of the fusion (F) protein in viral replication and pathogenesis. The cleavage site of APMV-2/Yuc (KPASR↓F) contains only a single basic residue (position -1) that matches the preferred furin cleavage site [RX(K/R)R↓]. (Underlining indicates the basic amino acids at the F protein cleavage site, and the arrow indicates the site of cleavage.) Contrary to what would be expected for this cleavage sequence, APMV-2 does not require, and is not augmented by, exogenous protease supplementation for growth in cell culture. However, it does not form syncytia, and the virus is avirulent in chickens. A total of 12 APMV-2 mutants with F protein cleavage site sequences derived from APMV serotypes 1 to 9 were generated. These sites contain from 1 to 5 basic residues. Whereas a number of these cleavage sites are associated with protease dependence and lack of syncytium formation in their respective native viruses, when transferred into the APMV-2 backbone, all of them conferred protease independence, syncytium formation, and increased replication in cell culture. Examination of selected mutants during a pulse-chase experiment demonstrated an increase in F protein cleavage compared to that for wild-type APMV-2. Despite the gains in cleavability, replication, and syncytium formation, analysis of viral pathogenicity in 9-day-old embryonated chicken eggs, 1-day-old chicks, and 2-week-old chickens showed that the F protein cleavage site mutants did not exhibit increased pathogenicity and remained avirulent. These results imply that structural features in addition to the cleavage site play a major role in the cleavability of the F protein and the activity of the cleaved protein. Furthermore, cleavage of the F protein is not a determinant of APMV-2 pathogenicity in chickens.
Collapse
|
94
|
Khattar SK, Kumar S, Xiao S, Collins PL, Samal SK. Experimental infection of mice with avian paramyxovirus serotypes 1 to 9. PLoS One 2011; 6:e16776. [PMID: 21347313 PMCID: PMC3037383 DOI: 10.1371/journal.pone.0016776] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/29/2010] [Indexed: 11/18/2022] Open
Abstract
The nine serotypes of avian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds worldwide. APMV-1, also called Newcastle disease virus, was shown to be attenuated in non-avian species and is being developed as a potential vector for human vaccines. In the present study, we extended this evaluation to the other eight serotypes by evaluating infection in BALB/c mice. Mice were inoculated intranasally with a prototype strain of each of the nine serotypes and monitored for clinical disease, gross pathology, histopathology, virus replication and viral antigen distribution, and seroconversion. On the basis of multiple criteria, each of the APMV serotypes except serotype 5 was found to replicate in mice. Five of the serotypes produced clinical disease and significant weight loss in the following order of severity: 1, 2>6, 9>7. However, disease was short-lived. The other serotypes produced no evident clinical disease. Replication of all of the APMVs except APMV-5 in the nasal turbinates and lungs was confirmed by the recovery of infectious virus and by substantial expression of viral antigen in the epithelial lining detected by immunohistochemistry. Trace levels of infectious APMV-4 and -9 were detected in the brain of some animals; otherwise, no virus was detected in the brain, small intestine, kidney, or spleen. Histologically, infection with the APMVs resulted in lung lesions consistent with broncho-interstitial pneumonia of varying severity that were completely resolved at 14 days post infection. All of the mice infected with the APMVs except APMV-5 produced serotype-specific HI serum antibodies, confirming a lack of replication of APMV-5. Taken together, these results demonstrate that all APMV serotypes except APMV-5 are capable of replicating in mice with minimal disease and pathology.
Collapse
Affiliation(s)
- Sunil K. Khattar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Sachin Kumar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Sa Xiao
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Siba K. Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
95
|
Dortmans JCFM, Rottier PJM, Koch G, Peeters BPH. Passaging of a Newcastle disease virus pigeon variant in chickens results in selection of viruses with mutations in the polymerase complex enhancing virus replication and virulence. J Gen Virol 2010; 92:336-45. [PMID: 20965986 DOI: 10.1099/vir.0.026344-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some Newcastle disease virus (NDV) variants isolated from pigeons (pigeon paramyxovirus type 1; PPMV-1) do not show their full virulence potential for domestic chickens but may become virulent upon spread in these animals. In this study we examined the molecular changes responsible for this gain of virulence by passaging a low-pathogenic PPMV-1 isolate in chickens. Complete genome sequencing of virus obtained after 1, 3 and 5 passages showed the increase in virulence was not accompanied by changes in the fusion protein--a well known virulence determinant of NDV--but by mutations in the L and P replication proteins. The effect of these mutations on virulence was confirmed by means of reverse genetics using an infectious cDNA clone. Acquisition of three amino acid mutations, two in the L protein and one in the P protein, significantly increased virulence as determined by intracerebral pathogenicity index tests in day-old chickens. The mutations enhanced virus replication in vitro and in vivo and increased the plaque size in infected cell culture monolayers. Furthermore, they increased the activity of the viral replication complex as determined by an in vitro minigenome replication assay. Our data demonstrate that PPMV-1 replication in chickens results in mutations in the polymerase complex rather than the viral fusion protein, and that the virulence level of pigeon paramyxoviruses is directly related to the activity of the viral replication complex.
Collapse
Affiliation(s)
- J C F M Dortmans
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | | | | | | |
Collapse
|