51
|
Perryman SM, McAtee FJ, Portis JL. Complete nucleotide sequence of the neurotropic murine retrovirus CAS-BR-E. Nucleic Acids Res 1991; 19:1707. [PMID: 1840655 PMCID: PMC333936 DOI: 10.1093/nar/19.7.1707] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- S M Perryman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840
| | | | | |
Collapse
|
52
|
The R-U5-5' leader sequence of neurovirulent wild mouse retrovirus contains an element controlling the incubation period of neurodegenerative disease. J Virol 1991; 65:1877-83. [PMID: 2002548 PMCID: PMC239999 DOI: 10.1128/jvi.65.4.1877-1883.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The wild mouse ecotropic retrovirus CasBrE causes a spongiform neurodegenerative disease after neonatal inoculation, with an incubation period ranging from 2 to 12 months. We previously showed that introduction of long terminal repeat (LTR) and gag-pol sequences from a strain of Friend murine leukemia virus (FB29) resulted in a dramatic acceleration of the onset of the disease. The chimeric virus FrCasE, which consisted of the FB29 genome containing 3' pol and env sequences from the wild mouse virus, induced a highly predictable, lethal neurodegenerative disease with an incubation period of only 16 days. Here we report that the sequences which are primary determinants of the length of the incubation period are located in the 5' end of the viral genome between a KpnI site in the R region of the LTR and a PstI site immediately 5' of the start codon for pr65gag (R-U5-5' leader). This region contains the tRNA primer binding site, splice donor site for the subgenomic env mRNA, and the packaging sequence. Computer-assisted sequence analysis failed to find evidence of a consensus sequence for a DNA enhancer in this region. In addition, sequences within a region of the genome between a ClaI site at the 3' end of env to the KpnI site in the R region of the LTR (inclusive of U3) also influenced the incubation period of the disease, but the effect was distinctly weaker than that of the R-U5-5' leader sequence. This U3 effect, however, appeared to be independent of the number of direct repeats, since deletion of one of two duplicated 42-base repeats containing consensus sequences of nuclear-factor binding domains had no effect on the incubation period of the disease. On the basis of Southern blot analysis of total viral DNA in the tissues, the effect of these sequences on the incubation period appeared to be related to the level of virus replication in the central nervous system. All of the chimeric viruses analyzed, irrespective of neurovirulence, replicated to comparable levels in the spleen and induced comparable levels of viremia.
Collapse
|
53
|
Kay DG, Gravel C, Robitaille Y, Jolicoeur P. Retrovirus-induced spongiform myeloencephalopathy in mice: regional distribution of infected target cells and neuronal loss occurring in the absence of viral expression in neurons. Proc Natl Acad Sci U S A 1991; 88:1281-5. [PMID: 1847516 PMCID: PMC51001 DOI: 10.1073/pnas.88.4.1281] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Cas-Br-E murine leukemia virus (MuLV) induces a spongiform myeloencephalopathy resulting in a progressive hindlimb paralysis. We have used in situ hybridization with a Cas-Br-E MuLV-specific probe to study viral expression in the central nervous system. Infected cells were concentrated in regions where spongiform lesions and gliosis are detected (lumbosacral spinal cord, brainstem, deep cerebellar regions), suggesting a causative link between the level of virus expression and the degree of pathological changes in this disease. However, viral expression was not in itself sufficient to cause disease, since significant viral expression was observed in regions that did not exhibit pathological changes (cerebellar cortex, hippocampus, corpus callosum, peripheral nervous system). In both diseased and nondiseased regions, endothelial and glial cells were identified as the main target cells. Neurons in diseased regions did not show viral expression. The regional distribution of the spongiform changes appears to be laid down very early following infection, since expression could be detected at 10 days postinfection in regions that become diseased. These results indicate that nonneuronal cells have distinct properties in various regions of the central nervous system and suggest an indirect mechanism of neuronal loss consequent to viral expression in nonneuronal cells.
Collapse
Affiliation(s)
- D G Kay
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Canada
| | | | | | | |
Collapse
|
54
|
Tsichlis PN, Lazo PA. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171:95-171. [PMID: 1667631 DOI: 10.1007/978-3-642-76524-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Viral
- Genetic Markers
- Genetic Predisposition to Disease
- Growth Substances/genetics
- Growth Substances/physiology
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia Virus, Murine/physiology
- Mice/genetics
- Mice/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neoplasms/genetics
- Neoplasms/microbiology
- Neoplasms/veterinary
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Oncogenes
- Proto-Oncogenes
- Proviruses/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Retroviridae/pathogenicity
- Retroviridae/physiology
- Rodent Diseases/genetics
- Rodent Diseases/microbiology
- Signal Transduction
- Virus Integration
- Virus Replication
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
55
|
Paquette Y, Kay DG, Rassart E, Robitaille Y, Jolicoeur P. Substitution of the U3 long terminal repeat region of the neurotropic Cas-Br-E retrovirus affects its disease-inducing potential. J Virol 1990; 64:3742-52. [PMID: 2164594 PMCID: PMC249669 DOI: 10.1128/jvi.64.8.3742-3752.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Cas-Br-E and ts-Mo BA-1 murine leukemia viruses (MuLV) induce a spongiform neurodegenerative disease with different clinical manifestations, namely, either hind limb paralysis (Cas-Br-E) or tremors, spasticity, and hind limb weakness (ts-Mo Ba-1). We constructed the chimeric NEBA-1 MuLV by replacing the long terminal repeat of Cas-Br-E MuLV with that of ts-Mo BA-1 MuLV. In SWR/J or CFW/D mice, NEBA-1 MuLV induced an ataxic neurological disease characterized by clinical signs different from those induced by both parents. Although NEBA-1 MuLV did not induce lesions in novel brain areas, the spongiform lesions were more severe in deep cerebellar nuclei and in the spinal cord than those found in paralyzed mice inoculated with Cas-Br-E MuLV. By in situ hybridization, we found that the distribution of the spongiform lesions closely correlated with the distribution of the infected central nervous system cells. In the spinal cord, a close correlation was found between the number of infected cells and the severity of the spongiform degeneration. Sequencing of the substituted ts-BA-1 MuLV fragment and comparison with homologous sequences of Cas-Br-E and Moloney MuLV showed differences mainly in the U3 tandem direct repeats. Our results show that a few modifications within the U3 long terminal repeat allow the virus to cause more severe lesions in some central nervous system regions and that the severity of the spongiform degeneration correlates with the level of viral replication.
Collapse
Affiliation(s)
- Y Paquette
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Québec, Canada
| | | | | | | | | |
Collapse
|
56
|
Portis JL, Czub S, Garon CF, McAtee FJ. Neurodegenerative disease induced by the wild mouse ecotropic retrovirus is markedly accelerated by long terminal repeat and gag-pol sequences from nondefective Friend murine leukemia virus. J Virol 1990; 64:1648-56. [PMID: 2181155 PMCID: PMC249301 DOI: 10.1128/jvi.64.4.1648-1656.1990] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The wild mouse ecotropic retrovirus (WM-E) induces a spongiform neurodegenerative disease in mice after a variable incubation period of 2 months to as long as 1 year. We isolated a molecular clone of WM-E (15-1) which was weakly neurovirulent (incidence, 8%) but was highly leukemogenic (incidence, 45%). Both lymphoid and granulocytic leukemias were observed, and these leukemias were often neuroinvasive. A chimeric virus was constructed containing the env and 3' pol sequences of 15-1 and long terminal repeat (LTR), gag, and 5' pol sequences from a clone of Friend murine leukemia virus (FB29). FB29 has been shown previously to replicate to high levels in the central nervous system (CNS) but is not itself neurovirulent. This finding was confirmed at the DNA level in the current study. Surprisingly, intraperitoneal inoculation of neonatal IRW mice with the chimeric virus (FrCasE) caused an accelerated neurodegenerative disease with an incubation period of only 16 days and was uniformly fatal by 23 days postinoculation. Introduction of the LTR of 15-1 into the FrCasE genome yielded a virus (FrCasEL) with a degree of neurovirulence intermediate between those of 15-1 and FrCasE. No differences were found in the levels of viremia or the relative levels of viral DNA in the spleens of mice inoculated with 15-1, FrCasE, or FrCasEL. However, the levels of viral DNA in the CNS correlated with the relative degrees of neurovirulence of the respective viruses (FrCasE greater than FrCasEL greater than 15-1). Thus, the env and 3' pol sequences of WM-E (15-1) were required for neurovirulence, but elements within the LTR and gag-pol regions of FB29 had a profound influence on the level of CNS infection and the rate of development of neurodegeneration.
Collapse
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | | | | | | |
Collapse
|
57
|
Affiliation(s)
- M B Gardner
- Department of Medical Pathology, University of California, Davis 95616
| |
Collapse
|
58
|
Wong PK. Moloney murine leukemia virus temperature-sensitive mutants: a model for retrovirus-induced neurologic disorders. Curr Top Microbiol Immunol 1990; 160:29-60. [PMID: 2162285 DOI: 10.1007/978-3-642-75267-4_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- P K Wong
- University of Texas, MD Anderson Cancer Center, Smithville 78957
| |
Collapse
|
59
|
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840
| |
Collapse
|
60
|
Affiliation(s)
- E Hunter
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
61
|
Abstract
Traditionally animal models have formed a vital part of the preclinical evaluation of new forms of antiviral therapy. A variety of models used in the past or potentially useful in the future are considered in this short review. Several valuable and complex questions concerning virus-drug interactions in vivo have been successfully addressed by means of animal models. Better understanding of drug modes of action and virus pathogenesis in the models enable even more accurate predictions to be made for the outcome of antiviral therapy in man. The complexity of virus infections in man is such that animals are likely to remain an important part in drug evaluation for many years. To this end, new developments such as improved techniques in the production of transgenic animals are opening up a variety of completely novel methods for studying inhibitors of a wider group of viruses in vivo including the human immunodeficiency virus. However, the correct interpretation of animal data requires the critical evaluation of animal models. This review will identify several important difficulties which confront those working on antiviral chemotherapy in animals and which must continue to be addressed if confidence in animal data is to be maintained.
Collapse
Affiliation(s)
- H J Field
- Department of Clinical Veterinary Medicine, University of Cambridge, U.K
| | | |
Collapse
|
62
|
Paquette Y, Hanna Z, Savard P, Brousseau R, Robitaille Y, Jolicoeur P. Retrovirus-induced murine motor neuron disease: mapping the determinant of spongiform degeneration within the envelope gene. Proc Natl Acad Sci U S A 1989; 86:3896-900. [PMID: 2542954 PMCID: PMC287248 DOI: 10.1073/pnas.86.10.3896] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Cas-Br-E murine leukemia virus (MuLV) induces a degenerative myeloencephalopathy leading to hind-limb paralysis when inoculated into newborn mice. To map the viral DNA sequences encoding the determinant of neurological degeneration, we constructed chimeric viruses in vitro with parental genomes from Cas-Br-E MuLV and from nonparalytogenic MuLVs. We found that a 1.5-kilobase-pair env Cas-Br-E fragment was sufficient to confer the full paralysis-inducing potential to chimeric viruses. This region encodes the 19 carboxyl-terminal residues of the leader sequence, all of gp70, and the 45 amino-terminal residues of the transmembrane protein (p15E). Within this env region, we identified a 372-base-pair fragment which was necessary for the full paralysis-inducing potential of the virus and which influenced the development of the disease in a strain-dependent manner. This domain encodes the 19 carboxyl-terminal residues of the leader peptide and the first 67 amino-terminal residues of gp70. We propose that Cas-Br-E MuLV induces spongiform degeneration through binding of its gp70 to a specific cellular receptor.
Collapse
Affiliation(s)
- Y Paquette
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Canada
| | | | | | | | | | | |
Collapse
|
63
|
Ohara Y, Roos RP. Viral infectious complementary-DNA studies may identify nonviral genes critical to central nervous system disease. Ann Neurol 1989; 25:305-9. [PMID: 2543264 DOI: 10.1002/ana.410250316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major interest of modern science and medicine is the delineation of genes that cause disease. In the case of cancer, the study of viral oncogenic genes led to the recognition of similar human genes that play an important role in this disease. In an analogous fashion, the identification of viral genes important in central nervous system disease may lead to the recognition of related cellular genes that are important in nonviral central nervous system disease. New molecular techniques now provide tools for identification of pathogenic viral genes and elucidation of mechanisms of disease production. Positive-strand RNA viruses such as picornaviruses provide an especially attractive model system for studies of central nervous system disease-producing genes. A limitation in molecular studies of these viruses has resulted from an inability to use restriction enzymes, since these enzymes are active against DNA and not RNA. This limitation has recently been overcome with the preparation of infectious picornavirus complementary-DNA. This review highlights the importance of infectious complementary-DNA in pathogenesis studies and provides a glimpse of the impact of such studies on neurology.
Collapse
Affiliation(s)
- Y Ohara
- Department of Neurology, University of Chicago Pritzker School of Medicine, IL
| | | |
Collapse
|
64
|
Abstract
The mouse has been suggested as a host for comparative studies of several aspects of Human Acquired Immune Deficiency Syndrome (AIDS). Models include studies where part or all of the genome of Human Immunodeficiency Virus (HIV) has been incorporated into murine DNA in living mice. However, the most promising opportunities for study of immunological changes, vaccine development, cofactor involvement in disease, and anti-retroviral and immunostimulatory drug testing involve infection with murine retroviruses which cause many functional changes similar to AIDS. The viruses' effects on immune systems are reviewed with special emphasis. LP-BM5 murine leukemia virus which infects T and B cells, and macrophages. LP-BM5 infection suppresses cell functions while causing polyclonal lymphocyte activation. Murine immunological characterization, availability of inbred mouse strains, economy of using mice versus primates or humans models, and similarity of immune change caused by murine retroviruses compared to those seen in AIDS caused by HIV encourage rapid development of the LP-BM5 murine leukemia model.
Collapse
Affiliation(s)
- R R Watson
- Department of Family and Community Medicine, Arizona Health Sciences Center, University of Arizona, Tucson 85724
| |
Collapse
|
65
|
Abstract
A neurotropic retrovirus causes a naturally occurring lower-limb paralysis in wild mice, characterized by a noninflammatory spongiform change located primarily in the lower spinal cord. The causative agent is an ecotropic murine leukemia virus, unique to certain wild mice in southern California. The disease is readily transmitted to newborn susceptible laboratory mice. The paralytogenic property is attributed to direct viral injury to motor neurons and glial cells and is associated with unique amino acids in the murine leukemia virus envelope gp70. This murine model may have relevance to both human T-lymphotropic virus type I, and human immunodeficiency virus infection of human brain. It presents a practical model for testing antiviral agents aimed at retrovirus infection of the mammalian central nervous system. Simian acquired immunodeficiency syndrome type D retrovirus causes a silent infection of the brain in infected macaques. Viral nucleic acids are detected in the brain parenchyma in the absence of viral antigen, neurological symptoms, and neuropathology. Infected choroid plexus epithelial cells are the source of cell-free virus in the cerebrospinal fluid of viremic monkeys. This model adds yet another example of retroviral infection of the central nervous system and points to the choroid plexus as a potential source of infectious virus.
Collapse
Affiliation(s)
- M B Gardner
- Department of Medical Pathology, University of California, Davis 95616
| |
Collapse
|
66
|
Miyai I, Saida T, Fujita M, Kitahara Y, Hirono N. Familial cases of HTLV-I-associated myelopathy. Ann Neurol 1987; 22:601-5. [PMID: 2892464 DOI: 10.1002/ana.410220507] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We studied two familial cases of human T-lymphotropic virus type I (HTLV-I)-associated myelopathy from the Kii Peninsula, an area of endemic adult T-cell leukemia-lymphoma (ATLL) in Japan. Incidence of familial clustering of HTLV-I-associated myelopathy was about 20%. Type C retrovirus was isolated from cultured cerebrospinal fluid and peripheral blood lymphocytes in both cases. Modes of transmission seem to be similar to those described in ATLL, although there are no reports of both HTLV-I-associated myelopathy and ATLL occurring in the same family. We suggest three possibilities: (1) that the virus associated with HTLV-I-associated myelopathy is different from the virus causing ATLL, although they seem to be morphologically and immunologically similar; (2) that HTLV-I-associated myelopathy may be determined by the ATLL-causing virus plus a specific genetic background; and (3) some combination of factors 1 and 2.
Collapse
Affiliation(s)
- I Miyai
- Department of Neurology, Sumitomo Hospital, Osaka, Japan
| | | | | | | | | |
Collapse
|
67
|
Savard P, DesGroseillers L, Rassart E, Poirier Y, Jolicoeur P. Important role of the long terminal repeat of the helper Moloney murine leukemia virus in Abelson virus-induced lymphoma. J Virol 1987; 61:3266-75. [PMID: 3041046 PMCID: PMC255907 DOI: 10.1128/jvi.61.10.3266-3275.1987] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The helper virus has been shown to play a critical role in the development of lymphoma induced by the defective Abelson murine leukemia virus (A-MuLV). Indeed, A-MuLV pseudotyped with some viruses, such as the Moloney MuLV, has been shown to be highly lymphogenic, whereas A-MuLV pseudotyped with other viruses, such as the BALB/c endogenous N-tropic MuLV, has been shown to be devoid of lymphogenic potential (N. Rosenberg and D. Baltimore, J. Exp. Med. 147:1126-1141, 1978; C. D. Scher, J. Exp. Med. 147: 1044-1053, 1978). To map the viral DNA sequences encoding the determinant of the lymphogenic potential of Moloney MuLV when complexed with A-MuLV, we constructed chimeric helper viral DNA genomes in vitro between parental cloned infectious viral DNA genomes from Moloney MuLV and from BALB/c endogenous N-tropic MuLV. Chimeric helper MuLVs, recovered after transfection of NIH 3T3 cells were used to rescue A-MuLV, and the pseudotypes were inoculated into newborn NIH Swiss, CD-1, and SWR/J mice to test their lymphogenic potential. We found that a 0.44-kilobase-pair PstI-KpnI long terminal repeat-containing fragment from the Moloney MuLV was sufficient to confer some, but not complete, lymphogenic potential to a chimeric virus (p7M2) in NIH Swiss and SWR/J mice, but not in CD-1 mice. The addition of the 3'-end env sequences (comprising the carboxy terminus of gp70 and all p15E) to the U3 long terminal repeat sequences restored the full lymphogenic potential of the Moloney MuLV. Our data indicate that the 3'-end sequences of the helper Moloney MuLV are somehow involved in the development of lymphoma induced by A-MuLV. The same sequences have previously been found to harbor the determinant of leukemogenicity and of disease specificity of Moloney MuLV when inoculated alone.
Collapse
|
68
|
Sharpe AH, Jaenisch R, Ruprecht RM. Retroviruses and mouse embryos: a rapid model for neurovirulence and transplacental antiviral therapy. Science 1987; 236:1671-4. [PMID: 3037694 DOI: 10.1126/science.3037694] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A murine model in which neurotropic retroviral infection can be studied over short periods of time was developed. Microinjection of Cas-Br-E virus into midgestation mouse embryos caused paralysis and death within 25 days after birth, in contrast to virus-infected neonates which develop disease only after 4 months. To evaluate whether antiviral drugs could cross the placental barrier and influence the course of the disease, the drug 3'-azido-3'-deoxythymidine (AZT) was administered to infected embryos through the drinking water of pregnant females. AZT treatment markedly retarded the onset and course of virus-induced central nervous system disease, permitting animals to survive beyond 4 months of age. These results are evidence for effective antiviral treatment during gestation and in the perinatal period and are of potential significance for the management of maternal transmission of the acquired immune deficiency syndrome (AIDS) virus.
Collapse
|
69
|
Abstract
Both a feral mouse ecotropic virus (WM-E) and Friend ecotropic virus (F-MuLV) were transmitted horizontally among adult mice. Infection resulted in the production of antiviral antibody in the recipients, with no evidence of viremia or clinical disease. However, persistent low-level virus replication was detectable in the spleens of these mice as long as 8 months after initial infection. External secretions, including saliva, semen, and uterine secretions from viremic mice contained high concentrations of infectious virus. Nevertheless, transmission occurred only from viremic males to either males or females. Male-to-male transmission appeared to occur by parenteral inoculation of infectious saliva during fighting behavior. Evidence is presented that infection of females was by the venereal route. Of four mouse strains examined, NFS/N, IRW, and C57L females were all susceptible to venereal infection, whereas AKR mice were not. Since AKR mice are susceptible to infection by WM-E administered parenterally, this resistance appeared to be mediated by local viral interference due to the high-level expression of endogenous Akv gp70 within the female reproductive tract. Although both WM-E and F-MuLV were transmitted from viremic males to females, infection by WM-E was significantly more efficient than that by F-MuLV. This difference correlated with a distinct difference in cellular tropism of WM-E and F-MuLV within the epididymis of viremic males. F-MuLV gp70 was expressed only within stromal elements, whereas WM-E gp70 was seen largely within the epithelial lining cells and luminal contents of the duct. No evidence of virus expression within germ cells was observed. The possible influence of virus expression by epithelial cells of the female reproductive tract on infection of embryos is discussed.
Collapse
|
70
|
Rassart E, Nelbach L, Jolicoeur P. Cas-Br-E murine leukemia virus: sequencing of the paralytogenic region of its genome and derivation of specific probes to study its origin and the structure of its recombinant genomes in leukemic tissues. J Virol 1986; 60:910-9. [PMID: 3023680 PMCID: PMC253320 DOI: 10.1128/jvi.60.3.910-919.1986] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The ecotropic Cas-Br-E murine leukemia virus (MuLV) and its molecularly cloned derivative pBR-NE-8 MuLV are capable of inducing hind-limb paralysis and leukemia after inoculation into susceptible mice. T1 oligonucleotide fingerprinting, molecular hybridization, and restriction enzyme analysis previously showed that the env gene of Cas-Br-E MuLV diverged the most from that of other ecotropic MuLVs. To analyze proviruses in leukemic tissues, we derived DNA probes specific to Cas-Br-E sequences: two from the env region and one from the U3 long terminal repeat. With these probes, we found that this virus induced clonal (or oligoclonal) tumors and we documented the presence of typical mink cell focus-forming-type proviruses in leukemic tissues and the possible presence of other recombinant MuLV proviruses. Since the region harboring the determinant of paralysis was mapped within the pol-env region of the virus (L. DesGroseillers, M. Barrette, and P. Jolicoeur, J. Virol. 52:356-363, 1984), we performed the complete nucleotide sequence of this region covering the 3' end of the genome. We compared the deduced amino acid sequences of the pol carboxy-terminal domain and of the env gene products with those of other nonparalytogenic, ecotropic, and mink cell focus-forming MuLVs. This amino acid comparison revealed that this part of the pol gene product and the p15E diverged very little from homologous proteins of other MuLVs. However, the Cas-Br-E gp70 sequence was found to be quite divergent from that of other MuLVs, and the amino acid changes were distributed all along the protein. Therefore, gp70 remains the best candidate for harboring the determinant of paralysis.
Collapse
|
71
|
Bilello JA, Pitts OM, Hoffman PM. Characterization of a progressive neurodegenerative disease induced by a temperature-sensitive Moloney murine leukemia virus infection. J Virol 1986; 59:234-41. [PMID: 3735486 PMCID: PMC253071 DOI: 10.1128/jvi.59.2.234-241.1986] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A progressive neurodegenerative disease occurred following infection of mice with a temperature-sensitive (ts) isolate of Moloney (Mo) murine leukemia virus (MuLV), ts Mo BA-1 MuLV. This NB-tropic ecotropic MuLV, which was ts for a late function, induced a syndrome of tremor, weakness of the hind limbs, and spasticity following infection of several strains of laboratory neonatal mice, including NFS, C3H/He, CBA, SJL, and BALB/c. The latent period of 8 to 16 weeks was considerably longer than that observed for the acute paralytic diseases observed following neonatal infection with other ts Mo-MuLV, rat-passaged Friend MuLV, and some wild mouse ecotropic MuLVs. Spongiform pathology without inflammation and degeneration of neurons devoid of budding virions occurred in the cerebellar grey matter, brain stem, and upper spinal cord; but lower spinal cord anterior horn cells were less obviously affected than in other MuLV-associated neuroparalytic syndromes. ts Mo BA-1 MuLV differed from other ts Mo-MuLV mutants that are capable of inducing a neuroparalytic syndrome in that while infected nervous system tissue contained high levels of MuLV p30 and gp70, no evidence of precursor accumulation or abnormal processing of MuLV p30 or gp70 could be demonstrated. The localization of virus within the nervous system suggests that direct neuronal infection may not be the etiologic mechanism in this MuLV-induced neurodegenerative disease.
Collapse
|
72
|
Abstract
Murine leukemia viruses (MuLVs) are retroviruses which induce a broad spectrum of hematopoietic malignancies. In contrast to the acutely transforming retroviruses, MuLVs do not contain transduced cellular genes, or oncogenes. Nonetheless, MuLVs can cause leukemias quickly (4 to 6 weeks) and efficiently (up to 100% incidence) in susceptible strains of mice. The molecular basis of MuLV-induced leukemia is not clear. However, the contribution of individual viral genes to leukemogenesis can be assayed by creating novel viruses in vitro using recombinant DNA techniques. These genetically engineered viruses are tested in vivo for their ability to cause leukemia. Leukemogenic MuLVs possess genetic sequences which are not found in nonleukemogenic viruses. These sequences control the histologic type, incidence, and latency of disease induced by individual MuL Vs.
Collapse
|
73
|
DesGroseillers L, Rassart E, Robitaille Y, Jolicoeur P. Retrovirus-induced spongiform encephalopathy: the 3'-end long terminal repeat-containing viral sequences influence the incidence of the disease and the specificity of the neurological syndrome. Proc Natl Acad Sci U S A 1985; 82:8818-22. [PMID: 3866255 PMCID: PMC391529 DOI: 10.1073/pnas.82.24.8818] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Using chimeric murine leukemia viruses (MuLVs) constructed in vitro with parental viral genomes from the neurotropic Cas-BR-E MuLV and the nonneurotropic amphotropic 4070-A MuLV, we previously mapped the paralysis-inducing determinant of Cas-BR-E MuLV within a pol-env region. To assess the role of the long terminal repeats (LTRs) in influencing the neurological disease, we constructed another chimeric MuLV (pNEMO-1)m harboring the gag-pol-env from Cas-BR-E MuLV and the LTR region from the strongly T-cell tropic Moloney MuLV. Although the Cas-BR-E MuLV induced mainly nonthymic leukemia, pNEMO-1 MuLV induced a thymic form of leukemia, as the parental Moloney MuLV. The pNEMO-1 MuLV induced neurological diseases less frequently than Cas-BR-E MuLV when inoculated intraperitoneally into NIH/Swiss, SIM.S, and SWR/J mice. However, it induced neurological disorders more frequently and with a shorter latency than Cas-BR-E MuLV when inoculated intrathymically. Most mice with a neurological disorder induced with pNEMO-1 MuLV showed a new clinical syndrome not usually seen with the parental Cas-BR-E MuLV: They had no lower limb paralysis but were excessively tremulous, spastic, and immobile. The topographical distribution of the spongiform degeneration in the brain of mice with this new syndrome was different from that seen in mice with lower limb paralysis induced by Cas-BR-E MuLV. These results indicate that the 1.0-kilobase-pair Cla I-Pvu I LTR-containing fragment harbors sequences influencing the incidence and the clinical manifestation of the neurological disease and suggest a specificity of LTR sequences for a new tissue (brain).
Collapse
|
74
|
Jolicoeur P, DesGroseillers L. Neurotropic Cas-BR-E murine leukemia virus harbors several determinants of leukemogenicity mapping in different regions of the genome. J Virol 1985; 56:639-43. [PMID: 2997484 PMCID: PMC252625 DOI: 10.1128/jvi.56.2.639-643.1985] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The infectious virus derived from the molecularly cloned genome of the neurotropic ecotropic murine Cas-BR-E retrovirus was previously shown to have retained the ability to induce hind-limb paralysis and leukemia when inoculated into susceptible mice (P. Jolicoeur, N. Nicolaiew, L. DesGroseillers, and E. Rassart, J. Virol. 45:1159-1163, 1983). To map the viral sequences encoding the leukemogenic determinant(s) of this virus, we used chimeric viral genomes constructed in vitro between cloned viral DNAs from the leukemogenic Cas-BR-E murine leukemia virus (MuLV) and from the related nonleukemogenic amphotropic 4070-A MuLV. Infectious chimeric MuLVs, recovered from NIH 3T3 cells microinjected with these DNAs, were inoculated into newborn NIH Swiss, SIM.S, and SWR/J mice to test their leukemogenic potential. We found that each chimeric MuLV, harboring either the long terminal repeat, the gag-pol, or the pol-env region of the Cas-BR-E MuLV genome, was leukemogenic, indicating that this virus harbors several determinants of leukemogenicity mapping in different regions of its genome. This result suggests that the amphotropic 4070-A MuLV has multiple regions along its genome which prevent the expression of its leukemogenic phenotype, and it also shows that substitution of only one of these regions for Cas-BR-E MuLV sequences is sufficient to make it leukemogenic.
Collapse
|
75
|
Yuen PH, Malehorn D, Knupp C, Wong PK. A 1.6-kilobase-pair fragment in the genome of the ts1 mutant of Moloney murine leukemia virus TB that is associated with temperature sensitivity, nonprocessing of Pr80env, and paralytogenesis. J Virol 1985; 54:364-73. [PMID: 3989910 PMCID: PMC254806 DOI: 10.1128/jvi.54.2.364-373.1985] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ts1 and ts7, two temperature-sensitive mutants of Moloney murine leukemia virus strain TB induce hind-limb paralysis in 100% of CFW/D mice injected. These two paralytogenic mutants also share a defect in their inability to process the env precursor protein, Pr80env, at the restrictive temperature. To identify the mutation(s) in the genomes of the paralytogenic mutants which cause the inability to process Pr80env efficiently and confer the ability to cause hind-limb paralysis instead of lymphoma, we constructed chimeric genomes between ts1 and Moloney murine leukemia virus or the TB strain of the virus. We identified a 3.9-kilobase-pair HindIII-PstI sequence from nucleotides 4895 through 8264 and 1 through 567 of ts1, comprising the 3' end of the pol and all of the env genes, the long terminal repeat, and the 5' noncoding sequence, as being responsible for the temperature sensitivity, the inefficiency in processing Pr80env, and the induction of paralysis. We extended these findings by demonstrating that the 1.6-kilobase-pair pol-gp70 HindIII-BamHI DNA sequence from nucleotides 4895 through 6537 of ts1 within the 3.9-kilobase-pair HindIII-PstI fragment is necessary for ts1 to induce paralysis. In addition, we showed that this 1.6-kilobase-pair fragment also controls the processing of Pr80env and the temperature sensitivity of ts1.
Collapse
|