51
|
Mir MA, Panganiban AT. Characterization of the RNA chaperone activity of hantavirus nucleocapsid protein. J Virol 2006; 80:6276-85. [PMID: 16775315 PMCID: PMC1488978 DOI: 10.1128/jvi.00147-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein, encoded by the smallest of the three genome segments (S), has nonspecific RNA chaperone activity. This activity results in transient dissociation of misfolded RNA structures, may be required for facilitating correct higher-order RNA structure, and may function in viral genome replication. We carried out a series of experiments to further characterize the ability of N to dissociate RNA duplexes. As might be expected, N dissociated RNA duplexes but not DNA duplexes or RNA-DNA heteroduplexes. The RNA-destabilizing activity of N is ATP independent, has a pH optimum of 7.5, and has an Mg(2+) concentration optimum of 1 to 2 mM. N protein is unable to unwind the RNA duplexes that are completely double stranded. However, in the presence of an adjoining single-stranded region, helix unwinding takes place in the 3'-to-5' direction through an unknown mechanism. The N protein trimer specifically recognizes and unwinds the terminal panhandle structure in the viral RNA and remains associated with unwound 5' terminus. We suggest that hantaviral nucleocapsid protein has an active role in hantaviral replication by working cooperatively with viral RNA polymerase. After specific recognition of the panhandle structure by N protein, the unwound 5' terminus likely remains transiently bound to N protein, creating an opportunity for the viral polymerase to initiate transcription at the accessible 3' terminus.
Collapse
Affiliation(s)
- M A Mir
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | |
Collapse
|
52
|
Guo YC, Zhou YF, Zhang XE, Zhang ZP, Qiao YM, Bi LJ, Wen JK, Liang MF, Zhang JB. Phage display mediated immuno-PCR. Nucleic Acids Res 2006; 34:e62. [PMID: 16682441 PMCID: PMC1458518 DOI: 10.1093/nar/gkl260] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Immuno-PCR (IPCR) is a powerful detection technology in immunological study and clinical diagnosis due to its ultrasensitivity. Here we introduce a new strategy termed phage display mediated immuno-PCR (PD-IPCR). Instead of utilization of monoclonal antibody (mAb) and chemically bond DNA that required in the conventional IPCR, a recombinant phage particle is applied as a ready reagent for IPCR experiment. The surface displayed single chain variable fragment (scFv) and phage DNA themselves can directly serve as detection antibody and PCR template, respectively. The aim of the design is to overcome shortcoming of low detection sensitivity of scFv so as to largely facilitate the real application of scFv in immunoassay. The idea has been demonstrated by applying hantaan virus nucleocapsid protein (NP) and prion protein (PrP) as detection targets in three experimental protocols (indirect, sandwich and real-time PD-IPCR assays). The detection sensitivity was increased 1000- to 10 000-folds compared with conventional enzyme-linked immunosorbent assays (ELISAs). This proof-of-concept study may serve as a new model to develop an easy to operate, low cost and ultrasensitive immunoassay method for broad applications.
Collapse
Affiliation(s)
- Yong-Chao Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
- Graduate School, Chinese Academy of SciencesBeijing 100039, China
| | - Ya-Feng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
- To whom correspondence should be addressed. Tel: +86 10 58881508; Fax: +86 27 87199;
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Yan-Mei Qiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
- Graduate School, Chinese Academy of SciencesBeijing 100039, China
| | - Li-Jun Bi
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Ji-Kai Wen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Mi-Fang Liang
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing 100052, China
| | - Ji-Bin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| |
Collapse
|
53
|
Snippe M, Goldbach R, Kormelink R. Tomato spotted wilt virus particle assembly and the prospects of fluorescence microscopy to study protein-protein interactions involved. Adv Virus Res 2006; 65:63-120. [PMID: 16387194 DOI: 10.1016/s0065-3527(05)65003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marjolein Snippe
- Department of Asthma, Allergy, and Respiratory Diseases, King's College, London, WC2R 2LS United Kingdom
| | | | | |
Collapse
|
54
|
Le May N, Gauliard N, Billecocq A, Bouloy M. The N terminus of Rift Valley fever virus nucleoprotein is essential for dimerization. J Virol 2005; 79:11974-80. [PMID: 16140773 PMCID: PMC1212621 DOI: 10.1128/jvi.79.18.11974-11980.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a Phlebovirus in the Bunyaviridae family. The nucleoprotein N is the most abundant component of the virion; numerous copies of N associate with the viral RNA genome and form pseudohelicoidal ribonucleoproteins (RNPs) circularized by a panhandle structure formed by the base-paired RNA sequences at the 3' and 5' termini. These structures play a central role in transcription and replication. We investigated the intermolecular interactions of the RVFV N protein and found that after chemical cross-linking treatment, the nucleoprotein from purified RNPs migrates mainly as dimers. The N-N interaction was studied using the yeast two-hybrid system, the GST pull-down method, and mutational analysis. We demonstrated that the N terminus from residue 1 to 71, and particularly Tyr 4 and Phe 11, which are conserved among phlebovirus N sequences, are involved in the interaction. The C-terminal region did not seem to be essential for the N-N interaction. Moreover, we showed that N(TOS), the N protein of the related Toscana phlebovirus, interacts with itself and forms heterodimers with N(RVF), suggesting that the dimeric form of N may be a conserved feature in phlebovirus RNPs.
Collapse
Affiliation(s)
- Nicolas Le May
- Unité de Génétique Moléculaire des Bunyaviridés, Institut Pasteur, 25 rue du Docteur Roux 75015, Paris, France
| | | | | | | |
Collapse
|
55
|
Leonard VHJ, Kohl A, Osborne JC, McLees A, Elliott RM. Homotypic interaction of Bunyamwera virus nucleocapsid protein. J Virol 2005; 79:13166-72. [PMID: 16189017 PMCID: PMC1235850 DOI: 10.1128/jvi.79.20.13166-13172.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 07/19/2005] [Indexed: 11/20/2022] Open
Abstract
The bunyavirus nucleocapsid protein, N, plays a central role in viral replication in encapsidating the three genomic RNA segments to form functional templates for transcription and replication by the viral RNA-dependent RNA polymerase. Here we report functional mapping of interacting domains of the Bunyamwera orthobunyavirus N protein by yeast and mammalian two-hybrid systems, immunoprecipitation experiments, and chemical cross-linking studies. N forms a range of multimers from dimers to high-molecular-weight structures, independently of the presence of RNA. Deletion of the N- or C-terminal domains resulted in loss of activity in a minireplicon assay and a decreased capacity for N to form higher multimers. Our data suggest a head-to-head and tail-to-tail multimerization model for the orthobunyavirus N protein.
Collapse
Affiliation(s)
- Vincent H J Leonard
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
56
|
Severson W, Xu X, Kuhn M, Senutovitch N, Thokala M, Ferron F, Longhi S, Canard B, Jonsson CB. Essential amino acids of the hantaan virus N protein in its interaction with RNA. J Virol 2005; 79:10032-9. [PMID: 16014963 PMCID: PMC1181592 DOI: 10.1128/jvi.79.15.10032-10039.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The nucleocapsid (N) protein of hantavirus encapsidates viral genomic and antigenomic RNAs. Previously, deletion mapping identified a central, conserved region (amino acids 175 to 217) within the Hantaan virus (HTNV) N protein that interacts with a high affinity with these viral RNAs (vRNAs). To further define the boundaries of the RNA binding domain (RBD), several peptides were synthesized and examined for the ability to bind full-length S-segment vRNA. Peptide 195-217 retained 94% of the vRNA bound by the HTNV N protein, while peptides 175-186 and 205-217 bound only 1% of the vRNA. To further explore which residues were essential for binding vRNA, we performed a comprehensive mutational analysis of the amino acids in the RBD. Single and double Ala substitutions were constructed for 18 amino acids from amino acids 175 to 217 in the full-length N protein. In addition, Ala substitutions were made for the three R residues in peptide 185-217. An analysis of protein-RNA interactions by electrophoretic mobility shift assays implicated E192, Y206, and S217 as important for binding. Chemical modification experiments showed that lysine residues, but not arginine or cysteine residues, contribute to RNA binding, which agreed with bioinformatic predictions. Overall, these data implicate lysine residues dispersed from amino acids 175 to 429 of the protein and three amino acids located in the RBD as essential for RNA binding.
Collapse
Affiliation(s)
- William Severson
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, 88003, USA. venue
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kaukinen P, Vaheri A, Plyusnin A. Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol 2005; 150:1693-713. [PMID: 15931462 DOI: 10.1007/s00705-005-0555-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 04/12/2005] [Indexed: 01/10/2023]
Abstract
In recent years important progress has been made studying the nucleocapsid (N) protein of hantaviruses. The N protein presents a good example of a multifunctional viral macromolecule. It is a major structural component of a virion that encapsidates viral RNA (vRNA). It also interacts with the virus polymerase (L protein) and one of the glycoproteins. On top of these "house keeping" duties, the N protein performs interactive "ambassadorial" functions interfering with important regulatory pathways in the infected cells.
Collapse
Affiliation(s)
- P Kaukinen
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | | | | |
Collapse
|
58
|
Snippe M, Borst JW, Goldbach R, Kormelink R. The use of fluorescence microscopy to visualise homotypic interactions of tomato spotted wilt virus nucleocapsid protein in living cells. J Virol Methods 2005; 125:15-22. [PMID: 15737412 DOI: 10.1016/j.jviromet.2004.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/16/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
Fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) were employed to study homotypic protein-protein interactions in living cells. To this end, the nucleocapsid (N) protein of tomato spotted wilt virus (TSWV) was expressed as a fusion protein with either cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP). Co-expression experiments of the two fusion proteins were carried out in baby hamster kidney (BHK21) cells. Both the wild type and the fusion proteins showed a peri-nuclear localisation pattern and were observed to form aggregates. In sensitised emission experiments, energy transfer was observed to take place from CFP to YFP when the two fluorophores were fused to TSWV N protein, indicating strongly homotypic interaction of the N proteins. This was confirmed by acceptor photobleaching studies as well as by FLIM experiments. All three methods showed interactions taking place, not only in the aggregates in the peri-nuclear region, but also throughout the cytoplasm. These experiments clearly demonstrated the potential of these fluorescence methods for studying the interactions of viral proteins in living cells.
Collapse
Affiliation(s)
- Marjolein Snippe
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
59
|
Mir MA, Panganiban AT. The hantavirus nucleocapsid protein recognizes specific features of the viral RNA panhandle and is altered in conformation upon RNA binding. J Virol 2005; 79:1824-35. [PMID: 15650206 PMCID: PMC544099 DOI: 10.1128/jvi.79.3.1824-1835.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein is the principal structural component of the viral capsid. N forms a stable trimer that specifically recognizes the panhandle structure formed by the viral RNA termini. We used trimeric glutathione S-transferase (GST)-N protein and small RNA panhandles to examine the requirements for specific recognition by Sin Nombre hantavirus N. Trimeric GST-N recognizes the panhandles of the three viral RNAs (S, M, and L) with high affinity, whereas the corresponding plus-strand panhandles of the complementary RNA are recognized with lower affinity. Based on analysis of nucleotide substitutions that alter either the higher-order structure of the panhandle or the primary sequence of the panhandle, both secondary structure and primary sequence are necessary for stable interaction with N. A panhandle 23 nucleotides long is necessary and sufficient for high-affinity binding by N, and stoichiometry calculations indicate that a single N trimer interacts with a single panhandle. Surprisingly, displacement of the panhandle structure away from the terminus does not eliminate recognition by N. The binding of N to the panhandle is an entropy-driven process resulting in initial stable N-RNA interaction followed by a conformational change in N. Taken together, these data provide insight into the molecular events that take place during interaction of N with the panhandle and suggest that specific high-affinity interaction between an RNA binding domain of trimeric N and the panhandle is required for encapsidation of the three viral RNAs.
Collapse
Affiliation(s)
- M A Mir
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | |
Collapse
|
60
|
Kaukinen P, Kumar V, Tulimäki K, Engelhardt P, Vaheri A, Plyusnin A. Oligomerization of Hantavirus N protein: C-terminal alpha-helices interact to form a shared hydrophobic space. J Virol 2004; 78:13669-77. [PMID: 15564476 PMCID: PMC533921 DOI: 10.1128/jvi.78.24.13669-13677.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of the nucleocapsid protein of bunyaviruses has not been defined. Earlier we have shown that Tula hantavirus N protein oligomerization is dependent on the C-terminal domains. Of them, the helix-loop-helix motif was found to be an essential structure. Computer modeling predicted that oligomerization occurs via helix protrusions, and the shared hydrophobic space formed by amino acids residues 380-IILLF-384 in the first helix and 413-LI-414 in the second helix is responsible for stabilizing the interaction. The model was validated by two approaches. First, analysis of the oligomerization capacity of the N protein mutants performed with the mammalian two-hybrid system showed that both preservation of the helix structure and formation of the shared hydrophobic space are crucial for the interaction. Second, oligomerization was shown to be a prerequisite for the granular pattern of transiently expressed N protein in transfected cells. N protein trimerization was supported by three-dimensional reconstruction of the N protein by electron microscopy after negative staining. Finally, we discuss how N protein trimerization could occur.
Collapse
Affiliation(s)
- Pasi Kaukinen
- Department of Virology, Haartman Institute, P.O. Box 21, FI-00014 University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
61
|
Razanskiene A, Schmidt J, Geldmacher A, Ritzi A, Niedrig M, Lundkvist A, Krüger DH, Meisel H, Sasnauskas K, Ulrich R. High yields of stable and highly pure nucleocapsid proteins of different hantaviruses can be generated in the yeast Saccharomyces cerevisiae. J Biotechnol 2004; 111:319-33. [PMID: 15246668 DOI: 10.1016/j.jbiotec.2004.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 04/14/2004] [Accepted: 04/30/2004] [Indexed: 11/26/2022]
Abstract
Recently, the high-level expression of authentic and hexahistidine (His)-tagged Puumala (strain Vranica/Hällnäs) hantavirus nucleocapsid protein derivatives in the yeast Saccharomyces cerevisiae has been reported [Dargeviciute et al., Vaccine, 20 (2002) 3523-3531]. Here we describe the expression of His-tagged nucleocapsid proteins of other Puumala virus strains (Sotkamo, Kazan) as well as Dobrava (strains Slovenia and Slovakia) and Hantaan (strain Fojnica) hantaviruses using the same system. All nucleocapsid proteins were expressed in the yeast S. cerevisiae at high levels. The nucleocapsid proteins can be easily purified by nickel chelate chromatography; the yield for all nucleocapsid proteins ranged from 0.5 to 1.5 mg per g wet weight of yeast cells. In general, long-term storage of all nucleocapsid proteins without degradation can be obtained by storage in PBS at -20 degrees C or lyophilization. The nucleocapsid protein of Puumala virus (strain Vranica/Hällnäs) was demonstrated to contain only traces of less than 10 pg nucleic acid contamination per 100 microg of protein. The yeast-expressed nucleocapsid proteins of Hantaan, Puumala and Dobrava viruses described here represent useful tools for serological hantavirus diagnostics and for vaccine development.
Collapse
Affiliation(s)
- Ausra Razanskiene
- Institute of Biotechnology, V. Graiciuno 8, LT-2028 Vilnius, Lithuania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Mir MA, Panganiban AT. Trimeric hantavirus nucleocapsid protein binds specifically to the viral RNA panhandle. J Virol 2004; 78:8281-8. [PMID: 15254200 PMCID: PMC446103 DOI: 10.1128/jvi.78.15.8281-8288.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein is encoded by the smallest of the three genome segments (S). N protein is the principal structural component of the viral capsid and is central to the hantavirus replication cycle. We examined intermolecular N-protein interaction and RNA binding by using bacterially expressed Sin Nombre virus N protein. N assembles into di- and trimeric forms. The mono- and dimeric forms exist transiently and assemble into a trimeric form. In contrast, the trimer is highly stable and does not efficiently disassemble into the mono- and dimeric forms. The purified N-protein trimer is able to discriminate between viral and nonviral RNA molecules and, interestingly, recognizes and binds with high affinity the panhandle structure composed of the 3' and 5' ends of the genomic RNA. In contrast, the mono- and dimeric forms of N bind RNA to form a complex that is semispecific and salt sensitive. We suggest that trimerization of N protein is a molecular switch to generate a protein complex that can discriminate between viral and nonviral RNA molecules during the early steps of the encapsidation process.
Collapse
Affiliation(s)
- M A Mir
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | |
Collapse
|
63
|
Kainz M, Hilson P, Sweeney L, Derose E, German TL. Interaction Between Tomato spotted wilt virus N Protein Monomers Involves Nonelectrostatic Forces Governed by Multiple Distinct Regions in the Primary Structure. PHYTOPATHOLOGY 2004; 94:759-765. [PMID: 18943909 DOI: 10.1094/phyto.2004.94.7.759] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The ambisense RNA genome of Tomato spotted wilt virus (TSWV) isby interaction with numerous copies of the virus encoded nucleocapsid (N) protein to form a subvirion structure called a ribonucleo-protein (RNP). RNPs are central to the viral replication cycle because they, and not free viral RNA, serve as templates for viral gene expression and genome replication. N protein monomers bind to viral RNA molecules in a cooperative manner. We have examined regions of the N protein that are involved in the N-N interactions that likely contribute to the cooperative binding of N to viral RNA. We created random and alanine scanning mutants of N and then screened the mutants for defects in N-N interaction using reverse and forward yeast two-hybrid assays. Our experiments identified residues in three distinct regions of the primary structure of the protein, residues 42 to 56, 132 to 152, and in the C-terminal 26 amino acids, that contribute to N-N dimerization or multimerization.interactions between N monomers mediated by the residues we identified are of a nonelectrostatic nature.
Collapse
|
64
|
Martin SL, Branciforte D, Keller D, Bain DL. Trimeric structure for an essential protein in L1 retrotransposition. Proc Natl Acad Sci U S A 2003; 100:13815-20. [PMID: 14615577 PMCID: PMC283504 DOI: 10.1073/pnas.2336221100] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Indexed: 02/01/2023] Open
Abstract
Two proteins are encoded by the mammalian retrotransposon long interspersed nuclear element 1 (LINE-1 or L1); both are essential for retrotransposition. The function of the protein encoded by the 5'-most ORF, ORF1p, is incompletely understood, although the ORF1p from mouse L1 is known to bind single-stranded nucleic acids and function as a nucleic acid chaperone. ORF1p self-associates by means of a long coiled-coil domain in the N-terminal region of the protein, and the basic, C-terminal region (C-1/3 domain) contains the nucleic acid binding activity. The full-length and C-1/3 domains of ORF1p were purified to near homogeneity then analyzed by gel filtration chromatography and analytical ultracentrifugation. Both proteins were structurally homogeneous and asymmetric in solution, with the full-length version forming a stable trimer and the C-1/3 domain remaining a monomer. Examination of the full-length protein by atomic force microscopy revealed an asymmetric dumbbell shape, congruent with the chromatography and ultracentrifugation results. These structural features are compatible with the nucleic acid binding and chaperone activities of L1 ORF1p and offer further insight into the functions of this unique protein during LINE-1 retrotransposition.
Collapse
Affiliation(s)
- Sandra L Martin
- Department of Cell and Developmental Biology and Program in Molecular Biology, University of Colorado School of Medicine, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
65
|
Kaukinen P, Vaheri A, Plyusnin A. Mapping of the regions involved in homotypic interactions of Tula hantavirus N protein. J Virol 2003; 77:10910-6. [PMID: 14512541 PMCID: PMC225001 DOI: 10.1128/jvi.77.20.10910-10916.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hantavirus nucleocapsid (N) protein has been suggested to form homodimers and homotrimers that are further integrated into the nucleocapsid filaments around the viral RNA. Here we report detailed mapping of the regions involved in the homotypic N protein interactions in Tula hantavirus (TULV). Peptide scan screening was used to define the interaction regions, and the mammalian two-hybrid assay was used for the functional analysis of N protein mutants. To study linear regions responsible for N protein interaction(s), we used peptide scanning in which N peptides synthesized on membranes recognize recombinant TULV N protein. The data showed that the N protein bound to membrane-bound peptides comprising amino acids 13 to 30 and 41 to 57 in the N-terminal part and 340 to 379, 391 to 407, and 410 to 419 in the C-terminal part of the molecule. Further mapping of the interaction regions by alanine scanning indicated the importance of basic amino acids along the N protein and especially asparagine-394, histidine-395, and phenyalanine-396 in forming the binding interface. Analysis of truncated mutants in the mammalian two-hybrid assay showed that N-terminal amino acids 1 to 43 are involved in and C-terminal amino acids 393 to 398 (VNHFHL) are absolutely crucial for the homotypic interactions. Furthermore, our data suggested a tail-to-tail and head-to-head binding scheme for the N proteins.
Collapse
Affiliation(s)
- Pasi Kaukinen
- Department of Virology, Haartman Institute, FIN-00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
66
|
Kaukinen P, Vaheri A, Plyusnin A. Non-covalent interaction between nucleocapsid protein of Tula hantavirus and small ubiquitin-related modifier-1, SUMO-1. Virus Res 2003; 92:37-45. [PMID: 12606074 DOI: 10.1016/s0168-1702(02)00312-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To find cellular binding counterparts for the nucleocapsid protein (N) of Tula hantavirus (TULV), two cDNA libraries were screened using yeast two-hybrid systems based on LexA and Gal4 transcription factors. Five cDNA clones encoding SUMO-1 (Small Ubiquitin-related MOdifier, also known as sentrin) were selected in the LexA system. Confocal microscopy revealed that, in infected cells, TULV N protein and SUMO-1 colocalize at the perinuclear area providing further evidence for interaction between the two proteins. Neither endogenous nor transiently expressed SUMO-1 was found to be covalently linked to the N protein. Additional evidence that the interaction is non-covalent was obtained in immunoprecipitation experiments: N protein-specific antibodies precipitated SUMO-1 from TULV-infected Vero E6 cell lysate. By using a pepscan assay, two basic amino acid stretches in the N-terminal part of SUMO-1 were shown to be involved in the interaction.
Collapse
Affiliation(s)
- Pasi Kaukinen
- Department of Virology, Haartman Institute, PO Box 21, University of Helsinki, FIN-00014, Helsinki, Finland.
| | | | | |
Collapse
|
67
|
Maeda A, Lee BH, Yoshimatsu K, Saijo M, Kurane I, Arikawa J, Morikawa S. The intracellular association of the nucleocapsid protein (NP) of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Virology 2003; 305:288-97. [PMID: 12573574 DOI: 10.1006/viro.2002.1767] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9) conjugates SUMO-1 to target proteins and modulates cellular processes such as signal transduction, transcription regulation, and cell growth regulation. We demonstrated here that the nucleocapsid protein (NP) of Hantaan virus (HTNV) was associated with Ubc9 and SUMO-1 in vivo. Analysis of the interaction between the truncated NPs and Ubc9 revealed that the amino acid residues at the positions between 101 and 238 in the NP were responsible for the interaction. Furthermore, a consensus binding motif of Ubc9 and SUMO-1, MKAE, within this region, especially the second amino acid of the motif, K residue, was crucial for the interaction, and the interaction was essential for the NP to be localized in the perinuclear region. These results indicate that the assembly of the HTNV-NP is regulated by the interaction between the NP and Ubc9. This is the first report to demonstrate the interaction of Ubc9 with a structural protein of negative-strand RNA viruses.
Collapse
Affiliation(s)
- Akihiko Maeda
- Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
68
|
Yoshimatsu K, Lee BH, Araki K, Morimatsu M, Ogino M, Ebihara H, Arikawa J. The multimerization of hantavirus nucleocapsid protein depends on type-specific epitopes. J Virol 2003; 77:943-52. [PMID: 12502810 PMCID: PMC140797 DOI: 10.1128/jvi.77.2.943-952.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Accepted: 10/15/2002] [Indexed: 11/20/2022] Open
Abstract
Multimerization of the Hantaan virus nucleocapsid protein (NP) in Hantaan virus-infected Vero E6 cells was observed in a competitive enzyme-linked immunosorbent assay (ELISA). Recombinant and truncated NPs of Hantaan, Seoul, and Dobrava viruses lacking the N-terminal 49 amino acids were also detected as multimers. Although truncated NPs of Hantaan virus lacking the N-terminal 154 amino acids existed as a monomer, those of Seoul and Dobrava formed multimers. The multimerized truncated NP antigens of Seoul and Dobrava viruses could detect serotype-specific antibodies, whereas the monomeric truncated NP antigen of Hantaan virus lacking the N-terminal 154 amino acids could not, suggesting that a hantavirus serotype-specific epitope on the NP results in multimerization. The NP-NP interaction was also detected by using a yeast two-hybrid assay. Two regions, amino acids 100 to 125 (region 1) and amino acids 404 to 429 (region 2), were essential for the NP-NP interaction in yeast. The NP of Seoul virus in which the tryptophan at amino acid number 119 was replaced by alanine (W119A mutation) did not multimerize in the yeast two-hybrid assay, indicating that tryptophan 119 in region 1 is important for the NP-NP interaction in yeast. However, W119A mutants expressed in mammalian cells were detected as the multimer by using competitive ELISA. Similarly, the truncated NP of Seoul virus expressing amino acids 155 to 429 showed a homologous interaction in a competitive ELISA but not in the yeast two-hybrid assay, indicating that the C-terminal region is important for the multimerization detected by competitive ELISA. Combined, the results indicate that several steps and regions are involved in multimerization of hantavirus NP.
Collapse
Affiliation(s)
- Kumiko Yoshimatsu
- Institute for Animal Experimentation, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Alfadhli A, Steel E, Finlay L, Bächinger HP, Barklis E. Hantavirus nucleocapsid protein coiled-coil domains. J Biol Chem 2002; 277:27103-8. [PMID: 12019266 DOI: 10.1074/jbc.m203395200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleocapsid (N) proteins of hantaviruses such as the Sin Nombre virus (SNV) bind to membranes and viral RNAs, associate with transcription and replication complexes, and oligomerize during the process of virus assembly. N proteins trimerize in vitro and in vivo, and associate via assembly domains at their amino- and carboxyl-terminal ends. Because structure prediction algorithms suggested that N protein residues 3-75 form two coiled-coil motifs separated by an intervening kink or turn sequence, we examined the properties of peptides representing SNV N protein residues 3-35, 43-75, and 3-75. Of the three peptides, N-(3-35) assembled coiled-coil oligomers only at high concentration and low temperature. In contrast, N-(43-75) efficiently trimerized at low concentration, implying that it carries a coiled-coil trigger sequence. Interestingly, while the longer peptide, N-(3-75), assembled dimers and/or trimers at high concentration, at low concentration it appeared to adopt an intramolecular helix-turn-helix conformation. These results suggest that N protein oligomerization involves the bundling of intramolecular antiparallel coils or a conformational switch from intra- to intermolecular coiled-coils.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Microbiology, Vollum Institute, Oregon Health & Sciences University, Portland, OR 97201-3098, USA
| | | | | | | | | |
Collapse
|
70
|
Xu X, Severson W, Villegas N, Schmaljohn CS, Jonsson CB. The RNA binding domain of the hantaan virus N protein maps to a central, conserved region. J Virol 2002; 76:3301-8. [PMID: 11884555 PMCID: PMC136036 DOI: 10.1128/jvi.76.7.3301-3308.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The nucleocapsid (N) protein of hantaviruses encapsidates both viral genomic and antigenomic RNAs, although only the genomic viral RNA (vRNA) is packaged into virions. To define the domain within the Hantaan virus (HTNV) N protein that mediates these interactions, 14 N- and C-terminal deletion constructs were cloned into a bacterial expression vector, expressed, and purified to homogeneity. Each protein was examined for its ability to bind the HTNV S segment vRNA with filter binding and gel electrophoretic mobility shift assays. These studies mapped a minimal region within the HTNV N protein (amino acids 175 to 217) that bound vRNA. Sequence alignments made from several hantavirus N protein sequences showed that the region identified has a 58% identity and an 86% similarity among these amino acid sequences. Two peptides corresponding to amino acids 175 to 196 (N1) and 197 to 218 (N2) were synthesized. The RNA binding of each peptide was measured by filter binding and competition analysis. Three oligoribonucleotides were used to measure binding affinity and assess specificity. The N2 peptide contained the major RNA binding determinants, while the N1 peptide, when mixed with N2, contributed to the specificity of vRNA recognition.
Collapse
Affiliation(s)
- Xiaolin Xu
- Graduate Program in Molecular Biology, Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | | | | | | | | |
Collapse
|
71
|
Terajima M, Van Epps HL, Li D, Leporati AM, Juhlin SE, Mustonen J, Vaheri A, Ennis FA. Generation of recombinant vaccinia viruses expressing Puumala virus proteins and use in isolating cytotoxic T cells specific for Puumala virus. Virus Res 2002; 84:67-77. [PMID: 11900840 DOI: 10.1016/s0168-1702(01)00416-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Puumala (PUU) virus causes a form of hemorrhagic fever with renal syndrome (HFRS), called nephropathia epidemica (NE), in Europe. HFRS is characterized by an increased capillary permeability, which we hypothesize is caused by hyperactivation of the host immune system, especially cellular immune responses. To identify cytotoxic T lymphocytes (CTLs) specific for the PUU virus from NE patients, we have made recombinant vaccinia viruses expressing PUU virus proteins, the nucleocapsid (N) and two surface glycoproteins, G1 and G2. Recombinant vaccinia viruses carrying the N or the first half of the G2 cDNA under the control of a strong synthetic promoter were made. To express G1 and the second half of the G2 proteins, however, we needed to use a T7 expression system, where the T7 RNA polymerase is produced from another recombinant vaccinia virus co-infecting the same cells. These recombinant vaccinia viruses were used to detect and clone PUU virus-specific CTLs from the peripheral blood mononuclear cells of NE patients. An HLA-A24-restricted CTL line recognizing the G2 protein was isolated and its 9-mer epitope was determined.
Collapse
Affiliation(s)
- Masanori Terajima
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Kochs G, Janzen C, Hohenberg H, Haller O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc Natl Acad Sci U S A 2002; 99:3153-8. [PMID: 11880649 PMCID: PMC122488 DOI: 10.1073/pnas.052430399] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bunyaviruses replicate in the cytoplasm of infected cells. New viral particles are formed by budding of nucleocapsids into the Golgi apparatus. We have previously shown that the IFN-induced human MxA protein inhibits bunyavirus replication by an unknown mechanism. Here we demonstrate that MxA binds to the nucleocapsid protein of La Crosse virus (LACV) and colocalizes with the viral protein in cytoplasmic complexes. Electron microscopy revealed that these complexes accumulated in the perinuclear area and consisted of highly ordered fibrillary structures. A similar MxA-mediated redistribution of viral nucleocapsid proteins was detected with other bunyaviruses, such as Bunyamwera virus and Rift Valley fever virus. MxA(E645R), a carboxy-terminal mutant of MxA without antiviral activity against LACV, did not lead to complex formation. Wild-type MxA, but not MxA(E645R), was able to bind to LACV nucleocapsid protein in coimmunoprecipitation assays, demonstrating the importance of the carboxy-terminal effector domain of MxA. These results illustrate an efficient mechanism of IFN action whereby an essential virus component is trapped in cytoplasmic inclusions and becomes unavailable for the generation of new virus particles.
Collapse
Affiliation(s)
- Georg Kochs
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | | | | | |
Collapse
|
73
|
Stavolone L, Herzog E, Leclerc D, Hohn T. Tetramerization is a conserved feature of the virion-associated protein in plant pararetroviruses. J Virol 2001; 75:7739-43. [PMID: 11462048 PMCID: PMC115011 DOI: 10.1128/jvi.75.16.7739-7743.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plant pararetroviruses belong to the Caulimoviridae family. This family contains six genera of viruses with different biological, serological, and molecular characteristics. Although some important mechanisms of viral replication and host infection are understood, much remains to be discovered about the many functions of the viral proteins. The focus of this study, the virion-associated protein (VAP), is conserved among all members of the group and contains a coiled-coil structure that has been shown to assemble as a tetramer in the case of cauliflower mosaic virus. We have used the yeast two-hybrid system to characterize self-association of the VAPs of four distinct plant pararetroviruses, each belonging to a different genus of Caulimoviridae. Chemical cross-linking confirmed that VAPs assemble into tetramers. Tetramerization is thus a common property of these proteins in plant pararetroviruses. The possible implications of this conserved feature for VAP function are discussed.
Collapse
Affiliation(s)
- L Stavolone
- Friedrich Miescher Institute, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
74
|
Kaukinen P, Koistinen V, Vapalahti O, Vaheri A, Plyusnin A. Interaction between molecules of hantavirus nucleocapsid protein. J Gen Virol 2001; 82:1845-1853. [PMID: 11457990 DOI: 10.1099/0022-1317-82-8-1845] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intermolecular interactions of Tula hantavirus N (nucleocapsid) protein were detected in the yeast two-hybrid system, prompting further attempts to study this phenomenon. Using chemical cross-linking and immunoblotting it was shown that the N protein from purified virus and from infected cell lysates as well as recombinant protein produced in a baculovirus expression system are capable of forming dimers, trimers and multimers, thus confirming the capacity of the protein molecules to interact with each other. An ELISA format was developed in which molecules of the recombinant N protein were shown to associate non-covalently, via electrostatic interactions. Divalent cations (Ca(2+), Mn(2+), Mg(2+), Ba(2+)) enhanced the process 3- to 8-fold suggesting that adequate folding of the N protein is crucial for the association. Based on these data a model for hantavirus nucleocapsid assembly is proposed, in which N molecules first trimerize around the viral RNA molecule, and then the trimers gradually assemble forming longer multimers.
Collapse
Affiliation(s)
- Pasi Kaukinen
- Department of Virology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Finland1
| | - Vesa Koistinen
- Department of Virology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Finland1
| | - Olli Vapalahti
- Department of Virology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Finland1
| | - Antti Vaheri
- Department of Virology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Finland1
| | - Alexander Plyusnin
- Department of Virology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Finland1
| |
Collapse
|