51
|
A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. PLoS One 2014; 9:e87194. [PMID: 24489870 PMCID: PMC3906132 DOI: 10.1371/journal.pone.0087194] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023] Open
Abstract
The prediction of viral zoonosis epidemics has become a major public health issue. A profound understanding of the viral population in key animal species acting as reservoirs represents an important step towards this goal. Bats harbor diverse viruses, some of which are of particular interest because they cause severe human diseases. However, little is known about the diversity of the global population of viruses found in bats (virome). We determined the viral diversity of five different French insectivorous bat species (nine specimens in total) in close contact with humans. Sequence-independent amplification, high-throughput sequencing with Illumina technology and a dedicated bioinformatics analysis pipeline were used on pooled tissues (brain, liver and lungs). Comparisons of the sequences of contigs and unassembled reads provided a global taxonomic distribution of virus-related sequences for each sample, highlighting differences both within and between bat species. Many viral families were present in these viromes, including viruses known to infect bacteria, plants/fungi, insects or vertebrates, the most relevant being those infecting mammals (Retroviridae, Herpesviridae, Bunyaviridae, Poxviridae, Flaviviridae, Reoviridae, Bornaviridae, Picobirnaviridae). In particular, we detected several new mammalian viruses, including rotaviruses, gammaretroviruses, bornaviruses and bunyaviruses with the identification of the first bat nairovirus. These observations demonstrate that bats naturally harbor viruses from many different families, most of which infect mammals. They may therefore constitute a major reservoir of viral diversity that should be analyzed carefully, to determine the role played by bats in the spread of zoonotic viral infections.
Collapse
|
52
|
Abstract
A new paradigm of rotavirus disease is emerging and rotavirus infection is no longer considered to be localized and confined to the GI tract. New evidence indicates that rotavirus infection is systemic. Viral antigen and infectious virus frequently enter the circulation in both children and animal model systems. Clinical case reports of systemic sequelae to rotavirus infection in children continue to accumulate, suggesting involvement in systemic disease syndromes. The use of animal models is providing biological and molecular evidence for infection at peripheral sites. Thus, infection at peripheral sites may account for reports of systemic sequelae to rotavirus infection. The importance of systemic sequelae and the ability of vaccination to prevent such sequelae remains to be determined.
Collapse
Affiliation(s)
- Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
53
|
Blutt SE, Conner ME. The gastrointestinal frontier: IgA and viruses. Front Immunol 2013; 4:402. [PMID: 24348474 PMCID: PMC3842584 DOI: 10.3389/fimmu.2013.00402] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022] Open
Abstract
Viral gastroenteritis is one of the leading causes of diseases that kill ~2.2 million people worldwide each year. IgA is one of the major immune effector products present in the gastrointestinal tract yet its importance in protection against gastrointestinal viral infections has been difficult to prove. In part this has been due to a lack of small and large animal models in which pathogenesis of and immunity to gastrointestinal viral infections is similar to that in humans. Much of what we have learned about the role of IgA in the intestinal immune response has been obtained from experimental animal models of rotavirus infection. Rotavirus-specific intestinal IgA appears to be one of the principle effectors of long term protection against rotavirus infection. Thus, there has been a focus on understanding the immunological pathways through which this virus-specific IgA is induced during infection. In addition, the experimental animal models of rotavirus infection provide excellent systems in which new areas of research on viral-specific intestinal IgA including the long term maintenance of viral-specific IgA.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, TX , USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, TX , USA
| |
Collapse
|
54
|
Marthaler D, Rossow K, Culhane M, Collins J, Goyal S, Ciarlet M, Matthijnssens J. Identification, phylogenetic analysis and classification of porcine group C rotavirus VP7 sequences from the United States and Canada. Virology 2013; 446:189-98. [DOI: 10.1016/j.virol.2013.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/03/2013] [Accepted: 08/01/2013] [Indexed: 12/18/2022]
|
55
|
Park JG, Kim HJ, Matthijnssens J, Alfajaro MM, Kim DS, Son KY, Kwon HJ, Hosmillo M, Ryu EH, Kim JY, Cena RB, Lee JH, Kang MI, Park SI, Cho KO. Different virulence of porcine and porcine-like bovine rotavirus strains with genetically nearly identical genomes in piglets and calves. Vet Res 2013; 44:88. [PMID: 24083947 PMCID: PMC3851489 DOI: 10.1186/1297-9716-44-88] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022] Open
Abstract
Direct interspecies transmissions of group A rotaviruses (RVA) have been reported under natural conditions. However, the pathogenicity of RVA has never been directly compared in homologous and heterologous hosts. The bovine RVA/Cow-tc/KOR/K5/2004/G5P[7] strain, which was shown to possess a typical porcine-like genotype constellation similar to that of the G5P[7] prototype RVA/Pig-tc/USA/OSU/1977/G5P9[7] strain, was examined for its pathogenicity and compared with the porcine G5P[7] RVA/Pig-tc/KOR/K71/2006/G5P[7] strain possessing the same genotype constellation. The bovine K5 strain induced diarrhea and histopathological changes in the small intestine of piglets and calves, whereas the porcine K71 strain caused diarrhea and histopathological changes in the small intestine of piglets, but not in calves. Furthermore, the bovine K5 strain showed extra-intestinal tropisms in both piglets and calves, whereas the porcine K71 strain had extra-intestinal tropisms in piglets, but not in calves. Therefore, we performed comparative genomic analysis of the K71 and K5 RVA strains to determine whether specific mutations could be associated with these distinct clinical and pathological phenotypes. Full-length sequencing analyses for the 11 genomic segments for K71 and K5 revealed that these strains were genetically nearly identical to each other. Two nucleotide mutations were found in the 5′ untranslated region (UTR) of NSP5 and the 3′ UTR of NSP3, and eight amino acid mutations in VP1-VP4 and NSP2. Some of these mutations may be critical molecular determinants for RVA virulence and/or pathogenicity.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Ferrara P, Pierri F, Zenzeri L, Vena F, Ianniello F, Chiaretti A. Post-infectious glomerulonephritis with nephrotic syndrome secondary to rotavirus infection. Med Mal Infect 2013; 43:398-400. [PMID: 23978516 DOI: 10.1016/j.medmal.2013.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/05/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022]
Affiliation(s)
- P Ferrara
- Institute of pediatrics, "A. Gemelli" university hospital, L.go A. Gemelli, 8, 00168 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
57
|
Kim HH, Park JG, Matthijnssens J, Kim HJ, Kwon HJ, Son KY, Ryu EH, Kim DS, Lee WS, Kang MI, Yang DK, Lee JH, Park SJ, Cho KO. Pathogenicity of porcine G9P[23] and G9P[7] rotaviruses in piglets. Vet Microbiol 2013; 166:123-37. [PMID: 23827353 PMCID: PMC7117468 DOI: 10.1016/j.vetmic.2013.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/05/2013] [Accepted: 05/22/2013] [Indexed: 01/20/2023]
Abstract
G9 group A rotaviruses (RVAs) are considered important pathogens in pigs and humans, and pigs are hypothesized to be a potential host reservoir for human. However, intestinal and extra-intestinal pathogenicity and viremia of porcine G9 RVAs has remained largely unreported. In this study, colostrum-deprived piglets were orally infected with a porcine G9P[23] or G9P[7] strain. Histopathologically, both strains induced characteristic small intestinal lesions. Degeneration and necrosis of parenchymal cells were observed in the extra-intestinal tissues, but most predominantly in the mesenteric lymph nodes (MLNs). RVA antigen was continuously detected in the small intestinal mucosa and MLNs, but only transiently in cells of the liver, lung, and choroid plexus. Viral RNA levels were much higher in the feces and the MLNs compared to other tissues. The onset of viremia occurred at day post infection (DPI) 1 with the amount of viral RNA reaching its peak at DPI 3 or 5, before decreasing significantly at DPI 7 and remaining detectable until DPI 14. Our data suggest that porcine G9 RVAs have a strong small intestinal tropism, are highly virulent for piglets, have the ability to escape the small intestine, spread systemically via viremia, and replicate in extra-intestinal tissues. In addition, MLNs might act as a secondary site for viral amplification and the portal of systemic entry. These results add to our understanding of the pathogenesis of human G9 RVAs, and the validity of the pig model for use with both human and pig G9 RVAs in further studies.
Collapse
Affiliation(s)
- Ha-Hyun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Simultaneous detection of group a rotavirus in Swine and rat on a pig farm in Brazil. ScientificWorldJournal 2013; 2013:648406. [PMID: 23766702 PMCID: PMC3671536 DOI: 10.1155/2013/648406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/30/2013] [Indexed: 02/03/2023] Open
Abstract
This study investigated the occurrence of rotavirus in porcine and Rattus norvegicus, at the same time, on a pig farm in the city of Jaguariúna, São Paulo, Brazil. Swine (n = 21) and rat (n = 6) fecal samples were analyzed by nested RT-PCR assay. Rotavirus occurred in seven porcine and two rat samples. A total of three pig and one rat samples were further submitted to genetic sequencing. The partial NSP5 gene phylogeny showed that all strains were segregated in the genotype H1. These results point toward a cross-species transmission between rats and pigs on the surveyed farm and represent the first detection of rotavirus in Rattus norvegicus in Brazil.
Collapse
|
59
|
Alteration of the thymic T cell repertoire by rotavirus infection is associated with delayed type 1 diabetes development in non-obese diabetic mice. PLoS One 2013; 8:e59182. [PMID: 23554993 PMCID: PMC3598695 DOI: 10.1371/journal.pone.0059182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 12/12/2022] Open
Abstract
Rotaviruses are implicated as a viral trigger for the acceleration of type 1 diabetes in children. Infection of adult non-obese diabetic (NOD) mice with rotavirus strain RRV accelerates diabetes development, whereas RRV infection in infant NOD mice delays diabetes onset. In this study of infant mice, RRV titers and lymphocyte populations in the intestine, mesenteric lymph nodes (MLN) and thymus of NOD mice were compared with those in diabetes-resistant BALB/c and C57BL/6 mice. Enhanced intestinal RRV infection occurred in NOD mice compared with the other mouse strains. This was associated with increases in the frequency of CD8αβ TCRαβ intraepithelial lymphocytes, and their PD-L1 expression. Virus spread to the MLN and T cell numbers there also were greatest in NOD mice. Thymic RRV infection is shown here in all mouse strains, often in combination with alterations in T cell ontogeny. Infection lowered thymocyte numbers in infant NOD and C57BL/6 mice, whereas thymocyte production was unaltered overall in infant BALB/c mice. In the NOD mouse thymus, effector CD4+ T cell numbers were reduced by infection, whereas regulatory T cell numbers were maintained. It is proposed that maintenance of thymic regulatory T cell numbers may contribute to the increased suppression of inflammatory T cells in response to a strong stimulus observed in pancreatic lymph nodes of adult mice infected as infants. These findings show that rotavirus replication is enhanced in diabetes-prone mice, and provide evidence that thymic T cell alterations may contribute to the delayed diabetes onset following RRV infection.
Collapse
|
60
|
Ahmed K, Bozdayi G, Mitui MT, Ahmed S, Kabir L, Buket D, Bostanci I, Nishizono A. Circulating rotaviral RNA in children with rotavirus antigenemia. J Negat Results Biomed 2013; 12:5. [PMID: 23369078 PMCID: PMC3564870 DOI: 10.1186/1477-5751-12-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/18/2013] [Indexed: 12/02/2022] Open
Abstract
Background Rotavirus antigenemia is a common phenomenon in children with rotavirus diarrhea, but information is scarce on aspects of this phenomenon, such as genotype specificity, presence of intact viruses and correlation between genomic RNA and antigen concentration. Such information may help in understanding rotavirus pathogenesis and eventually be useful for diagnosis, treatment and prevention. Methods and findings Serum samples were collected from children who presented at hospitals with diarrhea. Antigenemia was present in 162/250 (64.8%) samples from children with rotavirus diarrhea. No specific rotavirus genotype was found to be associated with antigenemia. Rotavirus particles could not be found by electron microscopy in concentrated serum from children with high levels of antigenemia. In passaged rotavirus suspension a significant correlation (r = 0.9559; P = 0.0029) was found between antigen level and viral copy number, but no significant correlation (r = 0.001480; P = 0.9919) was found between antigenemia level and viral copy number in serum. When intact rotavirus was treated with benzonase endonuclease, genomic double-stranded (ds) RNA was not degraded, but when sera of patients with antigenemia were treated with benzonase endonuclease, genomic dsRNA was degraded, indicating genomic dsRNA was free in sera and not inside virus capsid protein. Conclusions Antigenemia is present in a significant number of patients with rotavirus diarrhea. Rotavirus viremia was absent in the children with rotavirus diarrhea who participated in our study, and was not indicated by the presence of antigenemia. The significance of circulating rotavirus antigen and genomic dsRNA in serum of patients with diarrhea deserves further study.
Collapse
|
61
|
Abstract
As the threat of exposure to emerging and reemerging viruses within a naive population increases, it is vital that the basic mechanisms of pathogenesis and immune response be thoroughly investigated. By using animal models in this endeavor, the response to viruses can be studied in a more natural context to identify novel drug targets, and assess the efficacy and safety of new products. This is especially true in the advent of the Food and Drug Administration's animal rule. Although no one animal model is able to recapitulate all the aspects of human disease, understanding the current limitations allows for a more targeted experimental design. Important facets to be considered before an animal study are the route of challenge, species of animals, biomarkers of disease, and a humane endpoint. This chapter covers the current animal models for medically important human viruses, and demonstrates where the gaps in knowledge exist.
Collapse
|
62
|
McAllister CS, Lakhdari O, Pineton de Chambrun G, Gareau MG, Broquet A, Lee GH, Shenouda S, Eckmann L, Kagnoff MF. TLR3, TRIF, and caspase 8 determine double-stranded RNA-induced epithelial cell death and survival in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 190:418-27. [PMID: 23209324 DOI: 10.4049/jimmunol.1202756] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
TLR3 signaling is activated by dsRNA, a virus-associated molecular pattern. Injection of dsRNA into mice induced a rapid, dramatic, and reversible remodeling of the small intestinal mucosa with significant villus shortening. Villus shortening was preceded by increased caspase 3 and 8 activation and apoptosis of intestinal epithelial cells (IECs) located in the mid to upper villus with ensuing luminal fluid accumulation and diarrhea because of an increased secretory state. Mice lacking TLR3 or the adaptor molelcule TRIF mice were completely protected from dsRNA-induced IEC apoptosis, villus shortening, and diarrhea. dsRNA-induced apoptosis was independent of TNF signaling. Notably, NF-κB signaling through IκB kinase β protected crypt IECs but did not protect villus IECs from dsRNA-induced or TNF-induced apoptosis. dsRNA did not induce early caspase 3 activation with subsequent villus shortening in mice lacking caspase 8 in IECs but instead caused villus destruction with a loss of small intestinal surface epithelium and death. Consistent with direct activation of the TLR3-TRIF-caspase 8 signaling pathway by dsRNA in IECs, dsRNA-induced signaling of apoptosis was independent of non-TLR3 dsRNA signaling pathways, IL-15, TNF, IL-1, IL-6, IFN regulatory factor 3, type I IFN receptor, adaptive immunity, as well as dendritic cells, NK cells, and other hematopoietic cells. We conclude that dsRNA activation of the TLR3-TRIF-caspase 8 signaling pathway in IECs has a significant impact on the structure and function of the small intestinal mucosa and suggest signaling through this pathway has a host protective role during infection with viral pathogens.
Collapse
|
63
|
Ventola H, Lehtoranta L, Madetoja M, Simonen-Tikka ML, Maunula L, Roivainen M, Korpela R, Holma R. Effects of the viability of Lactobacillus rhamnosus GG on rotavirus infection in neonatal rats. World J Gastroenterol 2012; 18:5925-31. [PMID: 23139609 PMCID: PMC3491600 DOI: 10.3748/wjg.v18.i41.5925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/28/2012] [Accepted: 03/20/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of live and dead Lactobacillus rhamnosus GG (GG) on rotavirus infection in a neonatal rat model.
METHODS: At the age of 2 d, suckling Lewis rat pups were supplemented with either live or dead GG and the treatment was continued daily throughout the experiment. At the age of 5 and 6 d the pups received oral rotavirus (RV) SA-11 strain. The pups were sacrificed at the age of 7 or 8 d by decapitation. The gastrointestinal tract was removed and macroscopic observations were done. The consistency of feces in the colon was classified using a four-tier system. RV was detected from the plasma, small intestine, colon and feces by real-time quantitative polymerase chain reaction (PCR).
RESULTS: In this neonatal rat model, RV induced a mild-to-moderate diarrhea in all except one pup of the RV-inoculated rats. RV moderately reduced body weight development from day 6 onwards. On day 7, after 2 d of RV infection, live and dead GG groups gained significantly more weight than the RV group without probiotics [36% (P = 0.001) and 28% (P = 0.031), respectively]. In addition, when compared with the RV control group, both live and dead GG reduced the weight ratio of colon/animal body weight to the same level as in the healthy control group, with reductions of 22% (P = 0.002) and 28% (P < 0.001), respectively. Diarrhea increased moderately in both GG groups. However, the diarrhea incidence and severity in the GG groups were not statistically significantly different as compared with the RV control group. Moreover, observed diarrhea did not provoke weight loss or death. The RV control group had the largest amount of RV PCR-positive samples among the RV-infected groups, and the live GG group had the smallest amount. Rats receiving live GG had significantly less RV in the colon (P = 0.027) when compared with the RV control group. Live GG was also more effective over dead GG in reducing the quantity of RV from plasma (P = 0.047).
CONCLUSION: Both live and dead GG have beneficial effects in RV infection. GG may increase RV clearance from the body and reduce colon swelling.
Collapse
|
64
|
Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, Estes MK, Prasad BVV. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 2012; 485:256-9. [PMID: 22504179 PMCID: PMC3350622 DOI: 10.1038/nature10996] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 02/29/2012] [Indexed: 12/18/2022]
Abstract
As with many other viruses, the initial cell attachment of rotaviruses, major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans1–4. The distally located VP8* domain of the rotavirus spike protein VP45 mediates such interactions. The existing paradigm is that ‘sialidase-sensitive’ animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas ‘sialidase-insensitive’ human rotavirus (HR) strains bind to glycans with internal Sia such as GM13. Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies1,3,6,7, it is not yet known how VP8* of HRs interacts with Sia and whether their cell attachment necessarily involves sialoglycans. We found that VP8* of a HR strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-Atype antibodies as well as significantly enhanced in CHO cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of HR. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelial and on red blood cells8, and are recognized as susceptibility and cell attachment factors for gastric pathogens like H. pylori9 and noroviruses10. Our crystallographic studies show that the A-type HBGA binds to the HR VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific HR strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world’s population.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Moon S, Wang Y, Dennehy P, Simonsen KA, Zhang J, Jiang B. Antigenemia, RNAemia, and innate immunity in children with acute rotavirus diarrhea. ACTA ACUST UNITED AC 2012; 64:382-91. [DOI: 10.1111/j.1574-695x.2011.00923.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/29/2011] [Accepted: 12/08/2011] [Indexed: 11/27/2022]
|
66
|
Kim HJ, Park JG, Alfajaro MM, Kim DS, Hosmillo M, Son KY, Lee JH, Bae YC, Park SI, Kang MI, Cho KO. Pathogenicity characterization of a bovine triple reassortant rotavirus in calves and piglets. Vet Microbiol 2012; 159:11-22. [PMID: 22465801 DOI: 10.1016/j.vetmic.2012.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Rotaviruses are important human and animal pathogens with high impact on public health and livestock industry. There is little evidence about the cross-species pathogenicity and extra-intestinal infections of animal and human reassortant rotaviruses, particularly based on all 11 genotyping data. In this study, the bovine triple reassortant KJ56-1 strain harboring two bovine-like genome segments, eight porcine-like genome segments, and one human-like genome segment was used to evaluate the cross-species pathogenicity in its parent species, calves and piglets, and to determine its abilities of causing viremia and extra-intestinal tropisms in piglets. The KJ56-1 strain isolated from a calf diarrhea fecal sample replicated without causing diarrhea and severe intestinal pathology in calves. However, piglets inoculated with this strain showed persistent severe diarrhea and marked intestinal pathology. By SYBR Green real-time RT-PCR, viral RNA was detected in the sera, mesenteric lymph node, lung, liver, choroid plexus, and cerebrospinal fluid in the experimental piglets. An immunofluorescence assay confirmed viral replication in these extra-intestinal organs and tissues. These results indicated that the bovine triple reassortant KJ56-1 strain was virulent to piglets but not to calves. Our data also demonstrated that the reassortant rotaviruses had the ability to spread to the bloodstream from the gut, enter and amplify in the mesenteric lymph node, and disseminate to the extra-intestinal organs and tissues.
Collapse
Affiliation(s)
- Hyun-Jeong Kim
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
López T, Silva-Ayala D, López S, Arias CF. Methods suitable for high-throughput screening of siRNAs and other chemical compounds with the potential to inhibit rotavirus replication. J Virol Methods 2012; 179:242-9. [DOI: 10.1016/j.jviromet.2011.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/02/2011] [Accepted: 11/09/2011] [Indexed: 01/17/2023]
|
68
|
Yang W, McCrae MA. The molecular biology of rotaviruses X: intercellular dissemination of rotavirus NSP4 requires glycosylation and is mediated by direct cell-cell contact through cytoplasmic extrusions. Arch Virol 2011; 157:305-14. [DOI: 10.1007/s00705-011-1174-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/08/2011] [Indexed: 01/11/2023]
|
69
|
Kim HJ, Park JG, Matthijnssens J, Lee JH, Bae YC, Alfajaro MM, Park SI, Kang MI, Cho KO. Intestinal and extra-intestinal pathogenicity of a bovine reassortant rotavirus in calves and piglets. Vet Microbiol 2011; 152:291-303. [DOI: 10.1016/j.vetmic.2011.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/20/2011] [Accepted: 05/11/2011] [Indexed: 12/14/2022]
|
70
|
Sugata K, Taniguchi K, Yui A, Nakai H, Asano Y, Hashimoto S, Ihira M, Yagasaki H, Takahashi Y, Kojima S, Matsumoto K, Kato K, Yoshikawa T. Analysis of rotavirus antigenemia in hematopoietic stem cell transplant recipients. Transpl Infect Dis 2011; 14:49-56. [DOI: 10.1111/j.1399-3062.2011.00668.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/15/2011] [Accepted: 06/28/2011] [Indexed: 01/06/2023]
Affiliation(s)
- K. Sugata
- Department of Pediatrics; Fujita Health University School of Medicine; Toyoake; Aichi; Japan
| | - K. Taniguchi
- Department of Virology and Parasitology; Fujita Health University School of Medicine; Toyoake; Aichi; Japan
| | - A. Yui
- Department of Virology and Parasitology; Fujita Health University School of Medicine; Toyoake; Aichi; Japan
| | - H. Nakai
- Department of Pediatrics; Fujita Health University School of Medicine; Toyoake; Aichi; Japan
| | - Y. Asano
- Department of Pediatrics; Fujita Health University School of Medicine; Toyoake; Aichi; Japan
| | - S. Hashimoto
- Department of Hygiene; Fujita Health University School of Medicine; Toyoake; Aichi; Japan
| | - M. Ihira
- Faculty of Clinical Engineering; Fujita Health University School of Health Sciences; Toyoake; Aichi; Japan
| | - H. Yagasaki
- Department of Pediatrics; Nagoya University Graduate School of Medicine; Nagoya; Japan
| | - Y. Takahashi
- Department of Pediatrics; Nagoya University Graduate School of Medicine; Nagoya; Japan
| | - S. Kojima
- Department of Pediatrics; Nagoya University Graduate School of Medicine; Nagoya; Japan
| | - K. Matsumoto
- Division of Hematology-Oncology; Children's Medical Center; the Japanese Red Cross Nagoya First Hospital; Nagoya; Japan
| | - K. Kato
- Division of Hematology-Oncology; Children's Medical Center; the Japanese Red Cross Nagoya First Hospital; Nagoya; Japan
| | - T. Yoshikawa
- Department of Pediatrics; Fujita Health University School of Medicine; Toyoake; Aichi; Japan
| |
Collapse
|
71
|
Feng J, Yang J, Zheng S, Qiu Y, Chai C. Silencing of the rotavirus NSP4 protein decreases the incidence of biliary atresia in murine model. PLoS One 2011; 6:e23655. [PMID: 21876759 PMCID: PMC3158091 DOI: 10.1371/journal.pone.0023655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/22/2011] [Indexed: 01/30/2023] Open
Abstract
Biliary atresia is a common disease in neonates which causes obstructive jaundice and progressive hepatic fibrosis. Our previous studies indicate that rotavirus infection is an initiator in the pathogenesis of experimental biliary atresia (BA) through the induction of increased nuclear factor-kappaB and abnormal activation of the osteopontin inflammation pathway. In the setting of rotavirus infection, rotavirus nonstructural protein 4 (NSP4) serves as an important immunogen, viral protein 7 (VP7) is necessary in rotavirus maturity and viral protein 4 (VP4) is a virulence determiner. The purpose of the current study is to clarify the roles of NSP4, VP7 and VP4 in the pathogenesis of experimental BA. Primary cultured extrahepatic biliary epithelia were infected with Rotavirus (mmu18006). Small interfering RNA targeting NSP4, VP7 or VP4 was transfected before rotavirus infection both in vitro and in vivo. We analyzed the incidence of BA, morphological change, morphogenesis of viral particles and viral mRNA and protein expression. The in vitro experiments showed NSP4 silencing decreased the levels of VP7 and VP4, reduced viral particles and decreased cytopathic effect. NSP4-positive cells had strongly positive expression of integrin subunit α2. Silencing of VP7 or VP4 partially decreased epithelial injury. Animal experiments indicated after NSP4 silencing, mouse pups had lower incidence of BA than after VP7 or VP4 silencing. However, 33.3% of VP4-silenced pups (N = 6) suffered BA and 50% of pups (N = 6) suffered biliary injury after VP7 silencing. Hepatic injury was decreased after NSP4 or VP4 silencing. Neither VP4 nor VP7 were detected in the biliary ducts after NSP4. All together, NSP4 silencing down-regulates VP7 and VP4, resulting in decreased incidence of BA.
Collapse
Affiliation(s)
- Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | |
Collapse
|
72
|
Gibbons TF, Storey SM, Williams CV, McIntosh A, Mitchel DM, Parr RD, Schroeder ME, Schroeder F, Ball JM. Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells. Virol J 2011; 8:278. [PMID: 21645398 PMCID: PMC3129587 DOI: 10.1186/1743-422x-8-278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types. Methods Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab)2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls. Results Only full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells. Conclusions The intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.
Collapse
Affiliation(s)
- Thomas F Gibbons
- Department of Pathobiology Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
The immunological mediators that clear rotavirus antigenemia or viremia remain undefined. Immunodeficient mice and antibody transfer were used to test whether lymphocytes or rotavirus-specific serum antibodies are essential for resolving antigenemia. Clearance of antigenemia required lymphocytes, but neither T nor B lymphocytes were absolutely required. Transfer of convalescent-phase or nonneutralizing rotavirus-specific serum antibodies to the systemic compartment of severe-combined-immunodeficient (SCID) mice temporarily suppressed the onset or level of chronic rotavirus antigenemia. Our findings provide the first report demonstrating that clearance of rotavirus antigenemia and possibly viremia are mediated by multiple effector lymphocyte subsets and serum antibodies.
Collapse
|
74
|
Mauroy A, Gillet L, Mathijs E, Vanderplasschen A, Thiry E. Alternative attachment factors and internalization pathways for GIII.2 bovine noroviruses. J Gen Virol 2011; 92:1398-1409. [PMID: 21346032 DOI: 10.1099/vir.0.030072-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bovine noroviruses belong to the family Caliciviridae, genus Norovirus. Two genotypes have been described and viruses genetically related to the Jena and Newbury2 strains have been classified into genotypes 1 and 2, respectively. In this study, virus-like particles (VLP) of the previously detected B309 Belgian strain, genetically related to genotype 2 bovine noroviruses, were used to investigate virus-host interactions in vitro. B309 VLP were shown to bind to several bovine cell lines. This binding was not affected by heparinase or chondroitinase treatment but was significantly inhibited by both sodium periodate, α-galactosidase, trypsin and phospholipase C treatment. Cell treatment by neuraminidase also moderately affected this binding. Taken together, these results show that, in addition to a galactosyl residue, sialic acid could also be involved in binding to susceptible cells. In addition, both the cholesterol-dependent pathway and macropinocytosis are used for B309 VLP internalization by Madin-Darby bovine kidney cells. The data increase the knowledge on bovine norovirus cell interactions.
Collapse
Affiliation(s)
- Axel Mauroy
- Virology and Viral Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Laurent Gillet
- Immunology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Elisabeth Mathijs
- Virology and Viral Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Alain Vanderplasschen
- Immunology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Etienne Thiry
- Virology and Viral Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
75
|
Buragohain M, Dhale GS, Raut CG, Kang G, Chitambar SD. Analyses of clinical, pathological and virological features of human rotavirus strain, YO induced gastroenteritis in infant BALB/c mice. Microbes Infect 2010; 13:331-8. [PMID: 21163362 DOI: 10.1016/j.micinf.2010.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
Experimental studies of human rotavirus infections in mice are limited and there is lack of information on the quantitative assessment of rotaviral replication and its relationship with histological changes. In the present study, consequences of human rotavirus strain, YO induced gastroenteritis in infant BALB/c mice were analyzed for the occurrence of clinical symptoms, histopathology and virological events. The infected animals developed diarrhea and dehydration and showed accumulation of vacuolated enterocytes with lodging of the rotavirus antigens and shortening of villi in the intestine over a period of 5 days. The ileum was identified as the most susceptible and supportive part of small intestine for perpetuation of rotavirus infection in mice. Rotaviral antigen/RNA in stool and RNA in intestine were detected throughout the clinical disease period. At 48-72 h post inoculation, diarrhea was at the peak (90-95%) in the infected animals with increased load of viral RNA and intense pathological lesions suggesting it as the critical time point in the course of infection. The rising titers of antirotavirus neutralizing antibodies ascertained the replication of human rotavirus strain, YO in mice. These data may contribute to the understanding of pathophysiological, immunological and virological characteristics of rotavirus infections in mice.
Collapse
Affiliation(s)
- Manika Buragohain
- Enteric Viruses Department, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune - 411 001, India
| | | | | | | | | |
Collapse
|
76
|
Literature Review on Rotavirus: Disease and Vaccine Characteristics: An Advisory Committee Statement (ACS) National Advisory Committee on Immunization (NACI) †. ACTA ACUST UNITED AC 2010; 36:1-31. [PMID: 31701942 DOI: 10.14745/ccdr.v36i00a14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
77
|
Guerrero CA, Santana AY, Acosta O. Mouse intestinal villi as a model system for studies of rotavirus infection. J Virol Methods 2010; 168:22-30. [DOI: 10.1016/j.jviromet.2010.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 03/29/2010] [Accepted: 04/12/2010] [Indexed: 12/24/2022]
|
78
|
Narváez CF, Franco MA, Angel J, Morton JM, Greenberg HB. Rotavirus differentially infects and polyclonally stimulates human B cells depending on their differentiation state and tissue of origin. J Virol 2010; 84:4543-55. [PMID: 20164228 PMCID: PMC2863723 DOI: 10.1128/jvi.02550-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/08/2010] [Indexed: 12/12/2022] Open
Abstract
We have shown previously that rotavirus (RV) can infect murine intestinal B220(+) cells in vivo (M. Fenaux, M. A. Cuadras, N. Feng, M. Jaimes, and H. B. Greenberg, J. Virol. 80:5219-5232, 2006) and human blood B cells in vitro (M. C. Mesa, L. S. Rodriguez, M. A. Franco, and J. Angel, Virology 366:174-184, 2007). However, the effect of RV on B cells, especially those present in the human intestine, the primary site of RV infection, is unknown. Here, we compared the effects of the in vitro RV infection of human circulating (CBC) and intestinal B cells (IBC). RV infected four times more IBC than CBC, and in both types of B cells the viral replication was highly restricted to the memory subset. RV induced cell death in 30 and 3% of infected CBC and IBC, respectively. Moreover, RV induced activation and differentiation into antibody-secreting cells (ASC) of CBC but not IBC when the B cells were present with other mononuclear cells. However, RV did not induce these effects in purified CBC or IBC, suggesting the participation of other cells in activating and differentiating CBC. RV infection was associated with enhanced interleukin-6 (IL-6) production by CBC independent of viral replication. The infection of the anti-B-cell receptor, lipopolysaccharide, or CpG-stimulated CBC reduced the secretion of IL-6 and IL-8 and decreased the number of ASC. These inhibitory effects were associated with an increase in viral replication and cell death and were observed in polyclonally stimulated CBC but not in IBC. Thus, RV differentially interacts with primary human B cells depending on their tissue of origin and differentiation stage, and it affects their capacity to modulate the local and systemic immune responses.
Collapse
Affiliation(s)
- Carlos F. Narváez
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - Manuel A. Franco
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - Juana Angel
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - John M. Morton
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - Harry B. Greenberg
- Department of Medicine, Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
79
|
Karst SM. Pathogenesis of noroviruses, emerging RNA viruses. Viruses 2010; 2:748-781. [PMID: 21994656 PMCID: PMC3185648 DOI: 10.3390/v2030748] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/15/2010] [Accepted: 03/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human noroviruses in the family Caliciviridae are a major cause of epidemic gastroenteritis. They are responsible for at least 95% of viral outbreaks and over 50% of all outbreaks worldwide. Transmission of these highly infectious plus-stranded RNA viruses occurs primarily through contaminated food or water, but also through person-to-person contact and exposure to fomites. Norovirus infections are typically acute and self-limited. However, disease can be much more severe and prolonged in infants, elderly, and immunocompromised individuals. Norovirus outbreaks frequently occur in semi-closed communities such as nursing homes, military settings, schools, hospitals, cruise ships, and disaster relief situations. Noroviruses are classified as Category B biodefense agents because they are highly contagious, extremely stable in the environment, resistant to common disinfectants, and associated with debilitating illness. The number of reported norovirus outbreaks has risen sharply since 2002 suggesting the emergence of more infectious strains. There has also been increased recognition that noroviruses are important causes of childhood hospitalization. Moreover, noroviruses have recently been associated with multiple clinical outcomes other than gastroenteritis. It is unclear whether these new observations are due to improved norovirus diagnostics or to the emergence of more virulent norovirus strains. Regardless, it is clear that human noroviruses cause considerable morbidity worldwide, have significant economic impact, and are clinically important emerging pathogens. Despite the impact of human norovirus-induced disease and the potential for emergence of highly virulent strains, the pathogenic features of infection are not well understood due to the lack of a cell culture system and previous lack of animal models. This review summarizes the current understanding of norovirus pathogenesis from the histological to the molecular level, including contributions from new model systems.
Collapse
Affiliation(s)
- Stephanie M. Karst
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA; E-Mail: ; Tel.: +1-318-675-8122; Fax: +1-318-675-5764
| |
Collapse
|
80
|
Rotaviruses require basolateral molecules for efficient infection of polarized MDCKII cells. Virus Res 2010; 147:231-41. [DOI: 10.1016/j.virusres.2009.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 11/21/2022]
|
81
|
Mesa MC, Gutiérrez L, Duarte-Rey C, Angel J, Franco MA. A TGF-beta mediated regulatory mechanism modulates the T cell immune response to rotavirus in adults but not in children. Virology 2010; 399:77-86. [PMID: 20096911 DOI: 10.1016/j.virol.2009.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/10/2009] [Accepted: 12/15/2009] [Indexed: 11/17/2022]
Abstract
Children with acute RV-gastroenteritis (GE) had low or undetectable levels of circulating IFN-gamma(+), IL-13(+), IL-2(+), IL-10(+) or IL-17(+) RV-T cells. IFN-gamma(+) T cells and low frequencies of IL-10(+) and IL-2(+) CD4(+) T cells were found in adults with RV-GE during acute and convalescence phases, respectively. Circulating single IFN-gamma(+)>double IFN-gamma(+)/IL-2(+)>single IL-2(+)RV-CD4(+)T cells were observed in healthy adults. In this group, frequencies of IFN-gamma(+) RV-T cells increased after removing CD25(+)cells, blocking TGF-beta with its natural inhibitor, LAP, or inhibiting TGF-betaRI signalling pathway with ALK5i. The frequencies of IFN-gamma(+) RV-T cells were also incremented in PBMC depleted of CD25(+)cells and treated with ALK5i, suggesting that TGFbeta inhibition may be independent of Treg cells. The ALK5i effect was observed in adults but not in children with RV-GE, who had normal numbers of TGF-beta+ Treg cells. Thus, a TGF-beta-mediated regulatory mechanism that modulates RV-T cells in adults is not evident in children.
Collapse
Affiliation(s)
- Martha C Mesa
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Edificio 32, Bogotá, Colombia; Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Edificio 50, Bogotá, Colombia.
| | - Lina Gutiérrez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Edificio 32, Bogotá, Colombia.
| | - Carolina Duarte-Rey
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Edificio 32, Bogotá, Colombia.
| | - Juana Angel
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Edificio 32, Bogotá, Colombia.
| | - Manuel A Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Edificio 32, Bogotá, Colombia.
| |
Collapse
|
82
|
Arnold MM, Patton JT. Rotavirus antagonism of the innate immune response. Viruses 2009; 1:1035-56. [PMID: 21994581 PMCID: PMC3185539 DOI: 10.3390/v1031035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/05/2009] [Accepted: 11/20/2009] [Indexed: 12/17/2022] Open
Abstract
Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and young children. The virus is sensitive to the antiviral effects triggered by the interferon (IFN)-signaling pathway, an important component of the host cell innate immune response. To counteract these effects, rotavirus encodes a nonstructural protein (NSP1) that induces the degradation of proteins involved in regulating IFN expression, such as members of the IFN regulatory factor (IRF) family. In some instances, NSP1 also subverts IFN expression by causing the degradation of a component of the E3 ubiquitin ligase complex responsible for activating NF-κB. By antagonizing multiple components of the IFN-induction pathway, NSP1 aids viral spread and contributes to rotavirus pathogenesis.
Collapse
Affiliation(s)
- Michelle M Arnold
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA; E-Mail:
| | | |
Collapse
|
83
|
Schenk S, Petzold A, Hoehne M, Adam R, Schroten H, Tenenbaum T. Severe gastroenteritis with secondary fever in a 10-month-old boy. J Clin Virol 2009; 47:107-9. [PMID: 19875333 PMCID: PMC7129670 DOI: 10.1016/j.jcv.2009.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie Schenk
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
84
|
Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology 2009; 136:1939-51. [PMID: 19457420 PMCID: PMC3690811 DOI: 10.1053/j.gastro.2009.02.076] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
Abstract
Rotaviruses cause life-threatening gastroenteritis in children worldwide; the enormous disease burden has focused efforts to develop vaccines and led to the discovery of novel mechanisms of gastrointestinal virus pathogenesis and host responses to infection. Two live-attenuated vaccines for gastroenteritis (Rotateq [Merck] and Rotarix) have been licensed in many countries. This review summarizes the latest data on these vaccines, their effectiveness, and challenges to global vaccination. Recent insights into rotavirus pathogenesis also are discussed, including information on extraintestinal infection, viral antagonists of the interferon response, and the first described viral enterotoxin. Rotavirus-induced diarrhea now is considered to be a disease that can be prevented through vaccination, although there are many challenges to achieving global effectiveness. Molecular biology studies of rotavirus replication and pathogenesis have identified unique viral targets that might be useful in developing therapies for immunocompromised children with chronic infections.
Collapse
Affiliation(s)
- Harry B. Greenberg
- Senior Associate Dean for Research, Joseph D. Grant Professor of Medicine and Microbiology & Immunology, Stanford University School of Medicine, Alway Bldg, Rm M-121
- 300 Pasteur Dr, Stanford, CA 94305-5119, phone: 650-725-9722, fax: 650-725-7368
| | - Mary K. Estes
- Cullen Endowed Chair of Molecular and Human Virology, Departments of Molecular Virology and Microbiology and Medicine -GI, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030-3498, 713-798-3585, 713-798-3586 fax
| |
Collapse
|
85
|
Reimerink J, Stelma F, Rockx B, Brouwer D, Stobberingh E, van Ree R, Dompeling E, Mommers M, Thijs C, Koopmans M. Early-life rotavirus and norovirus infections in relation to development of atopic manifestation in infants. Clin Exp Allergy 2009; 39:254-60. [DOI: 10.1111/j.1365-2222.2008.03128.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
86
|
Abstract
PURPOSE OF REVIEW Rotaviruses cause life-threatening gastroenteritis in children throughout the world. The burden of disease has resulted in the development of two live, attenuated vaccines that are now licensed in many countries. This review summarizes new data on these vaccines, their effectiveness, and remaining challenges including new data on the rotavirus enterotoxin, a potential antiviral target. RECENT FINDINGS Live attenuated rotavirus vaccines are used to protect infants against severe rotavirus-induced gastroenteritis and, RotaTeq, a pentavalent bovine-based vaccine, and, Rotarix, a monovalent human rotavirus, are now currently licensed in many countries. Initial results of the licensed RotaTeq vaccine have been promising in the USA and results of immunogenicity and efficacy in developing countries are expected soon. However, universal vaccine implementation is challenging due to age limitations on administration of these vaccines. Chronic rotavirus infections in immunocompromised children may remain a problem and require the development of new treatments including antiviral drugs. Increasing data on the mechanisms of action of the rotavirus enterotoxin highlight this pleiotropic protein as a good target as well as a unique calcium agonist. SUMMARY Rotavirus is now a commonly occurring vaccine-preventable disease among children in developed countries and hopefully this also will soon be true for developing countries. Future studies will determine whether other methods of prevention, such as nonreplicating vaccines and antiviral drugs, will be needed to treat disease in immunocompromised children.
Collapse
Affiliation(s)
- Joseph M. Hyser
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| |
Collapse
|
87
|
Chitambar SD, Tatte VS, Dhongde R, Kalrao V. High frequency of rotavirus viremia in children with acute gastroenteritis: discordance of strains detected in stool and sera. J Med Virol 2008; 80:2169-76. [PMID: 19040295 DOI: 10.1002/jmv.21338] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, rotavirus antigenemia and viremia have been identified in patients with acute gastroenteritis. This study examined rotavirus viremia in children hospitalized for acute gastroenteritis in order to establish its association with fecal shedding of rotavirus, infecting genotypes and antibody marker of acute infection. Thirty-one pairs of stool-serum specimens were collected from November 2004 to February 2005 together with clinical information. All paired specimens were screened for rotavirus RNA by RT-PCR using the VP6 gene primers. All stool and serum specimens were tested for rotavirus antigen and anti-rotavirus IgM respectively by ELISA. Sixteen of 31 stool-serum pairs showed the presence of rotavirus RNA. Nine stool and two serum specimens were positive only by RT-PCR. The total positivity in rotavirus RNA was significantly higher in both stools (80.6%) and sera (58.1%) than that of stool antigen (38.7%) and anti-rotavirus IgM (25.8%) (P < 0.01). All PCR positive paired specimens were typed for the VP7 (G) and VP4 (P) genes. Five of sixteen pairs could be typed for both genes. Three of the five pairs showed concordance (G2P[4]/G2P[4]) while two showed discordance (G12P[8]/G2P[4], G8P[4]/G2P[4]) in the genotypes detected in stool and serum specimens respectively. The study documents a high frequency of rotavirus viremia in patients with acute diarrhea. The discordance of rotavirus strains at the genotypic level in the serum and stool of individual patients with diarrhea suggests the susceptibility of extra-intestinal sites for rotavirus infection and the possibility of differential dissemination of rotavirus strains from the intestine.
Collapse
|
88
|
Sugata K, Taniguchi K, Yui A, Miyake F, Suga S, Asano Y, Ohashi M, Suzuki K, Nishimura N, Ozaki T, Yoshikawa T. Analysis of rotavirus antigenemia and extraintestinal manifestations in children with rotavirus gastroenteritis. Pediatrics 2008; 122:392-7. [PMID: 18676558 DOI: 10.1542/peds.2007-2290] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE This study was conducted to examine the association between rotavirus antigenemia and clinical features, particularly extraintestinal manifestations, and the association between serum cytokine levels and rotavirus antigen quantity. METHODS Sixty hospitalized children who received a diagnosis of acute rotavirus gastroenteritis were enrolled in this study. Paired serum samples were collected from the 60 children when admitted to and discharged from the hospital. Associations among viral antigen levels and fever, elevated transaminase levels, and seizures were evaluated to determine whether antigenemia correlated with disease severity. Viral antigen was measured by using an in-house enzyme-linked immunosorbent assay that detected VP6 antigen. A flow-cytometric bead array was used to measure serum cytokine levels. RESULTS Rotavirus antigen levels were significantly higher in serum collected at the time of hospital admission than at the time of discharge. Serum rotavirus antigen levels peaked on day 2 of the illness (2.02 +/- 0.73), followed by a gradual decrease in antigen levels to nearly undetectable levels by day 6. The quantity of rotavirus antigen was significantly higher in serum collected from patients with fever than those without fever. The presence or absence of elevated transaminase levels and seizures was not associated with serum rotavirus antigen levels. A weak but significantly positive association was observed between interleukin 8 levels and antigenemia. A weak but significantly negative association was observed between interleukin 10 levels and antigenemia. CONCLUSIONS Rotavirus antigenemia is frequently observed in a patient's serum during the acute phase, and viral antigen levels change dramatically during the acute phase of the illness. Because patients with fever had higher rotavirus antigen levels, antigenemia severity might contribute to fever. The host immune response plays an important role in controlling antigenemia levels.
Collapse
Affiliation(s)
- Ken Sugata
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Integrins alpha1beta1 and alpha2beta1 are receptors for the rotavirus enterotoxin. Proc Natl Acad Sci U S A 2008; 105:8811-8. [PMID: 18587047 DOI: 10.1073/pnas.0803934105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rotavirus NSP4 is a viral enterotoxin capable of causing diarrhea in neonatal mice. This process is initiated by the binding of extracellular NSP4 to target molecule(s) on the cell surface that triggers a signaling cascade leading to diarrhea. We now report that the integrins alpha1beta1 and alpha2beta1 are receptors for NSP4. NSP4 specifically binds to the alpha1 and alpha2 I domains with apparent K(d) = 1-2.7 muM. Binding is mediated by the I domain metal ion-dependent adhesion site motif, requires Mg(2+) or Mn(2+), is abolished with EDTA, and an NSP4 point mutant, E(120)A, fails to bind alpha2 integrin I domain. NSP4 has two distinct integrin interaction domains. NSP4 amino acids 114-130 are essential for binding to the I domain, and NSP4 peptide 114-135 blocks binding of the natural ligand, collagen I, to integrin alpha2. NSP4 amino acids 131-140 are not associated with the initial binding to the I domain, but elicit signaling that leads to the spreading of attached C2C12-alpha2 cells, mouse myoblast cells stably expressing the human alpha2 integrin. NSP4 colocalizes with integrin alpha2 on the basolateral surface of rotavirus-infected polarized intestinal epithelial (Caco-2) cells as well as surrounding noninfected cells. NSP4 mutants that fail to bind or signal through integrin alpha2 were attenuated in diarrhea induction in neonatal mice. These results indicate that NSP4 interaction with integrin alpha1 and alpha2 is an important component of enterotoxin function and rotavirus pathogenesis, further distinguishing this viral virulence factor from other microbial enterotoxins.
Collapse
|
90
|
Rotavirus infection accelerates type 1 diabetes in mice with established insulitis. J Virol 2008; 82:6139-49. [PMID: 18417562 DOI: 10.1128/jvi.00597-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet beta cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged > or = 12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8(+) T-cell proportions in islets. Levels of beta-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after beta-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of beta cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.
Collapse
|
91
|
|
92
|
Pérez-Cano FJ, Castell M, Castellote C, Franch A. Characterization of clinical and immune response in a rotavirus diarrhea model in suckling Lewis rats. Pediatr Res 2007; 62:658-63. [PMID: 17957154 DOI: 10.1203/pdr.0b013e318159a273] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Group A rotaviruses (RVs) are the leading pathogens causing diarrhea in children and animals. The present study was designed to establish an experimental model of RV infection and immune response in suckling rats. Wistar (W) and Lewis (L) suckling rats were inoculated orally with two different doses of a simian RV SA-11 strain. RV infection was evaluated by growth rate and clinical indexes. Virus-shedding and serum anti-RV antibodies were measured by enzyme-linked immunosorbent assay (ELISA). Mucosal interferon-gamma (IFN gamma), specific splenocyte proliferation, and spleen and intestinal intraepithelial lymphocyte (IEL) phenotype were analyzed. No diarrhea was observed in any inoculated Ws. All Ls developed acute moderate diarrhea, and a high score and incidence of diarrhea were found in rats infected with higher titers of RV. Specific humoral and cell systemic immune response was confirmed by splenocyte proliferation and by the presence of serum anti-RV antibodies. Moreover, RV infection induced changes in IEL composition, which showed an increase in the proportion of innate immune cells with respect to cells involved in acquired immunity. This acute moderate diarrhea process constitutes a good experimental model that also provides some immune biomarkers that may allow establishing modulation by drugs or diet components.
Collapse
Affiliation(s)
- Francisco J Pérez-Cano
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Spain E-08028 Barcelona.
| | | | | | | |
Collapse
|
93
|
Mesa MC, Rodríguez LS, Franco MA, Angel J. Interaction of rotavirus with human peripheral blood mononuclear cells: plasmacytoid dendritic cells play a role in stimulating memory rotavirus specific T cells in vitro. Virology 2007; 366:174-84. [PMID: 17499331 DOI: 10.1016/j.virol.2007.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 03/16/2007] [Accepted: 04/09/2007] [Indexed: 02/07/2023]
Abstract
We studied the interaction of RV with human peripheral blood mononuclear cells (PBMC) from adult volunteers. After exposure of PBMC to rhesus RV (RRV), T and B lymphocytes, NK cells, monocytes, and myeloid and plasmacytoid dendritic cells expressed RV non-structural proteins, at variable levels. Expression of these RV proteins was abolished if infection was done in the presence of anti-VP7 neutralizing antibodies or 10% autologous serum. Supernatants of RRV exposed PBMC contained TNF-alpha, IL-6, IFN-alpha, IFN-gamma, IL-2 and IL-10. Plasmacytoid DC were found to be the main source of IFN-alpha production, and in their absence the production of IFN-gamma and the frequency of RV specific T cells that secrete IFN-gamma diminished. Finally, we could not detect RV-antigen associated with the PBMC or expression of RV non-structural proteins in PBMC of acutely RV-infected children. Thus, although PBMC are susceptible to the initial steps of RV infection, most PBMC of children with RV-gastroenteritis are not infected.
Collapse
Affiliation(s)
- Martha C Mesa
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Carrera 7 No.40-62, Edificio 32, Bogotá, Colombia.
| | | | | | | |
Collapse
|
94
|
Angel J, Franco MA, Greenberg HB. Rotavirus vaccines: recent developments and future considerations. Nat Rev Microbiol 2007; 5:529-39. [PMID: 17571094 DOI: 10.1038/nrmicro1692] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two new vaccines have recently been shown to be safe and effective in protecting young children against severe rotavirus gastroenteritis. Although both vaccines are now marketed worldwide, it is likely that improvements to these vaccines and/or the development of future generations of rotavirus vaccines will be desirable. This Review addresses recent advances in our knowledge of rotavirus, the host immune response to rotavirus infection and the efficacy and safety of the new vaccines that will be helpful for improving the existing rotavirus vaccines, or developing new rotavirus vaccines in the future.
Collapse
Affiliation(s)
- Juana Angel
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Carrera 7, 40-62, Bogotá, Colombia.
| | | | | |
Collapse
|
95
|
Moser LA, Carter M, Schultz-Cherry S. Astrovirus increases epithelial barrier permeability independently of viral replication. J Virol 2007; 81:11937-45. [PMID: 17699569 PMCID: PMC2168760 DOI: 10.1128/jvi.00942-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Astrovirus infection in a variety of species results in an age-dependent diarrhea; however, the means by which astroviruses cause diarrhea remain unknown. Studies of astrovirus-infected humans and turkeys have demonstrated few histological changes and little inflammation during infection, suggesting that intestinal damage or an overzealous immune response is not the primary mediator of astrovirus diarrhea. An alternative contributor to diarrhea is increased intestinal barrier permeability. Here, we demonstrate that astrovirus increases barrier permeability in a Caco-2 cell culture model system following apical infection. Increased permeability correlated with disruption of the tight-junction protein occludin and decreased the number of actin stress fibers in the absence of cell death. Additionally, permeability was increased when monolayers were treated with UV-inactivated virus or purified recombinant human astrovirus serotype 1 capsid in the form of virus-like particles. Together, these results demonstrate that astrovirus-induced permeability occurs independently of viral replication and is modulated by the capsid protein, a property apparently unique to astroviruses. Based on these data, we propose that the capsid contributes to diarrhea in vivo.
Collapse
Affiliation(s)
- Lindsey A Moser
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
96
|
Ballotti S, de Martino M. Rotavirus infections and development of type 1 diabetes: an evasive conundrum. J Pediatr Gastroenterol Nutr 2007; 45:147-56. [PMID: 17667707 DOI: 10.1097/mpg.0b013e31805fc256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by altered immune tolerance to specific proteins leading to a selective destruction of insulin-producing beta cells in genetically predisposed individuals. T1D is likely to be triggered by environmental factors, including virus infections in genetically predisposed individuals. Rotaviruses are the main cause of severe diarrhea among children worldwide, but they seem to have a role also in T1D induction. Epidemiological data may be consistent with a similar hypothesis. Mechanisms hypothesized include molecular mimicry, bystander activation (with or without epitope spreading), and viral persistence. In this review the authors analyze the factors accounting for rotavirus ability to prime islet autoimmunity and cause T1D. A thorough comprehension of their potential pathogenetic mechanisms may allow preventive strategies to be designed.
Collapse
Affiliation(s)
- Serena Ballotti
- Department of Paediatrics, University of Florence, Anna Meyer Children's Hospital, Florence, Italy
| | | |
Collapse
|
97
|
Graham KL, O'Donnell JA, Tan Y, Sanders N, Carrington EM, Allison J, Coulson BS. Rotavirus infection of infant and young adult nonobese diabetic mice involves extraintestinal spread and delays diabetes onset. J Virol 2007; 81:6446-58. [PMID: 17428851 PMCID: PMC1900081 DOI: 10.1128/jvi.00205-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rotaviruses have been implicated as a possible viral trigger for exacerbations in islet autoimmunity, suggesting they might modulate type 1 diabetes development. In this study, the ability of rotavirus strain RRV to infect the pancreas and affect insulitis and diabetes was examined in nonobese diabetic (NOD) mice, an experimental model of type 1 diabetes. Mice were inoculated either orally or intraperitoneally as infants or young adults. In infant mice inoculated orally, rotavirus antigen was detected in pancreatic macrophages outside islets and infectious virus was found in blood cells, pancreas, spleen, and liver. Extraintestinal RRV spread and pancreatic presence of infectious virus also occurred in intraperitoneally inoculated infant and adult mice. The initiation of insulitis was unaltered by infection. The onset of diabetes was delayed in infant mice inoculated orally and infant and adult mice inoculated intraperitoneally. In contrast, adult mice inoculated orally showed no evidence of pancreatic RRV, the lowest rate of detectable RRV replication, and no diabetes modulation. Thus, the ability of RRV infection to modulate diabetes development in infant and young adult NOD mice was related to the overall extent of detectable virus replication and the presence of infectious virus extraintestinally, including in the pancreas. These studies show that RRV infection of infant and young adult NOD mice provides significant protection against diabetes. As these findings do not support the hypothesis that rotavirus triggers autoimmunity related to type 1 diabetes, further research is needed to resolve this issue.
Collapse
Affiliation(s)
- Kate L Graham
- Department of Microbiology and Immunology, Gate 11, Royal Parade, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
98
|
Blutt SE, Matson DO, Crawford SE, Staat MA, Azimi P, Bennett BL, Piedra PA, Conner ME. Rotavirus antigenemia in children is associated with viremia. PLoS Med 2007; 4:e121. [PMID: 17439294 PMCID: PMC1852122 DOI: 10.1371/journal.pmed.0040121] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 02/07/2007] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Antigenemia is commonly detected in rotavirus-infected children. Although rotavirus RNA has been detected in serum, definitive proof of rotavirus viremia has not been shown. We aimed to analyze a defined patient population to determine if infectious virus could be detected in sera from children with rotavirus antigenemia. METHODS AND FINDINGS Serum samples obtained upon hospitalization from children with gastroenteritis (57 stool rotavirus-positive and 41 rotavirus-negative), children with diagnosed bronchiolitis of known (n = 58) or unknown (n = 17) viral etiology, children with noninfectious, nonchronic conditions (n = 17), and healthy adults (n = 28) were tested for rotavirus antigen by enzyme immunoassay (EIA). Results of serum antigen testing were assessed for association with clinical and immunological attributes of the children. Rotavirus antigenemia was detected in 90% (51/57) of children with rotavirus-positive stools, in 89% (8/9) of children without diarrhea but with rotavirus-positive stools, in 12% (2/17) of children with bronchiolitis of unknown etiology without gastroenteritis, and in 12% (5/41) of children with gastroenteritis but with rotavirus-negative stools. Antigenemia was not detected in sera from children with noninfectious nonchronic conditions, children with bronchiolitis of known etiology and no gastroenteritis, or healthy adults. Neither age nor timing of serum collection within eight days after onset of gastroenteritis significantly affected levels of antigenemia, and there was no correlation between antigenemia and viral genotype. However, there was a negative correlation between serum rotavirus antigen and acute rotavirus-specific serum IgA (r = -0.44, p = 0.025) and IgG (r = -0.40, p = 0.01) titers. We examined 11 antigen-positive and nine antigen-negative sera for infectious virus after three blind serial passages in HT-29 cells using immunofluorescence staining for rotavirus structural and nonstructural proteins. Infectious virus was detected in 11/11 (100%) sera from serum antigen-positive children and in two out of nine (22%) sera samples from antigen-negative children (p = 0.002). CONCLUSIONS Most children infected with rotavirus are viremic. The presence of viremia is directly related to the detection of antigenemia and is independent of the presence of diarrhea. Antigenemia load is inversely related to the titer of antirotavirus antibody in the serum. The finding of infectious rotavirus in the blood suggests extraintestinal involvement in rotavirus pathogenesis; however, the impact of rotavirus viremia on clinical manifestations of infection is unknown.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - David O Matson
- Center for Pediatric Research, Norfolk, Virginia, United States of America
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary Allen Staat
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Parvin Azimi
- Children's Hospital of Oakland, Oakland, California, United States of America
| | - Berkeley L Bennett
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| |
Collapse
|
99
|
Berkova Z, Crawford SE, Blutt SE, Morris AP, Estes MK. Expression of rotavirus NSP4 alters the actin network organization through the actin remodeling protein cofilin. J Virol 2007; 81:3545-53. [PMID: 17229686 PMCID: PMC1866088 DOI: 10.1128/jvi.01080-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 12/19/2006] [Indexed: 12/16/2022] Open
Abstract
Rotavirus is a major cause of infantile gastroenteritis with a multifactorial pathogenesis. As with many other pathogens, rotavirus infection and replication leads to rearrangement of the cytoskeleton with disorganization of cytoskeletal elements such as actin and cytokeratin through a calcium-dependent process that has not been fully characterized. The rotavirus enterotoxin NSP4, shown previously to elevate intracellular calcium levels when added exogenously as well as when expressed intracellularly, is a key player in intracellular calcium regulation during rotavirus infection. Here, we investigated the role NSP4 may play in actin rearrangement. Expression of NSP4 fused to enhanced green fluorescent protein (NSP4-EGFP), but not expression of EGFP alone, caused stabilization of long cellular projections in fully confluent HEK 293 cells. Cells expressing NSP4-EGFP for 24 h were also resistant to cell rounding induced by cytochalasin D. Quantification of filamentous actin (F-actin) content by using rhodamine-conjugated phalloidin and flow cytometry showed an elevated F-actin content in NSP4-EGFP-expressing and rotavirus-infected cells in comparison with that in nonexpressing and noninfected cells. Normalization of intracellular calcium levels prevented alterations of F-actin content. Observed changes in F-actin amounts correlated with the increased activation of the actin-remodeling protein cofilin. These calcium-dependent actin rearrangements induced by intracellular NSP4 expression may contribute to rotavirus pathogenesis by interfering with cellular processes dependent on subcortical actin remodeling, including ion transport and viral release.
Collapse
Affiliation(s)
- Zuzana Berkova
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1200 Moursund Street, Houston, TX 77030-3404, USA
| | | | | | | | | |
Collapse
|
100
|
Reimerink JHJ, Boshuizen JA, Einerhand AWC, Duizer E, van Amerongen G, Schmidt N, Koopmans MPG. Systemic immune response after rotavirus inoculation of neonatal mice depends on source and level of purification of the virus: implications for the use of heterologous vaccine candidates. J Gen Virol 2007; 88:604-612. [PMID: 17251579 DOI: 10.1099/vir.0.82126-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus is an important cause of morbidity and mortality worldwide and vaccines are currently under development, with clinical trails conducted in humans worldwide. The immune responses in infant BALB/c mice were examined following oral inoculation with murine rotavirus EDIM (2 x 10(4) focus-forming units) and with three CsCl gradient-purified fractions of heterologous simian rotavirus SA11 (standardized at 2 x 10(6) CCID(50)) that differed in antigen composition: fraction 1 was enriched for double-layered rotavirus particles, fraction 2 for triple-layered particles and fraction 3 consisted mainly of cell components. Diarrhoea and high IgG responses, but marginal IgA responses, were observed after inoculation with all three SA11 fractions. Virus shedding was observed in all EDIM-inoculated mice, but in none of the SA11-inoculated mice. Rotavirus-specific IgG1 : 2a ratios were similar in mice inoculated with EDIM and SA11 fraction 1, but higher for SA11 fraction 3- and lower for SA11 fraction 2-inoculated mice. A higher IgG1 : 2a ratio indicates a more Th2-like immune response. This undesirable response is apparently mostly induced by inoculation with heterologous rotavirus in the presence of abundant cell-associated and soluble rotavirus proteins, compared with infection with a more purified preparation or with homologous virus. These data show that, following inoculation with a standardized amount of infectious virus, the composition of the fraction influences the outcome of the immune responses significantly.
Collapse
Affiliation(s)
- Johan H J Reimerink
- Diagnostic Laboratory for Infectious Diseases and Perinatal Screening, National Institute for Public Health and the Environment (RIVM), The Netherlands
| | - Jos A Boshuizen
- Laboratory of Pediatrics, Pediatric Gastroenterology and Nutrition, Erasmus MC/Sophia, Rotterdam, The Netherlands
| | - Alexandra W C Einerhand
- Laboratory of Pediatrics, Pediatric Gastroenterology and Nutrition, Erasmus MC/Sophia, Rotterdam, The Netherlands
| | - Erwin Duizer
- Diagnostic Laboratory for Infectious Diseases and Perinatal Screening, National Institute for Public Health and the Environment (RIVM), The Netherlands
| | - Geert van Amerongen
- Central Animal Laboratory, National Institute for Public Health and the Environment (RIVM), The Netherlands
| | - Nico Schmidt
- Central Animal Laboratory, National Institute for Public Health and the Environment (RIVM), The Netherlands
| | - Marion P G Koopmans
- Diagnostic Laboratory for Infectious Diseases and Perinatal Screening, National Institute for Public Health and the Environment (RIVM), The Netherlands
| |
Collapse
|