51
|
HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study. PLoS One 2008; 3:e3003. [PMID: 18714345 PMCID: PMC2500163 DOI: 10.1371/journal.pone.0003003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/22/2008] [Indexed: 12/30/2022] Open
Abstract
Background HIV-infected patients develop multiple metabolic abnormalities including insulin resistance, lipodystrophy and dyslipidemia. Although progression of these disorders has been associated with the use of various protease inhibitors and other antiretroviral drugs, HIV-infected individuals who have not received these treatments also develop lipid abnormalities albeit to a lesser extent. How HIV alters lipid metabolism in an infected cell and what molecular changes are affected through protein interaction pathways are not well-understood. Results Since many genetic, epigenetic, dietary and other factors influence lipid metabolism in vivo, we have chosen to study genome-wide changes in the proteomes of a human T-cell line before and after HIV infection in order to circumvent computational problems associated with multiple variables. Four separate experiments were conducted including one that compared 14 different time points over a period of >3 months. By subtractive analyses of protein profiles overtime, several hundred differentially expressed proteins were identified in HIV-infected cells by mass spectrometry and each protein was scrutinized for its biological functions by using various bioinformatics programs. Herein, we report 18 HIV-modulated proteins and their interaction pathways that enhance fatty acid synthesis, increase low density lipoproteins (triglycerides), dysregulate lipid transport, oxidize lipids, and alter cellular lipid metabolism. Conclusions We conclude that HIV replication alone (i.e. without any influence of antiviral drugs, or other human genetic factors), can induce novel cellular enzymes and proteins that are significantly associated with biologically relevant processes involved in lipid synthesis, transport and metabolism (p = <0.0002–0.01). Translational and clinical studies on the newly discovered proteins may now shed light on how some of these proteins may be useful for early diagnosis of individuals who might be at high risk for developing lipid-related disorders. The target proteins could then be used for future studies in the development of inhibitors for preventing lipid-metabolic anomalies. This is the first direct evidence that HIV-modulates production of proteins that are significantly involved in disrupting the normal lipid-metabolic pathways.
Collapse
|
52
|
Baharvand H, Fathi A, Gourabi H, Mollamohammadi S, Salekdeh GH. Identification of mouse embryonic stem cell-associated proteins. J Proteome Res 2008; 7:412-23. [PMID: 18047272 DOI: 10.1021/pr700560t] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few years, there has been a growing interest in discovering the molecular mechanisms controlling embryonic stem cells' (ESCs) proliferation and differentiation. Proteome analysis has proven to be an effective approach to comprehensively unravel the regulatory network of differentiation. We applied a two-dimensional electrophoresis based proteomic approach followed by mass spectrometry to analyze the proteome of two mouse ESC lines, Royan B1 and D3, at 0, 6, and 16 days after differentiation initiation. Out of 97 ESC-associated proteins commonly expressed in two ESC lines, 72 proteins were identified using MALDI TOF-TOF mass spectrometry analysis. The expression pattern of four down-regulated proteins including Hspd1, Hspa8, beta-Actin, and Tpt1 were further confirmed by Western blot and immunofluorescence analyses in Royan B1 and D3 as well as two other mouse ESC lines, Royan C1 and Royan C4. Differential mRNA expression analysis of 20 genes using quantitative real-time reverse transcription PCR revealed a low correlation between mRNA and protein levels during differentiation. We also observed that the mRNA level of Tpt1 increased significantly in differentiating cells, whereas its protein level decreased. Several novel ESC-associated proteins have been presented in this study which warrants further investigation with respect to the etiology of stemness.
Collapse
|
53
|
Arruda-Carvalho M, Njaine B, Silveira MS, Linden R, Chiarini LB. Hop/STI1 modulates retinal proliferation and cell death independent of PrPC. Biochem Biophys Res Commun 2007; 361:474-80. [PMID: 17651690 DOI: 10.1016/j.bbrc.2007.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 01/05/2023]
Abstract
Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrP(C)). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrP(C) dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 (alpha-STI1) blocked both ganglion cell and NBL cell death independent of PrP(C). cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while alpha-STI1 increased proliferation in the developing retina, both independent of PrP(C). We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrP(C).
Collapse
Affiliation(s)
- Maithe Arruda-Carvalho
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biofísica da UFRJ, Centro de Ciências da Saúde, bloco G, G2-019 Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
54
|
Whitaker HC, Stanbury DPB, Brinham C, Girling J, Hanrahan S, Totty N, Neal DE. Labeling and identification of LNCaP cell surface proteins: a pilot study. Prostate 2007; 67:943-54. [PMID: 17440980 DOI: 10.1002/pros.20580] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Membrane proteins provide the interface between the cell and its environment and are responsible for cell adhesion, mobility, and intracellular signaling. Previous studies have focused on the LNCaP whole cell proteome and transcriptome but little is known about proteins at the prostate cell membrane and how they change in response to androgens. MATERIALS AND METHODS Following treatment with R1881 or vehicle, membrane proteins of the prostate cancer LNCaP cell line were tagged with biotin using EZ-link sulfo-NHS-LC-biotin. Using the tag membrane proteins were purified and separated using two-dimensional gel electrophoresis and identified using mass spectrometry. E-cadherin and low density lipoprotein receptor (LDLR) were used as positive controls and also investigated following bicalutamide treatment. Membrane localization and androgen-regulation of proteins was confirmed using sub-cellular fractionation, Western blotting and microscopy. RESULTS We have demonstrated efficient and specific protein biotinylation and purification of LNCaP plasma membrane proteins using Western analysis. E-cadherin and LDLR were regulated at the cell surface in response to R1881 and bicalutamide. Mass spectrometry identified several androgen-regulated membrane associated proteins including Prx-3 and GRP78 which are known to localize to other cellular compartments as well as the plasma membrane. We confirmed the localization of the identified proteins in LNCaP cells by co-localization with E-cadherin and immunohistochemistry of prostate tissue. CONCLUSION Cell surface biotinylation is an effective technique for identifying membrane proteins in the LNCaP prostate cancer cell line. We have demonstrated the identification of androgen-regulated membrane proteins and their validation in tissue samples.
Collapse
Affiliation(s)
- Hayley C Whitaker
- Uro-Oncology Research Group, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone essential for activating many signaling proteins in the eukaryotic cell. Biochemical and structural analysis of Hsp90 has revealed a complex mechanism of ATPase-coupled conformational changes and interactions with cochaperone proteins, which facilitate activation of Hsp90's diverse "clientele." Despite recent progress, key aspects of the ATPase-coupled mechanism of Hsp90 remain controversial, and the nature of the changes, engendered by Hsp90 in client proteins, is largely unknown. Here, we discuss present knowledge of Hsp90 structure and function gleaned from crystallographic studies of individual domains and recent progress in obtaining a structure for the ATP-bound conformation of the intact dimeric chaperone. Additionally, we describe the roles of the plethora of cochaperones with which Hsp90 cooperates and growing insights into their biochemical mechanisms, which come from crystal structures of Hsp90 cochaperone complexes.
Collapse
Affiliation(s)
- Laurence H Pearl
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, United Kingdom.
| | | |
Collapse
|
56
|
Travers SAA, Fares MA. Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses. Mol Biol Evol 2007; 24:1032-44. [PMID: 17267421 DOI: 10.1093/molbev/msm022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Currently, the identification of groups of amino acid residues that are important in the function, structure, or interaction of a protein can be both costly and prohibitively complex, involving vast numbers of mutagenesis experiments. Here, we present the application of a novel computational method, which identifies the presence of coevolution in a data set, thereby enabling the a priori identification of amino acid residues that play an important role in protein function. We have applied this method to the heat shock protein (Hsp) protein-folding system, studying the network between Hsp70, Hsp90, and Hop (heat shock-organizing protein). Our analysis has identified functional residues within the tetratricopeptide repeat (TPR) 1 and 2A domains in Hop, previously shown to be interacting with Hsp70 and Hsp90, respectively. Further, we have identified significant residues elsewhere in Hop within domains that have been recently proposed as being important for Hop interaction with Hsp70 and/or Hsp90. In addition, several amino acid sites present in groups of coevolution were identified as 3-dimensionally or linearly proximal to functionally important sites or domains. Based on our results, we also investigate a further functional domain within Hop, between TPR1 and TPR2A, which we suggest as being functionally important in the interaction of Hop with both Hsp70 and Hsp90 whether directly or otherwise. Our method has identified all the previously characterized functionally important regions in this system, thereby indicating the power of this method in the a priori identification of important regions for site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Simon A A Travers
- Molecular Evolution and Bioinformatics Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland
| | | |
Collapse
|
57
|
Lattouf JB, Srinivasan R, Pinto PA, Linehan WM, Neckers L. Mechanisms of disease: the role of heat-shock protein 90 in genitourinary malignancy. ACTA ACUST UNITED AC 2007; 3:590-601. [PMID: 17088927 DOI: 10.1038/ncpuro0604] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/14/2006] [Indexed: 12/28/2022]
Abstract
Insight into the molecular biology of cancer has allowed the development of novel therapeutic strategies that target specific oncogenic pathways. Molecular therapeutic strategies are now part of the armamentarium available against urologic malignancy. Among the many targets of interest in urologic cancer, heat-shock protein 90 (HSP90) shows great promise. This molecule has a major role in prostate as well as in renal malignancy. In contrast to other targets, where cancer might escape inhibition via alternative pathways, HSP90 operates at multiple checkpoints in a cancer cell. Its inhibition could, therefore, prove more difficult for neoplastic cells to overcome. Inhibitors of HSP90, such as geldanamycin and its derivatives (17-allylamino-17-demethoxygeldanamycin and 17-dimethylaminoethylamino-17-demethoxygeldanamycin, known as 17AAG and 17DMAG, respectively) are available and have shown activity both in vivo and in vitro. 17AAG is currently being tested for efficacy in humans after having completed phase I trials, while 17DMAG is still in phase I evaluation. Phase II trials of HSP90 inhibitors in urologic malignancy are being conducted in kidney and advanced prostate cancer. Beyond monotherapy, HSP90 inhibitors might also prove to be beneficial in combination therapy with other chemotherapeutic agents in advanced disease. Studies being conducted in prostate cancer will hopefully help to define this potential application better.
Collapse
Affiliation(s)
- Jean-Baptiste Lattouf
- Urologic Oncology Branch, National Cancer Institute, Room 1-5942, Building 10 CRC, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
58
|
Catlett MG, Kaplan KB. Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem 2006; 281:33739-48. [PMID: 16945921 DOI: 10.1074/jbc.m603847200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sgt1p is a conserved, essential protein required for kinetochore assembly in both yeast and animal cells. Sgt1p has homology to both TPR and p23 domains, sequences often found in proteins that interact with and regulate the molecular chaperone, Hsp90. The presence of these domains and the recent findings that Sgt1p interacts with Hsp90 has led to the speculation that Sgt1p and Hsp90 form a co-chaperone complex. To test this possibility, we have used purified recombinant proteins to characterize the in vitro interactions between yeast Sgt1p and Hsp82p (an Hsp90 homologue in yeast). We show that Sgt1p interacts directly with Hsp82p via its p23 homology region in a nucleotide-dependent manner. However, Sgt1p binding does not alter the enzymatic activity of Hsp82p, suggesting that it is distinct from other co-chaperones. We find that Sgt1p can form a ternary chaperone complex with Hsp82p and Sti1p, a well characterized Hsp90 co-chaperone. Sgt1p interacts with its binding partner Skp1p through its TPR domains and links Skp1p to the core Hsp82p-Sti1p co-chaperone complex. The multidomain nature of Sgt1p and its ability to bridge the interaction between Skp1p and Hsp82p argue that Sgt1p acts as a "client adaptor" recruiting specific clients to Hsp82p co-chaperone complexes.
Collapse
Affiliation(s)
- Michael G Catlett
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
59
|
Cintron NS, Toft D. Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J Biol Chem 2006; 281:26235-44. [PMID: 16854979 DOI: 10.1074/jbc.m605417200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Hsp90 chaperoning pathway and its model client substrate, the progesterone receptor (PR), have been used extensively to study chaperone complex formation and maturation of a client substrate in a near native state. This chaperoning pathway can be reconstituted in vitro with the addition of five proteins plus ATP: Hsp40, Hsp70, Hop, Hsp90, and p23. The addition of these proteins is necessary to reconstitute hormone-binding capacity to the immuno-isolated PR. It was recently shown that the first step for the recognition of PR by this system is binding by Hsp40. We compared type I and type II Hsp40 proteins and created point mutations in Hsp40 and Hsp70 to understand the requirements for this first step. The type I proteins, Ydj1 and DjA1 (HDJ2), and a type II, DjB1 (HDJ1), act similarly in promoting hormone binding and Hsp70 association to PR, while having different binding characteristics to PR. Ydj1 and DjA1 bind tightly to PR whereas the binding of DjB1 apparently has rapid on and off rates and its binding cannot be observed by antibody pull-down methods using either purified proteins or cell lysates. Mutation studies indicate that client binding, interactions between Hsp40 and Hsp70, plus ATP hydrolysis by Hsp70 are all required to promote conformational maturation of PR via the Hsp90 pathway.
Collapse
Affiliation(s)
- Nela S Cintron
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
60
|
Uchiyama T, Atsuta H, Utsugi T, Oguri M, Hasegawa A, Nakamura T, Nakai A, Nakata M, Maruyama I, Tomura H, Okajima F, Tomono S, Kawazu S, Nagai R, Kurabayashi M. HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis 2006; 190:321-9. [PMID: 16678833 DOI: 10.1016/j.atherosclerosis.2006.03.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 08/29/2005] [Accepted: 03/29/2006] [Indexed: 11/30/2022]
Abstract
We have been examining the role of heat shock factor 1 (HSF1) in the pleiotropic effects of statins. In parallel studies, we found that statin induces the nuclear translocation of HSF1 and that a decoy oligonucleotide encoding the heat shock element inhibits the statin-induced expression of heat shock protein 70, endothelial nitric oxide synthase (eNOS) and thrombomodulin. Also, in vascular endothelial cells, increases in the expression of human HSF1 corresponded with elevated steady-state levels of eNOS and thrombomodulin and reduced levels of endothelin-1 and plasminogen activator inhibitor-1. We also found that heat shock proteins induced eNOS and thrombomodulin expression and reduced PAI-1 and ET-1 expression. In particular, a combination of HSP70 and HSP90 strongly induced eNOS expression and reduced PAI-1 expression. In the current studies, we generated a constitutively active form of HSF1 and found that it is more effective than the wild-type HSF at inducing thrombomodulin and eNOS expression and decreasing endothelin-1 and plasminogen activator inhibitor-1 expression. These results show that the wild-type and constitutively active forms of HSF1 induce anticoagulation and relaxation factors in vascular endothelial cells and could therefore be used to treat cardiovascular disease.
Collapse
Affiliation(s)
- Tsuyoshi Uchiyama
- Department of Medicine and Biological Science, Gunma University Course of Medical Science Graduate School of Medicine, 3-39-15, Showa-Machi Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Wandinger SK, Suhre MH, Wegele H, Buchner J. The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J 2006; 25:367-76. [PMID: 16407978 PMCID: PMC1383513 DOI: 10.1038/sj.emboj.7600930] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/01/2005] [Indexed: 12/24/2022] Open
Abstract
Ppt1 is the yeast member of a novel family of protein phosphatases, which is characterized by the presence of a tetratricopeptide repeat (TPR) domain. Ppt1 is known to bind to Hsp90, a molecular chaperone that performs essential functions in the folding and activation of a large number of client proteins. The function of Ppt1 in the Hsp90 chaperone cycle remained unknown. Here, we analyzed the function of Ppt1 in vivo and in vitro. We show that purified Ppt1 specifically dephosphorylates Hsp90. This activity requires Hsp90 to be directly attached to Ppt1 via its TPR domain. Deletion of the ppt1 gene leads to hyperphosphorylation of Hsp90 in vivo and an apparent decrease in the efficiency of the Hsp90 chaperone system. Interestingly, several Hsp90 client proteins were affected in a distinct manner. Our findings indicate that the Hsp90 multichaperone cycle is more complex than was previously thought. Besides its regulation via the Hsp90 ATPase activity and the sequential binding and release of cochaperones, with Ppt1, a specific phosphatase exists, which positively modulates the maturation of Hsp90 client proteins.
Collapse
Affiliation(s)
| | - Michael H Suhre
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Harald Wegele
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Department of Chemistry, Technische Universität München, Garching, Germany
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany. Tel.: +49 89 289 13341; Fax: +49 89 289 13345; E-mail:
| |
Collapse
|
62
|
Abstract
A multiprotein hsp90/hsp70-based chaperone machinery functions as a 'cradle-to-grave' system for regulating the steroid binding, trafficking and turnover of the glucocorticoid receptor (GR). In an ATP-dependent process where hsp70 and hsp90 act as essential chaperones and Hop, hsp40, and p23 act as nonessential co-chaperones, the machinery assembles complexes between the ligand binding domain of the GR and hsp90. During GR-hsp90 heterocomplex assembly, the hydrophobic ligand-binding cleft is opened to access by steroid, and subsequent binding of steroid within the cleft triggers a transformation of the receptor such that it engages in more dynamic cycles of assembly/disassembly with hsp90 that are required for rapid dynein-dependent translocation to the nucleus. Within the nucleus, the hsp90 chaperone machinery plays a critical role both in GR movement to transcription regulatory sites and in the disassembly of regulatory complexes as the hormone level declines. The chaperone machinery also plays a critical role in stabilization of the GR to ubiquitylation and proteasomal degradation. The initial GR interaction with hsp70 appears to be critical for the triage between hsp90 heterocomplex assembly and preservation of receptor function vs CHIP-dependent ubiquitylation and proteasomal degradation. The hsp90 chaperone machinery is ubiquitous and functionally conserved among eukaryotes, and it is possible that all physiologically significant actions of hsp90 require the hsp70-dependent assembly of client protein-hsp90 heterocomplexes.
Collapse
Affiliation(s)
- W B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109-0632, USA
| | | | | | | |
Collapse
|
63
|
Arlander SJH, Felts SJ, Wagner JM, Stensgard B, Toft DO, Karnitz LM. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 2005; 281:2989-98. [PMID: 16330544 DOI: 10.1074/jbc.m508687200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Checkpoint kinase 1 (Chk1), a serine/threonine kinase that regulates DNA damage checkpoints, is destabilized when heat shock protein 90 (Hsp90) is inhibited, suggesting that Chk1 is an Hsp90 client. In the present work we examined the interplay between Chk1 and Hsp90 in intact cells, identified a source of unchaperoned Chk1, and report the in vitro chaperoning of Chk1 in reticulocyte lysates and with purified chaperones and co-chaperones. We find that bacterially expressed Chk1 is post-translationally chaperoned to an active kinase. This reaction minimally requires Hsp90, Hsp70, Hsp40, Cdc37, and the protein kinase CK2. The co-chaperone Hop, although not essential for the activation of Chk1 in vitro, enhanced the chaperoning process, whereas the co-chaperone p23 did not stimulate the chaperoning reaction. Additionally, we found that the C-terminal regulatory domain of Chk1 affects the association of Chk1 with Hsp90. Collectively these results provide new insights into Hsp90-dependent chaperoning of a client kinase and identify a novel, biochemically tractable model system that will be useful to further dissect the Hsp90-dependent chaperoning of this important and ubiquitous class of Hsp90 clients.
Collapse
Affiliation(s)
- Sonnet J H Arlander
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School
| | | | | | | | | | | |
Collapse
|
64
|
Willmund F, Schroda M. HEAT SHOCK PROTEIN 90C is a bona fide Hsp90 that interacts with plastidic HSP70B in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 138:2310-22. [PMID: 15995001 PMCID: PMC1183417 DOI: 10.1104/pp.105.063578] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report on the molecular and biochemical characterization of HEAT SHOCK PROTEIN 90C (HSP90C), one of the three Hsp90 chaperones encoded by the Chlamydomonas reinhardtii genome. Fractionation experiments indicate that HSP90C is a plastidic protein. In the chloroplast, HSP90C was localized to the soluble stroma fraction, but also to thylakoids and low-density membranes containing inner envelopes. HSP90C is expressed under basal conditions and is strongly induced by heat shock and moderately by light. In soluble cell extracts, HSP90C was mainly found to organize into dimers, but also into complexes of high molecular mass. Also, heterologously expressed HSP90C was mainly found in dimers, but tetramers and fewer monomers were detected, as well. HSP90C exhibits a weak ATPase activity with a Km for ATP of approximately 48 microM and a kcat of approximately 0.71 min(-1). This activity was inhibited by the Hsp90-specific inhibitor radicicol. In coimmunoprecipitation experiments, we found that HSP90C interacts with several proteins, among them plastidic HSP70B. The cellular concentration of HSP70B was found to be 2.9 times higher than that of HSP90C, giving a 4.8:1 stoichiometry of HSP70B monomers to HSP90C dimers. The strong inducibility of HSP90C by heat shock implies a role of the chaperone in stress management. Furthermore, its interaction with HSP70B suggests that, similar to their relatives in cytosol and the endoplasmic reticulum, both chaperones might constitute the core of a multichaperone complex involved in the maturation of specific client proteins, e.g. components of signal transduction pathways.
Collapse
Affiliation(s)
- Felix Willmund
- Institute of Biology II, Plant Biochemistry, University of Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
65
|
Flom G, Weekes J, Johnson JL. Novel interaction of the Hsp90 chaperone machine with Ssl2, an essential DNA helicase in Saccharomyces cerevisiae. Curr Genet 2005; 47:368-80. [PMID: 15871019 PMCID: PMC2267864 DOI: 10.1007/s00294-005-0580-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/20/2005] [Accepted: 03/24/2005] [Indexed: 12/01/2022]
Abstract
Hsp90 is an essential molecular chaperone that is critical for the activity of diverse cellular proteins. Hsp90 functions with a number of co-chaperone proteins, including Sti1/Hop. We conducted a genetic screen in Saccharomyces cerevisiae to isolate mutations that exhibit enhanced growth defects in the absence of STI1. We obtained mutations in genes encoding components of the Hsp90 chaperone machine, HSC82, CPR7 and YDJ1, and two essential genes, SSL2 and UTP21, not previously linked to Hsp90. Ssl2, the yeast homologue of XPB, is an ATP-dependent DNA helicase that is a component of the TFIIH multiprotein complex and has dual functions in transcription and DNA repair. In order to determine whether Ssl2 function is dependent on Hsp90, we further examined the interaction between Ssl2 and Hsp90. Multiple mutant alleles of SSL2 exhibited a pronounced growth defect when co-expressed with a mutant allele of Hsp90. In addition, isolation of Ssl2 protein resulted in the co-purification of Hsp90 and Sti1, suggesting that Ssl2 and Hsp90 are in the same protein complexes in vivo. These results suggest a novel role for Hsp90 in the essential cellular functions of transcription and DNA repair.
Collapse
Affiliation(s)
- Gary Flom
- Department of Microbiology, Molecular Biology and Biochemistry, Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | |
Collapse
|
66
|
Abstract
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
Collapse
Affiliation(s)
- M. P. Mayer
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - B. Bukau
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
67
|
Goetz MP, Toft D, Reid J, Ames M, Stensgard B, Safgren S, Adjei AA, Sloan J, Atherton P, Vasile V, Salazaar S, Adjei A, Croghan G, Erlichman C. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 2005; 23:1078-87. [PMID: 15718306 DOI: 10.1200/jco.2005.09.119] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We determined the maximum-tolerated dose (MTD) and the dose-limiting toxicities (DLT) of 17-allylamino-17-demethoxygeldanamycin (17-AAG) when infused on days 1, 8, and 15 of a 28-day cycle in advanced solid tumor patients. We also characterized the pharmacokinetics of 17-AAG, its effect on chaperone and client proteins, and whether cytochrome P450 (CYP) 3A5 and NAD(P)H:quinone oxidoreductase 1 (NQO1) polymorphisms affected 17-AAG disposition or toxicity. PATIENTS AND METHODS An accelerated titration design was used. Biomarkers were measured in peripheral-blood mononuclear cells (PBMCs) at baseline and on days 1 and 15, and pharmacokinetic analysis was performed on day 1 of cycle 1. CYP3A5*3 and NQO1*2 genotypes were determined and correlated with pharmacokinetics and toxicity. RESULTS Twenty-one patients received 52 courses at 11 dose levels. DLTs at 431 mg/m(2) were grade 3 bilirubin (n = 1), AST (n = 1), anemia (n = 1), nausea (n = 1), vomiting (n = 1), and myalgias (n = 1). No tumor responses were seen. 17-AAG consistently increased heat shock protein (Hsp) 70 levels in PBMCs. At the MTD, the clearance and half-life (t(1/2)) of 17-AAG were 11.6 L/h/m(2) and 4.15 hours, respectively; whereas the active metabolite 17-aminogeldanamycin had a t(1/2) of 7.63 hours. The CYP3A5*3 and NQO1*2 polymorphisms were not associated with 17-AAG toxicity. The CYP3A5*3 polymorphism was associated with higher 17-AAG clearance. CONCLUSION The MTD of weekly 17-AAG is 308 mg/m(2). 17-AAG induced Hsp70 in PBMCs, indicating that Hsp90 has been affected. Further evaluation of 17-AAG is ongoing using a twice-weekly regimen, and this schedule of 17-AAG is being tested in combination with chemotherapy.
Collapse
Affiliation(s)
- Matthew P Goetz
- Division of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
The molecular chaperone machinery contains multiple protein components that have 1 or more structural domains composed of tetratricopeptide repeat (TPR) motifs. Many other proteins of separate or unknown function also have TPR domains, so this motif is not exclusive to molecular chaperones. A general function of TPR domains is to bind other polypeptides, but this otherwise prosaic function has been exploited in an assortment of ways that link chaperones and other protein systems into cooperative networks. Among the best-characterized TPR proteins are several cochaperones that participate in assembly and regulation of steroid receptor complexes. Steroid receptors, members of the nuclear receptor subfamily, are hormone-dependent transcription factors that regulate many vertebrate pathways of homeostasis, growth, differentiation, reproduction, and pathology and, as such, have been of great interest to biologists and clinicians. Moreover, the steroid receptors are among the first recognized native clients for chaperones and have been widely studied models for complex chaperone interactions. To provide a coherent, representative minireview of TPR protein function, the scope of this article has been narrowed down primarily to functions of steroid receptor-associated TPR cochaperones.
Collapse
Affiliation(s)
- David F Smith
- S.C. Johnson Research Center, Mayo Clinic Scottsdale, Scottsdale, AZ 85259, USA.
| |
Collapse
|
69
|
Siriani D, Mitsiou DJ, Alexis MN. Heat-induced degradation of overexpressed glucocorticoid receptor Separate protective roles of hsp90 and hsp70. J Steroid Biochem Mol Biol 2005; 94:93-101. [PMID: 15862954 DOI: 10.1016/j.jsbmb.2005.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The glucocorticoid receptor (GR) occurs in cells in the form of a hormone-responsive complex (HRC) with hsp90. The HRC is dynamic, with hsp90 constantly directing disassembly, and hsp70, assisted by hsp90, driving reassembly. WCL2 cells stably overexpress GR to an extent that reduces the excess of hsp90 and hsp70 over GR by about 10-fold, compared to the ratio in HeLa cells. Yet the half-lives of the HRC in WCL2 and HeLa cells are comparable. As a result, the rate of assembly in WCL2 is overwhelmed by accumulation of the non-hormone-binding form of GR in its complex with hsp70 and hsp90. This form comprised some 50% of total GR in WCL2 cells. When the cells were heated to 44 degrees C, the hormone-binding activity and solubility of GR fell in parallel, and the receptor formed heavy aggregates by sequestering large amounts of hsp70. About 40% of this aggregated receptor was degraded in cells recovering at 37 degrees C in the presence of cycloheximide. Concentration of GR protein increased with increasing induction of hsp70 following exposure to 41-44 degrees C. However, balance between hormone-binding and inert forms of GR could shift in either direction in response to the increase or decrease of hsp90 induction, depending on the temperature. Suppression of degradation following re-exposure of the cells to 44 degrees C correlated better with induction of hsp90 than hsp70. We infer that sequestration of hsp70 by heat-unfolded receptor is the primary factor opposing degradation, while induction of hsp90 acts to further suppress degradation by accelerating HRC assembly.
Collapse
Affiliation(s)
- Despina Siriani
- Molecular Endocrinology Programme, Institute of Biological Research and Biotechnology, The National Hellenic Research Foundation, 48 Vas. Constantinou Ave, 11635 Athens, Greece
| | | | | |
Collapse
|
70
|
Carrigan PE, Riggs DL, Chinkers M, Smith DF. Functional comparison of human and Drosophila Hop reveals novel role in steroid receptor maturation. J Biol Chem 2005; 280:8906-11. [PMID: 15632128 DOI: 10.1074/jbc.m414245200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp70/Hsp90 organizing protein (Hop) coordinates Hsp70 and Hsp90 interactions during assembly of steroid receptor complexes. Hop is composed of three tetratricopeptide repeat (TPR) domains (TPR1, TPR2a, and TPR2b) and two DP repeat domains (DP1 and DP2); Hsp70 interacts directly with TPR1 and Hsp90 with TPR2a, but the function of other domains is less clear. Human Hop and the Saccharomyces cerevisiae ortholog Sti1p, which share a common domain arrangement, are functionally interchangeable in a yeast growth assay and in supporting the efficient maturation of glucocorticoid receptor (GR) function. To gain a better understanding of Hop structure/function relationships, we have extended comparisons to the Hop ortholog from Drosophila melanogaster (dHop), which lacks DP1. Although dHop binds Hsp70 and Hsp90 and can rescue the growth defect in yeast lacking Sti1p, dHop failed to support GR function in yeast, which suggests a novel role for Hop in GR maturation that goes beyond Hsp binding. Chimeric Hop constructs combining human and Drosophila domains demonstrate that the C-terminal domain DP2 is critical for this previously unrecognized role in steroid receptor function.
Collapse
Affiliation(s)
- Patricia E Carrigan
- Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
71
|
Zhang C, Guy CL. Co-immunoprecipitation of Hsp101 with cytosolic Hsc70. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:13-8. [PMID: 15763661 DOI: 10.1016/j.plaphy.2004.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 10/20/2004] [Indexed: 05/24/2023]
Abstract
In animals and yeast, cytosolic Hsp70s function in concert with other molecular chaperones. Hsp70 is a major chaperone in the Hsp90 multi-chaperone complexes that participate in maturation of steroid receptors and several other proteins. Hsp70s also appear to form a complex with Hsp90 and Hsp110/sHsp. A 100 kDa protein was co-immunoprecipitated with cytosolic Hsc70 from maize seedlings (Zea mays). The presence of this complex was further confirmed using gel-filtration chromatography. Mass spectrometric analysis showed that the 100 kDa protein is homologous with Arabidopsis Hsp101. Treatment with apyrase enhanced the co-immunoprecipitation of Hsp101 with Hsc70, while ATP had the opposite effect. In the presence of carboxymethylated alpha-lactalbumin (CMLA), which is permanently unfolded, the complex dissociated. Based on these observations, it is concluded that Hsc70 and Hsp101 are present in a complex in the plant cytosol.
Collapse
Affiliation(s)
- Chun Zhang
- Plant Molecular and Cellular Biology Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611-0675, USA
| | | |
Collapse
|
72
|
Kim HJ, Song EJ, Lee YS, Kim E, Lee KJ. Human Fas-associated factor 1 interacts with heat shock protein 70 and negatively regulates chaperone activity. J Biol Chem 2004; 280:8125-33. [PMID: 15596450 DOI: 10.1074/jbc.m406297200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the cell death-inducing property of human Fas-associated factor 1 (hFAF1) in the heat shock signaling pathway. By employing co-immunoprecipitation and peptide mass fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we found that hFAF1 binds to the 70-kDa heat shock protein family (Hsc70/Hsp70). Interaction mapping indicated that the 82-180 sequence of hFAF1 directly binds to the N-terminal region containing sequence 1-120 of Hsc70/Hsp70. This binding is very tight regardless of ATP and heat shock treatment. Hsc70/Hsp70 and hFAF1 co-localized in the cytosol and nucleus and concentrated to the perinuclear region by heat shock treatment. We examined how hFAF1 regulates Hsp70 function, and found that hFAF1 inhibited the Hsp70 chaperone activity of refolding denatured protein substrates, accelerated heat shock-induced SAPK/JNK activation, and raised heat shock-induced cell death in a binding dependent manner. These results suggest that hFAF1 prevents cells from recovery after stress by binding to and inhibiting the chaperone activity of Hsp70.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Center for Cell Signaling Research, Division of Molecular Life Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|
73
|
Wang L, Yee VC, Weinshilboum RM. Aggresome formation and pharmacogenetics: sulfotransferase 1A3 as a model system. Biochem Biophys Res Commun 2004; 325:426-33. [PMID: 15530410 DOI: 10.1016/j.bbrc.2004.10.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Indexed: 01/16/2023]
Abstract
A common cause for pharmacogenetic alteration in drug response is genetic variation in encoded amino acid sequence. We have used the catecholamine and drug-metabolizing enzyme sulfotransferase (SULT)1A3 to create an artificial model system to study mechanisms-especially possible aggresome formation-by which genetic alteration in amino acid sequence might influence function. Specifically, we created a double variant SULT1A3 allozyme that included the naturally occurring Asn234 polymorphism plus an additional Trp172Arg mutation. Analysis of the SULT1A3 X-ray crystal structure had indicated that the Trp172Arg mutation might destabilize the protein's structure. Expression of SULT1A3 Arg172,Asn234 in COS-1 cells resulted in undetectable enzyme activity and a virtual lack of enzyme protein. Rabbit reticulocyte lysate degradation studies showed that the double variant allozyme was degraded much more rapidly than was wild type SULT1A3 by a ubiquitin-proteasome-dependent process. In addition, after expression in COS-1 cells, the double variant allozyme localized to aggresomes, a process not previously described or studied in pharmacogenetics. Therefore, the alteration of only one or two amino acids can lead to decreased levels of protein as a result of both aggresome formation and accelerated degradation. The possible role of aggresome formation in pharmacogenetics should be evaluated in naturally occurring systems with inherited alteration in encoded amino acid sequence.
Collapse
Affiliation(s)
- Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Medical School-Mayo Clinic-Mayo Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
74
|
Richter K, Walter S, Buchner J. The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J Mol Biol 2004; 342:1403-13. [PMID: 15364569 DOI: 10.1016/j.jmb.2004.07.064] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 07/16/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
The molecular chaperone Hsp90 mediates the ATP-dependent activation of a large number of proteins involved in signal transduction. During this process, Hsp90 was found to associate transiently with several accessory factors, such as p23/Sba1, Hop/Sti1, and prolyl isomerases. It has been shown that ATP hydrolysis triggers conformational changes within Hsp90, which in turn are thought to mediate conformational changes in the substrate proteins, thereby causing their activation. The specific role of the partner proteins in this process is unknown. Using proteins from Saccharomyces cerevisiae, we characterized the interaction of Hsp90 with its partner protein p23/Sba1. Our results show that the nucleotide-dependent N-terminal dimerization of Hsp90 is necessary for the binding of Sba1 to Hsp90 with an affinity in the nanomolar range. Two Sba1 molecules were found to bind per Hsp90 dimer. Sba1 binding to Hsp90 resulted in a decreased ATPase activity, presumably by trapping the hydrolysis state of Hsp90ATP. Ternary complexes of Hsp90Sba1 could be formed with the prolyl isomerase Cpr6, but not with Sti1. Based on these findings, we propose a model that correlates the ordered assembly of the Hsp90 co-chaperones with distinct steps of the ATP hydrolysis reaction during the chaperone cycle.
Collapse
Affiliation(s)
- Klaus Richter
- Department für Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | |
Collapse
|
75
|
Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2004; 153:1-46. [PMID: 15243813 DOI: 10.1007/s10254-004-0025-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.
Collapse
Affiliation(s)
- M P Mayer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
76
|
Hainzl O, Wegele H, Richter K, Buchner J. Cns1 Is an Activator of the Ssa1 ATPase Activity. J Biol Chem 2004; 279:23267-73. [PMID: 15044454 DOI: 10.1074/jbc.m402189200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp90 is a key mediator in the folding process of a growing number of client proteins. The molecular chaperone cooperates with many co-chaperones and partner proteins to fulfill its task. In Saccharomyces cerevisiae, several co-chaperones of Hsp90 interact with Hsp90 via a tetratricopeptide repeat (TPR) domain. Here we show that one of these proteins, Cns1, binds both to Hsp90 and to the yeast Hsp70 protein Ssa1 with comparable affinities. This is reminiscent of Sti1, another TPR-containing co-chaperone. Unlike Sti1, Cns1 exhibits no influence on the ATPase of Hsp90. However, it activates the ATPase of Ssa1 up to 30-fold by accelerating the rate-limiting ATP hydrolysis step. This stimulating effect is mediated by the N-terminal TPR-containing part of Cns1, whereas the C-terminal part showed no effect. Competition experiments allow the conclusion that Hsp90 and Ssa1 compete for binding to the single TPR domain of Cns1. Taken together, Cns1 is a potent cochaperone of Ssa1. Our findings highlight the importance of the regulation of Hsp70 function in the context of the Hsp90 chaperone cycle.
Collapse
Affiliation(s)
- Otmar Hainzl
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | |
Collapse
|
77
|
Lee CK, Pugh TD, Klopp RG, Edwards J, Allison DB, Weindruch R, Prolla TA. The impact of alpha-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in mice. Free Radic Biol Med 2004; 36:1043-57. [PMID: 15059645 DOI: 10.1016/j.freeradbiomed.2004.01.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 01/07/2004] [Accepted: 01/23/2004] [Indexed: 11/25/2022]
Abstract
We evaluated the efficacy of three dietary interventions started at middle age (14 months) to retard the aging process in mice. These were supplemental alpha-lipoic acid (LA) or coenzyme Q(10) (CQ) and caloric restriction (CR, a positive control). LA and CQ had no impact on longevity or tumor patterns compared with control mice fed the same number of calories, whereas CR increased maximum life span by 13% (p <.0001) and reduced tumor incidence. To evaluate these interventions at the molecular level, we used microarrays to monitor the expression of 9977 genes in hearts from young (5 months) and old (30 months) mice. LA, CQ, and CR inhibited age-related alterations in the expression of genes involved in the extracellular matrix, cellular structure, and protein turnover. However, unlike CR, LA and CQ did not prevent age-related transcriptional alterations associated with energy metabolism. LA supplementation lowered the expression of genes encoding major histocompatibility complex components and of genes involved in protein turnover and folding. CQ increased expression of genes involved in oxidative phosphorylation and reduced expression of genes involved in the complement pathway and several aspects of protein function. Our observations suggest that supplementation with LA or CQ results in transcriptional alterations consistent with a state of reduced oxidative stress in the heart, but that these dietary interventions are not as effective as CR in inhibiting the aging process in the heart.
Collapse
Affiliation(s)
- Cheol-Koo Lee
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Molecular chaperones are a functionally defined set of proteins which assist the structure formation of proteins in vivo. Without certain protective mechanisms, such as binding nascent polypeptide chains by molecular chaperones, cellular protein concentrations would lead to misfolding and aggregation. In the mammalian system, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases, some of which are involved in cancer progression. Hsp70 and Hsp90 form a multichaperone complex, in which both are connected by a third protein called Hop. The connection of and the interplay between the two chaperone machineries is of crucial importance for cell viability. This review provides a detailed view of the Hsp70 and Hsp90 machineries, their cofactors and their mode of regulation. It summarizes the current knowledge in the field, including the ATP-dependent regulation of the Hsp70/Hsp90 multichaperone cycle and elucidates the complex interplay and their synergistic interaction.
Collapse
Affiliation(s)
- H Wegele
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
79
|
Abstract
Molecular chaperones facilitate the correct folding of other proteins under physiological and stress conditions. Recently it has become evident that various co-chaperone proteins regulate the cellular functions of these chaperones, particularly Hsp70 and Hsp90. Hop is one of the most extensively studied co-chaperones that is able to directly associate with both Hsp70 and Hsp90. The current dogma proposes that Hop functions primarily as an adaptor that directs Hsp90 to Hsp70-client protein complexes in the cytoplasm. However, recent evidence suggests that Hop can also modulate the chaperone activities of these Hsps, and that it is not dedicated to Hsp70 and Hsp90. While the co-chaperone function of Hop within the cytoplasm has been extensively studied, its association with nuclear complexes and prion proteins remains to be elucidated. This article will review the structural features of Hop, and the evidence that its biological function is considerably broader than previously envisaged.
Collapse
Affiliation(s)
- O O Odunuga
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, South Africa
| | | | | |
Collapse
|
80
|
|
81
|
Abstract
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases that involve misfolding of the prion protein. Recent studies have provided evidence that normal prion protein might have a physiological function in neuroprotective signaling, suggesting that loss of prion protein activity might contribute to the pathogenesis of prion disease. However, studies using knockout animals do not support the loss-of-function hypothesis and argue that prion neurodegeneration might be associated with a gain of a toxic activity by the misfolded prion protein. Thus, the mechanism of neurodegeneration in spongiform encephalopathies remains enigmatic.
Collapse
Affiliation(s)
- Claudio Hetz
- Serono Pharmaceutical Research Institute, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | | | | |
Collapse
|
82
|
Mitsiou DJ, Siriani D, Katsanou ES, Florentin I, Georgakopoulos A, Alexis MN. Maintenance of glucocorticoid receptor function following severe heat-shock of heat-conditioned cells. Mol Cell Endocrinol 2003; 201:97-108. [PMID: 12706298 DOI: 10.1016/s0303-7207(02)00428-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The competence of the glucocorticoid receptor to regulate gene expression is thought to depend on Hsp70-driven continuous reactivation following spontaneous inactivation of its hormone-binding state. We show here that the glucocorticoid-binding capacity of HeLa cells fell with increasing temperature in the range 43-45 degrees C in a manner that closely paralleled the loss of soluble receptor protein. Receptor activity was maintained during moderate (43 degrees C) but not severe (45 degrees C) heat shock. Hsp70 was rapidly rendered insoluble and was replenished by soluble chaperone at 43 but not 45 degrees C. In heat-conditioned cells expressing different levels of Hsp70, we observed a positive correlation between the concentration of active receptor and the amount of Hsp70 rendered insoluble by heat shock. Much higher amounts of Hsp70 were rendered insoluble and receptor competence to regulate gene expression was preserved after severe heat shock of appropriately heat-conditioned cells. An excess of Hsp90 was found associated with resolubilized heat-inactivated receptor from severely heat-shocked cells. The data indicate that GR activity is maintained, provided that denaturation and/or aggregation of the receptor is prevented by Hsp70; and that the concentration of the chaperone is the limiting determinant of receptor activity in heat-shocked HeLa cells.
Collapse
Affiliation(s)
- Dimitra J Mitsiou
- Molecular Endocrinology Programme, Institute of Biological Research and Biotechnology, The National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | | | | | | | | | | |
Collapse
|
83
|
Richter K, Muschler P, Hainzl O, Reinstein J, Buchner J. Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J Biol Chem 2003; 278:10328-33. [PMID: 12525481 DOI: 10.1074/jbc.m213094200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone Hsp90 is known to be involved in the activation of key regulatory proteins such as kinases, steroid hormone receptors, and transcription factors in an ATP-dependent manner. During the chaperone cycle, Hsp90 has been found associated with the partner protein Hop/Sti1, which seems to be required for the progression of the cycle. However, little is known about its specific function. Here we have investigated the interaction of Sti1 from Saccharomyces cerevisiae with Hsp90 and its influence on the ATPase activity. We show that the inhibitory mechanism of Sti1 on the ATPase activity of Hsp90 is non-competitive. Sti1 binds to the N- and C-terminal part of Hsp90 and prevents the N-terminal dimerization reaction that is required for efficient ATP hydrolysis. The first 24 amino acids of Hsp90, a region shown previously to be important for the association of the N-terminal domains and stimulation of ATP hydrolysis, seems to be important for this interaction.
Collapse
Affiliation(s)
- Klaus Richter
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr.4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
84
|
Odunuga OO, Hornby JA, Bies C, Zimmermann R, Pugh DJ, Blatch GL. Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J Biol Chem 2003; 278:6896-904. [PMID: 12482845 DOI: 10.1074/jbc.m206867200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Murine stress-inducible protein 1 (mSTI1) is a co-chaperone that is homologous with the human Hsp70/Hsp90-organizing protein (Hop). Guided by Hop structural data and sequence alignment analyses, we have used site-directed mutagenesis, co-precipitation assays, circular dichroism spectroscopy, steady-state fluorescence, and surface plasmon resonance spectroscopy to both qualitatively and quantitatively characterize the contacts necessary for the N-terminal tetratricopeptide repeat domain (TPR1) of mSTI1 to bind to heat shock cognate protein 70 (Hsc70) and to discriminate between Hsc70 and Hsp90. We have shown that substitutions in the first TPR motif of Lys(8) or Asn(12) did not affect binding of mSTI1 to Hsc70, whereas double substitution of these residues abrogated binding. A substitution in the second TPR motif of Asn(43) lowered but did not abrogate binding. Similarly, a deletion in the second TPR motif coupled with a substitution of Lys(8) or Asn(12) reduced but did not abrogate binding. These results suggest that mSTI1-Hsc70 interaction requires a network of interactions not only between charged residues in the TPR1 domain of mSTI1 and the EEVD motif of Hsc70 but also outside the TPR domain. We propose that the electrostatic interactions in the first TPR motif made by Lys(8) or Asn(12) define part of the minimum interactions required for successful mSTI1-Hsc70 interaction. Using a truncated derivative of mSTI1 incapable of binding to Hsp90, we substituted residues on TPR1 potentially involved in hydrophobic contacts with Hsc70. The modified protein had reduced binding to Hsc70 but now showed significant binding capacity for Hsp90. In contrast, topologically equivalent substitutions on a truncated derivative of mSTI1 incapable of binding to Hsc70 did not confer Hsc70 specificity on TPR2A. Our results suggest that binding of Hsc70 to TPR1 is more specific than binding of Hsp90 to TPR2A with serious implications for the mechanisms of mSTI1 interactions with Hsc70 and Hsp90 in vivo.
Collapse
Affiliation(s)
- Odutayo O Odunuga
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | | | | | | | | | | |
Collapse
|
85
|
Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228:111-33. [PMID: 12563018 DOI: 10.1177/153537020322800201] [Citation(s) in RCA: 1080] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nearly 100 proteins are known to be regulated by hsp90. Most of these substrates or "client proteins" are involved in signal transduction, and they are brought into complex with hsp90 by a multiprotein hsp90/hsp70-based chaperone machinery. In addition to binding substrate proteins at the chaperone site(s), hsp90 binds cofactors at other sites that are part of the heterocomplex assembly machinery as well as immunophilins that connect assembled substrate*hsp90 complexes to protein-trafficking systems. In the 5 years since we last reviewed this subject, much has been learned about hsp90 structure, nucleotide-binding, and cochaperone interactions; the most important concept is that ATP hydrolysis by an intrinsic ATPase activity results in a conformational change in hsp90 that is required to induce conformational change in a substrate protein. The conformational change induced in steroid receptors is an opening of the steroid-binding cleft so that it can be accessed by steroid. We have now developed a minimal system of five purified proteins-hsp90, hsp70, Hop, hsp40, and p23- that assembles stable receptor*hsp90 heterocomplexes. An hsp90*Hop*hsp70*hsp40 complex opens the cleft in an ATP-dependent process to produce a receptor*hsp90 heterocomplex with hsp90 in its ATP-bound conformation, and p23 then interacts with the hsp90 to stabilize the complex. Stepwise assembly experiments have shown that hsp70 and hsp40 first interact with the receptor in an ATP-dependent reaction to produce a receptor*hsp70*hsp40 complex that is "primed" to be activated to the steroid-binding state in a second ATP-dependent step with hsp90, Hop, and p23. Successful use of the five-protein system with other substrates indicates that it can assemble signal protein*hsp90 heterocomplexes whether the substrate is a receptor, a protein kinase, or a transcription factor. This purified system should facilitate understanding of how eukaryotic hsp70 and hsp90 work together as essential components of a process that alters the conformations of substrate proteins to states that respond in signal transduction.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | |
Collapse
|
86
|
Zhang Z, Quick MK, Kanelakis KC, Gijzen M, Krishna P. Characterization of a plant homolog of hop, a cochaperone of hsp90. PLANT PHYSIOLOGY 2003; 131:525-35. [PMID: 12586877 PMCID: PMC166829 DOI: 10.1104/pp.011940] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2002] [Revised: 09/09/2002] [Accepted: 11/08/2002] [Indexed: 05/19/2023]
Abstract
The 90-kD molecular chaperone hsp90 is the key component of a multiprotein chaperone complex that facilitates folding, stabilization, and functional modulation of a number of signaling proteins. The components of the animal chaperone complex include hsp90, hsp70, hsp40, Hop, and p23. The animal Hop functions to link hsp90 and hsp70, and it can also inhibit the ATPase activity of hsp90. We have demonstrated the presence of an hsp90 chaperone complex in plant cells, but not all components of the complex have been identified. Here, we report the isolation and characterization of soybean (Glycine max) GmHop-1, a soybean homolog of mammalian Hop. An analysis of soybean expressed sequence tags, combined with preexisting data in literature, suggested the presence of at least three related genes encoding Hop-like proteins in soybean. Transcripts corresponding to Hop-like proteins in soybean were detected under normal growth conditions, and their levels increased further in response to stress. A recombinant GmHop-1 bound hsp90 and its binding to hsp90 could be blocked by the tetratricopeptide repeat (TPR) domain of rat (Rattus norvegicus) protein phosphatase 5. Deletion of amino acids 325 to 395, adjacent to the TPR2A domain in GmHop-1, resulted in loss of hsp90 binding. In a minimal assembly system, GmHop-1 was able to stimulate mammalian steroid receptor folding. These data show that plant and animal Hop homologs are conserved in their general characteristics, and suggest that a Hop-like protein in plants is an important cochaperone of plant hsp90.
Collapse
Affiliation(s)
- Zhongming Zhang
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | | | |
Collapse
|
87
|
Kanelakis KC, Pratt WB. Regulation of Glucocorticoid Receptor Ligand-Binding Activity by the hsp90/hsp70-based Chaperone Machinery. Methods Enzymol 2003; 364:159-73. [PMID: 14631845 DOI: 10.1016/s0076-6879(03)64010-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kimon C Kanelakis
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | |
Collapse
|
88
|
Nelson GM, Huffman H, Smith DF. Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip. Cell Stress Chaperones 2003; 8:125-33. [PMID: 14627198 PMCID: PMC514864 DOI: 10.1379/1466-1268(2003)008<0125:cotcdr>2.0.co;2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.
Collapse
Affiliation(s)
- Gregory M Nelson
- Samuel C. Johnson Research Center, Mayo Clinic Scottsdale, Scottsdale, AZ 85259, USA
| | | | | |
Collapse
|
89
|
Hernández MP, Sullivan WP, Toft DO. The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 2002; 277:38294-304. [PMID: 12161444 DOI: 10.1074/jbc.m206566200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly coordinated interactions of several molecular chaperones, including hsp70 and hsp90, are required for the folding and conformational regulation of a variety of proteins in eukaryotic cells, such as steroid hormone receptors and many other signal transduction regulators. The protein called Hop serves as an adaptor protein for hsp70 and hsp90 and is thought to optimize their functional cooperation. Here we characterize the assembly of the hsp70-Hop-hsp90 complex and reveal interactions that cause conformational changes between the proteins in the complex. We found that hsp40 plays an integral role in the assembly by enhancing the binding of hsp70 to the Hop complex. This is accomplished by stimulating the conversion of hsp70-ATP to hsp70-ADP, the hsp70 conformation favored for Hop binding. The hsp70-Hop-hsp90 complex is highly dynamic, as has been observed previously for hsp90 in its interaction with client proteins. Nonetheless, hsp90 binds with high affinity to Hop (K(d) = 90 nm), and this binding is not affected by hsp70. hsp70 binds with lower affinity to Hop (K(d) = 1.3 microm) on its own, but this affinity is increased (K(d) = 250 nm) in the presence of hsp90. hsp90 also reduces the number of hsp70 binding sites on the Hop dimer from two sites in the absence of hsp90 to one site in its presence. Hop can inhibit the ATP binding and p23 binding activity of hsp90, yet this can be reversed if hsp70 is present in the complex. Taken together, our results suggest that the assembly of hsp70-Hop-hsp90 complexes is selective and influences the conformational state of each protein.
Collapse
Affiliation(s)
- M Patricia Hernández
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
90
|
Mayer MP, Brehmer D, Gässler CS, Bukau B. Hsp70 chaperone machines. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:1-44. [PMID: 11868269 DOI: 10.1016/s0065-3233(01)59001-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M P Mayer
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
91
|
Pearl LH, Prodromou C. Structure, function, and mechanism of the Hsp90 molecular chaperone. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:157-86. [PMID: 11868271 DOI: 10.1016/s0065-3233(01)59005-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- L H Pearl
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
92
|
Angeletti PC, Walker D, Panganiban AT. Small glutamine-rich protein/viral protein U-binding protein is a novel cochaperone that affects heat shock protein 70 activity. Cell Stress Chaperones 2002; 7:258-68. [PMID: 12482202 PMCID: PMC514826 DOI: 10.1379/1466-1268(2002)007<0258:sgrpvp>2.0.co;2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Molecular chaperone complexes containing heat shock protein (Hsp) 70 and Hsp90 are regulated by cochaperones, including a subclass of regulators, such as Hsp70 interacting protein (Hip), C-terminus of Hsp70 interacting protein (CHIP), and Hsp70-Hsp90 organizing factor (Hop), that contain tetratricopeptide repeats (TPRs), where Hsp70 refers to Hsp70 and its nearly identical constitutive counterpart, Hsc70, together. These proteins interact with the Hsp70 to regulate adenosine triphosphatase (ATPase) and folding activities or to generate the chaperone complex. Here we provide evidence that small glutamine-rich protein/viral protein U-binding protein (SGT/UBP) is a cochaperone that negatively regulates Hsp70. By "Far-Western" and pull-down assays, SGT/UBP was shown to interact directly with Hsp70 and weakly with Hsp90. The interaction of SGT/UBP with both these protein chaperones was mapped to 3 TPRs in SGT/UBP (amino acids 95-195) that are flanked by charged residues. Moreover, SGT/UBP caused an approximately 30% reduction in both the intrinsic ATPase activity of Hsc70 and the ability of Hsc70 to refold denatured luciferase in vitro. This negative effect of SGT/UBP on Hsc70 is similar in magnitude to that observed for the cochaperone CHIP. A role for SGT/UBP in protein folding is also supported by evidence that a yeast strain containing a deletion in the yeast homolog to SGT/UBP (delta SGT/UBP) displays a 50-fold reduction in recovery from heat shock compared with the wild type parent. Together, these results are consistent with a regulatory role for SGT/UBP in the chaperone complex.
Collapse
|
93
|
Siligardi G, Panaretou B, Meyer P, Singh S, Woolfson DN, Piper PW, Pearl LH, Prodromou C. Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 2002; 277:20151-9. [PMID: 11916974 DOI: 10.1074/jbc.m201287200] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo activation of client proteins by Hsp90 depends on its ATPase-coupled conformational cycle and on interaction with a variety of co-chaperone proteins. For some client proteins the co-chaperone Sti1/Hop/p60 acts as a "scaffold," recruiting Hsp70 and the bound client to Hsp90 early in the cycle and suppressing ATP turnover by Hsp90 during the loading phase. Recruitment of protein kinase clients to the Hsp90 complex appears to involve a specialized co-chaperone, Cdc37p/p50(cdc37), whose binding to Hsp90 is mutually exclusive of Sti1/Hop/p60. We now show that Cdc37p/p50(cdc37), like Sti1/Hop/p60, also suppresses ATP turnover by Hsp90 supporting the idea that client protein loading to Hsp90 requires a "relaxed" ADP-bound conformation. Like Sti1/Hop/p60, Cdc37p/p50(cdc37) binds to Hsp90 as a dimer, and the suppressed ATPase activity of Hsp90 is restored when Cdc37p/p50(cdc37) is displaced by the immunophilin co-chaperone Cpr6/Cyp40. However, unlike Sti1/Hop/p60, which can displace geldanamycin upon binding to Hsp90, Cdc37p/p50(cdc37) forms a stable complex with geldanamycin-bound Hsp90 and may be sequestered in geldanamycin-inhibited Hsp90 complexes in vivo.
Collapse
Affiliation(s)
- Giuliano Siligardi
- Pharmaceutical Optical Spectroscopy Centre, Department of Pharmacy, the Division of Life Sciences, King's College London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Hernández MP, Chadli A, Toft DO. HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem 2002; 277:11873-81. [PMID: 11809754 DOI: 10.1074/jbc.m111445200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The progesterone receptor (PR) can be isolated in its native conformation able to bind hormone, yet its ligand-binding domain rapidly loses its activity at elevated temperature. However, an in vitro chaperoning system consisting of five proteins (HSP40, HSP70, HOP, HSP90, and p23) with ATP is capable of restoring this function. The first step of this chaperoning mechanism is usually thought to be the binding of HSP70 to PR. Our findings here show that the binding of HSP40 to PR is, instead, the first step. HSP40 binding occurred rapidly and was not dependent on ATP or other proteins. The stoichiometry of HSP40 to native PR in these complexes was approximately 1:1. HSP40 bound specifically and with a high affinity to native PR (K(d) = 77 nm). The binding of HSP40 to PR was sustained and did not interact in the highly dynamic fashion that has been observed previously for HSP90 in this system. The HSP40 small middle dotPR complex could be isolated as a functional unit that could, after the addition of the other chaperones, progress to a PR complex capable of hormone binding. These results indicate that HSP40 initiates the entry of PR into the HSP90 pathway.
Collapse
Affiliation(s)
- M Patricia Hernández
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
95
|
Izzo MW, Pucci B, Tuan RS, Hall DJ. Gene expression profiling following BMP-2 induction of mesenchymal chondrogenesis in vitro. Osteoarthritis Cartilage 2002; 10:23-33. [PMID: 11795980 DOI: 10.1053/joca.2001.0478] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aims to apply gene expression profiling technology to gain insight into the molecular regulation of mesenchymal chondrogenesis. METHODS The experimental system consists of micromass cultures of C3H10T1/2 cells, a murine multipotential embryonic cell line, treated with the chondroinductive growth factor, bone morphogenetic factor-2 (BMP-2). In this system, chondrogenic differentiation characterized by both morphological changes and cartilage matrix gene expression has been shown to be completely dependent upon BMP-2 treatment and the high cell plating density of micromass cultures. To identify candidate genes that may have key functional roles in chondrogenesis, we have applied subtractive hybridization to isolate genes whose expression is significantly up- or down-regulated during chondrogenesis. RNA was isolated from micromass cultures treated with BMP-2 for 24 h and analysed for representational differences by means of a subtractive hybridization screening method. RESULTS Sixteen different genes were identified whose expression was up-regulated between two- and 12-fold by B,P-2, and twelve different genes were identified whose expression was down-regulated between two- and seven-fold by BMP-2. CONCLUSIONS The potential of this screening methodology to identify new BMP-2 regulated genes is suggested by the fact that a majority of the identified genes are indeed novel. Identification and characterization of these genes should provide insight as to how chondrogenesis is regulated and also should provide important new markers for the study of osteoarthritis.
Collapse
Affiliation(s)
- M W Izzo
- Dept of Orthopaedic Surgery, Room 501 Curtis Bldg, 1015 Walnut Street, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
96
|
Tahbaz N, Carmichael JB, Hobman TC. GERp95 belongs to a family of signal-transducing proteins and requires Hsp90 activity for stability and Golgi localization. J Biol Chem 2001; 276:43294-9. [PMID: 11553639 DOI: 10.1074/jbc.m107808200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
GERp95 (Golgi-endoplasmic reticulum protein 95 kDa) is part of a large family of highly conserved proteins found in all metazoans and the fission yeast Schizosaccharomyces pombe. Genetic studies suggest that homologs of GERp95 are components of signaling pathways that regulate cellular differentiation, development, and RNA interference. However, the precise molecular functions of these proteins remain unknown. Genetic analysis of GERp95 homologs has been complicated by the presence of multiple genes with overlapping functions in most organisms. Binding partners for members of this protein family have not been identified. The purpose of this study was to identify proteins that associate with GERp95. Glutathione S-transferase-GERp95 fusions were expressed in transfected cells, and proteins that bound to GERp95 were co-purified using glutathione-agarose beads. The amino-terminal region of GERp95 was found to interact with the specialized chaperone Hsp90 and a number of its cognate binding proteins. Inhibition of Hsp90 activity with geldanamycin or radicicol resulted in rapid degradation of newly synthesized GERp95. The membrane-associated pool of GERp95 was not bound to Hsp90, although activity of this chaperone was required for stable association of GERp95 with the Golgi in normal rat kidney cells. These results indicate that GERp95 engages an Hsp90 chaperone complex prior to association with intracellular membranes.
Collapse
Affiliation(s)
- N Tahbaz
- Department of Cell Biology, University of Alberta, Edmonton T6G 2H7, Canada
| | | | | |
Collapse
|
97
|
Abstract
Hsp90 is an ATP dependent molecular chaperone involved in the folding and activation of an unknown number of substrate proteins. These substrate proteins include protein kinases and transcription factors. Consistent with this task, Hsp90 is an essential protein in all eucaryotes. The interaction of Hsp90 with its substrate proteins involves the transient formation of multiprotein complexes with a set of highly conserved partner proteins. The specific function of each component in the processing of substrates is still unknown. Large ATP-dependent conformational changes of Hsp90 occur during the hydrolysis reaction and these changes are thought to drive the chaperone cycle. Natural inhibitors of the ATPase activity, like geldanamycin and radicicol, block the processing of Hsp90 substrate proteins. As many of these substrates are critical elements in signal transduction, Hsp90 seems to introduce an additional level of regulation.
Collapse
Affiliation(s)
- K Richter
- Institut für Organische Chemie und Biochemie, Technische Universität München, Garching, Germany
| | | |
Collapse
|
98
|
Scholz GM, Cartledge K, Hall NE. Identification and characterization of Harc, a novel Hsp90-associating relative of Cdc37. J Biol Chem 2001; 276:30971-9. [PMID: 11413142 DOI: 10.1074/jbc.m103889200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although little is known about the precise mechanisms by which the molecular chaperone Hsp90 recognizes its client proteins, Cdc37 has been shown to play a critical role in the targeting of Hsp90 to client protein kinases. Described here is the identification and characterization of a novel 35-kDa human protein that is 31% identical to Cdc37. We have named this novel protein Harc (Hsp90-associating relative of Cdc37). Northern blot analysis revealed the presence of Harc mRNA in several human tissues, including liver, skeletal muscle, and kidney. Biochemical fractionation and immunofluorescent localization of epitope-tagged Harc (i.e. FLAG-Harc) indicated that it is present in the cytoplasm of cells. FLAG-Harc binds Hsp90 but unlike Cdc37 does not bind Src family kinases or Raf-1. Mapping experiments indicate that the central 120 amino acids of both Harc and Cdc37 constitute a Hsp90-binding domain not described previously. FLAG-Harc is basally serine-phosphorylated and hyperphosphorylated when co-expressed with an activated mutant of the Src family kinase Hck. Notably, FLAG-Harc forms complexes with Hsp90, Hsp70, p60Hop, immunophilins, and an unidentified p22 protein but not with the Hsp90 co-chaperone p23. Thus Harc likely represents a novel participant in Hsp90-mediated protein folding, potentially targeting Hsp90 to Hsp70-client protein heterocomplexes.
Collapse
Affiliation(s)
- G M Scholz
- Ludwig Institute for Cancer Research, Post Office Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia.
| | | | | |
Collapse
|
99
|
Murphy PJ, Kanelakis KC, Galigniana MD, Morishima Y, Pratt WB. Stoichiometry, abundance, and functional significance of the hsp90/hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J Biol Chem 2001; 276:30092-8. [PMID: 11404358 DOI: 10.1074/jbc.m103773200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rabbit reticulocyte lysate contains a multiprotein chaperone system that assembles the glucocorticoid receptor (GR) into a complex with hsp90 and converts the hormone binding domain of the receptor to its high affinity steroid binding state. This system has been resolved into five proteins, with hsp90 and hsp70 being essential and Hop, hsp40, and p23 acting as co-chaperones that optimize assembly. Hop binds independently to hsp70 and hsp90 to form an hsp90.Hop.hsp70 complex that acts as a machinery to open up the GR steroid binding site. Because purified hsp90 and hsp70 are sufficient for some activation of GR steroid binding activity, some investigators have rejected any role for Hop in GR.hsp90 heterocomplex assembly. Here, we counter that impression by showing that all of the Hop in reticulocyte lysate is present in an hsp90.Hop.hsp70 complex with a stoichiometry of 2:1:1. The complex accounts for approximately 30% of the hsp90 and approximately 9% of the hsp70 in lysate, and upon Sephacryl S-300 chromatography the GR.hsp90 assembly activity resides in the peak containing Hop-bound hsp90. Consistent with the notion that the two essential chaperones cooperate with each other to open up the steroid binding site, we also show that purified hsp90 and hsp70 interact directly with each other to form weak hsp90.hsp70 complexes with a stoichiometry of 2:1.
Collapse
Affiliation(s)
- P J Murphy
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
100
|
Abstract
The campomelic dysplasia/autosomal sex reversal protein SOX9 is an important developmental transcription factor, required for correct bone and testis formation. Through in vitro and in vivo studies we have identified the heat shock protein HSP70 as an interacting partner for SOX9 in chondrocyte and testicular cell lines. HSP70 forms a ternary complex with DNA-bound SOX9. The interaction between HSP70 and SOX9 is ATP-independent and involves a highly conserved region of SOX9 hitherto of unknown function and the C-terminal region of HSP70. Our results implicate HSP70-SOX9 interactions in the assembly of multi-protein complexes during SOX9-mediated transcription.
Collapse
Affiliation(s)
- O J Marshall
- Prince Henry's Institute of Medical Research, Monash Medical Centre, P.O. Box 5152, Melbourne, Vic. 3168, Australia
| | | |
Collapse
|