51
|
Synthetic genistein glycosides inhibiting EGFR phosphorylation enhance the effect of radiation in HCT 116 colon cancer cells. Molecules 2014; 19:18558-73. [PMID: 25401399 PMCID: PMC6270897 DOI: 10.3390/molecules191118558] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022] Open
Abstract
The need to find new EGFR inhibitors for use in combination with radiotherapy in the treatment of solid tumors has drawn our attention to compounds derived from genistein, a natural isoflavonoid. The antiproliferative potential of synthetic genistein derivatives used alone or in combination with ionizing radiation was evaluated in cancer cell lines using clonogenic assay. EGFR phosphorylation was assessed with western blotting. Genistein derivatives inhibited clonogenic growth of HCT 116 cancer cells additively or synergistically when used in combination with ionizing radiation, and decreased EGFR activation. Our preclinical evaluation of genistein-derived EGFR inhibitors suggests that these compounds are much more potent sensitizers of cells to radiation than the parent isoflavonoid, genistein and indicate that these compounds may be useful in the treatment of colon cancer with radiation therapy.
Collapse
|
52
|
Identifying Determinants of EGFR-Targeted Therapeutic Biochemical Efficacy Using Computational Modeling. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e141. [PMID: 25317724 PMCID: PMC4474171 DOI: 10.1038/psp.2014.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
We modeled cellular epidermal growth factor receptor (EGFR) tyrosine phosphorylation dynamics in
the presence of receptor-targeting kinase inhibitors (e.g., gefitinib) or antibodies (e.g.,
cetuximab) to identify systematically the factors that contribute most to the ability of the
therapeutics to antagonize EGFR phosphorylation, an effect we define here as biochemical efficacy.
Our model identifies distinct processes as controlling gefitinib or cetuximab biochemical efficacy,
suggests biochemical efficacy is favored in the presence of certain EGFR ligands, and suggests new
drug design principles. For example, the model predicts that gefitinib biochemical efficacy is
preferentially sensitive to perturbations in the activity of tyrosine phosphatases regulating EGFR,
but that cetuximab biochemical efficacy is preferentially sensitive to perturbations in ligand
binding. Our results highlight numerous other considerations that determine biochemical efficacy
beyond those reflected by equilibrium affinities. By integrating these considerations, our model
also predicts minimum therapeutic combination concentrations to maximally reduce receptor
phosphorylation.
Collapse
|
53
|
Lin C, Ear J, Midde K, Lopez-Sanchez I, Aznar N, Garcia-Marcos M, Kufareva I, Abagyan R, Ghosh P. Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin. Mol Biol Cell 2014; 25:3654-71. [PMID: 25187647 PMCID: PMC4230624 DOI: 10.1091/mbc.e14-05-0978] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
GIV, a guanidine exchange factor for trimeric Gi, contains a unique domain that functions like a SH2 domain. GIV's SH2-like domain binds autophosphorylated RTKs. Binding of GIV's SH2 to RTKs enables the receptors to activate trimeric Gi. Inhibition of GIV:RTK interaction abolishes GIV-dependent Akt enhancement downstream of RTKs. A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs.
Collapse
Affiliation(s)
- Changsheng Lin
- Department of Medicine, University of California, San Diego, School of Medicine, CA 92093
| | - Jason Ear
- Department of Medicine, University of California, San Diego, School of Medicine, CA 92093
| | - Krishna Midde
- Department of Medicine, University of California, San Diego, School of Medicine, CA 92093
| | | | - Nicolas Aznar
- Department of Medicine, University of California, San Diego, School of Medicine, CA 92093
| | - Mikel Garcia-Marcos
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, CA 92093
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, School of Medicine, CA 92093
| |
Collapse
|
54
|
Abstract
Fetal skin has the intrinsic capacity for wound healing, which is not correlated with the intrauterine environment. This intrinsic ability requires biochemical signals, which start at the cellular level and lead to secretion of transforming factors and expression of receptors, and specific markers that promote wound healing without scar formation. The mechanisms and molecular pathways of wound healing still need to be elucidated to achieve a complete understanding of this remodeling system. The aim of this paper is to discuss the main biomarkers involved in fetal skin wound healing as well as their respective mechanisms of action.
Collapse
|
55
|
Wang H, Li S, Li H, Wang P, Huang F, Zhao Y, Yu L, Luo G, Zhang X, Wang J, Zhou J. Grb2 interacts with SGEF and antagonizes the ability of SGEF to enhance EGF-induced ERK1/2 activation. Mol Cell Biochem 2014; 389:239-247. [PMID: 24399467 DOI: 10.1007/s11010-013-1945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/18/2013] [Indexed: 02/02/2023]
Abstract
Previously, we demonstrated that SGEF enhances EGFR stability; however, SGEF-mediated downstream signaling of EGFR is not well understood. Here, we show that SGEF enhances EGF-induced ERK1/2 activation independent of its guanine nucleotide exchange (GEF) activity. We further show that SGEF interacts with Grb2, a critical downstream transducer of EGFR. Surprisingly, we found that interaction of Grb2 to SGEF antagonizes the ability of SGEF to enhance EGF-induced ERK1/2 activation. Taken together, this study reports a novel function of SGEF that excludes GEF and also provides important insights into the complex role of Grb2 in EGFR signal transduction.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Jones S, Rappoport JZ. Interdependent epidermal growth factor receptor signalling and trafficking. Int J Biochem Cell Biol 2014; 51:23-8. [PMID: 24681003 DOI: 10.1016/j.biocel.2014.03.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Abstract
Epidermal growth factor (EGF) receptor (EGFR) signalling regulates diverse cellular functions, promoting cell proliferation, differentiation, migration, cell growth and survival. EGFR signalling is critical during embryogenesis, in particular in epithelial development, and disruption of the EGFR gene results in epithelial immaturity and perinatal death. EGFR signalling also functions during wound healing responses through accelerating wound re-epithelialisation, inducing cell migration, proliferation and angiogenesis. Upregulation of EGFR signalling is often observed in carcinomas and has been shown to promote uncontrolled cell proliferation and metastasis. Therefore aberrant EGFR signalling is a common target for anticancer therapies. Various reports indicate that EGFR signalling primarily occurs at the plasma membrane and EGFR degradation following endocytosis greatly attenuates signalling. Other studies argue that EGFR internalisation is essential for complete activation of downstream signalling cascades and that endosomes can serve as signalling platforms. The aim of this review is to discuss current understanding of intersection between EGFR signalling and trafficking.
Collapse
Affiliation(s)
- Sylwia Jones
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Joshua Z Rappoport
- Nikon Imaging Center at Northwestern University, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, United States.
| |
Collapse
|
57
|
Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS One 2014; 9:e92151. [PMID: 24658383 PMCID: PMC3962377 DOI: 10.1371/journal.pone.0092151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 11/25/2022] Open
Abstract
The identification of the epidermal growth factor receptor (EGFR) as an oncogene has led to the development of several anticancer therapeutics directed against this receptor tyrosine kinase. However, drug resistance and low efficacy remain a severe challenge, and have led to a demand for novel systems for an efficient identification and characterization of new substances. Here we report on a technique which combines micro-patterned surfaces and total internal reflection fluorescence (TIRF) microscopy (μ-patterning assay) for the quantitative analysis of EGFR activity. It does not simply measure the phosphorylation of the receptor, but instead quantifies the interaction of the key signal transmitting protein Grb2 (growth factor receptor-bound protein 2) with the EGFR in a live cell context. It was possible to demonstrate an EGF dependent recruitment of Grb2 to the EGFR, which was significantly inhibited in the presence of clinically tested EGFR inhibitors, including small tyrosine kinase inhibitors and monoclonal antibodies targeting the EGF binding site. Importantly, in addition to its potential use as a screening tool, our experimental setup offers the possibility to provide insight into the molecular mechanisms of bait-prey interaction. Recruitment of the EGFR together with Grb2 to clathrin coated pits (CCPs) was found to be a key feature in our assay. Application of bleaching experiments enabled calculation of the Grb2 exchange rate, which significantly changed upon stimulation or the presence of EGFR activity inhibiting drugs.
Collapse
|
58
|
Genetic Interactions of STAT3 and Anticancer Drug Development. Cancers (Basel) 2014; 6:494-525. [PMID: 24662938 PMCID: PMC3980611 DOI: 10.3390/cancers6010494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.
Collapse
|
59
|
Wills MKB, Tong J, Tremblay SL, Moran MF, Jones N. The ShcD signaling adaptor facilitates ligand-independent phosphorylation of the EGF receptor. Mol Biol Cell 2014; 25:739-52. [PMID: 24430869 PMCID: PMC3952845 DOI: 10.1091/mbc.e13-08-0434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/06/2013] [Accepted: 01/08/2014] [Indexed: 11/12/2022] Open
Abstract
Proto-oncogenic Src homology and collagen (Shc) proteins have been considered archetypal adaptors of epidermal growth factor receptor (EGFR)-mediated signaling. We report that in addition to its role as an EGFR-binding partner and Grb2 platform, ShcD acts noncanonically to promote phosphorylation of select EGFR residues. Unexpectedly, Y1068, Y1148, and Y1173 are subject to ShcD-induced, cell-autonomous hyperphosphorylation in the absence of external stimuli. This response is not elicited by other Shc proteins and requires the intrinsic EGFR kinase, as well as the ShcD phosphotyrosine-binding (PTB) domain. Assessments of Erk, Akt, phospholipase C 1γ, and FAK pathways reveal no apparent distal signaling targets of ShcD. Nevertheless, the capacity of cultured cells to repopulate a wounded monolayer is markedly accelerated by ShcD in an EGFR kinase-dependent manner. Furthermore, detection of overexpressed ShcD coincident with EGFR phosphorylation in human gliomas suggests a clinical application for these findings. We thus demonstrate unique and relevant synergy between ShcD and EGFR that is unprecedented among signaling adaptors.
Collapse
Affiliation(s)
- Melanie K. B. Wills
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jiefei Tong
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sylvie L. Tremblay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Michael F. Moran
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Molecular Genetics and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
60
|
Bruno WJ, Ullah G, Mak DOD, Pearson JE. Automated maximum likelihood separation of signal from baseline in noisy quantal data. Biophys J 2014; 105:68-79. [PMID: 23823225 DOI: 10.1016/j.bpj.2013.02.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/03/2013] [Accepted: 02/25/2013] [Indexed: 10/26/2022] Open
Abstract
Data recordings often include high-frequency noise and baseline fluctuations that are not generated by the system under investigation, which need to be removed before analyzing the signal for the system's behavior. In the absence of an automated method, experimentalists fall back on manual procedures for removing these fluctuations, which can be laborious and prone to subjective bias. We introduce a maximum likelihood formalism for separating signal from a drifting baseline plus noise, when the signal takes on integer multiples of some value, as in ion channel patch-clamp current traces. Parameters such as the quantal step size (e.g., current passing through a single channel), noise amplitude, and baseline drift rate can all be optimized automatically using the expectation-maximization algorithm, taking the number of open channels (or molecules in the on-state) at each time point as a hidden variable. Our goal here is to reconstruct the signal, not model the (possibly highly complex) underlying system dynamics. Thus, our likelihood function is independent of those dynamics. This may be thought of as restricting to the simplest possible hidden Markov model for the underlying channel current, in which successive measurements of the state of the channel(s) are independent. The resulting method is comparable to an experienced human in terms of results, but much faster. FORTRAN 90, C, R, and JAVA codes that implement the algorithm are available for download from our website.
Collapse
Affiliation(s)
- William J Bruno
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | | |
Collapse
|
61
|
Haines E, Saucier C, Claing A. The adaptor proteins p66Shc and Grb2 regulate the activation of the GTPases ARF1 and ARF6 in invasive breast cancer cells. J Biol Chem 2014; 289:5687-703. [PMID: 24407288 DOI: 10.1074/jbc.m113.516047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation of ARF1 and ARF6 activation in invasive breast cancer cells.
Collapse
Affiliation(s)
- Eric Haines
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| | | | | |
Collapse
|
62
|
Chylek LA, Harris LA, Tung CS, Faeder JR, Lopez CF, Hlavacek WS. Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2014; 6:13-36. [PMID: 24123887 PMCID: PMC3947470 DOI: 10.1002/wsbm.1245] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 01/04/2023]
Abstract
Rule-based modeling was developed to address the limitations of traditional approaches for modeling chemical kinetics in cell signaling systems. These systems consist of multiple interacting biomolecules (e.g., proteins), which themselves consist of multiple parts (e.g., domains, linear motifs, and sites of phosphorylation). Consequently, biomolecules that mediate information processing generally have the potential to interact in multiple ways, with the number of possible complexes and posttranslational modification states tending to grow exponentially with the number of binary interactions considered. As a result, only large reaction networks capture all possible consequences of the molecular interactions that occur in a cell signaling system, which is problematic because traditional modeling approaches for chemical kinetics (e.g., ordinary differential equations) require explicit network specification. This problem is circumvented through representation of interactions in terms of local rules. With this approach, network specification is implicit and model specification is concise. Concise representation results in a coarse graining of chemical kinetics, which is introduced because all reactions implied by a rule inherit the rate law associated with that rule. Coarse graining can be appropriate if interactions are modular, and the coarseness of a model can be adjusted as needed. Rules can be specified using specialized model-specification languages, and recently developed tools designed for specification of rule-based models allow one to leverage powerful software engineering capabilities. A rule-based model comprises a set of rules, which can be processed by general-purpose simulation and analysis tools to achieve different objectives (e.g., to perform either a deterministic or stochastic simulation).
Collapse
Affiliation(s)
- Lily A. Chylek
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Leonard A. Harris
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Chang-Shung Tung
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Carlos F. Lopez
- Department of Cancer Biology and Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - William S. Hlavacek
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
63
|
Tomas A, Futter CE, Eden ER. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 2013; 24:26-34. [PMID: 24295852 PMCID: PMC3884125 DOI: 10.1016/j.tcb.2013.11.002] [Citation(s) in RCA: 595] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 11/15/2022]
Abstract
EGF receptor endocytic traffic can regulate signaling and cell survival. Signaling from activated EGFR occurs at the endosome as well as the cell surface. Endocytosis can have positive and negative effects on signaling and tumorigenesis. EGFR traffic promoted by antineoplastic therapy is important in tumor resistance.
The ligand-stimulated epidermal growth factor receptor (EGFR) has been extensively studied in the analysis of molecular mechanisms regulating endocytic traffic and the role of that traffic in signal transduction. Although such studies have largely focused on mitogenic signaling and dysregulated traffic in tumorigenesis, there is growing interest in the potential role of EGFR traffic in cell survival and the consequent response to cancer therapy. Here we review recent advances in our understanding of molecular mechanisms regulating ligand-stimulated EGFR activation, internalization, and post-endocytic sorting. The role of EGFR overexpression/mutation and new modulators of EGFR traffic in cancer and the response to cancer therapeutics are also discussed. Finally, we speculate on the relationship between EGFR traffic and cell survival.
Collapse
Affiliation(s)
- Alejandra Tomas
- University College London (UCL) Institute of Ophthalmology, London, UK
| | - Clare E Futter
- University College London (UCL) Institute of Ophthalmology, London, UK
| | - Emily R Eden
- University College London (UCL) Institute of Ophthalmology, London, UK.
| |
Collapse
|
64
|
Fortian A, Sorkin A. Live-cell fluorescence imaging reveals high stoichiometry of Grb2 binding to the EGF receptor sustained during endocytosis. J Cell Sci 2013; 127:432-44. [PMID: 24259669 DOI: 10.1242/jcs.137786] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of epidermal growth factor (EGF) receptor (EGFR) leads to its interaction with Grb2, a dual-function adapter mediating both signaling through Ras and receptor endocytosis. We used time-lapse three-dimensional imaging by spinning disk confocal microscopy to analyze trafficking of EGFR and Grb2 in living HeLa cells stimulated with low, physiological concentrations of EGFR ligands. Endogenous Grb2 was replaced in these cells by Grb2 fused to yellow fluorescent protein (YFP). After transient residence in the plasma membrane, Rhodamine-conjugated EGF (EGF-Rh) and Grb2-YFP were rapidly internalized and accumulated in endosomes. Quantitative image analysis revealed that on average two Grb2-YFP molecules were colocalized with one EGF-Rh in cells stimulated with 2 ng/ml EGF-Rh, and the excess of Grb2-YFP over EGF-Rh was even higher when a receptor-saturating concentration of EGF-Rh was used. Therefore, we hypothesize that a single EGFR molecule can be simultaneously associated with functionally distinct Grb2 interaction partners during and after endocytosis. Continuous presence of Grb2-YFP in endosomes was also observed when EGFR was activated by transforming growth factor-α and amphiregulin, suggesting that endosomal EGFRs remain ligand occupied and signaling competent, despite the fact that these growth factors are thought to dissociate from the receptor at acidic pH. The prolonged localization and activity of EGFR-Grb2 complexes in endosomes correlated with the sustained activation of extracellular stimulus-regulated kinase 1/2, suggesting that endosomal EGFRs contribute significantly to this signaling pathway. We propose that endosomal EGFRs function to extend signaling in time and space to compensate for rapid downregulation of surface EGFRs in cells with low receptor expression levels.
Collapse
Affiliation(s)
- Arola Fortian
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
65
|
Skelton LA, Boron WF. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules. Am J Physiol Renal Physiol 2013; 305:F1747-64. [PMID: 24133121 DOI: 10.1152/ajprenal.00307.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3(-), the major plasma buffer, into the blood. The PT adapts its rate of HCO3(-) reabsorption (JHCO3(-)) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3(-) in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3(-) concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3(-) concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3(-) concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade.
Collapse
Affiliation(s)
- Lara A Skelton
- Dept. of Physiology and Biophysics, Case Western Reserve Univ. School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970.
| | | |
Collapse
|
66
|
Aasrum M, Ødegård J, Sandnes D, Christoffersen T. The involvement of the docking protein Gab1 in mitogenic signalling induced by EGF and HGF in rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3286-3294. [PMID: 24126105 DOI: 10.1016/j.bbamcr.2013.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 12/15/2022]
Abstract
Grb2-associated binder (Gab) family proteins are docking molecules that can interact with receptor tyrosine kinases (RTKs) and cytokine receptors and bind several downstream signalling proteins. Studies in several cell types have shown that Gab1 may have a role in signalling mediated by the two RTKs epidermal growth factor (EGF) receptor (EGFR) and Met, the receptor for hepatocyte growth factor (HGF), but the involvement of Gab1 in EGFR and Met signalling has not been directly compared in the same cell. We have studied mechanisms of activation and role in mitogenic signalling of Gab1 in response to EGF and HGF in cultured rat hepatocytes. Gab1, but not Gab2, was expressed in the hepatocytes and was phosphorylated upon stimulation with EGF or HGF. Depletion of Gab1, using siRNA, decreased the ERK and Akt activation, cyclin D1 expression, and DNA synthesis in response to both EGF and HGF. Studies of mechanisms of recruitment to the receptors showed that HGF induced co-precipitation of Gab1 and Met while EGF induced binding of Gab1 to Grb2 but not to EGFR. Gab1 activation in response to both EGF and HGF was dependent on PI3K. While EGF activated Gab1 and Shc equally, within the same concentration range, HGF very potently and almost exclusively activated Gab1, having only a minimal effect on Shc. Collectively, our results strongly suggest that although Gab1 interacts differently with EGFR and Met, it is involved in mitogenic signalling mediated by both these growth factor receptors in hepatocytes.
Collapse
Affiliation(s)
- Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057, Blindern, 0316 Oslo, Norway.
| | - John Ødegård
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057, Blindern, 0316 Oslo, Norway
| | - Dagny Sandnes
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057, Blindern, 0316 Oslo, Norway
| | - Thoralf Christoffersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057, Blindern, 0316 Oslo, Norway
| |
Collapse
|
67
|
Epithelial wounds induce differential phosphorylation changes in response to purinergic and EGF receptor activation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1841-1852. [PMID: 24095926 DOI: 10.1016/j.ajpath.2013.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 11/22/2022]
Abstract
Protein phosphorylation is a dynamic post-translational modification. Mass spectrometry-based quantitation was performed to determine the phosphoproteome profile of epithelial cells in response to injury, nucleotide, or epidermal growth factor. Phosphotyrosine enrichment used immunoprecipitation and immobilized metal affinity chromatography. Nucleotides released after scratch wounding activate purinergic receptors, leading to a distinct phosphorylation profile on epidermal growth factor receptor (EGFR) compared with its natural ligand. ATP induced a 2- to 15-fold phosphorylation increase over control on EGFR Y974, Y1086, and Y1148, with minimal phosphorylation intensity on EGFR Y1173 compared with the level measured in response to epidermal growth factor. Differential phosphorylation induced by epidermal growth factor or ATP was site specific on Src, Shc, phospholipase Cγ, protein kinase C, focal adhesion kinase, paxillin, and mitogen-activated protein kinases 1, 12, and 13. After wounding, the P2Y2 receptor mRNA expression increased, and after knockdown, migration and Ca(2+) mobilization were impaired. To examine phosphorylation mediated by P2Y2, cells were cultured in media containing stable isotope-labeled amino acids, the receptor was knocked down, and the cells were stimulated. Mass spectrometry-based comparison of the phosphorylation profiles of control versus transfected cells revealed a 50-fold decrease in phosphorylation of EGFR Y974 and 1086, with no decrease in Y1173 phosphorylation. A similarfold decrease in Src Y421 and Y446 and paxillin Y118 was detected, indicating the far-reaching importance of the P2Y2 receptor in mediating migration.
Collapse
|
68
|
The function of human epidermal growth factor receptor-3 and its role in tumors (Review). Oncol Rep 2013; 30:2563-70. [DOI: 10.3892/or.2013.2754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/06/2013] [Indexed: 11/05/2022] Open
|
69
|
Linossi EM, Chandrashekaran IR, Kolesnik TB, Murphy JM, Webb AI, Willson TA, Kedzierski L, Bullock AN, Babon JJ, Norton RS, Nicola NA, Nicholson SE. Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS One 2013; 8:e70536. [PMID: 23990909 PMCID: PMC3749136 DOI: 10.1371/journal.pone.0070536] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/20/2013] [Indexed: 12/02/2022] Open
Abstract
Suppressor of Cytokine Signaling (SOCS)5 is thought to act as a tumour suppressor through negative regulation of JAK/STAT and epidermal growth factor (EGF) signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in its N-terminus, which we have termed the JAK interaction region (JIR). Co-expression of SOCS5 was able to specifically reduce JAK1 and JAK2 (but not JAK3 or TYK2) autophosphorylation and this function required both the conserved JIR and additional sequences within the long SOCS5 N-terminal region. We further demonstrate that SOCS5 can directly inhibit JAK1 kinase activity, although its mechanism of action appears distinct from that of SOCS1 and SOCS3. In addition, we identify phosphoTyr317 in Shc-1 as a high-affinity substrate for the SOCS5-SH2 domain and suggest that SOCS5 may negatively regulate EGF and growth factor-driven Shc-1 signaling by binding to this site. These findings suggest that different domains in SOCS5 contribute to two distinct mechanisms for regulation of cytokine and growth factor signaling.
Collapse
Affiliation(s)
- Edmond M. Linossi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Indu R. Chandrashekaran
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tatiana B. Kolesnik
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew I. Webb
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy A. Willson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Lukasz Kedzierski
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Alex N. Bullock
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Raymond S. Norton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nicos A. Nicola
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Sandra E. Nicholson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
70
|
Hobert EM, Doerner AE, Walker AS, Schepartz A. Effective molarity redux: Proximity as a guiding force in chemistry and biology. Isr J Chem 2013; 53:567-576. [PMID: 25418998 PMCID: PMC4238305 DOI: 10.1002/ijch.201300063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cell interior is a complex and demanding environment. An incredible variety of molecules jockey to identify the correct position-the specific interactions that promote biology that are hidden among countless unproductive options. Ensuring that the business of the cell is successful requires sophisticated mechanisms to impose temporal and spatial specificity-both on transient interactions and their eventual outcomes. Two strategies employed to regulate macromolecular interactions in a cellular context are co-localization and compartmentalization. Macromolecular interactions can be promoted and specified by localizing the partners within the same subcellular compartment, or by holding them in proximity through covalent or non-covalent interactions with proteins, lipids, or DNA- themes that are familiar to any biologist. The net result of these strategies is an increase in effective molarity: the local concentration of a reactive molecule near its reaction partners. We will focus on this general mechanism, employed by Nature and adapted in the lab, which allows delicate control in complex environments: the power of proximity to accelerate, guide, or otherwise influence the reactivity of signaling proteins and the information that they encode.
Collapse
|
71
|
Al-aidaroos AQO, Yuen HF, Guo K, Zhang SD, Chung TH, Chng WJ, Zeng Q. Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells. J Clin Invest 2013; 123:3459-71. [PMID: 23867504 PMCID: PMC4011027 DOI: 10.1172/jci66824] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/10/2013] [Indexed: 12/16/2022] Open
Abstract
Metastasis-associated phosphatase of regenerating liver-3 (PRL-3) has pleiotropic effects in driving cancer progression, yet the signaling mechanisms of PRL-3 are still not fully understood. Here, we provide evidence for PRL-3-induced hyperactivation of EGFR and its downstream signaling cascades in multiple human cancer cell lines. Mechanistically, PRL-3-induced activation of EGFR was attributed primarily to transcriptional downregulation of protein tyrosine phosphatase 1B (PTP1B), an inhibitory phosphatase for EGFR. Functionally, PRL-3-induced hyperactivation of EGFR correlated with increased cell growth, promigratory characteristics, and tumorigenicity. Moreover, PRL-3 induced cellular addiction to EGFR signaling, as evidenced by the pronounced reversion of these oncogenic attributes upon EGFR-specific inhibition. Of clinical significance, we verified elevated PRL-3 expression as a predictive marker for favorable therapeutic response in a heterogeneous colorectal cancer (CRC) patient cohort treated with the clinically approved anti-EGFR antibody cetuximab. The identification of PRL-3-driven EGFR hyperactivation and consequential addiction to EGFR signaling opens new avenues for inhibiting PRL-3-driven cancer progression. We propose that elevated PRL-3 expression is an important clinical predictive biomarker for favorable anti-EGFR cancer therapy.
Collapse
Affiliation(s)
- Abdul Qader Omer Al-aidaroos
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hiu Fung Yuen
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ke Guo
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shu Dong Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tae-Hoon Chung
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wee Joo Chng
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
72
|
Tong L, Yang XX, Liu MF, Yao GY, Dong JY, Ye CS, Li M. Mutational analysis of key EGFR pathway genes in Chinese breast cancer patients. Asian Pac J Cancer Prev 2013; 13:5599-603. [PMID: 23317280 DOI: 10.7314/apjcp.2012.13.11.5599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) is a potential therapeutic target for breast cancer; however, its use does not lead to a marked clinical response. Studies of non-small cell lung cancer and colorectal cancer showed that mutations of genes in the PIK3CA/AKT and RAS/RAF/MEK pathways, two major signalling cascades downstream of EGFR, might predict resistance to EGFR-targeted agents. Therefore, we examined the frequencies of mutations in these key EGFR pathway genes in Chinese breast cancer patients. METHODS We used a high-throughput mass-spectrometric based cancer gene mutation profiling platform to detect 22 mutations of the PIK3CA, AKT1, BRAF, EGFR, HRAS, and KRAS genes in 120 Chinese women with breast cancer. RESULTS Thirteen mutations were detected in 12 (10%) of the samples, all of which were invasive ductal carcinomas (two stage I, six stage II, three stage III, and one stage IV). These included one mutation (0.83%) in the EGFR gene (rs121913445-rs121913432), three (2.5%) in the KRAS gene (rs121913530, rs112445441), and nine (7.5%) in the PIK3CA gene (rs121913273, rs104886003, and rs121913279). No mutations were found in the AKT1, BRAF, and HRAS genes. Six (27.3%) of the 22 genotyping assays caused mutations in at least one sample and three (50%) of the six assays queried were found to be mutated more than once. CONCLUSIONS Mutations in the EGFR pathway occurred in a small fraction of Chinese breast cancers. However, therapeutics targeting these potential predictive markers should be investigated in depth, especially in Oriental populations.
Collapse
Affiliation(s)
- Lin Tong
- School of Biotechnology, Breast Center Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
73
|
Guo YC, Chang CM, Hsu WL, Chiu SJ, Tsai YT, Chou YH, Hou MF, Wang JY, Lee MH, Tsai KL, Chang WC. Indomethacin inhibits cancer cell migration via attenuation of cellular calcium mobilization. Molecules 2013; 18:6584-6596. [PMID: 23736792 PMCID: PMC6269835 DOI: 10.3390/molecules18066584] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 12/27/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) were shown to reduce the risk of colorectal cancer recurrence and are widely used to modulate inflammatory responses. Indomethacin is an NSAID. Herein, we reported that indomethacin can suppress cancer cell migration through its influence on the focal complexes formation. Furthermore, endothelial growth factor (EGF)-mediated Ca2+ influx was attenuated by indomethacin in a dose dependent manner. Our results identified a new mechanism of action for indomethacin: inhibition of calcium influx that is a key determinant of cancer cell migration.
Collapse
Affiliation(s)
- Yuh-Cherng Guo
- Department of Neurology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Che-Mai Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Li Hsu
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Siou-Jin Chiu
- Department of Urology, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yao-Ting Tsai
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yii-Her Chou
- Department of Urology, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterologic and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jaw-Yan Wang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterologic and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ke-Li Tsai
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pharmacy, Taipei Medical University-Wanfang Hospital, Taipei 11031, Taiwan
| |
Collapse
|
74
|
Norton CE, Broughton BRS, Jernigan NL, Walker BR, Resta TC. Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2. Antioxid Redox Signal 2013; 18:1777-88. [PMID: 22966991 PMCID: PMC3619151 DOI: 10.1089/ars.2012.4836] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS Chronic hypoxia (CH) enhances depolarization-induced myofilament Ca(2+) sensitization and resultant pulmonary arterial constriction through superoxide (O(2)(-))-dependent stimulation of RhoA. Because NAD(P)H oxidase (NOX) has been implicated in the development of pulmonary hypertension, we hypothesized that vascular smooth muscle (VSM) depolarization increases NOX-derived O(2)(-) production leading to myofilament Ca(2+) sensitization and augmented vasoconstrictor reactivity following CH. As epidermal growth factor receptor (EGFR) mediates Rac1-dependent NOX activation in renal mesangial cells, we further sought to examine the role EGFR plays in this response. RESULTS Vasoconstrictor responses to depolarizing concentrations of KCl were greater in lungs isolated from CH (4 wk, 0.5 atm) rats compared to normoxic controls, and this effect of CH was abolished by the general NOX inhibitor, apocynin. CH similarly augmented KCl-induced vasoconstriction and O(2)(-) generation (assessed using the fluorescent indicator, dihydroethidium) in Ca(2+)-permeabilized, pressurized small pulmonary arteries. These latter responses to CH were prevented by general inhibition of NOX isoforms (apocynin, diphenylene iodonium), and by selective inhibition of NOX 2 (gp91ds-tat), Rac1 (NSC 23766), and EGFR (AG 1478). Consistent with these observations, CH increased KCl-induced EGFR phosphorylation, and augmented depolarization-induced Rac1 activation in an EGFR-dependent manner. INNOVATION This study establishes a novel signaling axis in VSM linking membrane depolarization to contraction that is independent of Ca(2+) influx, and which mediates myofilament Ca(2+) sensitization in the hypertensive pulmonary circulation. CONCLUSION CH augments membrane depolarization-induced pulmonary VSM Ca(2+) sensitization and vasoconstriction through EGFR-dependent stimulation of Rac1 and NOX 2.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
75
|
Spangle JM, Munger K. The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species. PLoS Pathog 2013; 9:e1003237. [PMID: 23516367 PMCID: PMC3597533 DOI: 10.1371/journal.ppat.1003237] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 01/28/2013] [Indexed: 01/13/2023] Open
Abstract
The high-risk human papillomavirus (HPV) E6 proteins are consistently expressed in HPV-associated lesions and cancers. HPV16 E6 sustains the activity of the mTORC1 and mTORC2 signaling cascades under conditions of growth factor deprivation. Here we report that HPV16 E6 activated mTORC1 by enhanced signaling through receptor protein tyrosine kinases, including epidermal growth factor receptor and insulin receptor and insulin-like growth factor receptors. This is evidenced by sustained signaling through these receptors for several hours after growth factor withdrawal. HPV16 E6 increased the internalization of activated receptor species, and the signaling adaptor protein GRB2 was shown to be critical for HPV16 E6 mediated enhanced EGFR internalization and mTORC1 activation. As a consequence of receptor protein kinase mediated mTORC1 activation, HPV16 E6 expression increased cellular migration of primary human epithelial cells. This study identifies a previously unappreciated mechanism by which HPV E6 proteins perturb host-signaling pathways presumably to sustain protein synthesis during the viral life cycle that may also contribute to cellular transforming activities of high-risk HPV E6 proteins. High-risk human papillomavirus infections are associated with nearly all cases of cervical cancer. HPVs infect basal epithelial cells but virion production is restricted to the outer, terminally differentiated layers of the infected epithelia where supply of nutrients and growth factors may be limited. High-risk HPV E6 proteins have been shown to activate mTORC1 signaling and increase cap dependent translation. Here we show that HPV16 E6 activates the mTORC1 and MAP kinase signaling pathways through activating receptor protein tyrosine kinases (RPTKs) and increases EGFR internalization, even after growth factor withdrawal. The signaling adaptor protein GRB2 is a critical mediator of HPV16 E6 mediated EGFR internalization and mTORC1 activation. Lastly, we demonstrate that HPV16 E6 mediated activation of RPTK and mTORC1 signaling causes increased cellular migration even after growth factor withdrawal. These results suggest a previously unappreciated mechanism by which HPV E6 proteins may support the viral life cycle and that may contribute to the transforming activities of high-risk HPV E6 proteins. Hence, inhibition of RPTK signaling networks may be evaluated as a therapeutic strategy for HPV-associated lesions and cancers.
Collapse
Affiliation(s)
- Jennifer M. Spangle
- Division of Infectious Diseases, Brigham and Women's Hospital, Department of Medicine and Committee on Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Karl Munger
- Division of Infectious Diseases, Brigham and Women's Hospital, Department of Medicine and Committee on Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
76
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
77
|
Juliachs M, Castillo-Ávila W, Vidal A, Piulats JM, Garcia Del Muro X, Condom E, Hernández-Losa J, Teixidó C, Pandiella A, Graupera M, Casanovas O, Germà JR, Villanueva A, Viñals F. ErbBs inhibition by lapatinib blocks tumor growth in an orthotopic model of human testicular germ cell tumor. Int J Cancer 2013; 133:235-46. [PMID: 23292912 DOI: 10.1002/ijc.28009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022]
Abstract
In this work, we have analyzed the expression of different members of the ErbB family in human samples of testicular germ cell tumors (GCTs). We observed expression of ErbB1 or ErbB2 in different tumor subtypes, but we also found high expression of ErbB3 in all GCTs tested. This pattern of expression was maintained when primary tumors were orthotopically implanted in nude mice. We have chosen a choriocarcinoma model characterized by high levels of ErbB1, but also of ErbB2 and ErbB3, to assay the in vivo effect of ErbB inhibitors on tumoral growth. Our results showed a complete lack of effect (refractoriness) to the pure ErbB1 receptor inhibitors cetuximab and gefitinib. While these inhibitors blocked ErbB1 phosphorylation, ErbB2 phosphorylation was not affected, suggesting an ErbB1-independent activation of this receptor. To confirm the importance of ErbB2 activation, animals were treated with lapatinib, a dual ErbB1 and ErbB2 inhibitor. Lapatinib treatment caused a 50% inhibition in tumor growth, an effect correlated with a blockade of both ErbB1 and ErbB2 phosphorylation levels, and of downstream signaling pathways (Akt, ERKs and Stat3). ErbB2 activation could still occur due to the formation of ErbB2/ErbB3 heterodimers, and ErbB3 activation was completely inhibited by lapatinib. Finally, combined inhibition of ErbB1 (gefitinib) and ErbB3 activities (knockdown expression by shRNA) inhibited tumoral testicular cells proliferation in a similar way to lapatinib. Our results explain why lapatinib but not anti-ErbB1 agents might be effective for treatment of testicular GCT patients.
Collapse
Affiliation(s)
- M Juliachs
- Laboratori de Recerca Translacional, Institut Català d'Oncologia, Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat (Barcelona), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Juliano RL, Carver K, Cao C, Ming X. Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Target 2012; 21:27-43. [PMID: 23163768 DOI: 10.3109/1061186x.2012.740674] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problem of targeted delivery of antisense and siRNA oligonucleotides can be resolved into two distinct aspects. The first concerns devising ligand-oligonucleotide or ligand-carrier moieties that bind with high selectivity to receptors on the cell type of interest and that are efficiently internalized by endocytosis. The second concerns releasing oligonucleotides from pharmacologically inert endomembrane compartments so that they can access RNA in the cytosol or nucleus. In this review, we will address both of these aspects. Thus, we present information on three important receptor families, the integrins, the receptor tyrosine kinases, and the G protein-coupled receptors in terms of their suitability for targeted delivery of oligonucleotides. This includes discussion of receptor abundance, internalization and trafficking pathways, and the availability of suitable high affinity ligands. We also consider the process of oligonucleotide uptake and intracellular trafficking and discuss approaches to modulating these processes in a pharmacologically productive manner. Hopefully, the basic information presented in this review will be of value to investigators involved in designing delivery approaches for oligonucleotides.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
79
|
Abstract
Shc (Src homology and collagen homology) proteins are considered prototypical signalling adaptors in mammalian cells. Consisting of four unique members, ShcA, B, C and D, and multiple splice isoforms, the family is represented in nearly every cell type in the body, where it engages in an array of fundamental processes to transduce environmental stimuli. Two decades of investigation have begun to illuminate the mechanisms of the flagship ShcA protein, whereas much remains to be learned about the newest discovery, ShcD. It is clear, however, that the distinctive modular architecture of Shc proteins, their promiscuous phosphotyrosine-based interactions with a multitude of membrane receptors, involvement in central cascades including MAPK (mitogen-activated protein kinase) and Akt, and unconventional contributions to oxidative stress and apoptosis all require intricate regulation, and underlie diverse physiological function. From early cardiovascular development and neuronal differentiation to lifespan determination and tumorigenesis, Shc adaptors have proven to be more ubiquitous, versatile and dynamic than their structures alone suggest.
Collapse
|
80
|
Yang J, Pearson JE. Origins of concentration dependence of waiting times for single-molecule fluorescence binding. J Chem Phys 2012; 136:244506. [PMID: 22755586 DOI: 10.1063/1.4729947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Binary fluorescence time series obtained from single-molecule imaging experiments can be used to infer protein binding kinetics, in particular, association and dissociation rate constants from waiting time statistics of fluorescence intensity changes. In many cases, rate constants inferred from fluorescence time series exhibit nonintuitive dependence on ligand concentration. Here, we examine several possible mechanistic and technical origins that may induce ligand dependence of rate constants. Using aggregated Markov models, we show under the condition of detailed balance that non-fluorescent bindings and missed events due to transient interactions, instead of conformation fluctuations, may underly the dependence of waiting times and thus apparent rate constants on ligand concentrations. In general, waiting times are rational functions of ligand concentration. The shape of concentration dependence is qualitatively affected by the number of binding sites in the single molecule and is quantitatively tuned by model parameters. We also show that ligand dependence can be caused by non-equilibrium conditions which result in violations of detailed balance and require an energy source. As to a different but significant mechanism, we examine the effect of ambient buffers that can substantially reduce the effective concentration of ligands that interact with the single molecules. To demonstrate the effects by these mechanisms, we applied our results to analyze the concentration dependence in a single-molecule experiment EGFR binding to fluorophore-labeled adaptor protein Grb2 by Morimatsu et al. [Proc. Natl. Acad. Sci. U.S.A. 104, 18013 (2007)].
Collapse
Affiliation(s)
- Jin Yang
- Chinese Academy of Sciences and Max Plank Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China.
| | | |
Collapse
|
81
|
Lv N, Xie X, Ge Q, Lin S, Wang X, Kong Y, Shi H, Xie X, Wei W. Epidermal growth factor receptor in breast carcinoma: association between gene copy number and mutations. Diagn Pathol 2011; 6:118. [PMID: 22132735 PMCID: PMC3248849 DOI: 10.1186/1746-1596-6-118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/02/2011] [Indexed: 02/06/2023] Open
Abstract
Background The epidermal growth factor receptor (EGFR) is an available target of effective anti-EGFR therapy for human breast cancer. The aim of this study was to assess the presence of EGFR gene amplification and mutations in breast cancer and to analyze the association between the statuses of these two gene alterations. Materials and methods EGFR gene amplification and mutations were investigated in formalin-fixed, paraffin-embedded tissues from 139 Chinese female patients with breast cancer by means of fluorescence in-situ hybridization (FISH) and fluorescently labeled real-time quantitative polymerase chain reaction (RT-PCR), respectively. Results EGFR gene amplification was observed in 46/139 (33.1%) of cases by FISH. Based on RT-PCR, 2/139 (1.4%) samples had EGFR gene mutations. Overall, only 1 (0.7%) of the cases was identified with both whole gene amplification and mutation, and 92 (66.2%) of cases were negative for both. High gene copy numbers of EGFR had significant correlation with the occurrence of EGFR protein expressions (P = 0.002). Conclusion In this study, EGFR mutations were presented in only two samples, indicating that EGFR mutations should not be employed in future trials with anti-EGFR therapies for breast cancer. However, EGFR whole gene amplification is frequently observed in patients with breast cancer. It will be of significant interest to investigate whether EGFR gene copy number is a suitable screening test for EGFR-targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Ning Lv
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
|
83
|
Abstract
Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified PAK1 as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of Merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.
Collapse
|
84
|
Yamaoka T, Frey MR, Dise RS, Bernard JK, Polk DB. Specific epidermal growth factor receptor autophosphorylation sites promote mouse colon epithelial cell chemotaxis and restitution. Am J Physiol Gastrointest Liver Physiol 2011; 301:G368-76. [PMID: 21617115 PMCID: PMC3154598 DOI: 10.1152/ajpgi.00327.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associated downstream pathways, in mouse colon epithelial cell chemotactic migration. We compared these requirements to those for the phenotypically distinct restitution (wound healing) migration. Wild-type, Y992/1173F, Y1045F, Y1068F, and Y1086F EGFR constructs were expressed in EGFR(-/-) cells; EGF-induced chemotaxis or restitution were determined by Boyden chamber or modified scratch wound assay, respectively. Pharmacological inhibitors of p38, phospholipase C (PLC), Src, MEK, JNK/SAPK, phosphatidylinositol 3-kinase (PI 3-kinase), and protein kinase C (PKC) were used to block EGF-stimulated signaling. Pathway activation was determined by immunoblot analysis. Unlike wild-type EGFR, Y992/1173F and Y1086F EGFR did not stimulate colon epithelial cell chemotaxis toward EGF; Y1045F and Y1068F EGFR partially stimulated chemotaxis. Only wild-type EGFR promoted colonocyte restitution. Inhibition of p38, PLC, and Src, or Grb2 knockdown, blocked chemotaxis; JNK, PI 3-kinase, and PKC inhibitors or c-Cbl knockdown blocked restitution but not chemotaxis. All four EGFR mutants stimulated downstream signaling in response to EGF, but Y992/1173F EGFR was partially defective in PLCγ activation whereas both Y1068F and Y1086F EGFR failed to activate Src. We conclude that specific EGFR tyrosines play key roles in determining cellular responses to ligand. Chemotaxis and restitution, which have different migration phenotypes and physiological consequences, have overlapping but not identical EGFR signaling requirements.
Collapse
Affiliation(s)
- Toshimitsu Yamaoka
- 1Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition and
| | - Mark R. Frey
- 3Department of Pediatrics, Division of Gastroenterology and Nutrition and ,4Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
| | - Rebecca S. Dise
- 2Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Jessica K. Bernard
- 3Department of Pediatrics, Division of Gastroenterology and Nutrition and
| | - D. Brent Polk
- 1Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition and ,2Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,3Department of Pediatrics, Division of Gastroenterology and Nutrition and ,4Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
85
|
Decorin and chondroitin-6 sulfate inhibit B16V melanoma cell migration and invasion by cellular acidification. J Cell Physiol 2011; 226:2641-50. [DOI: 10.1002/jcp.22612] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
86
|
Naegle KM, Welsch RE, Yaffe MB, White FM, Lauffenburger DA. MCAM: multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets. PLoS Comput Biol 2011; 7:e1002119. [PMID: 21799663 PMCID: PMC3140961 DOI: 10.1371/journal.pcbi.1002119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/25/2011] [Indexed: 01/22/2023] Open
Abstract
Advances in proteomic technologies continue to substantially accelerate capability for generating experimental data on protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions. However, little is known about the function of many of these protein modifications, or the enzymes responsible for modifying them. To address this challenge, we have developed an approach that enhances the power of clustering techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new computational framework for applying clustering to biological data in order to overcome the typical dependence on specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering analysis methodology (‘MCAM’) employs an array of diverse data transformations, distance metrics, set sizes, and clustering algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis of proteomic data which may help increase the current understanding of molecular networks in a variety of biological problems. Proteomic measurements, especially modification measurements, are greatly expanding the current knowledge of the state of proteins under various conditions. Harnessing these measurements to understand how these modifications are enzymatically regulated and their subsequent function in cellular signaling and physiology is a challenging new problem. Clustering has been very useful in reducing the dimensionality of many types of high-throughput biological data, as well inferring function of poorly understood molecular species. However, its implementation requires a great deal of technical expertise since there are a large number of parameters one must decide on in clustering, including data transforms, distance metrics, and algorithms. Previous knowledge of useful parameters does not exist for measurements of a new type. In this work we address two issues. First, we develop a framework that incorporates any number of possible parameters of clustering to produce a suite of clustering solutions. These solutions are then judged on their ability to infer biological information through statistical enrichment of existing biological annotations. Second, we apply this framework to dynamic phosphorylation measurements of the ERBB network, constructing the first extensive analysis of clustering of phosphoproteomic data and generating insight into novel components and novel functions of known components of the ERBB network.
Collapse
Affiliation(s)
- Kristen M Naegle
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
87
|
Molekulardiagnostik zur Therapiestratifizierung des Lungenkarzinoms. Internist (Berl) 2011; 52:146, 148-50, 152-4. [DOI: 10.1007/s00108-010-2698-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
88
|
Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, Shi B, Lai CC, Bedford MT, Tsai CH, Hung MC. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol 2011; 13:174-81. [PMID: 21258366 DOI: 10.1038/ncb2158] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/23/2010] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) can undergo post-translational modifications, including phosphorylation, glycosylation and ubiquitylation, leading to diverse physiological consequences and modulation of its biological activity. There is increasing evidence that methylation may parallel other post-translational modifications in the regulation of various biological processes. It is still not known, however, whether EGFR is regulated by this post-translational event. Here, we show that EGFR Arg 1175 is methylated by an arginine methyltransferase, PRMT5. Arg 1175 methylation positively modulates EGF-induced EGFR trans-autophosphorylation at Tyr 1173, which governs ERK activation. Abolishment of Arg 1175 methylation enhances EGF-stimulated ERK activation by reducing SHP1 recruitment to EGFR, resulting in augmented cell proliferation, migration and invasion of EGFR-expressing cells. Therefore, we propose a model in which the regulatory crosstalk between PRMT5-mediated Arg 1175 methylation and EGF-induced Tyr 1173 phosphorylation attenuates EGFR-mediated ERK activation.
Collapse
Affiliation(s)
- Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Scharl M, Rudenko I, McCole DF. Loss of protein tyrosine phosphatase N2 potentiates epidermal growth factor suppression of intestinal epithelial chloride secretion. Am J Physiol Gastrointest Liver Physiol 2010; 299:G935-45. [PMID: 20689057 PMCID: PMC2957338 DOI: 10.1152/ajpgi.00106.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Crohn's disease candidate gene, protein tyrosine phosphatase nonreceptor type 2 (PTPN2), has been shown to regulate epidermal growth factor (EGF)-induced phosphatidylinositol 3-kinase (PI3K) activation in fibroblasts. In intestinal epithelial cells (IECs), EGF-induced EGF receptor (EGFR) activation and recruitment of PI3K play a key role in regulating many cellular functions including Ca(2+)-dependent Cl(-) secretion. Moreover, EGFR also serves as a conduit for signaling by other non-growth factor receptor ligands such as the proinflammatory cytokine, IFN-γ. Here we investigated a possible role for PTPN2 in the regulation of EGFR signaling and Ca(2+)-dependent Cl(-) secretion in IECs. PTPN2 knockdown enhanced EGF-induced EGFR tyrosine phosphorylation in T(84) cells. In particular, PTPN2 knockdown promoted EGF-induced phosphorylation of EGFR residues Tyr-992 and Tyr-1068 and led subsequently to increased association of the catalytic PI3K subunit, p110, with EGFR and elevated phosphorylation of the downstream marker, Akt. As a functional consequence, loss of PTPN2 potentiated EGF-induced inhibition of carbachol-stimulated Ca(2+)-dependent Cl(-) secretion. In contrast, PTPN2 knockdown affected neither IFN-γ-induced EGFR transactivation nor EGF- or IFN-γ-induced phosphorylation of ERK1/2. In summary, our data establish a role for PTPN2 in the regulation of EGFR signaling in IECs in response to EGF but not IFN-γ. Knockdown of PTPN2 directs EGFR signaling toward increased PI3K activation and increased suppression of epithelial chloride secretory responses. Moreover, our findings suggest that PTPN2 dysfunction in IECs leads to altered control of intestinal epithelial functions regulated by EGFR.
Collapse
Affiliation(s)
- Michael Scharl
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Ivan Rudenko
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Declan F. McCole
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| |
Collapse
|
90
|
Chang WC, Chang CC, Wang YS, Wang YS, Weng WT, Yoshioka T, Juo SHH. Involvement of the epidermal growth factor receptor in Pb²+-induced activation of cPLA₂/COX-2 genes and PGE₂ production in vascular smooth muscle cells. Toxicology 2010; 279:45-53. [PMID: 20850495 DOI: 10.1016/j.tox.2010.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 01/18/2023]
Abstract
Lead (Pb²+) is one of the most common heavy metal pollutants, which can cause chronic cardiovascular diseases. To clarify the mechanism by which Pb²+ induces inflammatory reactions, we examined the expression of inflammatory genes including encoding cyclooxygenase-2 (COX-2), cytosolic phospholipase A₂ (cPLA₂), and their down stream product prostaglandin E₂ (PGE₂) in CRL1999 cells that is a vascular smooth muscle cell line from human aorta. The expression of COX-2/cPLA₂ genes and PGE₂ secretion was increased markedly after cells were exposed to 1 μM Pb²+. PD098059, a MEK inhibitor, suppressed Pb²+-mediated inflammatory reactions; this indicates the involvement of the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). Furthermore, Pb²+-induced activation of the COX-2/cPLA₂ genes was inhibited by both epidermal growth factor receptor (EGFR) inhibitors (AG1478 and PD153035) and EGFR siRNA. Short-term stimulation with Pb²+ induced EGFR phosphorylation at the Tyr residue (position, 1173). Importantly, overexpression of EGFR resulted in a significant potentiation effect on Pb²+-induced gene expression. Taken together, our results indicate that 1 μM Pb²+ can induce PGE₂ secretion by upregulating the transcription of COX-2/cPLA₂ genes. EGFR is the key target in the plasma membrane responsible for transmitting Pb²+ signals in order to trigger downstream inflammatory cascades.
Collapse
Affiliation(s)
- Wei-Chiao Chang
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
91
|
Huang PH, Miraldi ER, Xu AM, Kundukulam VA, Del Rosario AM, Flynn RA, Cavenee WK, Furnari FB, White FM. Phosphotyrosine signaling analysis of site-specific mutations on EGFRvIII identifies determinants governing glioblastoma cell growth. MOLECULAR BIOSYSTEMS 2010; 6:1227-37. [PMID: 20461251 DOI: 10.1039/c001196g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To evaluate the role of individual EGFR phosphorylation sites in activating components of the cellular signaling network we have performed a mass spectrometry-based analysis of the phosphotyrosine network downstream of site-specific EGFRvIII mutants, enabling quantification of network-level effects of site-specific point mutations. Mutation at Y845, Y1068 or Y1148 resulted in diminished receptor phosphorylation, while mutation at Y1173 led to increased phosphorylation on multiple EGFRvIII residues. Altered phosphorylation at the receptor was recapitulated in downstream signaling network activation levels, with Y1173F mutation leading to increased phosphorylation throughout the network. Computational modeling of GBM cell growth as a function of network phosphorylation levels highlights the Erk pathway as crucial for regulating EGFRvIII-driven U87MG GBM cell behavior, with the unexpected finding that Erk1/2 is negatively correlated to GBM cell growth. Genetic manipulation of this pathway supports the model, demonstrating that EGFRvIII-expressing U87MG GBM cells are sensitive to Erk activation levels. Additionally, we developed a model describing glioblastoma cell growth based on a reduced set of phosphoproteins, which represent potential candidates for future development as therapeutic targets for EGFRvIII-positive glioblastoma patients.
Collapse
Affiliation(s)
- Paul H Huang
- Protein Networks Team, Section for Cell and Molecular Biology, Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Hsieh MY, Yang S, Raymond-Stinz MA, Edwards JS, Wilson BS. Spatio-temporal modeling of signaling protein recruitment to EGFR. BMC SYSTEMS BIOLOGY 2010; 4:57. [PMID: 20459599 PMCID: PMC2877007 DOI: 10.1186/1752-0509-4-57] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 05/06/2010] [Indexed: 12/31/2022]
Abstract
Background A stochastic simulator was implemented to study EGFR signal initiation in 3D with single molecule detail. The model considers previously unexplored contributions to receptor-adaptor coupling, such as receptor clustering and diffusive properties of both receptors and binding partners. The agent-based and rule-based approach permits consideration of combinatorial complexity, a problem associated with multiple phosphorylation sites and the potential for simultaneous binding of adaptors. Results The model was used to simulate recruitment of four different signaling molecules (Grb2, PLCγ1, Stat5, Shc) to the phosphorylated EGFR tail, with rules based on coarse-grained prediction of spatial constraints. Parameters were derived in part from quantitative immunoblotting, immunoprecipitation and electron microscopy data. Results demonstrate that receptor clustering increases the efficiency of individual adaptor retainment on activated EGFR, an effect that is overridden if crowding is imposed by receptor overexpression. Simultaneous docking of multiple proteins is highly dependent on receptor-adaptor stability and independent of clustering. Conclusions Overall, we propose that receptor density, reaction kinetics and membrane spatial organization all contribute to signaling efficiency and influence the carcinogenesis process.
Collapse
Affiliation(s)
- Ming-yu Hsieh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
93
|
Heukamp LC, Büttner R. [Molecular diagnostics in lung carcinoma for therapy stratification]. DER PATHOLOGE 2009; 31:22-8. [PMID: 19997736 DOI: 10.1007/s00292-009-1241-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lung cancer is the most common tumor-related cause of death in western industrialized countries, despite continuous improvement in both diagnostic and therapeutic approaches. Since epidermal growth factor receptor (EGFR) is overexpressed in 80% of cases of non-small cell lung carcinoma, mediating important carcinogenic properties such as cell-cycle progression, apoptosis, angiogenesis and metastasis, it is considered a relevant target in novel specific therapies. This has lead to the development of the low-molecular EGFR tyrosine kinase inhibitors (EGFR-TKI) Gefitinib and Erlotinib. Predicting which patients will respond to an EGFR-targeted therapy is of particular clinical interest. Recent studies show a significantly better response and prolonged progression-free survival in patients with EGFR-mutated tumors, even when used as first-line therapy. Moreover, genetic mutations which correlate to primary EGFR-TKI resistance (e.g. KRAS) or produce secondary resistance to known TKI (e.g. EGFR mutation T790 M or MET amplification) have meanwhile been explained. Predictive diagnosis of these mutations using histological material is becoming increasingly important for patient stratification and will soon be indispensable not only for lung cancer.
Collapse
Affiliation(s)
- L C Heukamp
- Institut für Pathologie, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany.
| | | |
Collapse
|
94
|
Li G, Han C, Xu L, Lim K, Isse K, Wu T. Cyclooxygenase-2 prevents fas-induced liver injury through up-regulation of epidermal growth factor receptor. Hepatology 2009; 50:834-43. [PMID: 19585617 PMCID: PMC2758493 DOI: 10.1002/hep.23052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED Cyclooxygenase-2 (COX-2)-derived prostaglandins participate in a number of pathophysiological responses such as inflammation, carcinogenesis, and modulation of cell growth and survival. This study used complementary approaches of COX-2 transgenic (Tg) and knockout (KO) mouse models to evaluate the mechanism of COX-2 in Fas-induced hepatocyte apoptosis and liver failure in vivo. We generated Tg mice with targeted expression of COX-2 in the liver by using the albumin promoter-enhancer-driven vector. The COX-2 Tg, COX-2 KO, and wild-type mice were treated with the anti-Fas antibody Jo2 (0.5 microg/g of body weight) for 4 to 6 hours, and the extent of liver injury was assessed by histopathology, serum aminotransferases, TUNEL staining, and caspase activation. The COX-2 Tg mice showed resistance to Fas-induced liver injury in comparison with the wild-type mice; this was reflected by the lower alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, less liver damage, and less hepatocyte apoptosis (P < 0.01). In contrast, the COX-2 KO mice showed significantly higher serum ALT and AST levels, more prominent hepatocyte apoptosis, and higher levels of caspase-8, caspase-9, and caspase-3 activity than the wild-type mice (P < 0.01). The COX-2 Tg livers expressed higher levels of epidermal growth factor receptor (EGFR) than the wild-type controls; the COX-2 KO livers expressed the lowest levels of EGFR. Pretreatment with a COX-2 inhibitor (NS-398) or an EGFR inhibitor (AG1478) exacerbated Jo2-mediated liver injury and hepatocyte apoptosis. CONCLUSION These findings demonstrate that COX-2 prevents Fas-induced hepatocyte apoptosis and liver failure at least in part through up-regulation of EGFR.
Collapse
Affiliation(s)
- Guiying Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130021, China
| | - Chang Han
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Lihong Xu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kyu Lim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Department of Biochemistry, College of Medicine, Chungnam National University, Korea
| | - Kumiko Isse
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Tong Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
95
|
Maegawa M, Arao T, Yokote H, Matsumoto K, Kudo K, Tanaka K, Kaneda H, Fujita Y, Ito F, Nishio K. Epidermal growth factor receptor lacking C-terminal autophosphorylation sites retains signal transduction and high sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Sci 2009; 100:552-7. [PMID: 19154417 PMCID: PMC11158727 DOI: 10.1111/j.1349-7006.2008.01071.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Constitutively active mutations of epidermal growth factor receptor (EGFR) (delE746_A750) activate downstream signals, such as ERK and Akt, through the phosphorylation of tyrosine residues in the C-terminal region of EGFR. These pathways are thought to be important for cellular sensitivity to EGFR tyrosine kinase inhibitors (TKI). To examine the correlation between phosphorylation of the tyrosine residues in the C-terminal region of EGFR and cellular sensitivity to EGFR TKI, we used wild-type (wt) EGFR, as well as the following constructs: delE746_A750 EGFR; delE746_A750 EGFR with substitution of seven tyrosine residues to phenylalanine in the C-terminal region; and delE746_A750 EGFR with a C-terminal truncation at amino acid 980. These constructs were transfected stably into HEK293 cells and designated HEK293/Wt, HEK293/D, HEK293/D7F, and HEK293/D-Tr, respectively. The HEK293/D cells were found to be 100-fold more sensitive to EGFR TKI (AG1478) than HEK293/Wt. Surprisingly, the HEK293/D7F and HEK293/D-Tr cells, transfected with EGFR lacking the C-terminal autophosphorylation sites, retained high sensitivity to EGFR TKI. In these three high-sensitivity cells, the ERK pathway was activated without ligand stimulation, which was inhibited by EGFR TKI. In addition, although EGFR in the HEK293/D7F and HEK293/D-Tr cells lacked significant tyrosine residues for EGFR signal transduction, phosphorylation of Src homology and collagen homology (Shc) was spontaneously activated in these cells. Our results indicate that tyrosine residues in the C-terminal region of EGFR are not required for cellular sensitivity to EGFR TKI, and that an as-yet-unknown signaling pathway of EGFR may exist that is independent of the C-terminal region of EGFR.
Collapse
Affiliation(s)
- Mari Maegawa
- Department of Genome Biology, Kinki University School of Medicine, Osaka Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Wang CY, Wang YT, Tzeng DW, Yang JL. Lead acetate induces EGFR activation upstream of SFK and PKCα linkage to the Ras/Raf-1/ERK signaling. Toxicol Appl Pharmacol 2009; 235:244-52. [DOI: 10.1016/j.taap.2008.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/17/2008] [Accepted: 12/09/2008] [Indexed: 12/30/2022]
|
97
|
Zimmer S, Kahl P, Buhl TM, Steiner S, Wardelmann E, Merkelbach-Bruse S, Buettner R, Heukamp LC. Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling. J Cancer Res Clin Oncol 2008; 135:723-30. [PMID: 19002495 DOI: 10.1007/s00432-008-0509-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 10/20/2008] [Indexed: 01/14/2023]
Abstract
PURPOSE The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC) has been linked to activating mutations in the EGFR gene. So far these mutations have been extensively characterized in established cell lines. The aim of this study was to determine the effects of EGFR mutations on downstream signaling in human tumor specimens. METHODS We have looked for mutations of the EGFR gene in specimens of 67 patients with NSCLC and correlated these with EGFR phosphorylation and the activity of its three main downstream signaling cascades Akt, MAPK and Stat3 by immunohistochemistry. RESULTS We show that the phosphorylation of tyrosine residues 922 and 1173, but not 1068, are primarily affected by the activating EGFR mutations. Akt activity was significantly higher in patients with EGFR mutations but we found no difference in Stat3 or MAPK phosphorylation. Our results suggest that EGFR mutations not only increase receptor activity, but also alter responses of downstream signaling cascades in human NSCLCs and that these finding differ from results obtained in cell lines.
Collapse
Affiliation(s)
- Sebastian Zimmer
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Morandell S, Stasyk T, Skvortsov S, Ascher S, Huber LA. Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network. Proteomics 2008; 8:4383-401. [DOI: 10.1002/pmic.200800204] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
99
|
Kamat A, Ghosh PM, Glover RL, Zhu B, Yeh CK, Choudhury GG, Katz MS. Reduced expression of epidermal growth factor receptors in rat liver during aging. J Gerontol A Biol Sci Med Sci 2008; 63:683-92. [PMID: 18693222 DOI: 10.1093/gerona/63.7.683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proliferative responsiveness of hepatocytes to epidermal growth factor (EGF) declines during aging. The role of EGF receptors in mediating age-dependent changes of EGF-induced mitogenic signaling in liver remains incompletely understood. We assessed EGF receptor expression levels in whole liver specimens as well as in freshly isolated and cultured hepatocytes from young adult and senescent Fischer 344 male rats. Hepatic EGF receptor messenger RNA and protein levels, and the number of high- and low-affinity receptor binding sites, decreased with aging. Ligand-induced EGF receptor activation, determined by receptor dimerization and tyrosine phosphorylation, was reduced in old animals in parallel with the age-related decline in receptor expression. Stimulation of the extracellular signal-regulated kinase pathway by EGF was also attenuated in hepatocytes from old animals. Our results implicate decreased expression of EGF receptors as a key determinant of reduced mitogenic signaling responsive to EGF stimulation of liver during aging.
Collapse
Affiliation(s)
- Amrita Kamat
- Geriatric Research Education and Clinical Center (182), Audie L Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
Micallef J, Gajadhar A, Wiley J, DeSouza LV, Michael Siu KW, Guha A. Proteomics: present and future implications in neuro-oncology. Neurosurgery 2008; 62:539-55; discussion 539-55. [PMID: 18425004 DOI: 10.1227/01.neu.0000317302.85837.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PROTEOMICS, IN ITS broadest mandate, is the study of proteins and their functions. As the "workhorses" of the genome, proteins govern normal cellular structure and function. Protein function is not just a reflection of its expression level; it is also the cumulative result of many post-transcriptional (splicing) and post-translational events that together determine cellular localization, interactions, and longevity. The composition and variability of the proteome is vastly more complex than the corresponding genome. It is this proteome variation that helps define an organism and the unique characteristics that separate one individual from another. Aberrations in protein function, which alter normal cellular structure and function, are the ultimate basis of disease, including cancer. Therefore, an understanding of protein networks through a systems biology approach of proteomics is necessary to understand normal and abnormal cellular function, with the goal of performing rational therapeutic interventions. In this review, we focus on two emerging proteomic technologies: mass spectrometry and bioluminescence resonance energy transfer. In addition to reviewing the principles and potential utilization of these two techniques, we highlight their application in neuro-oncology research.
Collapse
Affiliation(s)
- Johann Micallef
- Arthur and Sonia Labatt Brain Tumour Center, Hospital for Sick Children's Research Institute, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|