51
|
Subcellular localization of mRNA and factors involved in translation initiation. Biochem Soc Trans 2008; 36:648-52. [PMID: 18631134 DOI: 10.1042/bst0360648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both the process and synthesis of factors required for protein synthesis (or translation) account for a large proportion of cellular activity. In eukaryotes, the most complex and highly regulated phase of protein synthesis is that of initiation. For instance, across eukaryotes, at least 12 factors containing 22 or more proteins are involved, and there are several regulated steps. Recently, the localization of mRNA and factors involved in translation has received increased attention. The present review provides a general background to the subcellular localization of mRNA and translation initiation factors, and focuses on the potential functions of localized translation initiation factors. That is, as genuine sites for translation initiation, as repositories for factors and mRNA, and as sites of regulation.
Collapse
|
52
|
Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 2008; 100:27-38. [PMID: 18072942 DOI: 10.1042/bc20070098] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is now an overwhelming body of evidence to suggest that internal ribosome entry is required to maintain the expression of specific proteins during patho-physiological situations when cap-dependent translation is compromised, for example, following heat shock or during mitosis, hypoxia, differentiation and apoptosis. Translational profiling has been used by several groups to assess the extent to which alternative mechanisms of translation initiation selectively recruit mRNAs to polysomes during cell stress. The data from these studies have shown that under each condition 3-5% of coding mRNAs remain associated with the polysomes. Importantly, the genes identified in each of these studies do not show a significant amount of overlap, suggesting that 10-15% of all mRNAs have the capability for their initiation to occur via alternative mechanism(s).
Collapse
|
53
|
Rothenburg S, Deigendesch N, Dey M, Dever TE, Tazi L. Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: varying the number of double-stranded RNA binding domains and lineage-specific duplications. BMC Biol 2008; 6:12. [PMID: 18312693 PMCID: PMC2291453 DOI: 10.1186/1741-7007-6-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 03/03/2008] [Indexed: 02/04/2023] Open
Abstract
Background Double-stranded (ds) RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2α leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs). Fish and amphibian PKR genes have not been described so far. Results Here we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2α in yeast. Conclusion Considering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and perhaps by altering sensitivity to viral PKR inhibitors. Further implications of our findings for the evolution of the PKR family and for studying PKR/PKZ interactions with viral gene products and their roles in viral infections are discussed.
Collapse
Affiliation(s)
- Stefan Rothenburg
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
54
|
Ozanick SG, Bujnicki JM, Sem DS, Anderson JT. Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding. Nucleic Acids Res 2007; 35:6808-19. [PMID: 17932071 PMCID: PMC2175304 DOI: 10.1093/nar/gkm574] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of tRNA(Met)i The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-L-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind tRNA(Met)i, indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present.
Collapse
Affiliation(s)
- Sarah G Ozanick
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | | | | | | |
Collapse
|
55
|
Mohammad-Qureshi SS, Haddad R, Hemingway EJ, Richardson JP, Pavitt GD. Critical contacts between the eukaryotic initiation factor 2B (eIF2B) catalytic domain and both eIF2beta and -2gamma mediate guanine nucleotide exchange. Mol Cell Biol 2007; 27:5225-34. [PMID: 17526738 PMCID: PMC1951959 DOI: 10.1128/mcb.00495-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 04/18/2007] [Accepted: 05/09/2007] [Indexed: 11/20/2022] Open
Abstract
Diverse guanine nucleotide exchange factors (GEFs) regulate the activity of GTP binding proteins. One of the most complicated pairs is eukaryotic initiation factor 2B (eIF2B) and eIF2, which function during protein synthesis initiation in eukaryotes. We have mutated conserved surface residues within the eIF2B GEF domain, located at the eIF2Bepsilon C terminus. Extensive genetic and biochemical characterization established how these residues contribute to GEF activity. We find that the universally conserved residue E569 is critical for activity and that even a conservative E569D substitution is lethal in vivo. Several mutations within residues close to E569 have no discernible effect on growth or GCN4 expression, but an alanine substitution at the adjacent L568 is cold sensitive and deregulates GCN4 activity at 15 degrees C. The mutation of W699, found on a separate surface approximately 40 A from E569, is also lethal. Binding studies show that W699 is critical for interaction with eIF2beta, while L568 and E569 are not. In contrast, all three residues are critical for interaction with eIF2gamma. These data show that multiple contacts between eIF2gamma and eIF2Bepsilon mediate nucleotide exchange.
Collapse
|
56
|
Penas C, Guzmán MS, Verdú E, Forés J, Navarro X, Casas C. Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response. J Neurochem 2007; 102:1242-55. [PMID: 17578450 DOI: 10.1111/j.1471-4159.2007.04671.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms of injury-induced apoptosis of neurons within the spinal cord are poorly understood. In this study, we show that spinal cord injury (SCI) induces endoplasmic reticulum stress revealed by the activation of an unbalanced unfolded protein response (UPR). Using a weight-drop contusion model of SCI, the UPR activation was characterized by a quick transient phosphorylation of alpha subunit of eukaryotic initiation factor 2 soon restored by the up-regulation of its regulator Gadd34; an effective cleavage/activation of the ATF6alpha transcription factor leading to up-regulation of the canonical UPR target genes Chop, Xbp1 and Grp78; the presence of the processing of Xbp1 mRNA indicative of inositol requiring kinase 1 activation, and a gradual accumulation of C/EBP homologous transcription factor protein (CHOP) with concomitant caspase-12 activation. Interestingly, the subcellular distribution of CHOP was found in the nucleus of neurons and oligodendrocytes but in the cytoplasm of astrocytes. Considering the pro-apoptotic action attributed to this transcription factor, this phenomenon might account for the different susceptibility of cell types to dye after SCI.
Collapse
Affiliation(s)
- Clara Penas
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
57
|
Martín-Marcos P, Hinnebusch AG, Tamame M. Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation. Mol Cell Biol 2007; 27:5968-85. [PMID: 17548477 PMCID: PMC1952170 DOI: 10.1128/mcb.00019-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a mutation in the 60S ribosomal protein L33A (rpl33a-G76R) that elicits derepression of GCN4 translation (Gcd- phenotype) by allowing scanning preinitiation complexes to bypass inhibitory upstream open reading frame 4 (uORF4) independently of prior uORF1 translation and reinitiation. At 37 degrees C, rpl33a-G76R confers defects in 60S biogenesis comparable to those produced by the deletion of RPL33A (DeltaA). At 28 degrees C, however, the 60S biogenesis defect is less severe in rpl33a-G76R than in DeltaA cells, yet rpl33a-G76R confers greater derepression of GCN4 and a larger reduction in general translation. Hence, it appears that rpl33a-G76R has a stronger effect on ribosomal-subunit joining than does a comparable reduction of wild-type 60S levels conferred by DeltaA. We suggest that rpl33a-G76R alters the 60S subunit in a way that impedes ribosomal-subunit joining and thereby allows 48S rRNA complexes to abort initiation at uORF4, resume scanning, and initiate downstream at GCN4. Because overexpressing tRNAiMet suppresses the Gcd- phenotype of rpl33a-G76R cells, dissociation of tRNAiMet from the 40S subunit may be responsible for abortive initiation at uORF4 in this mutant. We further demonstrate that rpl33a-G76R impairs the efficient processing of 35S and 27S pre-rRNAs and reduces the accumulation of all four mature rRNAs, indicating an important role for L33 in the biogenesis of both ribosomal subunits.
Collapse
Affiliation(s)
- Pilar Martín-Marcos
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental de Biología, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
58
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
59
|
Conesa C, Ruotolo R, Soularue P, Simms TA, Donze D, Sentenac A, Dieci G. Modulation of yeast genome expression in response to defective RNA polymerase III-dependent transcription. Mol Cell Biol 2005; 25:8631-42. [PMID: 16166643 PMCID: PMC1265737 DOI: 10.1128/mcb.25.19.8631-8642.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/21/2005] [Accepted: 07/06/2005] [Indexed: 11/20/2022] Open
Abstract
We used genome-wide expression analysis in Saccharomyces cerevisiae to explore whether and how the expression of protein-coding, RNA polymerase (Pol) II-transcribed genes is influenced by a decrease in RNA Pol III-dependent transcription. The Pol II transcriptome was characterized in four thermosensitive, slow-growth mutants affected in different components of the RNA Pol III transcription machinery. Unexpectedly, we found only a modest correlation between altered expression of Pol II-transcribed genes and their proximity to class III genes, a result also confirmed by the analysis of single tRNA gene deletants. Instead, the transcriptome of all of the four mutants was characterized by increased expression of genes known to be under the control of the Gcn4p transcriptional activator. Indeed, GCN4 was found to be translationally induced in the mutants, and deleting the GCN4 gene eliminated the response. The Gcn4p-dependent expression changes did not require the Gcn2 protein kinase and could be specifically counteracted by an increased gene dosage of initiator tRNA(Met). Initiator tRNA(Met) depletion thus triggers a GCN4-dependent reprogramming of genome expression in response to decreased Pol III transcription. Such an effect might represent a key element in the coordinated transcriptional response of yeast cells to environmental changes.
Collapse
Affiliation(s)
- Christine Conesa
- Service de Biochimie et Génétique Moléculaire, Bâtiment 144, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
60
|
Fekete CA, Applefield DJ, Blakely SA, Shirokikh N, Pestova T, Lorsch JR, Hinnebusch AG. The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J 2005; 24:3588-601. [PMID: 16193068 PMCID: PMC1276705 DOI: 10.1038/sj.emboj.7600821] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/26/2005] [Indexed: 11/09/2022] Open
Abstract
Translation initiation factor 1A stimulates 40S-binding of the eukaryotic initiation factor 2 (eIF2)/GTP/Met-tRNA(iMet) ternary complex (TC) and promotes scanning in vitro. eIF1A contains an OB-fold present in bacterial IF1 plus N- and C-terminal extensions. Truncating the C-terminus (deltaC) or mutating OB-fold residues (66-70) of eIF1A reduced general translation in vivo but increased GCN4 translation (Gcd- phenotype) in a manner suppressed by overexpressing TC. Consistent with this, both mutations diminished 40S-bound TC, eIF5 and eIF3 in vivo, and deltaC impaired TC recruitment in vitro. The assembly defects of the OB-fold mutation can be attributed to reduced 40S-binding of eIF1A, whereas deltaC impairs eIF1A function on the ribosome. A substitution in the C-terminal helix (98-101) also reduced 43S assembly in vivo. Rather than producing a Gcd- phenotype, however, 98-101 impairs GCN4 derepression in a manner consistent with defective scanning by reinitiating ribosomes. Indeed, 98-101 allows formation of aberrant 48S complexes in vitro and increases utilization of non-AUG codons in vivo. Thus, the OB-fold is crucial for ribosome-binding and the C-terminal domain of eIF1A has eukaryotic-specific functions in TC recruitment and scanning.
Collapse
Affiliation(s)
- Christie A Fekete
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Drew J Applefield
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen A Blakely
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Nikolay Shirokikh
- Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY, USA
| | - Tatyana Pestova
- Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY, USA
| | - Jon R Lorsch
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Building 6A/Room B1A-13, Bethesda, MD 20892, USA. Tel.: +1 301 496 4480; Fax: +1 301 496 6828; E-mail:
| |
Collapse
|
61
|
Singh CR, Curtis C, Yamamoto Y, Hall NS, Kruse DS, He H, Hannig EM, Asano K. Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation. Mol Cell Biol 2005; 25:5480-91. [PMID: 15964804 PMCID: PMC1156968 DOI: 10.1128/mcb.25.13.5480-5491.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrity of eukaryotic translation initiation factor (eIF) interactions in ribosomal pre-initiation complexes is critical for the proper regulation of GCN4 mRNA translation in response to amino acid availability. Increased phosphorylation of eIF2 under amino acid starvation conditions leads to a corresponding increase in GCN4 mRNA translation. The carboxyl-terminal domain (CTD) of eIF5 (eIF5-CTD) has been identified as a potential nucleation site for pre-initiation complex assembly. To further characterize eIF5 and delineate its role in GCN4 translational control, we isolated mutations leading to temperature sensitivity (Ts- phenotype) targeted at TIF5, the structural gene encoding eIF5 in yeast (Saccharomyces cerevisiae). Nine single point mutations were isolated, in addition to an allele in which the last 15 amino acids were deleted. The nine point mutations clustered in the eIF5-CTD, which contains two conserved aromatic/acidic boxes. Six of the point mutations derepressed GCN4 translation independent of eIF2 phosphorylation (Gcd- phenotype) at a permissive temperature, directly implicating eIF5-CTD in the eIF2/GTP/Met-tRNA(i)Met ternary complex binding process required for GCN4 translational control. In addition, stronger restriction of eIF5-CTD function at an elevated temperature led to failure to derepress GCN4 translation (Gcn- phenotype) in all of the mutants, most likely due to leaky scanning of the first upstream open reading frame of GCN4 mRNA. This latter result directly implicates eIF5-CTD in the process of accurate scanning for, or recognition of, AUG codons. Taken together, our results indicate that eIF5-CTD plays a critical role in both the assembly of the 43S complex and the post-assembly process in the 48S complex, likely during the scanning process.
Collapse
Affiliation(s)
- Chingakham Ranjit Singh
- Program for Molecular Cellular and Developmental Biology, Division of Biology, 258 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
McCaig D, Imai H, Gallagher L, Graham DI, Harland J, Moira Brown S, Mhairi Macrae I. Evolution of GADD34 expression after focal cerebral ischaemia. Brain Res 2005; 1034:51-61. [PMID: 15713259 DOI: 10.1016/j.brainres.2004.11.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/20/2022]
Abstract
GADD34, a stress response protein associated with cell rescue, DNA repair and apoptosis, is expressed in the ischaemic brain. The C-terminal region of GADD34 has homology with the Herpes Simplex Virus protein, ICP34.5, which overcomes the protein synthesis block after viral infection by actively dephosphorylating eukaryotic translation initiation factor 2alpha (eIF2alpha). The carboxy terminus of GADD34 is also capable of dephosphorylating eIF2alpha and therefore has the capacity to restore the protein synthesis shutoff associated with ischaemia. This study examines the distribution and time course of GADD34 expression after focal cerebral ischaemia. Focal ischaemia or sham procedure was carried out on Sprague-Dawley rats with survival times of 4, 12, 24 h, 7 and 30 days. Brains were processed for histology and immunohistochemistry. Ischaemic damage was mapped onto line diagrams and GADD34 positive cells counted in selected regions of cortex and caudate. GADD34 immunopositive cells (mainly neurones), expressed as cells/mm2, were present in ischaemic brains at 4 h (e.g., peri-infarct cortex 20 +/- 5; contralateral cortex 3 +/- 1, P < 0.05). Of the time points examined, numbers of GADD34 positive cells were highest 24 h after ischaemia (peri-infarct cortex 31 +/- 7.3, contralateral cortex 0.1 +/- 0.1, P < 0.05). Immunopositive cells, following a similar time course, were identified within the peri-infarct zone in the caudate nucleus and in ipsilateral cingulate cortex (possibly as a consequence of cortical spreading depression). GADD34 positive cells did not co-localise with a marker of irreversible cell death (TUNEL). Taken together, GADD34 positive cells in key neuroanatomical locations pertinent to the evolving ischaemic lesion, the lack of co-localisation with TUNEL and the protein's known effects on restoring protein synthesis, repairing DNA and involvement in ischaemic pre-conditioning suggests that it has the potential to influence cell survival in ischaemically compromised tissue.
Collapse
Affiliation(s)
- David McCaig
- Wellcome Surgical Institute, Division of Clinical Neuroscience, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
We review studies of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) following cerebral ischemia and reperfusion (I/R). The UPR is a cell stress program activated when misfolded proteins accumulate in the ER lumen. UPR activation causes: (i) a PERK-mediated phosphorylation of eIF2alpha, inhibiting protein synthesis to prevent further accumulation of unfolded proteins in the ER and (ii) upregulation of genes coding for ER-resident enzymes and chaperones and others, via eIF2alpha(p), and ATF6 and IRE1 activation. UPR-induced transcription increases capacity of the ER to process misfolded proteins. If ER stress and the UPR are prolonged, apoptosis ensues. Multiple forms of ER stress have been observed following brain I/R. The UPR following brain I/R is not isomorphic between in vivo I/R models and in vitro cell culture systems with pharmacological UPR induction. Although PERK and IRE1 are activated in the initial hours of reperfusion, total PERK decreases, ATF6 is not activated, and there is delayed appearance of UPR-induced mRNAs. Thus, multiple damage mechanisms associated with brain I/R alter UPR expression and contribute to a pro-apoptotic phenotype in neurons. Insights resulting from these studies will be important for the development of therapies to halt neuronal death following brain I/R.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
64
|
Singh CR, Yamamoto Y, Asano K. Physical association of eukaryotic initiation factor (eIF) 5 carboxyl-terminal domain with the lysine-rich eIF2beta segment strongly enhances its binding to eIF3. J Biol Chem 2004; 279:49644-55. [PMID: 15377664 DOI: 10.1074/jbc.m409609200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The carboxyl-terminal domain (CTD) of eukaryotic initiation factor (eIF) 5 interacts with eIF1, eIF2beta, and eIF3c, thereby mediating formation of the multifactor complex (MFC), an important intermediate for the 43 S preinitiation complex assembly. Here we demonstrate in vitro formation of a nearly stoichiometric quaternary complex containing eIF1 and the minimal segments of eIF2beta, eIF3c, and eIF5. In vivo, overexpression of eIF2 and tRNA(Met)(i) suppresses the temperature-sensitive phenotype of tif5-7A altering eIF5-CTD by increasing interaction of the mutant eIF5 with eIF2 by mass action and restoring its defective interaction with eIF3. By contrast, overexpression of eIF1 exacerbated the tif5-7A phenotype because eIF1 forms unusual inhibitory complexes with a hyperstoichiometric amount of eIF1. Formation of such complexes leads to increased GCN4 translation, independent of eIF2 phosphorylation (general control derepressed or Gcd(-) phenotype). We also provide biochemical evidence indicating that the association of eIF5-CTD with eIF2beta strongly enhances its binding to eIF3c. Our results suggest strongly that MFC formation is an ordered event involving specific enhancement of eIF5-CTD binding to eIF3 on its binding to eIF2beta. We propose that the primary function of eIF5-CTD is to serve as an assembly guide by rapidly promoting stoichiometric MFC assembly with the aid of eIF2 while excluding formation of nonfunctional complexes.
Collapse
Affiliation(s)
- Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
65
|
Bumann M, Djafarzadeh S, Oberholzer AE, Bigler P, Altmann M, Trachsel H, Baumann U. Crystal structure of yeast Ypr118w, a methylthioribose-1-phosphate isomerase related to regulatory eIF2B subunits. J Biol Chem 2004; 279:37087-94. [PMID: 15215245 DOI: 10.1074/jbc.m404458200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ypr118w is a non-essential, low copy number gene product from Saccharomyces cerevisiae. It belongs to the PFAM family PF01008, which contains the alpha-, beta-, and delta-subunits of eukaryotic translation initiation factor eIF2B, as well as proteins of unknown function from all three kingdoms. Recently, one of those latter proteins from Bacillus subtilis has been characterized as a 5-methylthioribose-1-phosphate isomerase, an enzyme of the methionine salvage pathway. We report here the crystal structure of Ypr118w, which reveals a dimeric protein with two domains and a putative active site cleft. The C-terminal domain resembles ribose-5-phosphate isomerase from Escherichia coli with a similar location of the active site. In vivo, Ypr118w protein is required for yeast cells to grow on methylthioadenosine in the absence of methionine, showing that Ypr118w is involved in the methionine salvage pathway. The crystal structure of Ypr118w reveals for the first time the fold of a PF01008 member and allows a deeper discussion of an enzyme of the methionine salvage pathway, which has in the past attracted interest due to tumor suppression and as a target of aniprotozoal drugs.
Collapse
Affiliation(s)
- Mario Bumann
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, Berne CH-3012
| | | | | | | | | | | | | |
Collapse
|
66
|
Narasimhan J, Staschke KA, Wek RC. Dimerization Is Required for Activation of eIF2 Kinase Gcn2 in Response to Diverse Environmental Stress Conditions. J Biol Chem 2004; 279:22820-32. [PMID: 15010461 DOI: 10.1074/jbc.m402228200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, starvation for amino acids induces phosphorylation of the alpha subunit of eukaryotic initiation factor 2alpha by Gcn2 protein kinase, leading to elevated translation of GCN4. Gcn4p is a transcriptional activator of hundreds of genes involved in remedying nutrient deprivation. In addition to a conserved kinase domain, Gcn2p has a regulatory region homologous to histidyl tRNA synthetase enzymes that binds uncharged tRNA that accumulates during amino acid starvation. Flanking the carboxyl terminus of the histidyl-tRNA synthetase-related domain is a region spanning 162 residues that participates in the activation of the protein kinase. Gel filtration and chemical cross-linking analysis of the recombinant carboxyl-terminal Gcn2 protein revealed that this region is a stable homodimer that is highly resistant to high concentrations of salt. Residue alterations in three hydrophobic segments and one segment with a proposed amphipathic alpha-helix in this Gcn2p carboxyl terminus blocked oligomerization, supporting the role of hydrophobic interactions in the dimerization interface of Gcn2p. Introduction of residue substitutions that impaired dimerization into the full-length protein prevented the ability of Gcn2p to phosphorylate its substrate eukaryotic initiation factor-2alpha and induce GCN4 translational expression in yeast cells subjected to a variety of stresses including amino acid limitation or exposure to rapamycin or high levels of NaCl. This latter stress can be overcome by addition of increasing amounts of K+ ions, indicating that the Na+/K+ ion balance is central to this stress induction. We conclude that dimerization involving hydrophobic segments in the carboxyl-terminal region is required for activation of Gcn2p in response to a multitude of stresses.
Collapse
Affiliation(s)
- Jana Narasimhan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
67
|
Richardson JP, Mohammad SS, Pavitt GD. Mutations causing childhood ataxia with central nervous system hypomyelination reduce eukaryotic initiation factor 2B complex formation and activity. Mol Cell Biol 2004; 24:2352-63. [PMID: 14993275 PMCID: PMC355856 DOI: 10.1128/mcb.24.6.2352-2363.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Childhood ataxia with central nervous system hypomyelination (CACH), or vanishing white matter leukoencephalopathy (VWM), is a fatal brain disorder caused by mutations in eukaryotic initiation factor 2B (eIF2B). eIF2B is essential for protein synthesis and regulates translation in response to cellular stresses. We performed mutagenesis to introduce changes equivalent to 12 human CACH/VWM mutations in three subunits of the equivalent factor from yeast (Saccharomyces cerevisiae) and analyzed effects on cell growth, translation, and gene expression in response to stresses. None of the mutations is lethal or temperature sensitive, but almost all confer some defect in eIF2B function significant enough to alter growth or gene expression under normal or stress conditions. Biochemical analyses indicate that mutations analyzed in eIF2Balpha and -epsilon reduce the steady-state level of the affected subunit, while the most severe mutant tested, eIF2Bbeta(V341D) (human eIF2B(betaV316D)), forms complexes with reduced stability and lower eIF2B activity. eIF2Bdelta is excluded from eIF2Bbeta(V341D) complexes. eIF2B(betav341D) function can be rescued by overexpression of eIF2Bdelta alone. Our findings imply CACH/VWM mutations do not specifically impair responses to eIF2 phosphorylation, but instead cause protein structure defects that impair eIF2B activity. Altered protein folding is characteristic of other diseases, including cystic fibrosis and neurodegenerative disorders such as Huntington, Alzheimer's, and prion diseases.
Collapse
Affiliation(s)
- Jonathan P Richardson
- Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | |
Collapse
|
68
|
Boesen T, Mohammad SS, Pavitt GD, Andersen GR. Structure of the Catalytic Fragment of Translation Initiation Factor 2B and Identification of a Critically Important Catalytic Residue. J Biol Chem 2004; 279:10584-92. [PMID: 14681227 DOI: 10.1074/jbc.m311055200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor (eIF) 2B catalyzes the nucleotide activation of eIF2 to its active GTP-bound state. The exchange activity has been mapped to the C terminus of the eIF2Bepsilon subunit. We have determined the crystal structure of residues 544-704 from yeast eIF2Bepsilon at 2.3-A resolution, and this fragment is an all-helical protein built around the conserved aromatic acidic (AA) boxes also found in eIF4G and eIF5. The eight helices are organized in a manner similar to HEAT repeats. The molecule is highly asymmetric with respect to surface charge and conservation. One area in the N terminus is proposed to be directly involved in catalysis. In agreement with this hypothesis, mutation of glutamate 569 is shown to be lethal. An acidic belt and a second area in the C terminus containing residues from the AA boxes are important for binding to eIF2. Two mutations causing the fatal human genetic disease leukoencephalopathy with vanishing white matter are buried and appear to disrupt the structural integrity of the catalytic domain rather than interfering directly with catalysis or binding of eIF2.
Collapse
Affiliation(s)
- Thomas Boesen
- Department of Molecular Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
69
|
Nielsen KH, Szamecz B, Valášek L, Jivotovskaya A, Shin BS, Hinnebusch AG. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control. EMBO J 2004; 23:1166-77. [PMID: 14976554 PMCID: PMC380973 DOI: 10.1038/sj.emboj.7600116] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 01/13/2004] [Indexed: 11/09/2022] Open
Abstract
The binding of eIF2-GTP-tRNA(i)(Met) ternary complex (TC) to 40S subunits is impaired in yeast prt1-1 (eIF3b) mutant extracts, but evidence is lacking that TC recruitment is a critical function of eIF3 in vivo. If TC binding was rate-limiting in prt1-1 cells, overexpressing TC should suppress the temperature-sensitive phenotype and GCN4 translation should be strongly derepressed in this mutant, but neither was observed. Rather, GCN4 translation is noninducible in prt1-1 cells, and genetic analysis indicates defective ribosomal scanning between the upstream open reading frames that mediate translational control. prt1-1 cells also show reduced utilization of a near-cognate start codon, implicating eIF3 in AUG selection. Using in vivo cross-linking, we observed accumulation of TC and mRNA/eIF4G on 40S subunits and a 48S 'halfmer' in prt1-1 cells. Genetic evidence suggests that 40S-60S subunit joining is not rate-limiting in the prt1-1 mutant. Thus, eIF3b functions between 48S assembly and subunit joining to influence AUG recognition and reinitiation on GCN4 mRNA. Other mutations that disrupt eIF2-eIF3 contacts in the multifactor complex (MFC) diminished 40S-bound TC, indicating that MFC formation enhances 43S assembly in vivo.
Collapse
Affiliation(s)
- Klaus H Nielsen
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Béla Szamecz
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Leoš Valášek
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Antonina Jivotovskaya
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD, USA
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Building 6A/Room B1A-13, Bethesda, MD 20892-2716, USA. Tel.: +1 301 496 4480; Fax: +1 301 496 6828; E-mail:
| |
Collapse
|
70
|
Pöyry TAA, Kaminski A, Jackson RJ. What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame? Genes Dev 2003; 18:62-75. [PMID: 14701882 PMCID: PMC314277 DOI: 10.1101/gad.276504] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
If the 5'-proximal AUG triplet in a mammalian mRNA is followed by a short open reading frame (sORF), a significant fraction of ribosomes resume scanning after termination of sORF translation, and reinitiate at a downstream AUG. To examine the underlying mechanism, we examined reinitiation in vitro using a series of mRNAs that differed only in the 5'-untranslated region (UTR). Efficient reinitiation was found to occur only if the eIF4F complex, or at a minimum the central one-third fragment of eIF4G, participated in the primary initiation event at the sORF initiation codon. It did not occur, however, when sORF translation was driven by the classical swine fever virus or cricket paralysis virus internal ribosome entry sites (IRESs), which do not use eIF4A, 4B, 4E, or 4G. A critical test was provided by an mRNA with an unstructured 5'-UTR, which is translated by scanning but does not absolutely need eIF4G and eIF4A: There was efficient reinitiation in a standard reticulocyte lysate, when initiation would be largely driven by eIF4F, but no reinitiation in an eIF4G-depleted lysate. These results suggest that resumption of scanning may depend on the interaction between eIF4F (or the eIF4G central domain) and the ribosome being maintained while the ribosome translates the sORF.
Collapse
Affiliation(s)
- Tuija A A Pöyry
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | |
Collapse
|
71
|
Roll-Mecak A, Alone P, Cao C, Dever TE, Burley SK. X-ray structure of translation initiation factor eIF2gamma: implications for tRNA and eIF2alpha binding. J Biol Chem 2003; 279:10634-42. [PMID: 14688270 DOI: 10.1074/jbc.m310418200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The x-ray structure of the gamma-subunit of the heterotrimeric translation initiation factor eIF2 has been determined to 2.4-A resolution. eIF2 is a GTPase that delivers the initiator Met-tRNA to the P site on the small ribosomal subunit during a rate-limiting initiation step in translation. The structure of eIF2gamma closely resembles that of EF1A.GTP, consisting of an N-terminal G domain followed by two beta-barrels arranged in a closed configuration with domain II packed against the G domain in the vicinity of the Switch regions. The G domain of eIF2gamma has an unusual zinc ribbon motif, not previously found in other GTPases. Structure-based site-directed mutagenesis was used to identify two adjacent features on the surface of eIF2gamma that bind the alpha-subunit and Met-tRNA(i)(Met), respectively. These structural, biochemical, and genetic results provide new insights into eIF2 ternary complex assembly.
Collapse
Affiliation(s)
- Antonina Roll-Mecak
- Laboratories of Molecular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
72
|
Jan E, Thompson SR, Wilson JE, Pestova TV, Hellen CU, Sarnow P. Initiator Met-tRNA-independent translation mediated by an internal ribosome entry site element in cricket paralysis virus-like insect viruses. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:285-92. [PMID: 12762030 DOI: 10.1101/sqb.2001.66.285] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- E Jan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
73
|
Kumar R, Krause GS, Yoshida H, Mori K, DeGracia DJ. Dysfunction of the unfolded protein response during global brain ischemia and reperfusion. J Cereb Blood Flow Metab 2003; 23:462-71. [PMID: 12679723 DOI: 10.1097/01.wcb.0000056064.25434.ca] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A variety of endoplasmic reticulum (ER) stresses trigger the unfolded protein response (UPR), a compensatory response whose most proximal sensors are the ER membrane-bound proteins ATF6, IRE1alpha, and PERK. The authors simultaneously examined the activation of ATF6, IRE1alpha, and PERK, as well as components of downstream UPR pathways, in the rat brain after reperfusion after a 10-minute cardiac arrest. Although ATF6 was not activated, PERK was maximally activated at 10-minute reperfusion, which correlated with maximal eIF2alpha phosphorylation and protein synthesis inhibition. By 4-h reperfusion, there was 80% loss of PERK immunostaining in cortex and 50% loss in brain stem and hippocampus. PERK was degraded in vitro by mu-calpain. Although inactive IRE1alpha was maximally decreased by 90-minute reperfusion, there was no evidence that its substrate xbp-1 messenger RNA had been processed by removal of a 26-nt sequence. Similarly, there was no expression of the UPR effector proteins 55-kd XBP-1, CHOP, or ATF4. These data indicate that there is dysfunction in several key components of the UPR that abrogate the effects of ER stress. In other systems, failure to mount the UPR results in increased cell death. As other studies have shown evidence for ER stress after brain ischemia and reperfusion, the failure of the UPR may play a significant role in reperfusion neuronal death.
Collapse
Affiliation(s)
- Rita Kumar
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, U.S.A
| | | | | | | | | |
Collapse
|
74
|
Olsen DS, Savner EM, Mathew A, Zhang F, Krishnamoorthy T, Phan L, Hinnebusch AG. Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J 2003; 22:193-204. [PMID: 12514125 PMCID: PMC140105 DOI: 10.1093/emboj/cdg030] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Translation initiation factor 1A (eIF1A) is predicted to bind in the decoding site of the 40S ribosome and has been implicated in recruitment of the eIF2-GTP-Met-tRNA i Met ternary complex (TC) and ribosomal scanning. We show that the unstructured C-terminus of eIF1A interacts with the C-terminus of eIF5B, a factor that stimulates 40S-60S subunit joining, and removal of this domain of eIF1A diminishes translation initiation in vivo. These findings support the idea that eIF1A-eIF5B association is instrumental in releasing eIF1A from the ribosome after subunit joining. A larger C-terminal truncation that removes a 3(10) helix in eIF1A deregulates GCN4 translation in a manner suppressed by overexpressing TC, implicating eIF1A in TC binding to 40S ribosomes in vivo. The unstructured N-terminus of eIF1A interacts with eIF2 and eIF3 and is required at low temperatures for a step following TC recruitment. We propose a modular organization for eIF1A wherein a core ribosome-binding domain is flanked by flexible segments that mediate interactions with other factors involved in recruitment of TC and release of eIF1A at subunit joining.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|
75
|
Gomez E, Mohammad SS, Pavitt GD. Characterization of the minimal catalytic domain within eIF2B: the guanine-nucleotide exchange factor for translation initiation. EMBO J 2002; 21:5292-301. [PMID: 12356745 PMCID: PMC129037 DOI: 10.1093/emboj/cdf515] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For protein synthesis initiation in eukaryotes, eIF2B is the guanine-nucleotide exchange factor for eIF2. eIF2B is an essential multi-subunit factor and a major target for translational control in both yeast and mammalian cells. It was shown previously that the largest eIF2B subunit, eIF2Bepsilon, is the only single subunit with catalytic function. Here we report the results of a molecular dissection of the yeast epsilon subunit encoded by GCD6 in which we have identified the catalytic domain. By analysis of a series of N-terminal deletions in vitro we find that the smallest catalytically active fragment contains residues 518-712 (termed Gcd6p(518-712)). Further deletion to position 581 (Gcd6p(581-712)) results in loss of nucleotide exchange function, but eIF2-binding activity is retained. C- terminal deletion of only 61 residues (Gcd6p(1-651)) results in loss of both functions. Thus Gcd6p(518-712) contains two regions that together constitute the catalytic domain of eIF2B. Finally, we show that the catalytic domain can provide eIF2B biological function in vivo when elevated levels eIF2 and tRNA(i)(Met) are also present.
Collapse
Affiliation(s)
- Edith Gomez
- Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK
Present address: Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK Corresponding author e-mail:
| | | | - Graham D. Pavitt
- Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK
Present address: Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK Corresponding author e-mail:
| |
Collapse
|
76
|
Ramesh V, Köhrer C, RajBhandary UL. Expression of Escherichia coli methionyl-tRNA formyltransferase in Saccharomyces cerevisiae leads to formylation of the cytoplasmic initiator tRNA and possibly to initiation of protein synthesis with formylmethionine. Mol Cell Biol 2002; 22:5434-42. [PMID: 12101237 PMCID: PMC133937 DOI: 10.1128/mcb.22.15.5434-5442.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein synthesis in eukaryotic cytoplasm and in archaebacteria is initiated with methionine, whereas, that in eubacteria and in eukaryotic organelles, such as mitochondria and chloroplasts, is initiated with formylmethionine. In view of this clear distinction, we have investigated whether protein synthesis in the eukaryotic cytoplasm can be initiated with formylmethionine, and, if so, what the consequences are to the cell. For this purpose, we have expressed in an inducible manner the Escherichia coli methionyl-tRNA formyltransferase (MTF) in the cytoplasm of the yeast Saccharomyces cerevisiae. Expression of active MTF, but not of an inactive mutant, leads to formylation of methionine attached to the yeast cytoplasmic initiator tRNA to the extent of about 70%. As a consequence, the yeast strain grows slowly. Coexpression of the E. coli polypeptide deformylase (DEF), which removes the formyl group from the N-terminal formylmethionine in a polypeptide, rescues the slow-growth phenotype, whereas, coexpression of an inactive mutant of DEF does not. These results suggest that the cytoplasmic protein-synthesizing system of yeast, like that of eubacteria, can at least to some extent utilize formylated initiator Met-tRNA to initiate protein synthesis and that initiation of proteins with formylmethionine leads to the slow-growth phenotype. Removal of the formyl group in these proteins by DEF would explain the rescue of the slow-growth phenotype.
Collapse
Affiliation(s)
- Vaidyanathan Ramesh
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
77
|
DeGracia DJ, Kumar R, Owen CR, Krause GS, White BC. Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab 2002; 22:127-41. [PMID: 11823711 DOI: 10.1097/00004647-200202000-00001] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein synthesis inhibition occurs in neurons immediately on reperfusion after ischemia and involves at least alterations in eukaryotic initiation factors 2 (eIF2) and 4 (eIF4). Phosphorylation of the alpha subunit of eIF2 [eIF2(alphaP)] by the endoplasmic reticulum transmembrane eIF2alpha kinase PERK occurs immediately on reperfusion and inhibits translation initiation. PERK activation, along with depletion of endoplasmic reticulum Ca2+ and inhibition of the endoplasmic reticulum Ca2+ -ATPase, SERCA2b, indicate that an endoplasmic reticulum unfolded protein response occurs as a consequence of brain ischemia and reperfusion. In mammals, the upstream unfolded protein response components PERK, IRE1, and ATF6 activate prosurvivial mechanisms (e.g., transcription of GRP78, PDI, SERCA2b ) and proapoptotic mechanisms (i.e., activation of Jun N-terminal kinases, caspase-12, and CHOP transcription). Sustained eIF2(alphaP) is proapoptotic by inducing the synthesis of ATF4, the CHOP transcription factor, through "bypass scanning" of 5' upstream open-reading frames in ATF4 messenger RNA; these upstream open-reading frames normally inhibit access to the ATF4 coding sequence. Brain ischemia and reperfusion also induce mu-calpain-mediated or caspase-3-mediated proteolysis of eIF4G, which shifts message selection to m 7 G-cap-independent translation initiation of messenger RNAs containing internal ribosome entry sites. This internal ribosome entry site-mediated translation initiation (i.e., for apoptosis-activating factor-1 and death-associated protein-5) can also promote apoptosis. Thus, alterations in eIF2 and eIF4 have major implications for which messenger RNAs are translated by residual protein synthesis in neurons during brain reperfusion, in turn constraining protein expression of changes in gene transcription induced by ischemia and reperfusion. Therefore, our current understanding shifts the focus from protein synthesis inhibition to the molecular pathways that underlie this inhibition, and the role that these pathways play in prosurvival and proapoptotic processes that may be differentially expressed in vulnerable and resistant regions of the reperfused brain.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
78
|
Ashe MP, Slaven JW, De Long SK, Ibrahimo S, Sachs AB. A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols. EMBO J 2001; 20:6464-74. [PMID: 11707417 PMCID: PMC125737 DOI: 10.1093/emboj/20.22.6464] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fusel alcohols are natural products of amino acid catabolism in the yeast Saccharomyces cerevisiae that cause morphological changes similar to those seen during pseudohyphal growth. We have discovered that certain of these alcohols, including butanol and isoamyl alcohol, bring about a rapid inhibition of translation at the initiation step. This inhibition is strain specific and is not explained by previously described translational control pathways. Using genetic mapping, we have identified a proline to serine allelic variation at amino acid 180 of the GCD1 gene product as the genetic locus that allows translational regulation upon butanol addition. Gcd1p forms part of the eIF2B guanine nucleotide complex that is responsible for recycling eIF2-GDP to eIF2-GTP. This represents one of the key limiting steps of translation initiation and we provide evidence that fusel alcohols target eIF2B in order to bring about translational regulation.
Collapse
Affiliation(s)
- Mark P. Ashe
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK and
Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | | | - Susan K. De Long
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK and
Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | | | - Alan B. Sachs
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK and
Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| |
Collapse
|
79
|
Hinnebusch AG. Unleashing yeast genetics on a factor-independent mechanism of internal translation initiation. Proc Natl Acad Sci U S A 2001; 98:12866-8. [PMID: 11698676 PMCID: PMC60786 DOI: 10.1073/pnas.241517998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- A G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
80
|
Thompson SR, Gulyas KD, Sarnow P. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc Natl Acad Sci U S A 2001; 98:12972-7. [PMID: 11687653 PMCID: PMC60809 DOI: 10.1073/pnas.241286698] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Internal initiation of translation can be mediated by specific internal ribosome entry site (IRES) elements that are located in certain mammalian and viral mRNA molecules. Thus far, these mammalian cellular and viral IRES elements have not been shown to function in the yeast Saccharomyces cerevisiae. We report here that a recently discovered IRES located in the genome of cricket paralysis virus can direct the efficient translation of a second URA3 cistron in dicistronic mRNAs in S. cerevisiae, thereby conferring uracil-independent growth. Curiously, the IRES functions poorly in wild-type yeast but functions efficiently either in the presence of constitutive expression of the eIF2 kinase GCN2 or in cells that have two initiator tRNA(met) genes disrupted. Both of these conditions have been shown to lower the amounts of ternary eIF2-GTP/initiator tRNA(met) complexes. Furthermore, tRNA(met)-independent initiation was also observed in translation-competent extracts prepared from S. cerevisiae in the presence of edeine, a compound that has been shown to interfere with start codon recognition by ribosomal subunits carrying ternary complexes. Therefore, the cricket paralysis virus IRES is likely to recruit ribosomes by internal initiation in S. cerevisiae in the absence of eIF2 and initiator tRNA(met), by the same mechanism of factor-independent ribosome recruitment used in mammalian cells. These findings will allow the use of yeast genetics to determine the mechanism of internal ribosome entry.
Collapse
Affiliation(s)
- S R Thompson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
81
|
Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 2001; 21:5018-30. [PMID: 11438658 PMCID: PMC87228 DOI: 10.1128/mcb.21.15.5018-5030.2001] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNA(Met) to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its alpha subunit [eIF2(alphaP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the alpha subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2alpha (glutathione S-transferase [GST]-SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(alphaP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(alphaP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(alphaP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the beta and gamma subunits of eIF2 in the manner required for GDP-GTP exchange.
Collapse
Affiliation(s)
- T Krishnamoorthy
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
82
|
Erickson FL, Nika J, Rippel S, Hannig EM. Minimum requirements for the function of eukaryotic translation initiation factor 2. Genetics 2001; 158:123-32. [PMID: 11333223 PMCID: PMC1461651 DOI: 10.1093/genetics/158.1.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic translation initiation factor 2 (eIF2) is a G protein heterotrimer required for GTP-dependent delivery of initiator tRNA to the ribosome. eIF2B, the nucleotide exchange factor for eIF2, is a heteropentamer that, in yeast, is encoded by four essential genes and one nonessential gene. We found that increased levels of wild-type eIF2, in the presence of sufficient levels of initiator tRNA, overcome the requirement for eIF2B in vivo. Consistent with bypassing eIF2B, these conditions also suppress the lethal effect of overexpressing the mammalian tumor suppressor PKR, an eIF2alpha kinase. The effects described are further enhanced in the presence of a mutation in the G protein (gamma) subunit of eIF2, gcd11-K250R, which mimics the function of eIF2B in vitro. Interestingly, the same conditions that bypass eIF2B also overcome the requirement for the normally essential eIF2alpha structural gene (SUI2). Our results suggest that the eIF2betagamma complex is capable of carrying out the essential function(s) of eIF2 in the absence of eIF2alpha and eIF2B and are consistent with the idea that the latter function primarily to regulate the level of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes in vivo.
Collapse
Affiliation(s)
- F L Erickson
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
83
|
Nika J, Rippel S, Hannig EM. Biochemical analysis of the eIF2beta gamma complex reveals a structural function for eIF2alpha in catalyzed nucleotide exchange. J Biol Chem 2001; 276:1051-6. [PMID: 11042214 DOI: 10.1074/jbc.m007398200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor eIF2 is a heterotrimer that binds and delivers Met-tRNA(i)(Met) to the 40 S ribosomal subunit in a GTP-dependent manner. Initiation requires hydrolysis of eIF2-bound GTP, which releases an eIF2.GDP complex that is recycled to the GTP form by the nucleotide exchange factor eIF2B. The alpha-subunit of eIF2 plays a critical role in regulating nucleotide exchange via phosphorylation at serine 51, which converts eIF2 into a competitive inhibitor of the eIF2B-catalyzed exchange reaction. We purified a form of eIF2 (eIF2betagamma) completely devoid of the alpha-subunit to further study the role of eIF2alpha in eIF2 function. These studies utilized a yeast strain genetically altered to bypass a deletion of the normally essential eIF2alpha structural gene (SUI2). Removal of the alpha-subunit did not appear to significantly alter binding of guanine nucleotide or Met-tRNA(i)(Met) ligands by eIF2 in vitro. Qualitative assays to detect 43 S initiation complex formation and eIF5-dependent GTP hydrolysis revealed no differences between eIF2betagamma and the wild-type eIF2 heterotrimer. However, steady-state kinetic analysis of eIF2B-catalyzed nucleotide exchange revealed that the absence of the alpha-subunit increased K(m) for eIF2betagamma.GDP by an order of magnitude, with a smaller increase in V(max). These data indicate that eIF2alpha is required for structural interactions between eIF2 and eIF2B that promote wild-type rates of nucleotide exchange. We suggest that this function contributes to the ability of the alpha-subunit to control the rate of nucleotide exchange through reversible phosphorylation.
Collapse
Affiliation(s)
- J Nika
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083, USA
| | | | | |
Collapse
|
84
|
Chang LY, Yang WY, Roth D. Functional complementation by wheat eIF2alpha in the yeast GCN2-mediated pathway. Biochem Biophys Res Commun 2000; 279:468-74. [PMID: 11118310 DOI: 10.1006/bbrc.2000.3964] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational control by specific eIF2alpha phosphorylation on serine 51 has been characterized in all eukaryotes with the significant exception of plants. In order to evaluate the capability of plant eIF2alpha to functionally control translation, the wild type (51S) and a nonphosphorylatable mutant (51A) of wheat eIF2alpha were expressed in a yeast genetic system. Expression of either wheat protein did not handicap growth under conditions that repress the eIF2alpha phosphorylation pathway. However, under conditions that induce specific eIF2alpha phosphorylation only strains expressing wheat 51S were able to grow between 2 and 4 days. Growth was dependent upon activity of yeast eIF2alpha kinase GCN2 and resulted in the increased translation of GCN4. The association between plant eIF2alpha and yeast eIF2B is supported by their specific coimmunoprecipitation from transgenic yeast cells. These data support the similarity among eukaryotic translational initiation processes and strengthen the concept that plants may contain an eIF2alpha phosphorylation pathway.
Collapse
Affiliation(s)
- L Y Chang
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, 82071-3944, USA
| | | | | |
Collapse
|
85
|
White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179:1-33. [PMID: 11054482 DOI: 10.1016/s0022-510x(00)00386-5] [Citation(s) in RCA: 600] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain ischemia and reperfusion engage multiple independently-fatal terminal pathways involving loss of membrane integrity in partitioning ions, progressive proteolysis, and inability to check these processes because of loss of general translation competence and reduced survival signal-transduction. Ischemia results in rapid loss of high-energy phosphate compounds and generalized depolarization, which induces release of glutamate and, in selectively vulnerable neurons (SVNs), opening of both voltage-dependent and glutamate-regulated calcium channels. This allows a large increase in cytosolic Ca(2+) associated with activation of mu-calpain, calcineurin, and phospholipases with consequent proteolysis of calpain substrates (including spectrin and eIF4G), activation of NOS and potentially of Bad, and accumulation of free arachidonic acid, which can induce depletion of Ca(2+) from the ER lumen. A kinase that shuts off translation initiation by phosphorylating the alpha-subunit of eukaryotic initiation factor-2 (eIF2alpha) is activated either by adenosine degradation products or depletion of ER lumenal Ca(2+). Early during reperfusion, oxidative metabolism of arachidonate causes a burst of excess oxygen radicals, iron is released from storage proteins by superoxide-mediated reduction, and NO is generated. These events result in peroxynitrite generation, inappropriate protein nitrosylation, and lipid peroxidation, which ultrastructurally appears to principally damage the plasmalemma of SVNs. The initial recovery of ATP supports very rapid eIF2alpha phosphorylation that in SVNs is prolonged and associated with a major reduction in protein synthesis. High catecholamine levels induced by the ischemic episode itself and/or drug administration down-regulate insulin secretion and induce inhibition of growth-factor receptor tyrosine kinase activity, effects associated with down-regulation of survival signal-transduction through the Ras pathway. Caspase activation occurs during the early hours of reperfusion following mitochondrial release of caspase 9 and cytochrome c. The SVNs find themselves with substantial membrane damage, calpain-mediated proteolytic degradation of eIF4G and cytoskeletal proteins, altered translation initiation mechanisms that substantially reduce total protein synthesis and impose major alterations in message selection, down-regulated survival signal-transduction, and caspase activation. This picture argues powerfully that, for therapy of brain ischemia and reperfusion, the concept of single drug intervention (which has characterized the approaches of basic research, the pharmaceutical industry, and clinical trials) cannot be effective. Although rigorous study of multi-drug protocols is very demanding, effective therapy is likely to require (1) peptide growth factors for early activation of survival-signaling pathways and recovery of translation competence, (2) inhibition of lipid peroxidation, (3) inhibition of calpain, and (4) caspase inhibition. Examination of such protocols will require not only characterization of functional and histopathologic outcome, but also study of biochemical markers of the injury processes to establish the role of each drug.
Collapse
Affiliation(s)
- B C White
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Nika J, Yang W, Pavitt GD, Hinnebusch AG, Hannig EM. Purification and kinetic analysis of eIF2B from Saccharomyces cerevisiae. J Biol Chem 2000; 275:26011-7. [PMID: 10852917 DOI: 10.1074/jbc.m003718200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is the heteropentameric guanine nucleotide exchange factor for translation initiation factor 2 (eIF2). Recent studies in the yeast Saccharomyces cerevisiae have served to characterize genetically the exchange factor. However, enzyme kinetic studies of the yeast enzyme have been hindered by the lack of sufficient quantities of protein suitable for biochemical analysis. We have purified yeast eIF2B and characterized its catalytic properties in vitro. Values for K(m) and V(max) were determined to be 12.2 nm and 250.7 fmol/min, respectively, at 0 degrees C. The calculated turnover number (K(cat)) of 43.2 pmol of GDP released per min/pmol of eIF2B at 30 degrees C is approximately 1 order of magnitude lower than values previously reported for the mammalian factor. Reciprocal plots at varying fixed concentrations of the second substrate were linear and intersected to the left of the y axis. This is consistent with a sequential catalytic mechanism and argues against a ping-pong mechanism similar to that proposed for EF-Tu/EF-Ts. In support of this model, our yeast eIF2B preparations bind guanine nucleotides, with an apparent dissociation constant for GTP in the low micromolar range.
Collapse
Affiliation(s)
- J Nika
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | |
Collapse
|
87
|
Gomez E, Pavitt GD. Identification of domains and residues within the epsilon subunit of eukaryotic translation initiation factor 2B (eIF2Bepsilon) required for guanine nucleotide exchange reveals a novel activation function promoted by eIF2B complex formation. Mol Cell Biol 2000; 20:3965-76. [PMID: 10805739 PMCID: PMC85753 DOI: 10.1128/mcb.20.11.3965-3976.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2000] [Accepted: 03/15/2000] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is the guanine nucleotide exchange factor for protein synthesis initiation factor 2 (eIF2). Composed of five subunits, it converts eIF2 from a GDP-bound form to the active eIF2-GTP complex. This is a regulatory step of translation initiation. In vitro, eIF2B catalytic function can be provided by the largest (epsilon) subunit alone (eIF2Bepsilon). This activity is stimulated by complex formation with the other eIF2B subunits. We have analyzed the roles of different regions of eIF2Bepsilon in catalysis, in eIF2B complex formation, and in binding to eIF2 by characterizing mutations in the Saccharomyces cerevisiae gene encoding eIF2Bepsilon (GCD6) that impair the essential function of eIF2B. Our analysis of nonsense mutations indicates that the C terminus of eIF2Bepsilon (residues 518 to 712) is required for both catalytic activity and interaction with eIF2. In addition, missense mutations within this region impair the catalytic activity of eIF2Bepsilon without affecting its ability to bind eIF2. Internal, in-frame deletions within the N-terminal half of eIF2Bepsilon disrupt eIF2B complex formation without affecting the nucleotide exchange activity of eIF2Bepsilon alone. Finally, missense mutations identified within this region do not affect the catalytic activity of eIF2Bepsilon alone or its interactions with the other eIF2B subunits or with eIF2. Instead, these missense mutations act indirectly by impairing the enhancement of the rate of nucleotide exchange that results from complex formation between eIF2Bepsilon and the other eIF2B subunits. This suggests that the N-terminal region of eIF2Bepsilon is an activation domain that responds to eIF2B complex formation.
Collapse
Affiliation(s)
- E Gomez
- Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
88
|
Qiu H, Hu C, Anderson J, Björk GR, Sarkar S, Hopper AK, Hinnebusch AG. Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 2000; 20:2505-16. [PMID: 10713174 PMCID: PMC85456 DOI: 10.1128/mcb.20.7.2505-2516.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 12/30/1999] [Indexed: 11/20/2022] Open
Abstract
Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNA(Met) binding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNA(AAC)(Val) (tRNA(Val*)) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded by PUS4 also leads to translational derepression of GCN4 (Gcd(-) phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd(-) phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate that PUS4 overexpression did not diminish functional initiator tRNA(Met) levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd(-) phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5'-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNA(Tyr) that cannot be processed by RNase P had a Gcd(-) phenotype. Interestingly, the Gcd(-) phenotype of hcPUS4 also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Delta cells have a Gcd(-) phenotype. Overproduced PUS4 appears to impede 5'-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNA(Val*) showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNA(Met) binding to the ribosome.
Collapse
Affiliation(s)
- H Qiu
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Ubeda M, Schmitt-Ney M, Ferrer J, Habener JF. CHOP/GADD153 and methionyl-tRNA synthetase (MetRS) genes overlap in a conserved region that controls mRNA stability. Biochem Biophys Res Commun 1999; 262:31-8. [PMID: 10448063 DOI: 10.1006/bbrc.1999.1140] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription factor CHOP is involved in the regulation of the cell division cycle and the control of programmed cell death in response to cellular stress. CHOP expression has been linked with several forms of cancer. A reciprocal translocation between the CHOP and TLS RNA-binding protein gene results in myxoid liposarcoma and amplifications of the CHOP gene are associated with solid tumors including several types of sarcomas. Here we report the mapping of the methionyl tRNA synthetase (MetRS) gene to the identical 12q13 locus where the CHOP gene had previously been mapped. PCR analysis demonstrates a tail-to-tail overlap of both genes over a 55-bp region. As a result the two mRNAs share a 3' UTR complementary sequence allowing an in vivo interaction between the two mRNAs. An AU-rich regulatory element (ARE) known to control mRNA stability resides in the overlapping sequence. To test for functional significance of the ARE a luciferase reporter plasmid containing the 3'UTR of CHOP was constructed. Transfection experiments in NIH-3T3 cells show that CHOP 3'UTR confers a significantly lower activity than a control reporter or a reporter in which the region overlapping the MetRS mRNA is deleted. The conservation of this overlapping of the CHOP and MetRS genes and the role of their complementary sequence in the control of mRNA stability suggest the existence of a functional link between the expression of these two genes.
Collapse
Affiliation(s)
- M Ubeda
- Massachusetts General Hospital, Howard Hughes Medical Institute, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
90
|
O'Neil BJ, McKeown TR, DeGracia DJ, Alousi SS, Rafols JA, White BC. Cell death, calcium mobilization, and immunostaining for phosphorylated eukaryotic initiation factor 2-alpha (eIF2alpha) in neuronally differentiated NB-104 cells: arachidonate and radical-mediated injury mechanisms. Resuscitation 1999; 41:71-83. [PMID: 10459595 DOI: 10.1016/s0300-9572(99)00028-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
These experiments examine the effects of arachidonate with respect to cell death, radical-mediated injury, Ca2+ mobilization, and formation of ser-51-phosphorylated eukaryotic initiation factor 2alpha [eIF2alpha(P)]. It is known that during brain ischemia the concentration of free arachidonate can reach 180 microM, and during reperfusion oxidative metabolism of arachidonate leads to generation of superoxide that can reduce stored ferric iron and promote lipid peroxidation. During early brain reperfusion, we have shown an approximately 20-fold increase in eIF2alpha(P) which maps to vulnerable neurons that display inhibition of protein synthesis. Here in neuronally differentiated NB-104 cells, equivalent cell death (assessed by LDH release) was induced by 40 microM arachidonate and 20 microM cumene hydroperoxide (CumOOH, a known alkoxyl radical generator). In these injury models (1) radical inhibitors (BHA, BHT, and the lipophilic iron chelator EMHP) block CumOOH-induced cell death but do not block arachidonate-induced death; (2) 40 microM arachidonate (but not up to 40 microM CumOOH) rapidly induces Ca2+ release from intracellular stores; (3) both 40 microM arachidonate and 20 microM CumOOH induce intense immunostaining for eIF2alpha(P); and (4) the elF2alpha(P) immunostaining induced by CumOOH but not that induced by arachidonate is completely blocked by anti-radical intervention with EMHP. Arachidonate-induced formation of eIF2alpha(P) and cell death do not require iron-mediated radical mechanisms and are associated with Ca2+ release from intracellular stores; however, radical-mediated injury also induces both eIF2alpha(P) and cell death without release of intracellular Ca2+. Our data link eIF2alpha(P) formation during brain reperfusion to two established injury mechanisms that may operate concurrently.
Collapse
Affiliation(s)
- B J O'Neil
- Department of Emergency Medicine, Wayne State University School of Medicine, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Calvo O, Cuesta R, Anderson J, Gutiérrez N, García-Barrio MT, Hinnebusch AG, Tamame M. GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:4167-81. [PMID: 10330157 PMCID: PMC104376 DOI: 10.1128/mcb.19.6.4167] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gcd10p and Gcd14p were first identified genetically as repressors of GCN4 mRNA translation in Saccharomyces cerevisiae. Recent findings indicate that Gcd10p and Gcd14p reside in a nuclear complex required for the presence of 1-methyladenosine in tRNAs. Here we show that Gcd14p is an essential protein with predicted binding motifs for S-adenosylmethionine, consistent with a direct function in tRNA methylation. Two different gcd14 mutants exhibit defects in cell growth and accumulate high levels of initiator methionyl-tRNA (tRNAiMet) precursors containing 5' and 3' extensions, suggesting a defect in processing of the primary transcript. Dosage suppressors of gcd10 mutations, encoding tRNAiMet (hcIMT1 to hcIMT4; hc indicates that the gene is carried on a high-copy-number plasmid) or a homologue of human La protein implicated in tRNA 3'-end formation (hcLHP1), also suppressed gcd14 mutations. In fact, the lethality of a GCD14 deletion was suppressed by hcIMT4, indicating that the essential function of Gcd14p is required for biogenesis of tRNAiMet. A mutation in GCD10 or deletion of LHP1 exacerbated the defects in cell growth and expression of mature tRNAiMet in gcd14 mutants, consistent with functional interactions between Gcd14p, Gcd10p, and Lhp1p in vivo. Surprisingly, the amounts of NME1 and RPR1, the RNA components of RNases P and MRP, were substantially lower in gcd14 lhp1::LEU2 double mutants than in the corresponding single mutants, whereas 5S rRNA was present at wild-type levels. Our findings suggest that Gcd14p and Lhp1p cooperate in the maturation of a subset of RNA polymerase III transcripts.
Collapse
Affiliation(s)
- O Calvo
- Instituto de Microbiología Bioquímica del CSIC/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
92
|
Asano K, Krishnamoorthy T, Phan L, Pavitt GD, Hinnebusch AG. Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J 1999; 18:1673-88. [PMID: 10075937 PMCID: PMC1171254 DOI: 10.1093/emboj/18.6.1673] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the initiation phase of eukaryotic translation, eIF5 stimulates the hydrolysis of GTP bound to eIF2 in the 40S ribosomal pre-initiation complex, and the resultant GDP on eIF2 is replaced with GTP by the complex nucleotide exchange factor, eIF2B. Bipartite motifs rich in aromatic and acidic residues are conserved at the C-termini of eIF5 and the catalytic (epsilon) subunit of eIF2B. Here we show that these bipartite motifs are important for the binding of these factors, both in vitro and in vivo, to the beta subunit of their common substrate eIF2. We also find that three lysine-rich boxes in the N-terminal segment of eIF2beta mediate the binding of eIF2 to both eIF5 and eIF2B. Thus, eIF5 and eIF2Bepsilon employ the same sequence motif to facilitate interaction with the same segment of their common substrate. In agreement with this, archaea appear to lack eIF5, eIF2B and the lysine-rich binding domain for these factors in their eIF2beta homolog. The eIF5 bipartite motif is also important for its interaction with the eIF3 complex through the NIP1-encoded subunit of eIF3. Thus, the bipartite motif in eIF5 appears to be multifunctional, stimulating its recruitment to the 40S pre-initiation complex through interaction with eIF3 in addition to binding of its substrate eIF2.
Collapse
Affiliation(s)
- K Asano
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
93
|
Anderson J, Phan L, Cuesta R, Carlson BA, Pak M, Asano K, Björk GR, Tamame M, Hinnebusch AG. The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev 1998; 12:3650-62. [PMID: 9851972 PMCID: PMC317256 DOI: 10.1101/gad.12.23.3650] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/1998] [Accepted: 10/09/1998] [Indexed: 11/25/2022]
Abstract
Gcd10p and Gcd14p are essential proteins required for the initiation of protein synthesis and translational repression of GCN4 mRNA. The phenotypes of gcd10 mutants were suppressed by high-copy-number IMT genes, encoding initiator methionyl tRNA (tRNAiMet), or LHP1, encoding the yeast homolog of the human La autoantigen. The gcd10-504 mutation led to a reduction in steady-state levels of mature tRNAiMet, attributable to increased turnover rather than decreased synthesis of pre-tRNAiMet. Remarkably, the lethality of a GCD10 deletion was suppressed by high-copy-number IMT4, indicating that its role in expression of mature tRNAiMet is the essential function of Gcd10p. A gcd14-2 mutant also showed reduced amounts of mature tRNAiMet, but in addition, displayed a defect in pre-tRNAiMet processing. Gcd10p and Gcd14p were found to be subunits of a protein complex with prominent nuclear localization, suggesting a direct role in tRNAiMet maturation. The chromatographic behavior of elongator and initiator tRNAMet on a RPC-5 column indicated that both species are altered structurally in gcd10Delta cells, and analysis of base modifications revealed that 1-methyladenosine (m1A) is undetectable in gcd10Delta tRNA. Interestingly, gcd10 and gcd14 mutations had no effect on processing or accumulation of elongator tRNAMet, which also contains m1A at position 58, suggesting a unique requirement for this base modification in initiator maturation.
Collapse
Affiliation(s)
- J Anderson
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
95
|
Greenberg JR, Phan L, Gu Z, deSilva A, Apolito C, Sherman F, Hinnebusch AG, Goldfarb DS. Nip1p associates with 40 S ribosomes and the Prt1p subunit of eukaryotic initiation factor 3 and is required for efficient translation initiation. J Biol Chem 1998; 273:23485-94. [PMID: 9722586 DOI: 10.1074/jbc.273.36.23485] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nip1p is an essential Saccharomyces cerevisiae protein that was identified in a screen for temperature conditional (ts) mutants exhibiting defects in nuclear transport. New results indicate that Nip1p has a primary role in translation initiation. Polysome profiles indicate that cells depleted of Nip1p and nip1-1 cells are defective in translation initiation, a conclusion that is supported by a reduced rate of protein synthesis in Nip1p-depleted cells. Nip1p cosediments with free 40 S ribosomal subunits and polysomal preinitiation complexes, but not with free or elongating 80 S ribosomes or 60 S subunits. Nip1p can be isolated in an about 670-kDa complex containing polyhistidine-tagged Prt1p, a subunit of translation initiation factor 3, by binding to Ni2+-NTA-agarose beads in a manner completely dependent on the tagged form of Prt1p. The nip1-1 ts growth defect was suppressed by the deletion of the ribosomal protein, RPL46. Also, nip1-1 mutant cells are hypersensitive to paromomycin. These results suggest that Nip1p is a subunit of eukaryotic initiation factor 3 required for efficient translation initiation.
Collapse
Affiliation(s)
- J R Greenberg
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Zhang J, Sun X, Qian Y, LaDuca JP, Maquat LE. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol Cell Biol 1998; 18:5272-83. [PMID: 9710612 PMCID: PMC109113 DOI: 10.1128/mcb.18.9.5272] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1997] [Accepted: 06/01/1998] [Indexed: 11/20/2022] Open
Abstract
Mammalian cells have established mechanisms to reduce the abundance of mRNAs that harbor a nonsense codon and prematurely terminate translation. In the case of the human triosephosphate isomerase (TPI gene), nonsense codons located less than 50 to 55 bp upstream of intron 6, the 3'-most intron, fail to mediate mRNA decay. With the aim of understanding the feature(s) of TPI intron 6 that confer function in positioning the boundary between nonsense codons that do and do not mediate decay, the effects of deleting or duplicating introns have been assessed. The results demonstrate that TPI intron 6 functions to position the boundary because it is the 3'-most intron. Since decay takes place after pre-mRNA splicing, it is conceivable that removal of the 3'-most intron from pre-mRNA "marks" the 3'-most exon-exon junction of product mRNA so that only nonsense codons located more than 50 to 55 nucleotides upstream of the "mark" mediate mRNA decay. Decay may be elicited by the failure of translating ribosomes to translate sufficiently close to the mark or, more likely, the scanning or looping out of some component(s) of the translation termination complex to the mark. In support of scanning, a nonsense codon does not elicit decay if some of the introns that normally reside downstream of the nonsense codon are deleted so the nonsense codon is located (i) too far away from a downstream intron, suggesting that all exon-exon junctions may be marked, and (ii) too far away from a downstream failsafe sequence that appears to function on behalf of intron 6, i.e., when intron 6 fails to leave a mark. Notably, the proposed scanning complex may have a greater unwinding capability than the complex that scans for a translation initiation codon since a hairpin structure strong enough to block translation initiation when inserted into the 5' untranslated region does not block nonsense-mediated decay when inserted into exon 6 between a nonsense codon residing in exon 6 and intron 6.
Collapse
Affiliation(s)
- J Zhang
- Department of Cancer Genetics, Roswell Park Cancer Institute, New York State Department of Health, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
97
|
Choi SK, Lee JH, Zoll WL, Merrick WC, Dever TE. Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 1998; 280:1757-60. [PMID: 9624054 DOI: 10.1126/science.280.5370.1757] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Delivery of the initiator methionine transfer RNA (Met-tRNAiMet) to the ribosome is a key step in the initiation of protein synthesis. Previous results have indicated that this step is catalyzed by the structurally dissimilar translation factors in prokaryotes and eukaryotes-initiation factor 2 (IF2) and eukaryotic initiation factor 2 (eIF2), respectively. A bacterial IF2 homolog has been identified in both eukaryotes and archaea. By using a combination of molecular genetic and biochemical studies, the Saccharomyces cerevisiae IF2 homolog is shown to function in general translation initiation by promoting Met-tRNAiMet binding to ribosomes. Thus, the mechanism of protein synthesis in eukaryotes and prokaryotes is more similar than was previously realized.
Collapse
Affiliation(s)
- S K Choi
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716, USA
| | | | | | | | | |
Collapse
|
98
|
Cuesta R, Hinnebusch AG, Tamame M. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae. Genetics 1998; 148:1007-20. [PMID: 9539420 PMCID: PMC1460055 DOI: 10.1093/genetics/148.3.1007] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, expression of the transcriptional activator GCN4 increases at the translational level in response to starvation for an amino acid. The products of multiple GCD genes are required for efficient repression of GCN4 mRNA translation under nonstarvation conditions. The majority of the known GCD genes encode subunits of the general translation initiation factor eIF-2 or eIF-2B. To identify additional initiation factors in yeast, we characterized 65 spontaneously arising Gcd- mutants. In addition to the mutations that were complemented by known GCD genes or by GCN3, we isolated mutant alleles of two new genes named GCD14 and GCD15. Recessive mutations in these two genes led to highly unregulated GCN4 expression and to derepressed transcription of genes in the histidine biosynthetic pathway under GCN4 control. The derepression of GCN4 expression in gcd14 and gcd15 mutants occurred with little or no increase in GCN4 mRNA levels, and it was dependent on upstream open reading frames (uORFs) in GCN4 mRNA that regulate its translation. We conclude that GCD14 and GCD15 are required for repression of GCN4 mRNA translation by the uORFs under conditions of amino acid sufficiency. The gcd14 and gcd15 mutations confer a slow-growth phenotype on nutrient-rich medium, and gcd15 mutations are lethal when combined with a mutation in gcd13. Like other known GCD genes, GCD14 and GCD15 are therefore probably required for general translation initiation in addition to their roles in GCN4-specific translational control.
Collapse
MESH Headings
- Alcohol Oxidoreductases
- Aminohydrolases
- Cloning, Molecular
- DNA-Binding Proteins
- Epistasis, Genetic
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2B
- Fungal Proteins/genetics
- Gene Deletion
- Gene Expression Regulation, Fungal
- Genes, Dominant
- Genes, Fungal
- Genes, Recessive
- Genes, Regulator
- Genetic Complementation Test
- Meiosis
- Mutagenesis
- Phenotype
- Protein Biosynthesis
- Protein Kinases/genetics
- Pyrophosphatases
- RNA, Fungal
- RNA, Messenger
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- R Cuesta
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Spain
| | | | | |
Collapse
|
99
|
Pavitt GD, Ramaiah KV, Kimball SR, Hinnebusch AG. eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev 1998; 12:514-26. [PMID: 9472020 PMCID: PMC316533 DOI: 10.1101/gad.12.4.514] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Accepted: 12/15/1997] [Indexed: 02/06/2023]
Abstract
eIF2B is a heteropentameric guanine-nucleotide exchange factor essential for protein synthesis initiation in eukaryotes. Its activity is inhibited in response to starvation or stress by phosphorylation of the alpha subunit of its substrate, translation initiation factor eIF2, resulting in reduced rates of translation and cell growth. We have used an in vitro nucleotide-exchange assay to show that wild-type yeast eIF2B is inhibited by phosphorylated eIF2 [eIF2(alphaP)] and to characterize eIF2B regulatory mutations that render translation initiation insensitive to eIF2 phosphorylation in vivo. Unlike wild-type eIF2B, eIF2B complexes with mutated GCN3 or GCD7 subunits efficiently catalyzed GDP exchange using eIF2(alphaP) as a substrate. Using an affinity-binding assay, we show that an eIF2B subcomplex of the GCN3, GCD7, and GCD2 subunits binds to eIF2 and has a higher affinity for eIF2(alphaP), but it lacks nucleotide-exchange activity. In contrast, the GCD1 and GCD6 subunits form an eIF2B subcomplex that binds equally to eIF2 and eIF2(alphaP). Remarkably, this second subcomplex has higher nucleotide-exchange activity than wild-type eIF2B that is not inhibited by eIF2(alphaP). The identification of regulatory and catalytic eIF2B subcomplexes leads us to propose that binding of eIF2(alphaP) to the regulatory subcomplex prevents a productive interaction with the catalytic subcomplex, thereby inhibiting nucleotide exchange.
Collapse
Affiliation(s)
- G D Pavitt
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
100
|
Huang HK, Yoon H, Hannig EM, Donahue TF. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev 1997; 11:2396-413. [PMID: 9308967 PMCID: PMC316512 DOI: 10.1101/gad.11.18.2396] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1997] [Accepted: 07/16/1997] [Indexed: 02/05/2023]
Abstract
We have isolated and characterized two suppressor genes, SUI4 and SUI5, that can initiate translation in the absence of an AUG start codon at the HIS4 locus in Saccharomyces cerevisiae. Both suppressor genes are dominant in diploid cells and lethal in haploid cells. The SUI4 suppressor gene is identical to the GCD11 gene, which encodes the gamma subunit of the eIF-2 complex and contains a mutation in the G2 motif, one of the four signature motifs that characterizes this subunit to be a G-protein. The SUI5 suppressor gene is identical to the TIF5 gene that encodes eIF-5, a translation initiation factor known to stimulate the hydrolysis of GTP bound to eIF-2 as part of the 43S preinitiation complex. Purified mutant eIF-5 is more active in stimulating GTP hydrolysis in vitro than wild-type eIF-5, suggesting that an alteration of the hydrolysis rate of GTP bound to the 43S preinitiation complex during ribosomal scanning allows translation initiation at a non-AUG codon. Purified mutant eIF-2gamma complex is defective in ternary complex formation and this defect correlates with a higher rate of dissociation from charged initiator-tRNA in the absence of GTP hydrolysis. Biochemical characterization of SUI3 suppressor alleles that encode mutant forms of the beta subunit of eIF-2 revealed that these mutant eIF-2 complexes have a higher intrinsic rate of GTP hydrolysis, which is eIF-5 independent. All of these biochemical defects result in initiation at a UUG codon at the his4 gene in yeast. These studies in light of other analyses indicate that GTP hydrolysis that leads to dissociation of eIF-2 x GDP from the initiator-tRNA in the 43S preinitiation complex serves as a checkpoint for a 3-bp codon/anticodon interaction between the AUG start codon and the initiator-tRNA during the ribosomal scanning process.
Collapse
Affiliation(s)
- H K Huang
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | | | |
Collapse
|