51
|
Hashimoto Y, Katayama H, Kiyokawa E, Ota S, Kurata T, Gotoh N, Otsuka N, Shibata M, Matsuda M. Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor. J Biol Chem 1998; 273:17186-91. [PMID: 9642287 DOI: 10.1074/jbc.273.27.17186] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CrkII adaptor protein becomes tyrosine-phosphorylated upon various types of stimulation. We examined whether tyrosine 221, which has been shown to be phosphorylated by c-Abl, was phosphorylated also by other tyrosine kinases, such as epidermal growth factor (EGF) receptor. For this purpose, we developed an antibody that specifically recognizes Tyr221-phosphorylated CrkII, and we demonstrated that CrkII was phosphorylated on Tyr221 upon EGF stimulation. When NRK cells were stimulated with EGF, the tyrosine-phosphorylated CrkII was detected at the periphery of the cells, where ruffling is prominent, suggesting that signaling to CrkII may be involved in EGF-dependent cytoskeletal reorganization. The EGF-dependent phosphorylation of CrkII was also detected in a c-Abl-deficient cell line. Moreover, recombinant CrkII protein was phosphorylated in vitro by EGF receptor. These results strongly suggest that EGF receptor directly phosphorylates CrkII. Mutational analysis revealed that the src homology 2 domain was essential for the phosphorylation of CrkII by EGF receptor but not by c-Abl, arguing that these kinases phosphorylate CrkII by different phosphorylation mechanisms. Finally, we found that the CrkII protein phosphorylated upon EGF stimulation did not bind to the phosphotyrosine-containing peptide and that CrkII initiated dissociation from EGF receptor within 3 min even with the sustained tyrosine phosphorylation of EGF receptor. This result implicated phosphorylation of Tyr221 in the negative regulation of the src homology 2-mediated binding of CrkII to EGF receptor.
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Chbl, a 120-kDa proto-oncogene product, whose gene was first identified as part of a transforming gene of a murine retrovirus and whose expression is predominant in haematopoietic cells, consists of an amino-terminal transforming region, a zinc Ring finger, multiple proline-rich stretches, and several potential phosphotyrosine-containing motifs. Cbl is rapidly tyrosine-phosphorylated in response to stimulation of a variety of cell-surface receptors and becomes associated with a number of intracellular signalling molecules such as protein tyrosine kinases, phosphatidylinositol 3-kinase, Crk, and 14-3-3 proteins through different protein-interacting modules, leading to the formation of multimolecular signalling complexes. Cbl and its transforming mutants have been shown to display both negative and positive regulatory activities in protein tyrosine kinase- and Ras-mediated signalling pathways. Nevertheless, the exact biological function of this adaptor protein remains largely unknown. The present review summarizes recent progress in our understanding of the structure, regulation and biological function of Chl and defines open questions for future research.
Collapse
Affiliation(s)
- Y C Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | |
Collapse
|
53
|
Okada S, Matsuda M, Anafi M, Pawson T, Pessin JE. Insulin regulates the dynamic balance between Ras and Rap1 signaling by coordinating the assembly states of the Grb2-SOS and CrkII-C3G complexes. EMBO J 1998; 17:2554-65. [PMID: 9564038 PMCID: PMC1170597 DOI: 10.1093/emboj/17.9.2554] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Insulin stimulation of Chinese hamster ovary cells expressing the human insulin receptor resulted in a time-dependent decrease in the amount of GTP bound to Rap1. The inactivation of Rap1 was associated with an insulin-stimulated decrease in the amount of Rap1 that was bound to Raf1. In parallel with the dissociation of Raf1 from Rap1, there was an increased association of Raf1 with Ras. Concomitant with the inactivation of Rap1 and decrease in Rap1-Raf1 binding, we observed a rapid insulin-stimulated dissociation of the CrkII-C3G complex which occurred in a Ras-independent manner. The dissociation of the CrkII-C3G was recapitulated in vitro using a GST-C3G fusion protein to precipitate CrkII from whole cell detergent extracts. The association of GST-C3G with CrkII was also dose dependent and demonstrated that insulin reduced the affinity of CrkII for C3G without any effect on CrkII protein levels. Furthermore, the reduction in CrkII binding affinity was reversible by tyrosine dephosphorylation with PTP1B and by mutation of Tyr221 to phenylalanine. Together, these data demonstrate that insulin treatment results in the de-repression of Rap1 inhibitory function on the Raf1 kinase concomitant with Ras activation and stimulation of the downstream Raf1/MEK/ERK cascade.
Collapse
Affiliation(s)
- S Okada
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
54
|
Li X, Lee JW, Graves LM, Earp HS. Angiotensin II stimulates ERK via two pathways in epithelial cells: protein kinase C suppresses a G-protein coupled receptor-EGF receptor transactivation pathway. EMBO J 1998; 17:2574-83. [PMID: 9564040 PMCID: PMC1170599 DOI: 10.1093/emboj/17.9.2574] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In GN4 rat liver epithelial cells, angiotensin II (Ang II) produces intracellular calcium and protein kinase C (PKC) signals and stimulates ERK and JNK activity. JNK activation appears to be mediated by a calcium-dependent tyrosine kinase (CADTK). To define the ERK pathway, we established GN4 cells expressing an inhibitory Ras(N17). Induction of Ras(N17) blocked EGF- but not Ang II- or phorbol ester (TPA)-dependent ERK activation. In control cells, Ang II and TPA produced minimal increases in Ras-GTP level and Raf kinase activity. PKC depletion by chronic TPA exposure abolished TPA-dependent ERK activation but failed to diminish the effect of Ang II. In PKC-depleted cells, Ang II increased Ras-GTP level and activated Raf and ERK in a Ras-dependent manner. In PKC depleted cells, Ang II stimulated Shc and Cbl tyrosine phosphorylation, suggesting that without PKC, Ang II activates another tyrosine kinase. PKC-depletion did not alter Ang II-dependent tyrosine phosphorylation or activity of p125(FAK), CADTK, Fyn or Src, but PKC depletion or incubation with GF109203X resulted in Ang II-dependent EGF receptor tyrosine phosphorylation. In PKC-depleted cells, EGF receptor-specific tyrosine kinase inhibitors blocked Ang II-dependent EGF receptor and Cbl tyrosine phosphorylation, and ERK activation. In summary, Ang II can activate ERK via two pathways; the latent EGF receptor, Ras-dependent pathway is equipotent to the Ras-independent pathway, but is masked by PKC action. The prominence of this G-protein coupled receptor to EGF receptor pathway may vary between cell types depending upon modifiers such as PKC.
Collapse
Affiliation(s)
- X Li
- Lineberger Comprehension Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
55
|
Deckert M, Elly C, Altman A, Liu YC. Coordinated regulation of the tyrosine phosphorylation of Cbl by Fyn and Syk tyrosine kinases. J Biol Chem 1998; 273:8867-74. [PMID: 9535867 DOI: 10.1074/jbc.273.15.8867] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-linking of the T cell antigen receptor (TCR)-CD3 complex induces rapid tyrosine phosphorylation and activation of Src (Lck and Fyn) and Syk (Syk and Zap-70) family protein tyrosine kinases (PTKs) which, in turn, phosphorylate multiple intracellular substrates. Cbl is a prominent PTK substrate suggesting a pivotal role for it in early signal transduction events. However, the regulation of Cbl function and tyrosine phosphorylation in T cells by upstream PTKs remains poorly understood. In the present study, we used genetic and biochemical approaches to demonstrate that Cbl directly interacts with Syk and Fyn via its N-terminal and C-terminal regions, respectively. Tyr-316 of Syk was required for the interaction with Cbl as well as for the maximal tyrosine phosphorylation of Cbl. However, both wild-type Syk and Y316F-mutated Syk phosphorylated equally well the C-terminal fragment of Cbl in vivo, suggesting the existence of an alternative, N terminus-independent mechanism for the Syk-induced tyrosine phosphorylation of Cbl. This mechanism appears to involve Fyn, since, in addition to its association with the C-terminal region of Cbl, Fyn also associated with Syk and enhanced the Syk-induced tyrosine phosphorylation of Cbl. These findings implicate Fyn as an adaptor protein that facilitates the interaction between Syk and Cbl, and suggest that Src and Syk family PTKs coordinately regulate the tyrosine phosphorylation of Cbl.
Collapse
Affiliation(s)
- M Deckert
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
56
|
Feshchenko EA, Langdon WY, Tsygankov AY. Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells. J Biol Chem 1998; 273:8323-31. [PMID: 9525940 DOI: 10.1074/jbc.273.14.8323] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protooncogenic protein c-Cbl undergoes tyrosine phosphorylation in response to stimulation through the receptors for antigens, immunoglobulins, cytokines, and growth factors as well as through the integrins. Tyrosine phosphorylation of c-Cbl may play a functional role in signal transduction, since c-Cbl interacts with many crucial signaling molecules including protein-tyrosine kinases, adaptor proteins, and phosphatidylinositol 3'-kinase. Therefore, it is essential for our understanding of the functions of c-Cbl in signal transduction to identify its tyrosine phosphorylation sites, to determine the protein-tyrosine kinases that phosphorylate these sites, and to elucidate the role of these sites in the interactions of c-Cbl with other signaling proteins. In this report, we demonstrate that tyrosines 700, 731, and 774 are the major tyrosine phosphorylation sites of c-Cbl in T cells in response to pervanadate treatment, as well as in response to TcR/CD3 ligation. Coexpression experiments in COS cells demonstrate that among T cell-expressed Src- and Syk-related protein-tyrosine kinases, Fyn, Yes, and Syk appear to play a major role in phosphorylation of c-Cbl, whereas Lck and Zap phosphorylate c-Cbl ineffectively. Fyn, Yes, and Syk phosphorylate the same sites of c-Cbl that become phosphorylated in stimulated T cells. Among these kinases, Fyn and Yes demonstrate strong binding to c-Cbl, which involves both phosphotyrosine-dependent and phosphotyrosine-independent mechanisms.
Collapse
Affiliation(s)
- E A Feshchenko
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
57
|
Ota S, Kizaka-Kondoh S, Hashimoto Y, Nishihara H, Nagashima K, Kurata T, Okayama H, Matsuda M. Constitutive association of EGF receptor with the CrkII-23 mutant that inhibits transformation of NRK cells by EGF and TGF-beta. Cell Signal 1998; 10:283-90. [PMID: 9617486 DOI: 10.1016/s0898-6568(97)00130-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crk belongs to the adapter proteins that participate in many signalling pathways from cell surface receptors. We have characterised the CrkII-23 mutant that inhibits the transformation of NRK cells induced by epidermal growth factor (EGF) and transforming growth factor (TGF)-beta. To study the biochemical difference, cDNAs of the wild-type CrkII and the CrkII-23 mutant were introduced stably into NIH 3T3 cells expressing EGF receptor (EGFR). Both CrkII and CrkII-23 were phosphorylated on tyrosine upon EGF simulation with similar time course and dose dependency. Whereas the wild-type CrkII bound to EGFR only after EGF stimulation, CrkII-23 bound to EGFR from before stimulation. Mutation in the Src homology (SH) 2 or amino-terminal SH3 domain did not abolish the binding of CrkII-23 to EGFR in the quiescent cells, suggesting that the binding is mediated by a novel mechanism. These CrkII-23-derived mutants, however, did not suppress transformation of NRK cells by EGF and TGF-beta. Hence, both the SH2 and amino-terminal SH3 domains are required to inhibit transformation of NRK cells. These results suggest that persistent signalling from CrkII-23 bound to EGFR suppresses transformation by EGF and TGF-beta in NRK23 cells.
Collapse
Affiliation(s)
- S Ota
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Koval AP, Blakesley VA, Roberts CT, Zick Y, Leroith D. Interaction in vitro of the product of the c-Crk-II proto-oncogene with the insulin-like growth factor I receptor. Biochem J 1998; 330 ( Pt 2):923-32. [PMID: 9480911 PMCID: PMC1219226 DOI: 10.1042/bj3300923] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Crk proto-oncogene product is an SH2 and SH3 domain-containing adaptor protein. We have previously demonstrated that Crk-II becomes rapidly tyrosine-phosphorylated in response to stimulation with insulin-like growth factor I (IGF-I) and might be involved in the IGF-I receptor signalling pathway. To determine whether this involvement includes the direct interaction of Crk-II with the cytoplasmic region of the receptor, studies were performed in vitro with glutathione S-transferase (GST) fusion proteins containing various domains of Crk-II. The kinase assay in vitro showed that activated IGF-I receptors efficiently phosphorylated the GST-Crk-II fusion protein. This phosphorylation was dependent on the presence of the SH2 domain and Tyr-221 located in the spacer region between the two SH3 domains. Mutation of Tyr-221 not only prevented phosphorylation of GST-Crk in vitro, but also significantly increased the ability of GST-Crk proteins to co-precipitate activated IGF-I receptors from total cell lysates. Additional binding experiments in vitro showed that Crk-II might interact with the phosphorylated IGF-I receptor through its SH2 domain. To elucidate which region of the IGF-I receptor interacts with Crk-II, a peptide association assay was used in vitro. Different domains of the IGF-I receptor were expressed as (His)6-tagged fusion peptides, phosphorylated with activated wheat germ agglutinin-purified IGF-I receptors and tested for association with GST-Crk-II fusion proteins. Using wild-type as well as mutated peptides, we showed that the SH2 domain of Crk-II preferentially binds the peptide encoding the juxtamembrane region of the IGF-I receptor. Phosphorylation of Tyr-950 and Tyr-943 of the receptor is important for this interaction. These findings allow us to propose a model of direct interaction of Crk-II and the IGF-I receptor in vivo. On activation of the IGF-I receptor, Crk-II binds to phosphorylated tyrosine residues, especially in the juxtamembrane region. As a result of this binding, the IGF-I receptor kinase phosphorylates Tyr-221 of Crk-II, resulting in a change in intramolecular folding and binding of the SH2 domain to the phosphorylated Tyr-221, which causes rapid disassociation of the Crk-II-IGF-I receptor complex.
Collapse
Affiliation(s)
- A P Koval
- Diabetes Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-1770, USA
| | | | | | | | | |
Collapse
|
59
|
Barabé F, Gilbert C, Liao N, Bourgoin SG, Naccache PH. Crystal-induced neutrophil activation VI. Involvment of FcgammaRIIIB (CD16) and CD11b in response to inflammatory microcrystals. FASEB J 1998; 12:209-20. [PMID: 9472986 DOI: 10.1096/fasebj.12.2.209] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inflammatory reaction associated with the deposition of monosodium urate (MSU) crystals in synovial spaces is known to be due to interactions with polymorphonuclear neutrophils mediated by presently unidentified surface structures. In this study, we have observed that antibodies directed against CD16 (VIFcRIII) and CD11b (VIM12) selectively and potently inhibit the activation of neutrophils by MSU crystals. The responses affected include the stimulation of tyrosine phosphorylation, activation of the tyrosine kinase syk, tyrosine phosphorylation of the proto-oncogene Cbl, mobilization of calcium, and stimulation of the activity of phospholipase D and of the production of superoxide anions. Tyrosine phosphorylation responses to MSU crystals develop during the Me2SO4-induced differentiation of HL-60 cells in parallel with the surface expression of CD16. These data strongly support the hypothesis that inflammatory microcrystals interact opportunistically with CD16 initially, and that the signal transduction pathways activated thereby depend on CD11b. An examination of the relevance of the hypothesis that an uncontrolled activation of CD16/CD11b may play a role in inflammatory reactions associated with a dysregulation of neutrophil function (other than crystal arthropathies) appears warranted on the basis of the present results.
Collapse
Affiliation(s)
- F Barabé
- Centre de Recherche en Rhumatologie et Immunologie, Department of Medicine, Faculty of Medicine, Laval University, Ste-Foy, Québec, Canada
| | | | | | | | | |
Collapse
|
60
|
Ribon V, Printen JA, Hoffman NG, Kay BK, Saltiel AR. A novel, multifuntional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes. Mol Cell Biol 1998; 18:872-9. [PMID: 9447983 PMCID: PMC108798 DOI: 10.1128/mcb.18.2.872] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The protein product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with endogenous c-Crk and Fyn. These results suggest a role for tyrosine-phosphorylated c-Cbl in 3T3-L1 adipocyte activation by insulin. A yeast two-hybrid cDNA library prepared from fully differentiated 3T3-L1 adipocytes was screened with full-length c-Cbl as the target protein in an attempt to identify adipose-specific signaling proteins that interact with c-Cbl and potentially are involved in its tyrosine phosphorylation in 3T3-L1 adipocytes. Here we describe the isolation and the characterization of a novel protein that we termed CAP for c-Cbl-associated protein. CAP contains a unique structure with three adjacent Src homology 3 (SH3) domains in the C terminus and a region showing significant sequence similarity with the peptide hormone sorbin. Both CAP mRNA and proteins are expressed predominately in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. CAP associates with c-Cbl in 3T3-L1 adipocytes independently of insulin stimulation in vivo and in vitro in an SH3-domain-mediated manner. Furthermore, we detected the association of CAP with the insulin receptor. Insulin stimulation resulted in the dissociation of CAP from the insulin receptor. Taken together, these data suggest that CAP represents a novel c-Cbl binding protein in 3T3-L1 adipocytes likely to participate in insulin signaling.
Collapse
Affiliation(s)
- V Ribon
- Department of Physiology, University of Michigan School of Medicine, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
61
|
c-Cbl Is Tyrosine-Phosphorylated by Interleukin-4 and Enhances Mitogenic and Survival Signals of Interleukin-4 Receptor by Linking With the Phosphatidylinositol 3′-Kinase Pathway. Blood 1998. [DOI: 10.1182/blood.v91.1.46.46_46_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-4 (IL-4) is a cytokine that induces both proliferation and differentiation and suppresses apoptosis of B cells. Although IL-4 has been shown to activate the phosphatidylinositol 3′ (PI3)-kinase pathway, the role of PI3 kinase in the IL-4 receptor (IL-4R) signaling remains unclear. In this study, we demonstrated that c-Cbl proto-oncogene product is inducibly phosphorylated on tyrosine residues and is associated with the p85 subunit of PI3-kinase by IL-4 stimulation. Overexpression of c-Cbl enhances the PI3-kinase activity and, at the same time, mitogenic activity and survival of cells in the presence of IL-4. However, these effects of c-Cbl were abolished by wortmannin, a specific inhibitor for the PI3 kinase pathway, or by a point mutation at tyrosine 731 of c-Cbl, which is a major binding site for p85. These results indicate that c-Cbl plays a role in linking IL-4R with the PI3 kinase pathway and thus enhancing the mitogenic and survival signals.
Collapse
|
62
|
c-Cbl Is Tyrosine-Phosphorylated by Interleukin-4 and Enhances Mitogenic and Survival Signals of Interleukin-4 Receptor by Linking With the Phosphatidylinositol 3′-Kinase Pathway. Blood 1998. [DOI: 10.1182/blood.v91.1.46] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractInterleukin-4 (IL-4) is a cytokine that induces both proliferation and differentiation and suppresses apoptosis of B cells. Although IL-4 has been shown to activate the phosphatidylinositol 3′ (PI3)-kinase pathway, the role of PI3 kinase in the IL-4 receptor (IL-4R) signaling remains unclear. In this study, we demonstrated that c-Cbl proto-oncogene product is inducibly phosphorylated on tyrosine residues and is associated with the p85 subunit of PI3-kinase by IL-4 stimulation. Overexpression of c-Cbl enhances the PI3-kinase activity and, at the same time, mitogenic activity and survival of cells in the presence of IL-4. However, these effects of c-Cbl were abolished by wortmannin, a specific inhibitor for the PI3 kinase pathway, or by a point mutation at tyrosine 731 of c-Cbl, which is a major binding site for p85. These results indicate that c-Cbl plays a role in linking IL-4R with the PI3 kinase pathway and thus enhancing the mitogenic and survival signals.
Collapse
|
63
|
Rellahan BL, Graham LJ, Stoica B, DeBell KE, Bonvini E. Cbl-mediated regulation of T cell receptor-induced AP1 activation. Implications for activation via the Ras signaling pathway. J Biol Chem 1997; 272:30806-11. [PMID: 9388222 DOI: 10.1074/jbc.272.49.30806] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The functional role of Cbl in regulating T cell receptor (TCR)-mediated signal transduction pathways is unknown. This study uses Cbl overexpression in conjunction with a Ras-sensitive AP1 reporter construct to examine its role in regulating TCR-mediated activation of the Ras pathway. Cbl overexpression in Jurkat T cells inhibited AP1 activity after TCR ligation. However, AP1 induction by 4beta-phorbol 12-myristate 13-acetate, which up-regulates Ras activity in a protein kinase C-dependent, TCR/tyrosine kinase-independent manner, was not affected by Cbl overexpression. Cbl overexpression also did not affect AP1 induction by an activated Ras protein or a membrane-bound form of the guanine nucleotide exchange factor Sos. In addition, activation of the mitogen-activated protein kinase Erk2 was decreased by Cbl overexpression. Therefore, Cbl regulates events that are required for full TCR-mediated Ras activation, and data are presented to support a model whereby Cbl regulates events required for Ras activation via its association with Grb2.
Collapse
Affiliation(s)
- B L Rellahan
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Office of Therapeutics Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
64
|
Robertson H, Langdon WY, Thien CB, Bowtell DD. A c-Cbl yeast two hybrid screen reveals interactions with 14-3-3 isoforms and cytoskeletal components. Biochem Biophys Res Commun 1997; 240:46-50. [PMID: 9367879 DOI: 10.1006/bbrc.1997.7608] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The protein product of c-cbl proto-oncogene is known to interact with several proteins, including Grb2, Crk and PI3 kinase, and is thought to regulate signalling by many cell surface receptors. The precise function of c-Cbl in these pathways is not clear, although a genetic analysis in Caenorhabditis elegans suggests that c-Cbl is a negative regulator of the epidermal growth factor receptor. Here we describe a yeast two hybrid screen performed with c-Cbl in an attempt to further elucidate its role in signal transduction. The screen identified interactions involving c-Cbl and two 14-3-3 isoforms, cytokeratin 18, human unconventional myosin IC, and a recently identified SH3 domain containing protein, SH3 P17. We have used the yeast two hybrid assay to localise regions of c-Cbl required for its interaction with each of the proteins. Interaction with 14-3-3 is demonstrated in mammalian cell extracts.
Collapse
Affiliation(s)
- H Robertson
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Victoria, Australia
| | | | | | | |
Collapse
|
65
|
Ishiki M, Sasaoka T, Ishihara H, Imamura T, Usui I, Takata Y, Kobayashi M. Evidence for functional roles of Crk-II in insulin and epidermal growth factor signaling in Rat-1 fibroblasts overexpressing insulin receptors. Endocrinology 1997; 138:4950-8. [PMID: 9348226 DOI: 10.1210/endo.138.11.5510] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined the potential role of Crk-II in insulin and epidermal growth factor (EGF) signaling in Rat-1 fibroblasts overexpressing insulin receptors. Crk is an SH2 and SH3 domain-containing adaptor protein that has been reported to associate with p130cas, paxillin, c-cbl, c-abl, Sos, and C3G in vitro. Insulin- and EGF-induced association of Crk-II with these molecules was assessed by immunoblotting of anti-Crk-II precipitates in Rat-1 fibroblasts overexpressing insulin receptors. Neither insulin nor EGF treatment induced Crk-II association with either Sos or C3G. Basal tyrosine phosphorylation of c-abl and its constitutive association with Crk-II were not further increased by insulin or EGF. p130cas and paxillin were heavily tyrosine phosphorylated in the basal state. Both insulin and EGF stimulated their dephosphorylation, followed by p130cas-Crk-II dissociation and paxillin-Crk-II association, although the magnitude of these effects was greater with insulin than with EGF. Interestingly, EGF, but not insulin, stimulated tyrosine phosphorylation of c-cbl and its association with Crk-II. To investigate the functional roles of Crk-II in mitogenesis and cytoskeletal rearrangement, we performed microinjection analysis. Cellular microinjection of anti-Crk-II antibody inhibited EGF-induced, but not insulin-induced, DNA synthesis. Insulin, but not EGF, stimulated cytoskeletal rearrangement in the cells, and microinjection of anti-Crk-II antibody effectively inhibited insulin-induced membrane ruffling, suggesting that Crk-II is involved in insulin-induced cytoskeletal rearrangement. These results indicate that Crk-II functions as a multifunctional adaptor molecule linking insulin and EGF receptors to their downstream signals. The presence of c-cbl-Crk-II association may partly determine the signal specificities initiated by insulin and EGF.
Collapse
Affiliation(s)
- M Ishiki
- First Department of Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | | | | | |
Collapse
|
66
|
Butler AA, Blakesley VA, Koval A, deJong R, Groffen J, LeRoith D. In vivo regulation of CrkII and CrkL proto-oncogenes in the uterus by insulin-like growth factor-I. Differential effects on tyrosine phosphorylation and association with paxillin. J Biol Chem 1997; 272:27660-4. [PMID: 9346905 DOI: 10.1074/jbc.272.44.27660] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Changes in CrkII and CrkL phosphorylation are associated with insulin-like growth factor receptor activation in cultured cells. We examined whether similar changes also occur following administration of recombinant human insulin-like growth factor-I to the intact animal. In female rats starved overnight, CrkL phosphorylation was significantly increased 12 min after insulin-like growth factor-I administration. Tyrosine phosphorylation of CrkII was not detectable in either control or treated animals. Paxillin, a 65-70-kDa phosphoprotein containing high affinity binding sites common for the Src homology 2 (SH2) domains of CrkII and CrkL, was observed in both CrkII and CrkL immunoprecipitates. Insulin-like growth factor-I treatment stimulated the association of CrkII with paxillin. In contrast, the same treatment resulted in the dissociation of the CrkL-paxillin complex. Similar effects of insulin-like growth factor-I treatment on the association of CrkL with tyrosine phosphorylated paxillin were observed in fibroblasts overexpressing CrkL. This study demonstrates that the activation of the insulin-like growth factor-I receptor induces changes in the tyrosine phosphorylation and protein-protein interactions of the Crk proteins in vivo. The different responses of CrkL and CrkII to insulin-like growth factor-I receptor activation suggest distinct roles for these two adapter proteins in signal transduction.
Collapse
Affiliation(s)
- A A Butler
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1770, USA
| | | | | | | | | | | |
Collapse
|
67
|
Ichiba T, Kuraishi Y, Sakai O, Nagata S, Groffen J, Kurata T, Hattori S, Matsuda M. Enhancement of guanine-nucleotide exchange activity of C3G for Rap1 by the expression of Crk, CrkL, and Grb2. J Biol Chem 1997; 272:22215-20. [PMID: 9268367 DOI: 10.1074/jbc.272.35.22215] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Crk is an adaptor protein that consists almost entirely of SH2 and SH3 domains. We have previously demonstrated, by using in vivo and in vitro systems, that C3G, which was identified as a Crk SH3 domain-binding guanine nucleotide exchange factor, specifically activates Rap1. C3G also binds to other adaptor proteins, including CrkL and Grb2. In the present study, we analyzed the effect of Crk, CrkL, and Grb2 on the C3G-Rap1 pathway. Expression of Crk, CrkL, and Grb2 with C3G in Cos1 cells significantly increased the ratio of GTP/GDP bound to Rap1. Both the SH2 and SH3 domains of Crk were required for this activity. However, Crk did not stimulate the guanine nucleotide exchange activity of C3G for Rap1 in vitro, suggesting that Crk does not activate C3G by an allosteric mechanism. The requirement of the SH2 domain of Crk for the enhancement of guanine nucleotide exchange activity for Rap1 could be compensated for by the addition of a farnesylation signal to Crk, indicating that Crk enhanced the guanine nucleotide exchange activity of C3G by membrane recruitment of C3G. These results demonstrate that Crk, CrkL, and Grb2 positively modulate the C3G-Rap1 pathway primarily by recruiting C3G to the cell membrane.
Collapse
Affiliation(s)
- T Ichiba
- Department of Pathology, National Institute of Health, Shinjuku-ku, Tokyo 162, Japan
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Hunter S, Koch BL, Anderson SM. Phosphorylation of cbl after stimulation of Nb2 cells with prolactin and its association with phosphatidylinositol 3-kinase. Mol Endocrinol 1997; 11:1213-22. [PMID: 9259313 DOI: 10.1210/mend.11.9.9980] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stimulation of Nb2 cells with PRL results in the rapid phosphorylation of a 120-kDa protein identified as the adapter protein cbl on tyrosine residues. Maximal phosphorylation of cbl occurs at 20 min after PRL stimulation and declines thereafter. Stimulation with as little as 5 nM PRL resulted in the phosphorylation of cbl; increasing the concentration of PRL to 100 nM had only a minimal effect upon the phosphorylation of cbl. The cbl protein appears to be constitutively associated with grb2 and the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase). The constitutive association of cbl with the p85 subunit of PI 3-kinase was observed in Nb2 cells as well as in 32Dcl3 cells transfected with either the rat Nb2 (intermediate) form of the PRL receptor or the long form of the human PRL receptor. A glutathione S-transferase fusion protein encoding the SH3 domain of the p85 subunit of PI 3-kinase bound to cbl in lysates of both unstimulated and PRL-stimulated Nb2 cells; however, neither of the SH2 domains of p85 bound to cbl under the same conditions. PRL stimulation increased the cbl-associated PI kinase activity. The majority of PI kinase activity appeared to be cbl-associated after PRL stimulation. These results suggest that cbl may function as an adapter protein in PRL-mediated signaling events and regulate activation of PI 3-kinase. Our model suggests that the p85 subunit of PI 3-kinase is constitutively associated with cbl through binding of the p85 SH3 domain to a proline-rich sequence in cbl. After the tyrosine phosphorylation of cbl, an SH2 domain(s) of p85 binds to a specific phosphorylation site(s) in cbl, leading to the activation of PI 3-kinase.
Collapse
Affiliation(s)
- S Hunter
- University of Colorado Health Sciences Center, Department of Pathology, Denver 80262, USA
| | | | | |
Collapse
|
69
|
Bonita DP, Miyake S, Lupher ML, Langdon WY, Band H. Phosphotyrosine binding domain-dependent upregulation of the platelet-derived growth factor receptor alpha signaling cascade by transforming mutants of Cbl: implications for Cbl's function and oncogenicity. Mol Cell Biol 1997; 17:4597-610. [PMID: 9234717 PMCID: PMC232313 DOI: 10.1128/mcb.17.8.4597] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent studies have demonstrated that Cbl, the 120-kDa protein product of the c-cbl proto-oncogene, serves as a substrate of a number of receptor-coupled tyrosine kinases and forms complexes with SH3 and SH2 domain-containing proteins, pointing to its role in signal transduction. Based on genetic evidence that the Caenorhabditis elegans Cbl homolog, SLI-1, functions as a negative regulator of the LET-23 receptor tyrosine kinase and our demonstration that Cbl's evolutionarily conserved N-terminal transforming region (Cbl-N; residues 1 to 357) harbors a phosphotyrosine binding (PTB) domain that binds to activated ZAP-70 tyrosine kinase, we examined the possibility that oncogenic Cbl mutants may activate mitogenic signaling by deregulating cellular tyrosine kinase machinery. Here, we show that expression of Cbl-N and two other transforming Cbl mutants (CblY368 delta and Cbl366-382 delta or Cb170Z), but not wild-type Cbl, in NIH 3T3 fibroblasts leads to enhancement of endogenous tyrosine kinase signaling. We identified platelet-derived growth factor receptor alpha (PDGFR alpha) as one target of mutant Cbl-induced deregulation. In mutant Cbl transfectants, PDGFR alpha was hyperphosphorylated and constitutively complexed with a number of SH2 domain-containing proteins. PDGFR alpha hyperphosphorylation and enhanced proliferation of mutant Cbl-transfected NIH 3T3 cells were drastically reduced upon serum starvation, and PDGF-AA substituted for the maintenance of these traits. PDGF-AA stimulation of serum-starved Cbl transfectants induced the in vivo association of transfected Cbl proteins with PDGFR alpha. In vitro, Cbl-N directly bound to PDGFR alpha derived from PDGF-AA-stimulated cells but not to that from unstimulated cells, and this binding was abrogated by a point mutation (G306E) corresponding to a loss-of-function mutation in SLI-1. The Cbl-N/G306E mutant protein, which failed to induce enhanced growth and transformation of NIH 3T3 cells, also failed to induce hyperphosphorylation of PDGFR alpha. Altogether, these findings identify a novel mechanism of Cbl's physiological function and oncogenesis, involving its PTB domain-dependent direct interaction with cellular tyrosine kinases.
Collapse
Affiliation(s)
- D P Bonita
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
70
|
Bhat A, Kolibaba K, Oda T, Ohno-Jones S, Heaney C, Druker BJ. Interactions of CBL with BCR-ABL and CRKL in BCR-ABL-transformed myeloid cells. J Biol Chem 1997; 272:16170-5. [PMID: 9195915 DOI: 10.1074/jbc.272.26.16170] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Philadelphia chromosome, detected in virtually all cases of chronic myelogenous leukemia (CML), is formed by a reciprocal translocation between chromosomes 9 and 22 that fuses BCR-encoded sequences upstream of exon 2 of c-ABL. The BCR-ABL fusion creates a gene whose protein product, p210BCR-ABL, has been implicated as the cause of the disease. Although ABL kinase activity has been shown to be required for the transforming abilities of BCR-ABL and numerous substrates of the BCR-ABL tyrosine kinase have been identified, the requirement of most of these substrates for the transforming function of BCR-ABL is unknown. In this study we mapped a direct binding site of the c-CBL proto-oncogene to the SH2 domain of BCR-ABL. This interaction only occurs under conditions where c-CBL is tyrosine-phosphorylated. Despite the direct interaction of c-CBL with the SH2 domain of BCR-ABL, deletion of the SH2 domain of BCR-ABL did not result in an alteration in the complex formation of BCR-ABL and c-CBL, suggesting that another site of direct interaction between c-CBL and BCR-ABL exists or that another protein mediates an indirect interaction of c-CBL and BCR-ABL. Since CRKL, an SH2, SH3 domain-containing adapter protein is known to bind directly to BCR-ABL and also binds to tyrosine-phosphorylated c-CBL, the ability of CRKL to mediate a complex between c-CBL and BCR-ABL was examined.
Collapse
Affiliation(s)
- A Bhat
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
71
|
Tari AM, Arlinghaus R, Lopez-Berestein G. Inhibition of Grb2 and Crkl proteins results in growth inhibition of Philadelphia chromosome positive leukemic cells. Biochem Biophys Res Commun 1997; 235:383-8. [PMID: 9199202 DOI: 10.1006/bbrc.1997.6791] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Bcr-Abl oncoprotein is necessary for the growth of Philadelphia chromosome positive (Ph+) leukemic cells. The Bcr-Abl protein has been found to bind to SH2/SH3-containing adaptor proteins such as Grb2 and Crkl, and these complexes are believed to activate various signaling pathways. Grb2 and Crkl are important for the Bcr-Abl-mediated transformation of rat fibroblasts and murine hematopoietic cells. We have used liposomes to deliver nuclease-resistant antisense oligonucleotides (oligos) that are specific for the GRB2 or CRKL mRNA to leukemic cells to specifically downregulate Grb2 or Crkl protein expression. We found that by downregulating Grb2 or Crkl protein expression, Grb2 or Crkl antisense oligos could selectively inhibit the growth of Bcr-Abl positive cells, but not that of Bcr-Abl negative cells. Our data, together with other investigators' data, strongly indicate that Grb2 and Crkl are vital for the maintenance of cell growth in Ph+ leukemias.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cell Division
- DNA, Antisense/chemistry
- DNA, Antisense/genetics
- DNA, Antisense/pharmacology
- Down-Regulation
- Fusion Proteins, bcr-abl/metabolism
- GRB2 Adaptor Protein
- Gene Expression Regulation, Neoplastic
- Genes, abl/genetics
- HL-60 Cells
- Humans
- Leukemia/metabolism
- Leukemia/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Liposomes/metabolism
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Philadelphia Chromosome
- Protein Biosynthesis
- Proteins/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A M Tari
- Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
72
|
Ribon V, Saltiel AR. Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-L1 adipocytes. Biochem J 1997; 324 ( Pt 3):839-45. [PMID: 9210408 PMCID: PMC1218500 DOI: 10.1042/bj3240839] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report here that the product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes. The tyrosine phosphorylation of c-Cbl reaches a maximum within 1-2 min after stimulation by insulin and gradually declines thereafter. The tyrosine phosphorylation of c-Cbl was also observed after treatment of 3T3-L1 adipocytes with epidermal growth factor, whereas platelet-derived growth factor had no effect. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with fusion proteins containing the Src homology 2 (SH2) domains of Crk and the Fyn tyrosine kinase, but not with fusion proteins containing the SH2 domains of either the p85 subunit of phosphatidylinositol 3'-kinase or the tyrosine phosphatase SHPTP2/Syp. Furthermore insulin stimulates the association of c-Cbl with endogenous c-Crk and Fyn in intact 3T3-L1 adipocytes. The tyrosine phosphorylation of c-Cbl is regulated during adipocyte differentiation. Neither insulin-like growth factor 1 nor insulin stimulated the tyrosine phosphorylation of c-Cbl in 3T3-L1 fibroblasts. Moreover, c-Cbl is not tyrosine phosphorylated in response to insulin in cells expressing high levels of the human insulin receptor, or in hepatocytes, despite comparable levels of c-Cbl expression. These results suggest that c-Cbl might have a novel function in the regulation of insulin receptor intracellular signalling in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- V Ribon
- Department of Physiology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
73
|
Takaki S, Watts JD, Forbush KA, Nguyen NT, Hayashi J, Alberola-Ila J, Aebersold R, Perlmutter RM. Characterization of Lnk. An adaptor protein expressed in lymphocytes. J Biol Chem 1997; 272:14562-70. [PMID: 9169414 DOI: 10.1074/jbc.272.23.14562] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stimulation of the T cell antigen receptor (TCR) activates a set of non-receptor protein tyrosine kinases that assist in delivering signals to the cell interior. Among the presumed substrates for these kinases, adaptor proteins, which juxtapose effector enzyme systems with the antigen receptor complex, figure prominently. Previous studies suggested that Lnk, a 38-kDa protein consisting of a single SH2 domain and a region containing potential tyrosine phosphorylation sites, might serve to join Grb2, phospholipase C-gamma1, and phosphatidylinositol 3-kinase to the TCR. To elucidate the physiological roles of Lnk in T cell signal transduction, we isolated the mouse Lnk cDNA, characterized the structure of the mouse Lnk gene, and generated transgenic mice that overproduce Lnk in thymocytes. Here we report that although Lnk becomes phosphorylated during T cell activation, it plays no limiting role in the TCR signaling process. Moreover, we have distinguished p38(Lnk) from the more prominent 36-kDa tyrosine phosphoproteins that appear in activated T cells. Together these studies suggest that Lnk participates in signaling from receptors other than antigen receptors in lymphocytes.
Collapse
Affiliation(s)
- S Takaki
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Erythropoietin and Interleukin-3 Activate Tyrosine Phosphorylation of CBL and Association With CRK Adaptor Proteins. Blood 1997. [DOI: 10.1182/blood.v89.9.3166] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTransformation of hematopoietic cells by the Bcr-abl oncoprotein leads to constitutive tyrosine phosphorylation of a number of cellular polypeptides that function in normal growth factor-dependent cell proliferation. Recent studies have shown that the CrkL adaptor protein and the Cbl protooncoprotein are constitutively tyrosine phosphorylated and form a preformed complex in cells expressing Bcr-abl. In the current study, we have examined cytokine-dependent tyrosine phosphorylation of Cbl and its association with Crk proteins. Erythropoietin (EPO) and interleukin-3 induced a dose and time-dependent tyrosine phosphorylation of Cbl in both EPO-dependent Ba/F3 and DA-3 transfectants, and the erythroid cell line HCD-57. Furthermore, once phosphorylated, Cbl associated with Crk adaptor proteins. Of the three Crk isoforms expressed in hematopoietic cells (CrkL, CrkII, and CrkI), tyrosine phosphorylated Cbl binds preferentially to CrkL and CrkII. The amount of Cbl associated with CrkL and CrkII exceeded the fraction of Cbl associated with Grb2 indicating that unlike other receptor systems, the Cbl-Crk association represents the dominant complex of Cbl in growth factor-stimulated hematopoietic cells. In factor-dependent hematopoietic cell lines, CrkL constitutively associated with the guanine nucleotide release factor, C3G, which is known to interact via Crk src-homology 3 (SH3) domains. Our data suggest that the inducible Cbl-Crk association is a proximal component of a signaling pathway downstream of multiple cytokine receptors.
Collapse
|
75
|
Liu YC, Liu Y, Elly C, Yoshida H, Lipkowitz S, Altman A. Serine phosphorylation of Cbl induced by phorbol ester enhances its association with 14-3-3 proteins in T cells via a novel serine-rich 14-3-3-binding motif. J Biol Chem 1997; 272:9979-85. [PMID: 9092538 DOI: 10.1074/jbc.272.15.9979] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stimulation of the T cell antigen receptor (TCR).CD3 complex induces rapid tyrosine phosphorylation of Cbl, a protooncogene product which has been implicated in intracellular signaling pathways via its interaction with several signaling molecules. We found recently that Cbl associates directly with a member of the 14-3-3 protein family (14-3-3tau) in T cells and that the association is increased as a consequence of anti-CD3-mediated T cell activation. We report here that phorbol 12-myristate 13-acetate stimulation of T cells also enhanced the interaction between Cbl and two 14-3-3 isoforms (tau and zeta). Tyrosine phosphorylation of Cbl was not sufficient or required for this increased interaction. Thus, cotransfection of COS cells with Cbl plus Lck and/or Syk family protein-tyrosine kinases caused a marked increase in the phosphotyrosine content of Cbl without a concomitant enhancement of its association with 14-3-3. Phorbol 12-myristate 13-acetate stimulation induced serine phosphorylation of Cbl, and dephosphorylation of immunoprecipitated Cbl by a Ser/Thr phosphatase disrupted its interaction with 14-3-3. By using successive carboxyl-terminal deletion mutants of Cbl, the 14-3-3-binding domain was mapped to a serine-rich 30-amino acid region (residues 615-644) of Cbl. Mutation of serine residues in this region further defined a binding motif distinct from the consensus sequence RSXSXP, which was recently identified as a 14-3-3-binding motif. These results suggest that TCR stimulation induces both tyrosine and serine phosphorylation of Cbl. These phosphorylation events allow Cbl to recruit distinct signaling elements that participate in TCR-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Y C Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
76
|
Ueno H, Sasaki K, Miyagawa K, Honda H, Mitani K, Yazaki Y, Hirai H. Antisense repression of proto-oncogene c-Cbl enhances activation of the JAK-STAT pathway but not the ras pathway in epidermal growth factor receptor signaling. J Biol Chem 1997; 272:8739-43. [PMID: 9079708 DOI: 10.1074/jbc.272.13.8739] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many growth factors including epidermal growth factor (EGF) induce tyrosine phosphorylation of the c-Cbl proto-oncogene product, whose function, however, remains unclear. Recently, Sli-1, a Caenorhabditis elegans homologue of c-Cbl, was found to be a negative regulator of let-23-mediated vulval induction pathway, suggesting that c-Cbl may negatively regulate EGF receptor (EGFR)-mediated signaling. In this study, by an antisense RNA approach, we examined the effects of expression level of c-Cbl on EGFR signaling and showed that overexpression of c-Cbl reduces and antisense repression of c-Cbl enhances autophosphorylation of EGF receptors and activation of the JAK-STAT pathway. However, in contrast to the Sli-1 protein, the expressed amount of c-Cbl does not affect activation of the Ras pathway, suggesting that the EGFR-mediated signaling pathways are differently regulated by c-Cbl among nematodes and mammals.
Collapse
Affiliation(s)
- H Ueno
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | |
Collapse
|
77
|
Fusaki N, Iwamatsu A, Iwashima M, Fujisawa JI. Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling. J Biol Chem 1997; 272:6214-9. [PMID: 9045636 DOI: 10.1074/jbc.272.10.6214] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.
Collapse
Affiliation(s)
- N Fusaki
- Department of Microbiology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi-shi, Osaka 570, Japan
| | | | | | | |
Collapse
|
78
|
Ojaniemi M, Martin SS, Dolfi F, Olefsky JM, Vuori K. The proto-oncogene product p120(cbl) links c-Src and phosphatidylinositol 3'-kinase to the integrin signaling pathway. J Biol Chem 1997; 272:3780-7. [PMID: 9013636 DOI: 10.1074/jbc.272.6.3780] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. We show in this report that p120(cbl) (Cbl), the 120-kDa c-cbl proto-oncogene product, becomes tyrosine-phosphorylated during integrin-mediated macrophage cell adhesion to extracellular matrix substrata and anti-integrin antibodies. This tyrosine phosphorylation does not occur when cells attach to polylysine, to which cells adhere in a nonspecific fashion. It also does not take place when adhesion-induced reorganization of the cytoskeleton is inhibited with cytochalasin D. In contrast to the rapid and transient tyrosine phosphorylation of Cbl by CSF-1 stimulation, tyrosine phosphorylation of Cbl by cell attachment was gradual and persistent. Tyrosine-phosphorylated Cbl was found to form complexes with the SH2 domain-containing signaling proteins Src and phosphatidylinositol 3-kinase; in vitro kinase assays demonstrated that these kinases were active in the Cbl complexes following integrin ligand binding. Furthermore, Cbl was found to translocate to the plasma membrane in response to cell adhesion to fibronectin. These observations suggest that Cbl serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion in macrophages.
Collapse
Affiliation(s)
- M Ojaniemi
- La Jolla Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
79
|
Anderson SM, Burton EA, Koch BL. Phosphorylation of Cbl following stimulation with interleukin-3 and its association with Grb2, Fyn, and phosphatidylinositol 3-kinase. J Biol Chem 1997; 272:739-45. [PMID: 8995358 DOI: 10.1074/jbc.272.2.739] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have demonstrated that a 120-kDa protein, identified as Cbl, becomes rapidly phosphorylated on tyrosine residues following stimulation of factor-dependent cells with interleukin-3 (IL-3). Little or no phosphorylation of Cbl was observed in the absence of IL-3 stimulation and phosphorylation is maximal by 20-30 min after IL-3 stimulation. Association of Cbl with Grb2 was noted in unstimulated cells, and the amount of Cbl associated with Grb2 increased following IL-3 stimulation. The p85 subunit of phosphatidylinositol 3-kinase was constitutively associated with Cbl. Approximately 10% of the PI kinase activity present in anti-phosphotyrosine immunoprecipitates was present in anti-Cbl immunoprecipitates of IL-3-stimulated cells. The constitutive association of Cbl with Fyn was also observed. Cbl was observed to bind to bacterial fusion proteins encoding the unique, SH3, and SH2 domains of Fyn, Hck, and Lyn. The SH2 domain of Fyn alone was able to bind Cbl to nearly the same extent as did the fusion protein encoding the unique, SH3, and SH2 domains. This was not the case for the SH2 domain of Hck, however, as binding of the Hck fusion protein to Cbl appeared to require multiple domains. The binding of the fusion proteins to Cbl occurred regardless of whether Cbl was tyrosine-phosphorylated or not, and the binding could not be disrupted by the addition of 30 mM free phosphotyrosine. These data suggest the unexpected conclusion that the Fyn SH2 domain may bind to Cbl in a phosphotyrosine-independent manner.
Collapse
Affiliation(s)
- S M Anderson
- University of Colorado Health Sciences Center, Department of Pathology, Denver 80262, USA.
| | | | | |
Collapse
|
80
|
Liu YC, Elly C, Langdon WY, Altman A. Ras-dependent, Ca2+-stimulated activation of nuclear factor of activated T cells by a constitutively active Cbl mutant in T cells. J Biol Chem 1997; 272:168-73. [PMID: 8995243 DOI: 10.1074/jbc.272.1.168] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
T cell receptor (TCR) stimulation induces rapid tyrosine phosphorylation of cellular proteins, including Cbl, a protooncogene product whose function remains unclear. As a first step toward elucidating the function of Cbl in TCR-initiated signaling, we evaluated the ability of wild-type Cbl or a transforming Cbl mutant (70Z/3) to induce transcriptional activation of a nuclear factor of activated T cells (NFAT) element derived from the interleukin 2 (IL2) promoter in transiently cotransfected Jurkat-TAg T cells. 70Z/3, but not Cbl, caused NFAT activation which was significantly enhanced by stimulation with calcium ionophore, and was drastically reduced by cyclosporin A pretreatment. A point mutation of a potential phosphatidylinositol 3-kinase (PI3-K) binding site (Y731EAM to Y731EAC) in 70Z/3 disrupted the association of PI3-K with 70Z/3, but did not reduce the induction of NFAT activity, suggesting that the interaction between Cbl and PI3-K is not required in the 70Z/3-mediated induction of NFAT. Additional mapping studies indicated that defined deletions of C-terminal 70Z/3 sequences affected to a variable degree its ability to stimulate NFAT activity. Strikingly, deletion of 346 C-terminal residues augmented this activity, whereas removal of 20 additional residues abolished it. Coexpression of dominant negative Ras abrogated the basal or ionomycin-stimulated, 70Z/3-mediated NFAT activation, suggesting a functional Ras is required for this activation. These results implicate Cbl in Ras-dependent signaling pathways which lead to NFAT activation.
Collapse
Affiliation(s)
- Y C Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
81
|
Alberola-Ila J, Takaki S, Kerner JD, Perlmutter RM. Differential signaling by lymphocyte antigen receptors. Annu Rev Immunol 1997; 15:125-54. [PMID: 9143684 DOI: 10.1146/annurev.immunol.15.1.125] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies performed during the past several years make plain that ligand occupancy of antigen receptors need not necessarily provoke identical responses in all instances. For example, ligation of antigen receptors may stimulate a proliferative response, induce a state of unresponsiveness to subsequent stimulation (anergy), or induce apoptosis. How does a single type of transmembrane receptor induce these very heterogeneous cellular responses? In the following pages, we outline evidence supporting the view that the nature of the ligand/receptor interaction directs the physical recruitment of signaling pathways differentially inside the lymphocyte and hence defines the nature of the subsequent immune response. We begin by providing a functional categorization of antigen receptor components, considering the ways in which these components interact with the known set of signal transduction pathways, and then review the evidence suggesting that differential signaling through the TCR is achieved by qualitative differences in the effector pathways recruited by TCR, perhaps reflecting the time required to bring complicated signal transduction elements into proximity within the cell. The time-constant of the interaction between antigen and receptor in this way determines, at least in part, the nature of the resulting response. Finally, although our review focuses substantially on T cell receptor signaling, we have included a less detailed description of B cell receptor signaling as well, simply to emphasize the parallels that exist in these two closely related systems.
Collapse
Affiliation(s)
- J Alberola-Ila
- Department of Immunology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
82
|
Abstract
AbstractCRKL has previously been shown to be a major tyrosine phosphorylated protein in neutrophils of patients with BCR-ABL+ chronic myelogenous leukemia and in cell lines expressing BCR-ABL. CRKL and BCR-ABL form a complex as demonstrated by coimmunoprecipitation and are capable of a direct interaction in a yeast two-hybrid assay. We have mapped the site of interaction of CRKL and BCR-ABL to the amino terminal SH3 domain of CRKL with a proline rich region in the C-terminus of ABL. The proline-rich region was mutated and the effect of this deletion on BCR-ABL transforming function was assayed. Our data show that this deletion does not impair the ability of BCR-ABL to render myeloid cells factor independent for growth. In cells expressing the proline deletion mutation of BCR-ABL, CRKL is still tyrosine phosphorylated and forms a complex with BCR-ABL as demonstrated by coimmunoprecipitation. Our data suggest that the interaction between CRKL and the proline deletion mutant of BCR-ABL is an indirect interaction as CRKL does not interact directly with the proline deletion mutant of BCR-ABL in a gel overlay assay or in a yeast two-hybrid assay. Thus, a direct interaction of CRKL and BCR-ABL is not required for CRKL to become tyrosine phosphorylated by BCR-ABL and suggests that CRKL function may still be required for BCR-ABL function through an indirect interaction.
Collapse
|
83
|
Abstract
CRKL has previously been shown to be a major tyrosine phosphorylated protein in neutrophils of patients with BCR-ABL+ chronic myelogenous leukemia and in cell lines expressing BCR-ABL. CRKL and BCR-ABL form a complex as demonstrated by coimmunoprecipitation and are capable of a direct interaction in a yeast two-hybrid assay. We have mapped the site of interaction of CRKL and BCR-ABL to the amino terminal SH3 domain of CRKL with a proline rich region in the C-terminus of ABL. The proline-rich region was mutated and the effect of this deletion on BCR-ABL transforming function was assayed. Our data show that this deletion does not impair the ability of BCR-ABL to render myeloid cells factor independent for growth. In cells expressing the proline deletion mutation of BCR-ABL, CRKL is still tyrosine phosphorylated and forms a complex with BCR-ABL as demonstrated by coimmunoprecipitation. Our data suggest that the interaction between CRKL and the proline deletion mutant of BCR-ABL is an indirect interaction as CRKL does not interact directly with the proline deletion mutant of BCR-ABL in a gel overlay assay or in a yeast two-hybrid assay. Thus, a direct interaction of CRKL and BCR-ABL is not required for CRKL to become tyrosine phosphorylated by BCR-ABL and suggests that CRKL function may still be required for BCR-ABL function through an indirect interaction.
Collapse
|
84
|
Senechal K, Sawyers CL. Signal transduction-based strategies for the treatment of chronic myelogenous leukemia. MOLECULAR MEDICINE TODAY 1996; 2:503-9. [PMID: 9015791 DOI: 10.1016/s1357-4310(97)81454-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies of the BCR-ABL fusion protein, the product of the oncogene responsible for chronic myelogenous leukemia, have identified a number of signal transduction pathways that are activated by this tyrosine kinase. In some cases, these pathways are critical mediators of the growth stimulatory effects of the oncogene on hemopoietic cells. This knowledge has been translated into therapeutic strategies that directly target BCR-ABL or the signaling pathways that BCR-ABL activates. Promising results in animal models have led to the design of Phase I clinical trials, which are in progress or will be under way shortly. These studies are among the first to target a specific genetic abnormality in human cancer.
Collapse
Affiliation(s)
- K Senechal
- Molecular Biology Institute, UCLA School of Medicine 90095-1678, USA
| | | |
Collapse
|
85
|
Ota Y, Beitz LO, Scharenberg AM, Donovan JA, Kinet JP, Samelson LE. Characterization of Cbl tyrosine phosphorylation and a Cbl-Syk complex in RBL-2H3 cells. J Exp Med 1996; 184:1713-23. [PMID: 8920860 PMCID: PMC2192902 DOI: 10.1084/jem.184.5.1713] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tyrosine phosphorylation of the Cbl protooncogene has been shown to occur after engagement of a number of different receptors on hematopoietic cells. However, the mechanisms by which these receptors induce Cbl tyrosine phosphorylation are poorly understood. Here we demonstrate that engagement of the high affinity IgE receptor (Fc epsilon R1) leads to the tyrosine phosphorylation of Cbl and analyze how this occurs. We show that at least part of Fc epsilon R1-induced Cbl tyrosine phosphorylation is mediated by the Syk tyrosine kinase, and that the Syk-dependent tyrosine phosphorylation of Cbl occurs mainly distal to the Cbl proline-rich region within the COOH-terminal 250 amino acids. Furthermore, we show by coprecipitation that Cbl is present in a complex with Syk before receptor engagement, that the proline-rich region of Cbl and a region of Syk comprised of the two SH2 domains and intradomain linker are required for formation of the complex, and that little or no tyrosine-phosphorylated Cbl is detected in complex with Syk. Overexpression of truncation mutants of Cbl capable of binding Syk has the effect of blocking tyrosine phosphorylation of endogenous Cbl. These results define a potentially important intramolecular interaction in mast cells and suggest a complex function for Cbl in intracellular signaling pathways.
Collapse
Affiliation(s)
- Y Ota
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-5430, USA
| | | | | | | | | | | |
Collapse
|
86
|
Tsygankov AY, Mahajan S, Fincke JE, Bolen JB. Specific association of tyrosine-phosphorylated c-Cbl with Fyn tyrosine kinase in T cells. J Biol Chem 1996; 271:27130-7. [PMID: 8900205 DOI: 10.1074/jbc.271.43.27130] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fyn is a Src family protein-tyrosine kinase functionally associated with the T-cell antigen receptor (TcR)/CD3 receptor complex. We have demonstrated earlier that the TcR/CD3-induced activation of Fyn results in tyrosine phosphorylation of several Fyn-associated proteins, including a protein of 116 kDa. In this report, we identify the Fyn-associated 116-kDa phosphoprotein (p116) as c-Cbl. The identity of p116 has been demonstrated by its specific reactivity with anti-Cbl and similarity of phosphopeptides generated by V8 proteolysis of phospho-Cbl and p116. We demonstrate here that the association of Fyn and c-Cbl is direct and does not require the presence of other proteins. We also demonstrate that Fyn is the Src family kinase that preferentially interacts with c-Cbl in T cells. The fraction of c-Cbl capable of coprecipitating with Fyn is increased by TcR/CD3 ligation. This increase is likely due to the involvement of Fyn SH2 in the interactions between Fyn and tyrosine-phosphorylated c-Cbl.
Collapse
Affiliation(s)
- A Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
87
|
Donovan JA, Ota Y, Langdon WY, Samelson LE. Regulation of the association of p120cbl with Grb2 in Jurkat T cells. J Biol Chem 1996; 271:26369-74. [PMID: 8824292 DOI: 10.1074/jbc.271.42.26369] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The c-cbl protooncogene product (p120(cbl)) is a known substrate of multiple tyrosine kinases. It is found in complexes with critical signal transduction molecules, including the linker protein Grb2. Here, we demonstrate using an immobilized Grb2-binding peptide that the Grb2-p120(cbl) complex dissociates in vivo following engagement of the T-cell antigen receptor in Jurkat T-cells. The early kinetics of this dissociation correlate with the known time course of tyrosine phosphorylation of p120(cbl) and other substrates. This dissociation persists in vivo even when p120(cbl) becomes dephosphorylated to basal levels. However, this decreased association is not observed in protein overlay assays on nitrocellulose membranes in which a Grb2 fusion protein is used to detect p120(cbl) from stimulated or unstimulated cells. These data suggest that the tyrosine phosphorylation of p120(cbl) does not completely account for the regulation of its association with Grb2. Additionally, we used truncation mutations of p120(cbl) to map the p120(cbl)-Grb2 interaction to amino acids 481-528 of p120(cbl); this interaction is stronger in longer constructs that include additional proline-rich motifs. The in vivo regulation of the Grb2-p120(cbl) complex further supports the idea of a significant role for p120(cbl) in receptor-mediated signaling pathways.
Collapse
Affiliation(s)
- J A Donovan
- CBMB/NICHD, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | |
Collapse
|
88
|
Bunnell SC, Henry PA, Kolluri R, Kirchhausen T, Rickles RJ, Berg LJ. Identification of Itk/Tsk Src homology 3 domain ligands. J Biol Chem 1996; 271:25646-56. [PMID: 8810341 DOI: 10.1074/jbc.271.41.25646] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The tyrosine kinase Itk/Tsk is a T cell specific analog of Btk, the tyrosine kinase defective in the human immunodeficiency X-linked agammaglobulinemia and in xid mice. T lymphocytes from Itk-deficient mice are refractory to mitogenic stimuli delivered through the T cell receptor (TCR). To gain insights into the biochemical role of Itk, the binding properties of the Itk SH3 domain were examined. An optimal Itk SH3 binding motif was derived by screening biased phage display libraries; peptides based on this motif bound with high affinity and selectivity to the Itk SH3 domain. Initial studies with T cell lysates indicated that the Itk SH3 domain bound Cbl, Fyn, and other tyrosine phosphoproteins from TCR-stimulated Jurkat cells. Under conditions of increased detergent stringency Sam 68, Wiskott-Aldrich Syndrome protein, and hnRNP-K, but not Cbl and Fyn, were bound to the Itk SH3 domain. By examining the ability of different SH3 domains to interact with deletion variants of Sam 68 and WASP, we demonstrated that the Itk-SH3 domain and the SH3 domains of Src family kinases bind to overlapping but distinct sets of proline-rich regions in Sam 68 and WASP.
Collapse
Affiliation(s)
- S C Bunnell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
89
|
Okada S, Pessin JE. Interactions between Src homology (SH) 2/SH3 adapter proteins and the guanylnucleotide exchange factor SOS are differentially regulated by insulin and epidermal growth factor. J Biol Chem 1996; 271:25533-8. [PMID: 8810325 DOI: 10.1074/jbc.271.41.25533] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Co-immunoprecipitation of whole cell extracts demonstrated that the guanylnucleotide exchange factor SOS was associated with the small adapter proteins Grb2, CrkII, and Nck. In vitro binding indicated a similar binding affinity of SOS for all three adapter proteins but with a slightly lower Kd for Grb2 (approximately 2.5-fold) compared with Nck and CrkII. Insulin stimulation resulted in co-immunoprecipitation of tyrosine-phosphorylated IRS1 with Grb2 and to a lesser extent CrkII. Although Grb2 also associated with tyrosine-phosphorylated Shc, there was no detectable interaction of CrkII with Shc. In contrast, EGF stimulation resulted in the predominant co-immunoprecipitation of Grb2 with the EGF receptor, whereas CrkII primarily associated with an unidentified 120-130-kDa protein. Similar to the ability of insulin to induce the dissociation of the Grb2-SOS complex, there was a concomitant time-dependent dissociation of the CrkII-SOS and Nck-SOS complexes. However, EGF stimulation had no effect on the association state of the Grb2-SOS or the Nck-SOS complexes but did result in a time-dependent dissociation of the CrkII from SOS. Together, these data demonstrate that different cellular pools of SOS associate with different adapter proteins forming various signaling complexes, each undergoing distinct patterns of assembly/disassembly following growth factor stimulation.
Collapse
Affiliation(s)
- S Okada
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
90
|
Salgia R, Pisick E, Sattler M, Li JL, Uemura N, Wong WK, Burky SA, Hirai H, Chen LB, Griffin JD. p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene. J Biol Chem 1996; 271:25198-203. [PMID: 8810278 DOI: 10.1074/jbc.271.41.25198] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Philadelphia chromosome (Ph) translocation generates a chimeric tyrosine kinase oncogene, BCR/ABL, which causes chronic myelogenous leukemia (CML) and a type of acute lymphoblastic leukemia (ALL). In primary samples from virtually all patients with CML or Ph+ALL, the CRKL adapter protein is tyrosine phosphorylated and physically associated with p210(BCR/ABL). CRKL has one SH2 domain and two SH3 domains and is structurally related to c-CRK-II (CRK) and the v-Crk oncoprotein. We have previously shown that CRKL, but not the related adapter protein c-CRK, is tyrosine phosphorylated in cell lines transformed by BCR/ABL, and that CRKL binds to BCR/ABL through the CRKL-SH3 domains. Furthermore, the CRKL-SH2 domain has been shown to bind one or more cellular proteins, one of which is p120(CBL). Here we demonstrate that another cellular protein linked to BCR/ABL through the CRKL-SH2 domain is p130(CAS). p130(CAS) was found to be tyrosine phosphorylated and associated with CRKL in BCR/ABL expressing cell lines and in samples obtained from CML and ALL patients, but not in samples from controls. In both normal and BCR/ABL transformed cells, p130(CAS) was detected in focal adhesion-like structures, as was BCR/ABL. In normal cells, the focal adhesion proteins tensin, p125(FAK), and paxillin constitutively associated with p130(CAS). However, in BCR/ABL transformed cells, the interaction between p130(CAS) and tensin was disrupted, while the associations between p130(CAS), p125(FAK), and paxillin were unaffected. These results suggest that the BCR/ABL oncogene could alter the function of p130(CAS) in at least three ways: tyrosine phosphorylation, inducing constitutive binding of CRKL to a domain in p130(CAS) containing Tyr-X-X-Pro motifs (substrate domain), and disrupting the normal interaction of p130(CAS) with the focal adhesion protein tensin. These alterations in the structure of signaling proteins in focal adhesion like structures could contribute to the known adhesion abnormalities in CML cells.
Collapse
Affiliation(s)
- R Salgia
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Lee-Fruman KK, Collins TL, Burakoff SJ. Role of the Lck Src homology 2 and 3 domains in protein tyrosine phosphorylation. J Biol Chem 1996; 271:25003-10. [PMID: 8798782 DOI: 10.1074/jbc.271.40.25003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many protein tyrosine phosphorylation events that occur as a result of T cell receptor (TCR) stimulation are enhanced when CD4 is co-cross-linked with the TCR, and this increased phosphorylation is thought to be a mechanism by which T cell functions are augmented by CD4. Such enhanced tyrosine phosphorylation was originally attributed to the kinase activity of the CD4-associated tyrosine kinase Lck. However, it has been shown that CD4-associated Lck lacking the catalytic domain can enhance T cell functions, suggesting that the noncatalytic domains of Lck are also important in CD4 signaling. Using T cells expressing various CD4-Lck chimeric molecules, we assessed the role of different Lck domains in early T cell signaling. Following TCR-CD4 co-cross-linking, cells expressing a CD4-Lck full-length chimera showed enhanced tyrosine phosphorylation of many cellular proteins in a CD4-dependent manner. Surprisingly, cells expressing a CD4-Lck chimera lacking the catalytic domain (termed CD4-N32) also showed enhanced phosphorylation. This enhancement of phosphorylation required both the Src homology 2 (SH2) and SH3 domains of Lck. Lck has been postulated to dimerize through the SH2 and SH3 domains. In this way CD4-N32 may interact with endogenous Lck, and although it lacks intrinsic kinase activity, it may be capable of enhancing phosphorylation through the associated full-length Lck. Consistent with this model, when CD4-Lck chimeric molecules were expressed in J. CaM1.6 cells lacking endogenous Lck, CD4-N32 failed to enhance tyrosine phosphorylation. Moreover, a Lck SH2 and SH3 domain fragment expressed as a glutathione S-transferase fusion protein associated with Lck when incubated with activated Jurkat T cell lysates, suggesting that the SH2 and SH3 domains of Lck can associate with endogenous full-length Lck upon activation. Thus, our data suggest that dimerization is an important mechanism of Lck function in T cell activation.
Collapse
Affiliation(s)
- K K Lee-Fruman
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
92
|
Senechal K, Halpern J, Sawyers CL. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem 1996; 271:23255-61. [PMID: 8798523 DOI: 10.1074/jbc.271.38.23255] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The CRKL adaptor protein was recently identified as a substrate for the BCR-ABL tyrosine kinase in patients with chronic myelogenous leukemia, but its function is unknown. Here we report that CRKL is phosphorylated when overexpressed, activates RAS and JUN kinase signaling pathways, and transforms fibroblasts in a RAS-dependent fashion. We examined the potential role of CRKL in BCR-ABL function by deleting the CRKL binding site in BCR-ABL. This mutant BCR-ABL protein shows a 50% reduction in fibroblast transforming activity. The GRB2 adaptor protein has previously been implicated in this pathway, presumably linking BCR-ABL to RAS. To address the relative roles of CRKL and GRB2 in this system, we compared BCR-ABL mutants with defects in binding to one or both adaptors. Whereas each single mutant showed a 2-3-fold loss in transforming activity, the double mutant showed a 15-fold reduction, suggesting that GRB2 and CRKL both contribute to BCR-ABL transformation. These results demonstrate the oncogenic potential of CRKL and provide functional evidence that CRKL plays a role in fibroblast transformation by BCR-ABL in conjunction with other adaptor proteins.
Collapse
Affiliation(s)
- K Senechal
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
93
|
Matsuda M, Kurata T. Emerging components of the Crk oncogene product: the first identified adaptor protein. Cell Signal 1996; 8:335-40. [PMID: 8911681 DOI: 10.1016/0898-6568(96)00067-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
v-Crk, identified as an oncogene product of the CT10 retrovirus, became the first example of an adaptor protein. It consists mostly of the Src homology 2 (SH2) and Src homology 3 (SH3) domains. Two of the three major proteins bound to Crk SH2 have been identified as paxillin and p130Cas. Both paxillin and p130Cas are phosphorylated upon stimulation by integrin, suggesting that Crk transduces signals from integrin. The cloning of the complementary DNA of two major proteins bound to Crk SH3 was recently completed. Both cDNAs encoded novel proteins: C3G, a guanine nucleotide exchange protein for Rap1, and DOCK180, an SH3-containing protein of unknown function. The SH3 domain of Crk also binds to Sos, Abl, and Eps15. The variety of the proteins bound to Crk SH3 implies that Crk provides a set of effector proteins that are triggered together. Alternatively, other domains of the SH3-binding proteins enable Crk to specifically activate each of the SH3-binding proteins according to the particular form of stimulation.
Collapse
Affiliation(s)
- M Matsuda
- Department of Pathology, National Institute of Health, Tokyo, Japan
| | | |
Collapse
|
94
|
Matsuda M, Ota S, Tanimura R, Nakamura H, Matuoka K, Takenawa T, Nagashima K, Kurata T. Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins. J Biol Chem 1996; 271:14468-72. [PMID: 8662907 DOI: 10.1074/jbc.271.24.14468] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CRK is a human homolog of chichen v-Crk, which is an adaptor protein. The SH2 domain of CRK binds to several tyrosine-phosphorylated proteins, including the epidermal growth factor receptor, p130(Cas), Shc, and paxillin. The SH3 domain, in turn, binds to cytosolic proteins of 135-145, 160, 180, and 220 kDa. We screened expression libraries by Far Western blotting, using CRK SH3 as a probe, and identified partial cDNA sequences of four distinct proteins, including C3G, DOCK180, EPS15, and clone ST12. The consensus sequence of the CRK SH3 binding sites as deduced from their amino acid sequences was Pro+3-Pro+2-X+1-Leu0-Pro-1-X-2-Lys-3. The interaction of the CRK SH3 domain with the DOCK180 peptide was examined with an optical biosensor, based on the principles of surface plasmon resonance. A low dissociation constant of the order of 10(-7) resulted from a high association rate constant (kassoc = 3 x 10(4)) and low dissociation rate constant (kdiss = 3 x 10(-3)). All CRK-binding proteins except clone ST12 also bound to another adaptor protein, Grb2. Mutational analysis revealed that glycine at position +1 of ST12 inhibited the binding to Grb2 while retaining the high affinity binding to CRK SH3. The result suggests that the amino acid at position +1 also contributes to the high affinity binding of the peptides to the SH3 domain of Grb2, but not to that of CRK.
Collapse
Affiliation(s)
- M Matsuda
- Department of Pathology, National Institute of Health, Toyama, Shinjuku-ku, Tokyo 162, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Petruzzelli L, Takami M, Herrera R. Adhesion through the interaction of lymphocyte function-associated antigen-1 with intracellular adhesion molecule-1 induces tyrosine phosphorylation of p130cas and its association with c-CrkII. J Biol Chem 1996; 271:7796-801. [PMID: 8631823 DOI: 10.1074/jbc.271.13.7796] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The B-lymphoblastoid cell line JY undergoes homotypic aggregation in a lymphocyte function-associated antigen-1 (LFA-1)-mediated, intracellular adhesion molecule-1 (ICAM-1)-dependent manner when stimulated with phorbol 12-myristate 13-acetate or anti-LFA-1 antibodies. Under conditions that lead to cell aggregation, we observed rapid tyrosine phosphorylation of p130cas, a protein previously identified to be phosphorylated on tyrosine in both v-src- and v-crk-transformed cells. Phosphorylation of p130cas was dependent on binding of LFA-1 to its ligand, ICAM-1, as demonstrated by the use of anti-ICAM-1 antibodies. Several observations suggest that this event may be an important step in the signaling pathway initiated by LFA-1. p130cas phosphorylation was rapidly reversible upon disengagement of the LFA-1-ICAM-1 complex and required cell adhesion since binding of phorbol 12-myristate 13-acetate-stimulated JY cells to purified ICAM-1 or cross-linking of either LFA-1 or ICAM-1 was not sufficient to induce phosphorylation of p130cas. The integrin-stimulated phosphorylation of p130cas created binding sites that were recognized in vitro by the SH2 domain of c-CrkII, a key adaptor protein involved in cell differentiation and transformation. Moreover, we also showed that the LFA-1-stimulated tyrosine phosphorylation of p130cas induces the formation of a p130cas.CrkII and p130cas.CrkL complex in intact cells. This observation suggests that adhesion mediated by the interaction of LFA-1 and ICAM-1 initiates a signaling cascade that involves the activation of protein tyrosine kinases and leads to the regulation of protein-protein interaction via SH2 domains, a key process shared with growth factor signaling pathways.
Collapse
Affiliation(s)
- L Petruzzelli
- Department of Internal medicine, University of Michigan, Ann Arbor, 48109-0668, USA
| | | | | |
Collapse
|