51
|
Grinberg-Bleyer Y, Dainichi T, Oh H, Heise N, Klein U, Schmid RM, Hayden MS, Ghosh S. Cutting edge: NF-κB p65 and c-Rel control epidermal development and immune homeostasis in the skin. THE JOURNAL OF IMMUNOLOGY 2015; 194:2472-6. [PMID: 25681334 DOI: 10.4049/jimmunol.1402608] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Psoriasis is an inflammatory skin disease in which activated immune cells and the proinflammatory cytokine TNF are well-known mediators of pathogenesis. The transcription factor NF-κB is a key regulator of TNF production and TNF-induced proinflammatory gene expression, and both the psoriatic transcriptome and genetic susceptibility further implicate NF-κB in psoriasis etiopathology. However, the role of NF-κB in psoriasis remains controversial. We analyzed the function of canonical NF-κB in the epidermis using CRE-mediated deletion of p65 and c-Rel in keratinocytes. In contrast to animals lacking p65 or c-Rel alone, mice lacking both subunits developed severe dermatitis after birth. Consistent with its partial histological similarity to human psoriasis, this condition could be prevented by anti-TNF treatment. Moreover, regulatory T cells in lesional skin played an important role in disease remission. Our results demonstrate that canonical NF-κB in keratinocytes is essential for the maintenance of skin immune homeostasis and is protective against spontaneous dermatitis.
Collapse
Affiliation(s)
- Yenkel Grinberg-Bleyer
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Teruki Dainichi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Hyunju Oh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Nicole Heise
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Ulf Klein
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Roland M Schmid
- Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität Munich, Munich 80333, Germany; and
| | - Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| |
Collapse
|
52
|
Abstract
The presence of dying cells in inflamed tissues has been recognized since many years, but until recently cell death was considered primarily a consequence of inflammation. Recent data in mouse models suggest that cell death could provide a potent trigger of inflammation. The identification of necroptosis as a new type of regulated necrotic cell death that is induced by death receptors, toll like receptors and type I interferon receptor indicated that necroptosis could contribute to the proinflammatory properties of these receptors. This is particularly relevant to the skin, a tissue that provides a life-sustaining structural and immunological barrier with the environment and is constantly exposed to mechanical, chemical, and microbial insults. Studies in mouse models showed that sensitization of keratinocytes to apoptosis or necroptosis triggered by TNF and other stimuli causes severe chronic inflammatory skin lesions. In addition, keratinocyte death is a prominent histopathological feature of many inflammatory skin diseases, suggesting that death of epithelial cells could contribute to the pathogenesis of skin inflammation . Here we review recent studies in genetic mouse models providing evidence that keratinocyte death is a potent trigger of skin inflammation and discuss their potential relevance for human inflammatory skin diseases.
Collapse
|
53
|
Abstract
Atopic dermatitis (AD) is a chronic or chronically relapsing, pruritic inflammatory skin disease. The incidence of AD has dramatically increased for the past three decades in industrialized countries. We established a highly efficient method to induce AD-like skin lesions using repeated epicutaneous treatments with house dust mite allergen and staphylococcal enterotoxin B (SEB). The dermatitis-induced mice showed increased serum IgE levels that were similar to human AD patients and also treatable with dexamethasone. This mouse AD model has been used in a vaccinia virus infection study. It will also be useful to study pathogenic processes of AD and to evaluate the efficacy of a drug candidate. In this chapter, we describe the detailed method that can induce AD-like skin inflammation in multiple mouse strains.
Collapse
Affiliation(s)
- Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, San Diego, CA, 92037, USA
| | | |
Collapse
|
54
|
Lian H, Yang L, Cole A, Sun L, Chiang ACA, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron 2014; 85:101-115. [PMID: 25533482 DOI: 10.1016/j.neuron.2014.11.018] [Citation(s) in RCA: 481] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
Abstract
Abnormal NFκB activation has been implicated in Alzheimer's disease (AD). However, the signaling pathways governing NFκB regulation and function in the brain are poorly understood. We identify complement protein C3 as an astroglial target of NFκB and show that C3 release acts through neuronal C3aR to disrupt dendritic morphology and network function. Exposure to Aβ activates astroglial NFκB and C3 release, consistent with the high levels of C3 expression in brain tissue from AD patients and APP transgenic mice, where C3aR antagonist treatment rescues cognitive impairment. Therefore, dysregulation of neuron-glia interaction through NFκB/C3/C3aR signaling may contribute to synaptic dysfunction in AD, and C3aR antagonists may be therapeutically beneficial.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Houston, TX 77030, USA
| | - Li Yang
- Huffington Center on Aging, Houston, TX 77030, USA
| | - Allysa Cole
- Huffington Center on Aging, Houston, TX 77030, USA
| | - Lu Sun
- Huffington Center on Aging, Houston, TX 77030, USA
| | - Angie C-A Chiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie W Fowler
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David J Shim
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joanna L Jankowsky
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Chen Lu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine and the Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
55
|
Lopez B, Maisonet TM, Londhe VA. Alveolar NF-κB signaling regulates endotoxin-induced lung inflammation. Exp Lung Res 2014; 41:103-14. [PMID: 25517107 DOI: 10.3109/01902148.2014.977461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE/AIM The alveolar epithelium participates in host defense through inflammatory pathways that activate NF-κB. Lung infections involving endotoxins trigger acute respiratory distress syndrome (ARDS) in adult and pediatric patients. The purpose of this study was to test the hypothesis that overexpression of NF-κB would worsen and conditional deletion of NF-κB signaling would improve endotoxin-induced lung inflammation using transgenic mouse models. MATERIALS AND METHODS Two previously described transgenic mouse models were used in which overexpression of the RelA/p65 subunit of NF-κB was targeted to the lung epithelium using an SPC promoter (SPC-RelA) and conditional deletion of the IKKβ molecule involved in NF-κB signaling was targeted to the lung epithelium using Nkx2.1(Cre) (Nkx2.1(Cre);IKKβ(F/F)). Adult transgenic and control mice were injected with intratracheal lipopolysaccharide (LPS) or saline followed by lung harvest at 48 h. Collected tissue included whole lungs from transgenic and control mice which was processed for analysis of BAL, lung histology, chemokine expression, and markers of cell apoptosis as well as collection of freshly isolated AECII cells from wild type mice for additional chemokine and apoptotic marker analysis. RESULTS SPC-RelA mice showed significant increases in lung inflammation and injury following LPS injection with increased neutrophil recruitment as compared to wild type and saline treated controls. In contrast, Nkx2.1(Cre); IKKβ(F/F) mice showed markedly decreased lung inflammation and injury with decreased neutrophil recruitment as compared to controls. In both models, lung inflammation was associated with increased cell apoptosis and these findings were confirmed in freshly isolated AECII cells in wild type mice following LPS injection. CONCLUSIONS Overexpression of NF-κB targeted to the lung epithelium worsened lung inflammation and injury in response to LPS exposure while conditional deletion of NF-κB signaling reduced lung inflammation. Lung inflammation and injury were associated with increased cell apoptosis.
Collapse
Affiliation(s)
- Benjamin Lopez
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California , Los Angeles, California , USA
| | | | | |
Collapse
|
56
|
Dvoriantchikova G, Ivanov D. Tumor necrosis factor-alpha mediates activation of NF-κB and JNK signaling cascades in retinal ganglion cells and astrocytes in opposite ways. Eur J Neurosci 2014; 40:3171-8. [PMID: 25160799 PMCID: PMC4205188 DOI: 10.1111/ejn.12710] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor-alpha (TNF) is an important mediator of the innate immune response in the retina. TNF can activate various signaling cascades, including NF-κB, nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways. The harmful role of these pathways, as well as of TNF, has previously been shown in several retinal neurodegenerative conditions including glaucoma and retinal ischemia. However, TNF and TNF-regulated signaling cascades are capable not only of mediating neurotoxicity, but of being protective. We performed this study to delineate the beneficial and detrimental effects of TNF signaling in the retina. To this end, we used TNF-treated primary retinal ganglion cell (RGC) and astrocyte cultures. Levels of expression of NF-κB subunits in RGCs and astrocytes were evaluated by quantitative RT-PCR (qRT-PCR) and Western blot (WB) analysis. NF-κB and JNK activity in TNF-treated cells was determined in a time-dependent manner using ELISA and WB. Gene expression in TNF-treated astrocytes was measured by qRT-PCR. We found that NF-κB family members were present in RGCs and astrocytes at the mRNA and protein levels. RGCs failed to activate NF-κB in the presence of TNF, a phenomenon that was associated with sustained JNK activation and RGC death. However, TNF initiated the activation of NF-κB and mediated transient JNK activation in astrocytes. These events were associated with glial survival and increased expression of neurotoxic pro-inflammatory factors. Our findings suggest that, in the presence of TNF, NF-κB and JNK signaling cascades are activated in opposite ways in RGCs and astrocytes. These events can directly and indirectly facilitate RGC death.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | | |
Collapse
|
57
|
Epidermal RelA Specifically Restricts Contact Allergen–Induced Inflammation and Apoptosis in Skin. J Invest Dermatol 2014; 134:2541-2550. [DOI: 10.1038/jid.2014.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/18/2014] [Accepted: 04/04/2014] [Indexed: 11/08/2022]
|
58
|
Espinosa L, Bigas A, Mulero MC. Novel functions of chromatin-bound IκBα in oncogenic transformation. Br J Cancer 2014; 111:1688-92. [PMID: 25233399 PMCID: PMC4453743 DOI: 10.1038/bjc.2014.84] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/19/2013] [Accepted: 01/24/2014] [Indexed: 01/30/2023] Open
Abstract
The nuclear factor-κB (NF-κB) signalling pathway participates in a multitude of biological processes, which imply the requirement of a complex and precise regulation. IκB (for Inhibitor of kappaB) proteins, which bind and retain NF-κB dimers in the cytoplasm, are the main contributors to negative regulation of NF-κB under non-stimulation conditions. Nevertheless, increasing evidences indicate that IκB proteins exert specific nuclear roles that directly contribute to the control of gene transcription. In particular, hypophosphorylated IκBβ can bind the promoter region of TNFα leading to persistent gene transcription in macrophages and contributing to the regulation of the inflammatory response. Recently, we demonstrated that phosphorylated and SUMOylated IκBα reside in the nucleus of the cells where it binds to chromatin leading to specific transcriptional repression. Mechanistically, IκBα associates and regulates Polycomb Repressor Complex activity, a function that is evolutionary conserved from flies to mammals, as indicate the homeotic phenotype of Drosophila mutants. Here we discuss the implications of chromatin-bound IκBα function in the context of tumorigenesis.
Collapse
Affiliation(s)
- L Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader, 88, Barcelona 08003, Spain
| | - A Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader, 88, Barcelona 08003, Spain
| | - M C Mulero
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader, 88, Barcelona 08003, Spain
| |
Collapse
|
59
|
Soboleva AG, Mesentsev AV, Bruskin SA. Genetically modified animals as models of the pathological processes in psoriasis. Mol Biol 2014. [DOI: 10.1134/s0026893314040153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Espinosa L, Margalef P, Bigas A. Non-conventional functions for NF-κB members: the dark side of NF-κB. Oncogene 2014; 34:2279-87. [DOI: 10.1038/onc.2014.188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 02/07/2023]
|
61
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
62
|
Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci 2014; 71:2083-102. [PMID: 24419302 PMCID: PMC11113378 DOI: 10.1007/s00018-013-1545-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
Abstract
The nuclear factor κB or NF-κB transcription factor family plays a key role in several cellular functions, i.e. inflammation, apoptosis, cell survival, proliferation, angiogenesis, and innate and acquired immunity. The constitutive activation of NF-κB is typical of most malignancies and plays a major role in tumorigenesis. In this review, we describe NF-κB and its two pathways: the canonical pathway (RelA/p50) and the non-canonical pathway (RelB/p50 or RelB/p52). We then consider the role of the NF-κB subunits in the development and functional activity of B cells, T cells, macrophages and dendritic cells, which are the targets of hematological malignancies. The relevance of the two pathways is described in normal B and T cells and in hematological malignancies, acute and chronic leukemias (ALL, AML, CLL, CML), B lymphomas (DLBCLs, Hodgkin's lymphoma), T lymphomas (ATLL, ALCL) and multiple myeloma. We describe the interaction of NF-κB with the apoptotic pathways induced by TRAIL and the transcription factor p53. Finally, we discuss therapeutic anti-tumoral approaches as mono-therapies or combination therapies aimed to block NF-κB activity and to induce apoptosis (PARAs and Nutlin-3).
Collapse
Affiliation(s)
- Chiara Gasparini
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy,
| | | | | | | |
Collapse
|
63
|
Alvira CM. Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. ACTA ACUST UNITED AC 2014; 100:202-16. [PMID: 24639404 PMCID: PMC4158903 DOI: 10.1002/bdra.23233] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
In contrast to other organs, the lung completes a significant portion of its development after term birth. During this stage of alveolarization, division of the alveolar ducts into alveolar sacs by secondary septation, and expansion of the pulmonary vasculature by means of angiogenesis markedly increase the gas exchange surface area of the lung. However, postnatal completion of growth renders the lung highly susceptible to environmental insults such as inflammation that disrupt this developmental program. This is particularly evident in the setting of preterm birth, where impairment of alveolarization causes bronchopulmonary dysplasia, a chronic lung disease associated with significant morbidity. The nuclear factor κ-B (NFκB) family of transcription factors are ubiquitously expressed, and function to regulate diverse cellular processes including proliferation, survival, and immunity. Extensive evidence suggests that activation of NFκB is important in the regulation of inflammation and in the control of angiogenesis. Therefore, NFκB-mediated downstream effects likely influence the lung response to injury and may also mediate normal alveolar development. This review summarizes the main biologic functions of NFκB, and highlights the regulatory mechanisms that allow for diversity and specificity in downstream gene activation. This is followed by a description of the pro and anti-inflammatory functions of NFκB in the lung, and of NFκB-mediated angiogenic effects. Finally, this review summarizes the clinical and experimental data that support a role for NFκB in mediating postnatal angiogenesis and alveolarization, and discusses the challenges that remain in developing therapies that can selectively block the detrimental functions of NFκB yet preserve the beneficial effects.
Collapse
Affiliation(s)
- Cristina M Alvira
- Division of Critical Care Medicine Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
64
|
Liu M, Song S, Li H, Jiang X, Yin P, Wan C, Liu X, Liu F, Xu J. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. J Dairy Sci 2014; 97:2856-65. [PMID: 24612802 DOI: 10.3168/jds.2013-7600] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/21/2014] [Indexed: 01/03/2023]
Abstract
Caffeic acid possesses multiple biological effects, such as antibacterial, antioxidant, antiinflammatory, and anticancer growth; however, what effects it has on bovine mastitis have not been investigated. The aim of this study was to verify the antiinflammatory properties of caffeic acid on the inflammatory response of primary bovine mammary epithelial cells (bMEC) induced by lipopolysaccharide (LPS), and to clarify the possible underlying mechanism. Bovine mammary epithelial cells were treated with various concentrations (10, 50, 100, and 200 μg/mL) of LPS for 3, 6, 12, and 18 h; the results showed that LPS significantly inhibited cell viability in a time- and dose-dependent manner. When cells were treated with LPS (50 μg/mL) for 12h, the cell membrane permeability significantly increased, which promoted cell apoptosis. Various concentrations (10, 25, and 50 μg/mL) of caffeic acid could weaken the inflammation injury of bMEC induced by LPS without cytotoxicity. Proinflammatory cytokines (IL-8, IL-1β, IL-6, and tumor necrosis factor α) from bMEC were decreased. Nuclear transcription factor κB activity was weakened via blocking κB inhibitor α degradation and p65 phosphorylation. All these showed that the protective effect of caffeic acid on LPS-induced inflammation injury in bMEC was at least partly achieved by the decreased production of proinflammatory cytokines mediated by the effect of reducing the κB inhibitor α degradation and p65 phosphorylation in the nuclear transcription factor κB pathway. The use of caffeic acid would be beneficial in dairy cows during Escherichia coli mastitis as a safe and natural antiinflammatory drug.
Collapse
Affiliation(s)
- Mingjiang Liu
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Shixiu Song
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing 102206, P. R. China
| | - Xiaoyu Jiang
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Peng Yin
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Changrong Wan
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Xiaoxi Liu
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing 102206, P. R. China.
| | - Jianqin Xu
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China.
| |
Collapse
|
65
|
Alves BN, Tsui R, Almaden J, Shokhirev MN, Davis-Turak J, Fujimoto J, Birnbaum H, Ponomarenko J, Hoffmann A. IκBε is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. THE JOURNAL OF IMMUNOLOGY 2014; 192:3121-32. [PMID: 24591377 DOI: 10.4049/jimmunol.1302351] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factor NF-κB is a regulator of inflammatory and adaptive immune responses, yet only IκBα was shown to limit NF-κB activation and inflammatory responses. We investigated another negative feedback regulator, IκBε, in the regulation of B cell proliferation and survival. Loss of IκBε resulted in increased B cell proliferation and survival in response to both antigenic and innate stimulation. NF-κB activity was elevated during late-phase activation, but the dimer composition was stimulus specific. In response to IgM, cRel dimers were elevated in IκBε-deficient cells, yet in response to LPS, RelA dimers also were elevated. The corresponding dimer-specific sequences were found in the promoters of hyperactivated genes. Using a mathematical model of the NF-κB-signaling system in B cells, we demonstrated that kinetic considerations of IκB kinase-signaling input and IκBε's interactions with RelA- and cRel-specific dimers could account for this stimulus specificity. cRel is known to be the key regulator of B cell expansion. We found that the RelA-specific phenotype in LPS-stimulated cells was physiologically relevant: unbiased transcriptome profiling revealed that the inflammatory cytokine IL-6 was hyperactivated in IκBε(-/-) B cells. When IL-6R was blocked, LPS-responsive IκBε(-/-) B cell proliferation was reduced to near wild-type levels. Our results provide novel evidence for a critical role for immune-response functions of IκBε in B cells; it regulates proliferative capacity via at least two mechanisms involving cRel- and RelA-containing NF-κB dimers. This study illustrates the importance of kinetic considerations in understanding the functional specificity of negative-feedback regulators.
Collapse
Affiliation(s)
- Bryce N Alves
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
In eukaryotes, the function of the cell's nucleus has primarily been considered to be the repository for the organism's genome. However, this rather simplistic view is undergoing a major shift, as it is increasingly apparent that the nucleus has functions extending beyond being a mere genome container. Recent findings have revealed that the structural composition of the nucleus changes during development and that many of these components exhibit cell- and tissue-specific differences. Increasing evidence is pointing to the nucleus being integral to the function of the interphase cytoskeleton, with changes to nuclear structural proteins having ramifications affecting cytoskeletal organization and the cell's interactions with the extracellular environment. Many of these functions originate at the nuclear periphery, comprising the nuclear envelope (NE) and underlying lamina. Together, they may act as a "hub" in integrating cellular functions including chromatin organization, transcriptional regulation, mechanosignaling, cytoskeletal organization, and signaling pathways. Interest in such an integral role has been largely stimulated by the discovery that many diseases and anomalies are caused by defects in proteins of the NE/lamina, the nuclear envelopathies, many of which, though rare, are providing insights into their more common variants that are some of the major issues of the twenty-first century public health. Here, we review the contributions that mouse mutants have made to our current understanding of the NE/lamina, their respective roles in disease and the use of mice in developing potential therapies for treating the diseases.
Collapse
|
67
|
Kanji S, Das M, Aggarwal R, Lu J, Joseph M, Basu S, Pompili VJ, Das H. Nanofiber-expanded human umbilical cord blood-derived CD34+ cell therapy accelerates murine cutaneous wound closure by attenuating pro-inflammatory factors and secreting IL-10. Stem Cell Res 2013; 12:275-88. [PMID: 24321844 DOI: 10.1016/j.scr.2013.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 12/26/2022] Open
Abstract
Nanofiber-expanded human umbilical cord blood-derived CD34+ cell therapy is under consideration for treating peripheral and cardiac ischemia. However, the therapeutic efficacy of nanofiber-expanded human umbilical cord blood-derived (NEHUCB) CD34+ cell therapy for wound healing and its mechanisms are yet to be established. Using an excision wound model in NOD/SCID mice, we show herein that NEHUCB-CD34+ cells home to the wound site and significantly accelerate the wound-healing process compared to vehicle-treated control. Histological analysis reveals that accelerated wound closure is associated with the re-epithelialization and increased angiogenesis. Additionally, NEHUCB-CD34+ cell-therapy decreases expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and NOS2A in the wound bed, and concomitantly increases expression of IL-10 compared to vehicle-treated control. These findings were recapitulated in vitro using primary dermal fibroblasts and NEHUCB-CD34+ cells. Moreover, NEHUCB-CD34+ cells attenuate NF-κB activation and nuclear translocation in dermal fibroblasts through enhanced secretion of IL-10, which is known to bind to NF-κB and suppress transcriptional activity. Collectively, these data provide novel mechanistic evidence of NEHUCB-CD34+ cell-mediated accelerated wound healing.
Collapse
Affiliation(s)
- Suman Kanji
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Manjusri Das
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Reeva Aggarwal
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Jingwei Lu
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Joseph
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Sujit Basu
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Vincent J Pompili
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Hiranmoy Das
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
68
|
Tan SC, Suzairi MSM, Aizat AAA, Aminudin MM, Nurfatimah MSS, Bhavaraju VMK, Biswal BM, Ankathil R. Gender-specific association of NFKBIA promoter polymorphisms with the risk of sporadic colorectal cancer. Med Oncol 2013; 30:693. [PMID: 23996241 DOI: 10.1007/s12032-013-0693-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/09/2013] [Indexed: 02/07/2023]
Abstract
The inhibitory protein IκBα, encoded by the NFKBIA gene, plays an important role in regulating the activity of nuclear factor-kappa B, a transcription factor which has been implicated in the initiation and progression of cancers. This study aimed to evaluate the association of NFKBIA -826C>T (rs2233406) and -881A>G (rs3138053) polymorphisms with the risk of sporadic colorectal cancer (CRC) in Malaysian population. A case-control study comprising 474 subjects (237 CRC patients and 237 cancer-free controls) was carried out. The polymorphisms were genotyped from the genomic DNA of the study subjects employing PCR-RFLP, followed by DNA sequencing. The association between the polymorphic genotypes and CRC risk was evaluated by deriving odds ratios (ORs) and 95 % confidence intervals (CIs) using unconditional logistic regression analysis. The two polymorphisms were in complete and perfect linkage disequilibrium (D' = 1.0, r (2) = 1.0). Overall, no statistically significant CRC risk association was found for the polymorphisms (P > 0.05). A similar lack of association was observed when the data were stratified according to ethnicity (P > 0.05). However, stratification by gender revealed a significant inverse association between the heterozygous genotype of the polymorphisms and the risk of CRC among females (OR 0.53, 95 % CI 0.29-0.97, P = 0.04), but not among males (P > 0.05). In conclusion, the heterozygous genotype of the polymorphisms could contribute to a significantly decreased CRC risk among females, but not males, in the Malaysian population.
Collapse
Affiliation(s)
- Shing Cheng Tan
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia,
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Poligone B, Hayden MS, Chen L, Pentland AP, Jimi E, Ghosh S. A role for NF-κB activity in skin hyperplasia and the development of keratoacanthomata in mice. PLoS One 2013; 8:e71887. [PMID: 23977171 PMCID: PMC3747062 DOI: 10.1371/journal.pone.0071887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/10/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Previous studies have implicated NF-κB signaling in both cutaneous development and oncogenesis. However, these studies have been limited in part by the lethality that results from extreme over- or under-expression of NF-κB in available mouse models. Even cre-driven tissue specific expression of transgenes, or targeted deletion of NF-κB can cause cell death. Therefore, the present study was undertaken to evaluate a novel mouse model of enhanced NF-κB activity in the skin. METHODS A knock-in homologous recombination technique was utilized to develop a mouse model (referred to as PD mice) with increased NF-κB activity. RESULTS The data show that increased NF-κB activity leads to hyperproliferation and dysplasia of the mouse epidermis. Chemical carcinogenesis in the context of enhanced NF-κB activity promotes the development of keratoacanthomata. CONCLUSION Our findings support an important role for NF-κB in keratinocyte dysplasia. We have found that enhanced NF-κB activity renders keratinocytes susceptible to hyperproliferation and keratoacanthoma (KA) development but is not sufficient for transformation and SCC development. We therefore propose that NF-κB activation in the absence of additional oncogenic events can promote TNF-dependent, actinic keratosis-like dysplasia and TNF-independent, KAs upon chemical carcinogensis. These studies suggest that resolution of KA cannot occur when NF-κB activation is constitutively enforced.
Collapse
Affiliation(s)
- Brian Poligone
- Department of Dermatology and the James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, New York, United States of America
- * E-mail:
| | - Matthew S. Hayden
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Luojing Chen
- Department of Dermatology and the James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Alice P. Pentland
- Department of Dermatology and the James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Eijiro Jimi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental College, Kitakyushu, Fukuoka, Japan
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| |
Collapse
|
70
|
Mulero MC, Ferres-Marco D, Islam A, Margalef P, Pecoraro M, Toll A, Drechsel N, Charneco C, Davis S, Bellora N, Gallardo F, López-Arribillaga E, Asensio-Juan E, Rodilla V, González J, Iglesias M, Shih V, Albà MM, Di Croce L, Hoffmann A, Miyamoto S, Villà-Freixa J, López-Bigas N, Keyes WM, Domínguez M, Bigas A, Espinosa L. Chromatin-bound IκBα regulates a subset of polycomb target genes in differentiation and cancer. Cancer Cell 2013; 24:151-66. [PMID: 23850221 PMCID: PMC3962677 DOI: 10.1016/j.ccr.2013.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/28/2013] [Accepted: 06/05/2013] [Indexed: 01/25/2023]
Abstract
IκB proteins are the primary inhibitors of NF-κB. Here, we demonstrate that sumoylated and phosphorylated IκBα accumulates in the nucleus of keratinocytes and interacts with histones H2A and H4 at the regulatory region of HOX and IRX genes. Chromatin-bound IκBα modulates Polycomb recruitment and imparts their competence to be activated by TNFα. Mutations in the Drosophila IκBα gene cactus enhance the homeotic phenotype of Polycomb mutants, which is not counteracted by mutations in dorsal/NF-κB. Oncogenic transformation of keratinocytes results in cytoplasmic IκBα translocation associated with a massive activation of Hox. Accumulation of cytoplasmic IκBα was found in squamous cell carcinoma (SCC) associated with IKK activation and HOX upregulation.
Collapse
Affiliation(s)
- María Carmen Mulero
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Dolors Ferres-Marco
- Developmental Neurobiology, Instituto de Neurociencias de Alicante, CSIC-UMH, Alicante 03550, Spain
| | - Abul Islam
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, IMIM-Hospital del Mar, Barcelona 08003, Spain
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Pol Margalef
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Matteo Pecoraro
- Gene Regulation, Stem Cells and Cancer, Centre de Regulació Genòmica (CRG), Barcelona 08003, Spain
| | - Agustí Toll
- Dermatology Department, Hospital del Mar, Barcelona 08003, Spain
| | - Nils Drechsel
- Computational Biochemistry and Biophysics Laboratory, IMIM-Hospital del Mar and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Cristina Charneco
- Computational Biochemistry and Biophysics Laboratory, IMIM-Hospital del Mar and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Shelly Davis
- McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Nicolás Bellora
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, IMIM-Hospital del Mar, Barcelona 08003, Spain
| | | | - Erika López-Arribillaga
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Elena Asensio-Juan
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Verónica Rodilla
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Jessica González
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona 08003, Spain
| | - Vincent Shih
- Signaling Systems Laboratory, UCSD, La Jolla, CA 92093-0375, USA
| | - M. Mar Albà
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, IMIM-Hospital del Mar, Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08003, Spain
| | - Luciano Di Croce
- Gene Regulation, Stem Cells and Cancer, Centre de Regulació Genòmica (CRG), Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08003, Spain
| | | | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jordi Villà-Freixa
- Computational Biochemistry and Biophysics Laboratory, IMIM-Hospital del Mar and Universitat Pompeu Fabra, Barcelona 08003, Spain
- Escola Politècnica Superior (EPS), Universitat de Vic, Barcelona 08500, Spain
| | - Nuria López-Bigas
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, IMIM-Hospital del Mar, Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08003, Spain
| | - William M. Keyes
- Gene Regulation, Stem Cells and Cancer, Centre de Regulació Genòmica (CRG), Barcelona 08003, Spain
| | - María Domínguez
- Developmental Neurobiology, Instituto de Neurociencias de Alicante, CSIC-UMH, Alicante 03550, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Lluís Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
- Correspondence:
| |
Collapse
|
71
|
Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013; 12:86. [PMID: 23915189 PMCID: PMC3750319 DOI: 10.1186/1476-4598-12-86] [Citation(s) in RCA: 2491] [Impact Index Per Article: 207.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023] Open
Abstract
The NF-κB family of transcription factors has an essential role in inflammation and innate immunity. Furthermore, NF-κB is increasingly recognized as a crucial player in many steps of cancer initiation and progression. During these latter processes NF-κB cooperates with multiple other signaling molecules and pathways. Prominent nodes of crosstalk are mediated by other transcription factors such as STAT3 and p53 or the ETS related gene ERG. These transcription factors either directly interact with NF-κB subunits or affect NF-κB target genes. Crosstalk can also occur through different kinases, such as GSK3-β, p38, or PI3K, which modulate NF-κB transcriptional activity or affect upstream signaling pathways. Other classes of molecules that act as nodes of crosstalk are reactive oxygen species and miRNAs. In this review, we provide an overview of the most relevant modes of crosstalk and cooperativity between NF-κB and other signaling molecules during inflammation and cancer.
Collapse
Affiliation(s)
- Bastian Hoesel
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Johannes A Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| |
Collapse
|
72
|
Altered IκBα expression promotes NF-κB activation in monocytes from primary Sjögren's syndrome patients. Pathology 2013; 44:557-61. [PMID: 22935973 DOI: 10.1097/pat.0b013e3283580388] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To study the importance of IκBα in NF-κB signal transduction, we analysed the IκBα expression in monocytes from Sjögren's syndrome (SS) patients versus healthy controls. METHODS Monocytes were obtained from the peripheral blood of 30 SS patients and 23 healthy subjects. IκBα expression was studied by semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), real-time PCR, immunoblotting, flow cytometry and enzyme linked immunosorbent assay (ELISA). RESULTS Analysis of the gene and protein expression profiles of SS monocytes revealed a down-regulation of IκBα, and in all the Sjögren's syndrome cases examined, serum IκBα levels were significantly decreased in comparison with controls. CONCLUSIONS Our findings clearly demonstrate changes in the levels of IκBα in SS monocytes, suggesting that the attenuated expression of IκBα could contribute to the deregulation of NF-κB pathways in the SS pathogenesis. Decreased expression of IκBα may specifically amplify cytokines production and inflammatory response linked to Sjögren's syndrome.
Collapse
|
73
|
Fullard N, Moles A, O'Reilly S, van Laar JM, Faini D, Diboll J, Reynolds NJ, Mann DA, Reichelt J, Oakley F. The c-Rel subunit of NF-κB regulates epidermal homeostasis and promotes skin fibrosis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2109-20. [PMID: 23562440 DOI: 10.1016/j.ajpath.2013.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The five subunits of transcription factor NF-κB have distinct biological functions. NF-κB signaling is important for skin homeostasis and aging, but the contribution of individual subunits to normal skin biology and disease is unclear. Immunohistochemical analysis of the p50 and c-Rel subunits within lesional psoriatic and systemic sclerosis skin revealed abnormal epidermal expression patterns, compared with healthy skin, but RelA distribution was unaltered. The skin of Nfkb1(-/-) and c-Rel(-/-) mice is structurally normal, but epidermal thickness and proliferation are significantly reduced, compared with wild-type mice. We show that the primary defect in both Nfkb1(-/-) and c-Rel(-/-) mice is within keratinocytes that display reduced proliferation both in vitro and in vivo. However, both genotypes can respond to proliferative stress, with 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperproliferation and closure rates of full-thickness skin wounds being equivalent to those of wild-type controls. In a model of bleomycin-induced skin fibrosis, Nfkb1(-/-) and c-Rel(-/-) mice displayed opposite phenotypes, with c-Rel(-/-) mice being protected and Nfkb1(-/-) developing more fibrosis than wild-type mice. Taken together, our data reveal a role for p50 and c-Rel in regulating epidermal proliferation and homeostasis and a profibrogenic role for c-Rel in the skin, and identify a link between epidermal c-Rel expression and systemic sclerosis. Modulating the actions of these subunits could be beneficial for treating hyperproliferative or fibrogenic diseases of the skin.
Collapse
Affiliation(s)
- Nicola Fullard
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Ali S, Hirschfeld AF, Mayer ML, Fortuno ES, Corbett N, Kaplan M, Wang S, Schneiderman J, Fjell CD, Yan J, Akhabir L, Aminuddin F, Marr N, Lacaze-Masmonteil T, Hegele RG, Becker A, Chan-Yeung M, Hancock REW, Kollmann TR, Daley D, Sandford AJ, Lavoie PM, Turvey SE. Functional genetic variation in NFKBIA and susceptibility to childhood asthma, bronchiolitis, and bronchopulmonary dysplasia. THE JOURNAL OF IMMUNOLOGY 2013; 190:3949-58. [PMID: 23487427 DOI: 10.4049/jimmunol.1201015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Respiratory diseases are the most frequent chronic illnesses in babies and children. Although a vigorous innate immune system is critical for maintaining lung health, a balanced response is essential to minimize damaging inflammation. We investigated the functional and clinical impact of human genetic variants in the promoter of NFKBIA, which encodes IκBα, the major negative regulator of NF-κB. In this study, we quantified the functional impact of NFKBIA promoter polymorphisms (rs3138053, rs2233406, and rs2233409) on promoter-driven protein expression, allele-specific and total NFKBIA mRNA expression, IκBα protein expression, and TLR responsiveness; mapped innate immune regulatory networks active during respiratory syncytial virus infection, asthma, and bronchopulmonary dysplasia; and genotyped and analyzed independent cohorts of children with respiratory syncytial virus infection, asthma, and bronchopulmonary dysplasia. Genetic variants in the promoter of NFKBIA influenced NFKBIA gene expression, IκBα protein expression, and TLR-mediated inflammatory responses. Using a systems biology approach, we demonstrated that NFKBIA/IκBα is a central hub in transcriptional responses of prevalent childhood lung diseases, including respiratory syncytial virus infection, asthma, and bronchopulmonary dysplasia. Finally, by examining independent pediatric lung disease cohorts, we established that this immunologically relevant genetic variation in the promoter of NFKBIA is associated with differential susceptibility to severe bronchiolitis following infection with respiratory syncytial virus, airway hyperresponsiveness, and severe bronchopulmonary dysplasia. These data highlight the importance of negative innate immune regulators, such as NFKBIA, in pediatric lung disease and begin to unravel common aspects in the genetic predisposition to bronchopulmonary dysplasia, bronchiolitis, and childhood asthma.
Collapse
Affiliation(s)
- Salman Ali
- Department of Pediatrics, British Columbia Children's Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sisto M, Lisi S, Lofrumento DD, Ingravallo G, De Lucro R, D'Amore M. Salivary gland expression level of IκBα regulatory protein in Sjögren's syndrome. J Mol Histol 2013; 44:447-54. [PMID: 23377923 DOI: 10.1007/s10735-013-9487-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
Diagnosis and therapeutic strategies in Sjögren's syndrome (SS) might greatly benefit of the present multidisciplinary approach to studying the molecular pathogenesis of the disease. A deregulated inflammatory response has been described in the SS. The research in the last years sheds light on the importance of the NF-κB pathway regulating the pro-inflammatory cytokine production and leukocyte recruitment. These are important contributors to the inflammatory response during the development of SS. In this study we examine the expression of the NF-κB inhibitory protein termed IκBα in salivary glands epithelial cells (SGEC) comparing it with SGEC from healthy controls, to test the hypothesis that an altered expression of IκBα occurs in SGEC from SS biopsies. Real-Time PCR, western blot and immunohistochemistry demonstrated that the expression level of IκBα was significantly lower in SS with respect to healthy controls leading to an increased NF-κB activity. Our results suggest that the analysis of IκBα expression at salivary gland epithelial cell level could be a potential new hallmark of SS progression and sustain a rationale to more deeply investigate the therapeutic potential of specific NF-κB inhibitors in SS.
Collapse
Affiliation(s)
- Margherita Sisto
- Laboratory of Cell Biology, Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Medical School, piazza Giulio Cesare 1, 70124, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
76
|
Targeting IκB proteins for HIV latency activation: the role of individual IκB and NF-κB proteins. J Virol 2013; 87:3966-78. [PMID: 23365428 DOI: 10.1128/jvi.03251-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Latently infected cell reservoirs represent the main barrier to HIV eradication. Combination antiretroviral therapy (cART) effectively blocks viral replication but cannot purge latent provirus. One approach to HIV eradication could include cART to block new infections plus an agent to activate latent provirus. NF-κB activation induces HIV expression, ending latency. Before activation, IκB proteins sequester NF-κB dimers in the cytoplasm. Three canonical IκBs, IκBα, IκBβ, and IκBε, exist, but the IκB proteins' role in HIV activation regulation is not fully understood. We studied the effects on HIV activation of targeting IκBs by single and pairwise small interfering RNA (siRNA) knockdown. After determining the relative abundance of the IκBs, the relative abundance of NF-κB subunits held by the IκBs, and the kinetics of IκB degradation and resynthesis following knockdown, we studied HIV activation by IκB knockdown, in comparison with those of known HIV activators, tumor necrosis factor alpha (TNF-α), tetradecanoyl phorbol acetate (TPA), and trichostatin A (TSA), in U1 monocytic and J-Lat 10.6 lymphocytic latently infected cells. We found that IκBα knockdown activated HIV in both U1 and J-Lat 10.6 cells, IκBβ knockdown did not activate HIV, and, surprisingly, IκBε knockdown produced the most HIV activation, comparable to TSA activation. Our data show that HIV reactivation can be triggered by targeting two different IκB proteins and that IκBε may be an effective target for HIV latency reactivation in T-cell and macrophage lineages. IκBε knockdown may offer attractive therapeutic advantages for HIV activation because it is not essential for mammalian growth and development and because new siRNA delivery strategies may target siRNAs to HIV latently infected cells.
Collapse
|
77
|
Laugel-Haushalter V, Langer A, Marrie J, Fraulob V, Schuhbaur B, Koch-Phillips M, Dollé P, Bloch-Zupan A. From the transcription of genes involved in ectodermal dysplasias to the understanding of associated dental anomalies. Mol Syndromol 2012; 3:158-68. [PMID: 23239958 DOI: 10.1159/000342833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2012] [Indexed: 01/17/2023] Open
Abstract
Orodental anomalies are one aspect of rare diseases and are increasingly identified as diagnostic and predictive traits. To understand the rationale behind gene expression during tooth or other ectodermal derivative development and the disruption of odontogenesis or hair and salivary gland formation in human syndromes we analyzed the expression patterns of a set of genes (Irf6, Nfkbia, Ercc3, Evc2, Map2k1) involved in human ectodermal dysplasias in mouse by in situ hybridization. The expression patterns of Nfkbia, Ercc3 and Evc2 during odontogenesis had never been reported previously. All genes were indeed transcribed in different tissues/organs of ectodermal origin. However, for Nfkbia, Ercc3, Evc2, and Map2k1, signals were also present in the ectomesenchymal components of the tooth germs. These expression patterns were consistent in timing and localization with the known dental anomalies (tooth agenesis, microdontia, conical shape, enamel hypoplasia) encountered in syndromes resulting from mutations in those genes. They could also explain the similar orodental anomalies encountered in some of the corresponding mutant mouse models. Translational approaches in development and medicine are relevant to gain understanding of the molecular events underlying clinical manifestations.
Collapse
Affiliation(s)
- V Laugel-Haushalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Lian H, Shim DJ, Gaddam SSK, Rodriguez-Rivera J, Bitner BR, Pautler RG, Robertson CS, Zheng H. IκBα deficiency in brain leads to elevated basal neuroinflammation and attenuated response following traumatic brain injury: implications for functional recovery. Mol Neurodegener 2012; 7:47. [PMID: 22992283 PMCID: PMC3473257 DOI: 10.1186/1750-1326-7-47] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 09/06/2012] [Indexed: 01/12/2023] Open
Abstract
Background The transcription factor NFκB is an important mediator of cell survival and inflammation in the immune system. In the central nervous system (CNS), NFκB signaling has been implicated in regulating neuronal survival following acute pathologic damage such as traumatic brain injury (TBI) and stroke. NFκB is normally bound by the principal inhibitory protein, IκBα, and sequestered in the cytoplasm. Activation of NFκB requires the degradation of IκBα, thereby freeing NFκB to translocate to the nucleus and activate the target genes. Mice deficient in IκBα display deregulated and sustained NFκB activation and early postnatal lethality, highlighting a critical role of IκBα in NFκB regulation. Results We investigated the role of IκBα in regulating NFκB activity in the brain and the effects of the NFκB/IκBα pathway in mediating neuroinflammation under both physiological and brain injury conditions. We report that astrocytes, but not neurons, exhibit prominent NFκB activity, and that basal NFκB activity in astrocytes is elevated in the absence of IκBα. By generating mice with brain-specific deletion of IκBα, we show that IκBα deficiency does not compromise normal brain development. However, basal neuroinflammation detected by GFAP and Iba1 immunoreactivity is elevated. This leads to impaired inflammatory responses following TBI and worsened brain damage including higher blood brain barrier permeability, increased injury volumes and enlarged ventricle volumes. Conclusions We conclude that, in the CNS, astrocyte is the primary cell type subject to NFκB regulation. We further demonstrate that IκBα plays an important role in regulating NFκB activity in the brain and a robust NFκB/IκBα-mediated neuroinflammatory response immediately following TBI is beneficial.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P, Taganov KD, Zhao JL, Baltimore D. miR-146a controls the resolution of T cell responses in mice. ACTA ACUST UNITED AC 2012; 209:1655-70. [PMID: 22891274 PMCID: PMC3428948 DOI: 10.1084/jem.20112218] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By suppressing expression of TRAF6 and IRAK1, miR-146a regulates NF-κB activation in T cells through a negative feedback loop and controls the resolution of T cell responses in mice. T cell responses in mammals must be tightly regulated to both provide effective immune protection and avoid inflammation-induced pathology. NF-κB activation is a key signaling event induced by T cell receptor (TCR) stimulation. Dysregulation of NF-κB is associated with T cell–mediated inflammatory diseases and malignancies, highlighting the importance of negative feedback control of TCR-induced NF-κB activity. In this study we show that in mice, T cells lacking miR-146a are hyperactive in both acute antigenic responses and chronic inflammatory autoimmune responses. TCR-driven NF-κB activation up-regulates the expression of miR-146a, which in turn down-regulates NF-κB activity, at least partly through repressing the NF-κB signaling transducers TRAF6 and IRAK1. Thus, our results identify miR-146a as an important new member of the negative feedback loop that controls TCR signaling to NF-κB. Our findings also add microRNA to the list of regulators that control the resolution of T cell responses.
Collapse
Affiliation(s)
- Lili Yang
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
81
|
Abstract
Since its discovery, nuclear factor-κB (NF-κB) has been recognized as a critical regulator of immune responses. While early studies focused on studying the role of NF-κB in the development and function of immune cells, more recently the function of the inhibitor of NF-κB kinase (IKK)/NF-κB pathway in non-immune cells has gained increased attention. Studies in genetic mouse models were instrumental in dissecting the cell-specific functions of NF-κB and provided experimental evidence that NF-κB signaling in epithelial cells is important for the maintenance of immune homeostasis in barrier tissues such as the skin and the intestine. Increased activation of IKK/NF-κB triggered cytokine expression by the epithelial cells, resulting in exacerbated tissue inflammatory responses. NF-κB inhibition in keratinocytes triggered severe tumor necrosis factor-dependent skin inflammation and epidermal hyperplasia, while inhibition of IKK/NF-κB signaling in intestinal epithelial cells disturbed the intestinal barrier and triggered severe chronic colon inflammation. Therefore, epithelial NF-κB signaling performs critical 'peace keeping' functions in barrier tissues at the interface with the environment by regulating cell survival, barrier integrity, and the immunological and anti-microbial responses of epithelial cells. Improved understanding of epithelial NF-κB functions may hold the key for elucidating the etiology and pathophysiology of chronic inflammatory diseases in epithelial tissues.
Collapse
|
82
|
Knight JM, Datta A, Dougherty ER. Generating stochastic gene regulatory networks consistent with pathway information and steady-state behavior. IEEE Trans Biomed Eng 2012; 59:1701-10. [PMID: 22481804 DOI: 10.1109/tbme.2012.2192117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a procedure to generate a stochastic genetic regulatory network model consistent with pathway information. Using the stochastic dynamics of Markov chains, we produce a model constrained by the prior knowledge despite the sometimes incomplete, time independent, and often conflicting nature of these pathways. We apply the Markov theory to study the model's long run behavior and introduce a biologically important transformation to aid in comparison with real biological outcome prediction in the steady-state domain. Our technique produces biologically faithful models without the need for rate kinetics, detailed timing information, or complex inference procedures. To demonstrate the method, we produce a model using 28 pathways from the biological literature pertaining to the transcription factor family nuclear factor-κB. Predictions from this model in the steady-state domain are then validated against nine mice knockout experiments.
Collapse
Affiliation(s)
- Jason M Knight
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
83
|
Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26:203-34. [PMID: 22302935 DOI: 10.1101/gad.183434.111] [Citation(s) in RCA: 1350] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to sense and adjust to the environment is crucial to life. For multicellular organisms, the ability to respond to external changes is essential not only for survival but also for normal development and physiology. Although signaling events can directly modify cellular function, typically signaling acts to alter transcriptional responses to generate both transient and sustained changes. Rapid, but transient, changes in gene expression are mediated by inducible transcription factors such as NF-κB. For the past 25 years, NF-κB has served as a paradigm for inducible transcription factors and has provided numerous insights into how signaling events influence gene expression and physiology. Since its discovery as a regulator of expression of the κ light chain gene in B cells, research on NF-κB continues to yield new insights into fundamental cellular processes. Advances in understanding the mechanisms that regulate NF-κB have been accompanied by progress in elucidating the biological significance of this transcription factor in various physiological processes. NF-κB likely plays the most prominent role in the development and function of the immune system and, not surprisingly, when dysregulated, contributes to the pathophysiology of inflammatory disease. As our appreciation of the fundamental role of inflammation in disease pathogenesis has increased, so too has the importance of NF-κB as a key regulatory molecule gained progressively greater significance. However, despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood. In this review, we highlight both the progress that has been made and the fundamental questions that remain unanswered after 25 years of study.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
84
|
Affiliation(s)
- Sankar Ghosh
- Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
85
|
Vallejo AN. Is Immune Aging a Cause of Disease among the Elderly, or is it a Passive Indicator of General Decline of Physiologic Function? Aging Dis 2011; 2:444-8. [PMID: 22396893 PMCID: PMC3295059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/01/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023] Open
Affiliation(s)
- Abbe N. Vallejo
- Departments of Pediatrics and Immunology, University of Pittsburgh School of Medicine, the UPMC Children’s Hospital of Pittsburgh, the University of Pittsburgh Cancer Institute, the McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
86
|
Londhe VA, Maisonet TM, Lopez B, Jeng JM, Xiao J, Li C, Minoo P. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis. Respir Res 2011; 12:134. [PMID: 21985298 PMCID: PMC3202236 DOI: 10.1186/1465-9921-12-134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/10/2011] [Indexed: 02/05/2023] Open
Abstract
Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.
Collapse
Affiliation(s)
- Vedang A Londhe
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Mailcode 175217, Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
Guma M, Stepniak D, Shaked H, Spehlmann ME, Shenouda S, Cheroutre H, Vicente-Suarez I, Eckmann L, Kagnoff MF, Karin M. Constitutive intestinal NF-κB does not trigger destructive inflammation unless accompanied by MAPK activation. ACTA ACUST UNITED AC 2011; 208:1889-900. [PMID: 21825016 PMCID: PMC3171091 DOI: 10.1084/jem.20110242] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Constitutive NF-κB activation in IECs induces inflammatory cytokines and chemokines in the lamina propria, but does not result in overt tissue damage unless acute inflammatory insults are present, causing TNF-dependent destruction and barrier disruption. Nuclear factor (NF)-κB, activated by IκB kinase (IKK), is a key regulator of inflammation, innate immunity, and tissue integrity. NF-κB and one of its main activators and transcriptional targets, tumor necrosis factor (TNF), are up-regulated in many inflammatory diseases that are accompanied by tissue destruction. The etiology of many inflammatory diseases is poorly understood, but often depends on genetic factors and environmental triggers that affect NF-κB and related pathways. It is unknown, however, whether persistent NF-κB activation is sufficient for driving symptomatic chronic inflammation and tissue damage. To address this question, we generated IKKβ(EE)IEC mice, which express a constitutively active form of IKKβ in intestinal epithelial cell (IECs). IKKβ(EE)IEC mice exhibit NF-κB activation in IECs and express copious amounts of inflammatory chemokines, but only small amounts of TNF. Although IKKβ(EE)IEC mice exhibit inflammatory cell infiltration in the lamina propria (LP) of their small intestine, they do not manifest tissue damage. Yet, upon challenge with relatively mild immune and microbial stimuli, IKKβ(EE)IEC mice succumb to destructive acute inflammation accompanied by enterocyte apoptosis, intestinal barrier disruption, and bacterial translocation. Inflammation is driven by massive TNF production, which requires additional activation of p38 and extracellular-signal–regulated kinase mitogen-activated protein kinases (MAPKs).
Collapse
Affiliation(s)
- Monica Guma
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Goossens P, Vergouwe MN, Gijbels MJJ, Curfs DMJ, van Woezik JHG, Hoeksema MA, Xanthoulea S, Leenen PJM, Rupec RA, Hofker MH, de Winther MPJ. Myeloid IκBα deficiency promotes atherogenesis by enhancing leukocyte recruitment to the plaques. PLoS One 2011; 6:e22327. [PMID: 21814576 PMCID: PMC3141029 DOI: 10.1371/journal.pone.0022327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/26/2011] [Indexed: 01/15/2023] Open
Abstract
Activation of the transcription factor NF-κB appears to be involved in different stages of atherogenesis. In this paper we investigate the role of NF-κB inhibitor IκBα in atherosclerosis. Myeloid-specific deletion of IκBα results in larger and more advanced lesions in LDL-R-deficient mice without affecting the compositional phenotype of the plaques or systemic inflammatory markers in the plasma. We show that IκBα-deleted macrophages display enhanced adhesion to an in vitro endothelial cell layer, coinciding with an increased expression of the chemokine CCL5. Also, in vivo we found that IκBαdel mice had more leukocytes adhering to the luminal side of the endothelial cell layers that cover the atherosclerotic plaques. Moreover, we introduce ER-MP58 in this paper as a new immunohistochemical tool for quantifying newly recruited myeloid cells in the atherosclerotic lesion. This staining confirms that in IκBαdel mice more leukocytes are attracted to the plaques. In conclusion, we show that IκBα deletion in myeloid cells promotes atherogenesis, probably through an induced leukocyte recruitment to plaques.
Collapse
Affiliation(s)
- Pieter Goossens
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Monique N. Vergouwe
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marion J. J. Gijbels
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Danielle M. J. Curfs
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Johannes H. G. van Woezik
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marten A. Hoeksema
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Sofia Xanthoulea
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rudolf A. Rupec
- Department of Dermatology, Ludwig-Maximilian-University, Munich, Germany
| | - Marten H. Hofker
- Department of Pathology and Medical Biology, Medical Biology Section, Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Menno P. J. de Winther
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
89
|
Nesterovitch AB, Szanto S, Gonda A, Bardos T, Kis-Toth K, Adarichev VA, Olasz K, Ghassemi-Najad S, Hoffman MD, Tharp MD, Mikecz K, Glant TT. Spontaneous insertion of a b2 element in the ptpn6 gene drives a systemic autoinflammatory disease in mice resembling neutrophilic dermatosis in humans. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1701-14. [PMID: 21435452 DOI: 10.1016/j.ajpath.2010.12.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 01/01/2023]
Abstract
We found a spontaneous autosomal mutation in a mouse leading to neutrophil infiltration with ulceration in the upper dermis of homozygous offspring. These animals had increased neutrophil numbers, associated with normal lymphocyte count, in peripheral blood and bone marrow, suggesting a myeloproliferative disorder; however, granulocyte precursor proliferation in bone marrow was actually reduced (because circulating neutrophils were less susceptible to apoptosis). Neutrophil infiltration of the skin and other organs and high serum levels of immunoglobulins and autoantibodies, cytokines, and acute-phase proteins were additional abnormalities, all of which could be reduced by high-dose corticosteroid treatment or neutrophil depletion by antibodies. Use of genome-wide screening localized the mutation within an 0.4-Mbp region on mouse chromosome 6. We identified insertion of a B2 element in exon 6 of the Ptpn6 gene (protein tyrosine phosphatase, non-receptor type 6; also known as Shp-1). This insertion involves amino acid substitutions that significantly reduced the enzyme activity in mice homozygous for the mutation. Disease onset was delayed, and the clinical phenotype was milder than the phenotypes of other Ptpn6-mutants described in motheaten (me, mev) mice; we designated this new genotype as Ptpn6(meB2/meB2) and the phenotype as meB2. This new phenotype encompasses an autoinflammatory disease showing similarities to many aspects of the so-called neutrophilic dermatoses, a heterogeneous group of skin diseases with unknown etiology in humans.
Collapse
|
90
|
Abstract
The progression from cardiac injury to symptomatic heart failure has been intensely studied over the last decade, and is largely attributable to a loss of functional cardiac myocytes through necrosis, intrinsic and extrinsic apoptosis pathways and autophagy. Therefore, the molecular regulation of these cellular programs has been rigorously investigated in the hopes of identifying a potential cell target that could promote cell survival and/or inhibit cell death to avert, or at least prolong, the degeneration toward symptomatic heart failure. The nuclear factor (NF)-κB super family of transcription factors has been implicated in the regulation of immune cell maturation, cell survival, and inflammation in many cell types, including cardiac myocytes. Recent studies have shown that NF-κB is cardioprotective during acute hypoxia and reperfusion injury. However, prolonged activation of NF-κB appears to be detrimental and promotes heart failure by eliciting signals that trigger chronic inflammation through enhanced elaboration of cytokines including tumor necrosis factor α, interleukin-1, and interleukin-6, leading to endoplasmic reticulum stress responses and cell death. The underlying mechanisms that account for the multifaceted and differential outcomes of NF-κB on cardiac cell fate are presently unknown. Herein, we posit a novel paradigm in which the timing, duration of activation, and cellular context may explain mechanistically the differential outcomes of NF-κB signaling in the heart that may be essential for future development of novel therapeutic interventions designed to target NF-κB responses and heart failure following myocardial injury.
Collapse
Affiliation(s)
- Joseph W Gordon
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
91
|
Shim DJ, Yang L, Reed JG, Noebels JL, Chiao PJ, Zheng H. Disruption of the NF-κB/IκBα Autoinhibitory Loop Improves Cognitive Performance and Promotes Hyperexcitability of Hippocampal Neurons. Mol Neurodegener 2011; 6:42. [PMID: 21663635 PMCID: PMC3141554 DOI: 10.1186/1750-1326-6-42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/10/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Though originally discovered in the immune system as an important mediator of inflammation, NF-κB has recently been shown to play key roles in the central nervous system, such as synaptogenesis, synaptic plasticity, and cognition. NF-κB activity is normally tightly regulated by its primary inhibitor, IκBα, through a unique autoinhibitory loop. In this study, we tested the hypothesis that the IκBα autoinhibitory loop ensures optimal levels of NF-κB activity to promote proper brain development and function. To do so, we utilized knock-in mice which possess mutations in the IκBα promoter to disrupt the autoinhibitory loop (IκBαM/M KI mice). RESULTS Here, we show that these mutations delay IκBα resynthesis and enhance NF-κB activation in neurons following acute activating stimuli. This leads to improved cognitive ability on tests of hippocampal-dependent learning and memory but no change in hippocampal synaptic plasticity. Instead, hippocampal neurons from IκBαM/M KI mice form more excitatory and less inhibitory synapses in dissociated cultures and are hyperexcitable. This leads to increased burst firing of action potentials and the development of abnormal hypersynchronous discharges in vivo. CONCLUSIONS These results demonstrate that the IκBα autoinhibitory loop is critical for titrating appropriate levels of endogenous NF-κB activity to maintain proper neuronal function.
Collapse
Affiliation(s)
- David J Shim
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Yang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - J Graham Reed
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul J Chiao
- Department of Surgical Oncology-Research, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
92
|
Assessment of subclinical, toxicant-induced hepatic gene expression profiles after low-dose, short-term exposures in mice. Regul Toxicol Pharmacol 2011; 60:54-72. [DOI: 10.1016/j.yrtph.2011.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 12/19/2022]
|
93
|
Keratinocyte-specific ablation of the NF-κB regulatory protein A20 (TNFAIP3) reveals a role in the control of epidermal homeostasis. Cell Death Differ 2011; 18:1845-53. [PMID: 21566665 DOI: 10.1038/cdd.2011.55] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ubiquitin-editing enzyme A20 (tumor necrosis factor-α-induced protein 3) serves as a critical brake on nuclear factor κB (NF-κB) signaling. In humans, polymorphisms in or near the A20 gene are associated with several inflammatory disorders, including psoriasis. We show here that epidermis-specific A20-knockout mice (A20(EKO)) develop keratinocyte hyperproliferation, but no signs of skin inflammation, such as immune cell infiltration. However, A20(EKO) mice clearly developed ectodermal organ abnormalities, including disheveled hair, longer nails and sebocyte hyperplasia. This phenotype resembles that of mice overexpressing ectodysplasin-A1 (EDA-A1) or the ectodysplasin receptor (EDAR), suggesting that A20 negatively controls EDAR signaling. We found that A20 inhibited EDAR-induced NF-κB signaling independent from its de-ubiquitinating activity. In addition, A20 expression was induced by EDA-A1 in embryonic skin explants, in which its expression was confined to the hair placodes, known to be the site of EDAR expression. In summary, our data indicate that EDAR-induced NF-κB levels are controlled by A20, which functions as a negative feedback regulator, to assure proper skin homeostasis and epidermal appendage development.
Collapse
|
94
|
Espinosa L, Bigas A, Mulero MC. Alternative nuclear functions for NF-κB family members. Am J Cancer Res 2011; 1:446-59. [PMID: 21984965 PMCID: PMC3186045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 05/31/2023] Open
Abstract
The NF-κB signalling pathway regulates many different biological processes from the cellular level to the whole organism. The majority of these functions are completely dependent on the activation of the cytoplasmic IKK kinase complex that leads to IκB degradation and results in the nuclear translocation of specific NF-κB dimers, which, in general, act as transcription factors. Although this is a well-established mechanism of action, several publications have now demonstrated that some members of this pathway display additional functions in the nucleus as regulators of NF-κB-dependent and independent gene expression. In this review, we compiled and put in context most of the data concerning specific nuclear roles for IKK and IκB proteins.
Collapse
Affiliation(s)
- Lluís Espinosa
- Program in Cancer Research, IMIM-Hospital del Mar Barcelona, Spain
| | | | | |
Collapse
|
95
|
Sasaki CY, Ghosh P, Longo DL. Recruitment of RelB to the Csf2 promoter enhances RelA-mediated transcription of granulocyte-macrophage colony-stimulating factor. J Biol Chem 2011; 286:1093-102. [PMID: 21071440 PMCID: PMC3020716 DOI: 10.1074/jbc.m110.119438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 10/29/2010] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF) induces expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) but lymphotoxin β (LTβ) does not. Here we report that priming of cells with agonistic LTβ receptor antibody synergistically enhanced TNF-induced GM-CSF expression. The LTβ priming process was not due to an increase in TNF-mediated nuclear translocation of p65, p65 DNA binding, or NF-κB transactivational activity. The synergistic effect of LTβ priming was not observed with other TNF-responsive genes such as Ccl2 or RelB, which suggested that this effect was not a general increase in TNF signaling. Furthermore, RelB and p65 were both independently recruited to the GM-CSF promoter when cells were primed with LTβ followed by TNF treatment. As a consequence, an increase in both chromatin accessibility and the recruitment of RNA polymerase II were observed to the GM-CSF promoter. Taken together, these findings suggested that LTβ signaling amplified TNF-mediated GM-CSF expression by facilitating chromatin access and the co-recruitment of RNA polymerase II to increase gene transcription. Moreover, the novel priming process described here underscores the complexity of the interactions between the classical and alternative NF-κB signaling pathways.
Collapse
Affiliation(s)
- Carl Y. Sasaki
- From the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Paritosh Ghosh
- From the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Dan L. Longo
- From the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
96
|
Wullaert A, Bonnet MC, Pasparakis M. NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res 2011; 21:146-58. [PMID: 21151201 PMCID: PMC3193399 DOI: 10.1038/cr.2010.175] [Citation(s) in RCA: 414] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The IκB kinase/NF-κB signaling pathway has been implicated in the pathogenesis of several inflammatory diseases. Increased activation of NF-κB is often detected in both immune and non-immune cells in tissues affected by chronic inflammation, where it is believed to exert detrimental functions by inducing the expression of proinflammatory mediators that orchestrate and sustain the inflammatory response and cause tissue damage. Thus, increased NF-κB activation is considered an important pathogenic factor in many acute and chronic inflammatory disorders, raising hopes that NF-κB inhibitors could be effective for the treatment of inflammatory diseases. However, ample evidence has accumulated that NF-κB inhibition can also be harmful for the organism, and in some cases trigger the development of inflammation and disease. These findings suggested that NF-κB signaling has important functions for the maintenance of physiological immune homeostasis and for the prevention of inflammatory diseases in many tissues. This beneficial function of NF-κB has been predominantly observed in epithelial cells, indicating that NF-κB signaling has a particularly important role for the maintenance of immune homeostasis in epithelial tissues. It seems therefore that NF-κB displays two faces in chronic inflammation: on the one hand increased and sustained NF-κB activation induces inflammation and tissue damage, but on the other hand inhibition of NF-κB signaling can also disturb immune homeostasis, triggering inflammation and disease. Here, we discuss the mechanisms that control these apparently opposing functions of NF-κB signaling, focusing particularly on the role of NF-κB in the regulation of immune homeostasis and inflammation in the intestine and the skin.
Collapse
Affiliation(s)
- Andy Wullaert
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Marion C Bonnet
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| |
Collapse
|
97
|
Xiao G, Fu J. NF-κB and cancer: a paradigm of Yin-Yang. Am J Cancer Res 2010; 1:192-221. [PMID: 21969033 PMCID: PMC3180046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 05/31/2023] Open
Abstract
Recent studies have clearly linked nuclear factor-kappaB (NF-κB), a transcription factor that plays a central role in regulating immune and inflammatory responses, to tumor development, progression, and metastasis as well as tumor therapy resistance. However, it still remains largely unknown on how the tightly regulated NF-κB becomes constitutively activated in tumorigenesis and how the original cancer immunosurveillance function of NF-κB is transformed to be tumorigenic. To address these important issues for cancer prevention and treatment, we discuss current understanding of the molecular mechanisms and molecules involved in the oncogenic activation of NF-κB. We also discuss current understanding of how NF-κB coordinates the inflammatory and malignant cells in tumorigenesis.
Collapse
Affiliation(s)
- Gutian Xiao
- University of Pittsburgh Cancer Institute, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
98
|
Scheibel M, Klein B, Merkle H, Schulz M, Fritsch R, Greten FR, Arkan MC, Schneider G, Schmid RM. IkappaBbeta is an essential co-activator for LPS-induced IL-1beta transcription in vivo. ACTA ACUST UNITED AC 2010; 207:2621-30. [PMID: 20975042 PMCID: PMC2989768 DOI: 10.1084/jem.20100864] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IkBβ forms a complex with the NF-κB subunits RelA and c-Rel that inhibits the transcription of IL-1β and other genes. Mice lacking IkBβ are protected against LPS-induced shock. Inhibitor of κB (IκB) β (IκBβ) represents one of the major primary regulators of NF-κB in mammals. In contrast to the defined regulatory interplay between NF-κB and IκBα, much less is known about the biological function of IκBβ. To elucidate the physiological role of IκBβ in NF-κB signaling in vivo, we generated IκBβ-deficient mice. These animals proved to be highly refractory to LPS-induced lethality, accompanied by a strong reduction in sepsis-associated cytokine production. In response to LPS, IκBβ is recruited to the IL-1β promoter forming a complex with the NF-κB subunits RelA/c-Rel required for IL-1β transcription. Further transcriptome analysis of LPS-stimulated wild-type and IκBβ-deficient BM-derived macrophages revealed several other genes with known regulatory functions in innate immunity arguing that a subset of NF-κB target genes is under control of IκBβ. Collectively, these findings provide an essential proinflammatory role for IκBβ in vivo, and establish a critical function for IκBβ as a transcriptional coactivator under inflammatory conditions.
Collapse
Affiliation(s)
- Melanie Scheibel
- II. Medizinische Klinik, Technische Universität München, 81675 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2010; 1:a000034. [PMID: 20066092 DOI: 10.1101/cshperspect.a000034] [Citation(s) in RCA: 2115] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) consists of a family of transcription factors that play critical roles in inflammation, immunity, cell proliferation, differentiation, and survival. Inducible NF-kappaB activation depends on phosphorylation-induced proteosomal degradation of the inhibitor of NF-kappaB proteins (IkappaBs), which retain inactive NF-kappaB dimers in the cytosol in unstimulated cells. The majority of the diverse signaling pathways that lead to NF-kappaB activation converge on the IkappaB kinase (IKK) complex, which is responsible for IkappaB phosphorylation and is essential for signal transduction to NF-kappaB. Additional regulation of NF-kappaB activity is achieved through various post-translational modifications of the core components of the NF-kappaB signaling pathways. In addition to cytosolic modifications of IKK and IkappaB proteins, as well as other pathway-specific mediators, the transcription factors are themselves extensively modified. Tremendous progress has been made over the last two decades in unraveling the elaborate regulatory networks that control the NF-kappaB response. This has made the NF-kappaB pathway a paradigm for understanding general principles of signal transduction and gene regulation.
Collapse
Affiliation(s)
- Andrea Oeckinghaus
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
100
|
IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature 2010; 466:1115-9. [PMID: 20740013 PMCID: PMC2946371 DOI: 10.1038/nature09283] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 06/11/2010] [Indexed: 01/17/2023]
Abstract
The activation of pro-inflammatory gene programs by nuclear factor-kappaB (NF-kappaB) is primarily regulated through cytoplasmic sequestration of NF-kappaB by the inhibitor of kappaB (IkappaB) family of proteins. IkappaBbeta, a major isoform of IkappaB, can sequester NF-kappaB in the cytoplasm, although its biological role remains unclear. Although cells lacking IkappaBbeta have been reported, in vivo studies have been limited and suggested redundancy between IkappaBalpha and IkappaBbeta. Like IkappaBalpha, IkappaBbeta is also inducibly degraded; however, upon stimulation by lipopolysaccharide (LPS), it is degraded slowly and re-synthesized as a hypophosphorylated form that can be detected in the nucleus. The crystal structure of IkappaBbeta bound to p65 suggested this complex might bind DNA. In vitro, hypophosphorylated IkappaBbeta can bind DNA with p65 and c-Rel, and the DNA-bound NF-kappaB:IkappaBbeta complexes are resistant to IkappaBalpha, suggesting hypophosphorylated, nuclear IkappaBbeta may prolong the expression of certain genes. Here we report that in vivo IkappaBbeta serves both to inhibit and facilitate the inflammatory response. IkappaBbeta degradation releases NF-kappaB dimers which upregulate pro-inflammatory target genes such as tumour necrosis factor-alpha (TNF-alpha). Surprisingly, absence of IkappaBbeta results in a dramatic reduction of TNF-alpha in response to LPS even though activation of NF-kappaB is normal. The inhibition of TNF-alpha messenger RNA (mRNA) expression correlates with the absence of nuclear, hypophosphorylated-IkappaBbeta bound to p65:c-Rel heterodimers at a specific kappaB site on the TNF-alpha promoter. Therefore IkappaBbeta acts through p65:c-Rel dimers to maintain prolonged expression of TNF-alpha. As a result, IkappaBbeta(-/-) mice are resistant to LPS-induced septic shock and collagen-induced arthritis. Blocking IkappaBbeta might be a promising new strategy for selectively inhibiting the chronic phase of TNF-alpha production during the inflammatory response.
Collapse
|