51
|
Karmakar P, Piotrowski J, Brosh RM, Sommers JA, Miller SPL, Cheng WH, Snowden CM, Ramsden DA, Bohr VA. Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 2002; 277:18291-302. [PMID: 11889123 DOI: 10.1074/jbc.m111523200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Werner Syndrome is characterized by early onset of aging, elevated chromosomal instability, and a high incidence of cancer. Werner protein (WRN) is a member of the recQ gene family, but unlike other members of the recQ family, it contains a unique 3'-->5' exonuclease activity. We have reported previously that human Ku heterodimer interacts physically with WRN and functionally stimulates WRN exonuclease activity. Because Ku and DNA-PKcs, the catalytic subunit of DNA-dependent protein kinase (DNA-PK), form a complex at DNA ends, we have now explored the possibility of functional modulation of WRN exonuclease activity by DNA-PK. We find that although DNA-PKcs alone does not affect the WRN exonuclease activity, the additional presence of Ku mediates a marked inhibition of it. The inhibition of WRN exonuclease by DNA-PKcs requires the kinase activity of DNA-PKcs. WRN is a target for DNA-PKcs phosphorylation, and this phosphorylation requires the presence of Ku. We also find that treatment of recombinant WRN with a Ser/Thr phosphatase enhances WRN exonuclease and helicase activities and that WRN catalytic activity can be inhibited by rephosphorylation of WRN with DNA-PK. Thus, the level of phosphorylation of WRN appears to regulate its catalytic activities. WRN forms a complex, both in vitro and in vivo, with DNA-PKC. WRN is phosphorylated in vivo after treatment of cells with DNA-damaging agents in a pathway that requires DNA-PKcs. Thus, WRN protein is a target for DNA-PK phosphorylation in vitro and in vivo, and this phosphorylation may be a way of regulating its different catalytic activities, possibly in the repair of DNA dsb.
Collapse
Affiliation(s)
- Parimal Karmakar
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Katula KS, Fields A, Apple P, Rotruck T. Cell cycle specific changes in the human cyclin B1 gene regulatory region as revealed by response to trichostatin A. Arch Biochem Biophys 2002; 401:271-6. [PMID: 12054478 DOI: 10.1016/s0003-9861(02)00014-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human cyclin Bl gene is cell cycle regulated with maximal activity during G(2)/M. We examined the role of histone deacetylation in cyclin Bl regulation using the histone deacetylase inhibitor trichostatin A (TSA). TSA treatment (100 ng/ml) of NIH3T3 cells containing the luciferase reporter construct pCycB(-287)-LUC caused an increase in promoter activity in G(0) and G(1) but no significant change in G(2). Removal of upstream sequences including an E-box and Sp1 site eliminated the TSA induced increase in G(0) and G(1), and caused a decrease in promoter activity during S and G(2). Promoter activity increased only 2-fold following TSA treatment of G(0) cells containing the construct pCycB(MUT-E-Box)-LUC with an E-box mutation, and a decrease in activity was detected during G(2). We conclude that histone deacetylation contributes to the repression of cyclin B1 expression in G(0) and G(1), and that this mechanism requires, in part, the E-box. TSA reduction of cyclin B1 promoter activity in G(2), however, involves sequences within the first 119 bp. A working model for cyclin B1 regulation is provided.
Collapse
Affiliation(s)
- Karen S Katula
- Department of Biology, University of North Carolina at Greensboro, P.O. Box 26174, Greensboro, NC 27402-6174, USA.
| | | | | | | |
Collapse
|
53
|
Seo SB, Macfarlan T, McNamara P, Hong R, Mukai Y, Heo S, Chakravarti D. Regulation of histone acetylation and transcription by nuclear protein pp32, a subunit of the INHAT complex. J Biol Chem 2002; 277:14005-10. [PMID: 11830591 DOI: 10.1074/jbc.m112455200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation by p300/CBP and PCAF coactivators is considered to be a key mechanism of chromatin modification and transcriptional regulation. A multiprotein cellular complex, INHAT (inhibitor of acetyltransferases), containing the Set/TAF-Ibeta oncoprotein and pp32 strongly inhibits the HAT activity of p300/CBP and PCAF by histone masking. Here we report that the INHAT complex and its subunits have overlapping but distinct HAT inhibitory and histone binding characteristics. We provide evidence suggesting that the histone binding and INHAT activity of pp32 can be regulated by its physical association with other INHAT subunits. In vivo colocalization and transfection studies show that pp32 INHAT domains are responsible for histone binding, HAT inhibitory activity, and repression of transcription. We propose that INHAT and its subunits may function by modulating histone acetyltransferases through a histone-masking mechanism and may play important regulatory roles in the establishment and maintenance of the newly proposed "histone code" of chromatin.
Collapse
Affiliation(s)
- Sang-beom Seo
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Transcriptional regulation in eukaryotes occurs within a chromatin setting and is strongly influenced by nucleosomal barriers imposed by histone proteins. Among the well-known covalent modifications of histones, the reversible acetylation of internal lysine residues in histone amino-terminal domains has long been positively linked to transcriptional activation. Recent biochemical and genetic studies have identified several large, multisubunit enzyme complexes responsible for bringing about the targeted acetylation of histones and other factors. This review discusses our current understanding of histone acetyltransferases (HATs) or acetyltransferases (ATs): their discovery, substrate specificity, catalytic mechanism, regulation, and functional links to transcription, as well as to other chromatin-modifying activities. Recent studies underscore unexpected connections to both cellular regulatory processes underlying normal development and differentiation, as well as abnormal processes that lead to oncogenesis. Although the functions of HATs and the mechanisms by which they are regulated are only beginning to be understood, these fundamental processes are likely to have far-reaching implications for human biology and disease.
Collapse
Affiliation(s)
- S Y Roth
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
55
|
Jeanson L, Mouscadet JF. Ku represses the HIV-1 transcription: identification of a putative Ku binding site homologous to the mouse mammary tumor virus NRE1 sequence in the HIV-1 long terminal repeat. J Biol Chem 2002; 277:4918-24. [PMID: 11733502 DOI: 10.1074/jbc.m110830200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ku has been implicated in nuclear processes, including DNA break repair, transcription, V(D)J recombination, and telomere maintenance. Its mode of action involves two distinct mechanisms: one in which a nonspecific binding occurs to DNA ends and a second that involves a specific binding to negative regulatory elements involved in transcription repression. Such elements were identified in mouse mammary tumor virus and human T cell leukemia virus retroviruses. The purpose of this study was to investigate a role for Ku in the regulation of human immunodeficiency virus (HIV)-1 transcription. First, HIV-1 LTR activity was studied in CHO-K1 cells and in CH0-derived xrs-6 cells, which are devoid of Ku80. LTR-driven expression of a reporter gene was significantly increased in xrs-6 cells. This enhancement was suppressed after re-expression of Ku80. Second, transcription of HIV-1 was followed in U1 human cells that were depleted in Ku by using a Ku80 antisense RNA. Ku depletion led to a increase of both HIV-1 mRNA synthesis and viral production compared with the parent cells. These results demonstrate that Ku acts as a transcriptional repressor of HIV-1 expression. Finally, a putative Ku-specific binding site was identified within the negative regulatory region of the HIV-1 long terminal repeat, which may account for this repression of transcription.
Collapse
Affiliation(s)
- Laurence Jeanson
- CNRS UMR8532, Institut Gustave-Roussy, PR2, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | |
Collapse
|
56
|
Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P. Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 2002; 9:265-77. [PMID: 11864601 DOI: 10.1016/s1097-2765(02)00453-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA repair in chromatin is subject to topological constraints, suggesting a requirement for chromatin modification and remodeling activities. Thymine DNA glycosylase (TDG) initiates repair of G/T and G/U mismatches, commonly associated with CpG islands, by removing thymine and uracil moieties. We report that TDG associates with transcriptional coactivators CBP and p300 and that the resulting complexes are competent for both the excision step of repair and histone acetylation. Furthermore, TDG stimulates CBP transcriptional activity in transfected cells and reciprocally serves as a substrate for CBP/p300 acetylation. Remarkably, this acetylation triggers release of CBP from DNA ternary complexes and also regulates recruitment of repair endonuclease APE. These observations reveal a potential regulatory role for protein acetylation in base mismatch repair and a role for CBP/p300 in maintaining genomic stability.
Collapse
Affiliation(s)
- Marc Tini
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Kruhlak MJ, Hendzel MJ, Fischle W, Bertos NR, Hameed S, Yang XJ, Verdin E, Bazett-Jones DP. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J Biol Chem 2001; 276:38307-19. [PMID: 11479283 DOI: 10.1074/jbc.m100290200] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation, a reversible modification of the core histones, is widely accepted to be involved in remodeling chromatin organization for genetic reprogramming. Histone acetylation is a dynamic process that is regulated by two classes of enzymes, the histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although promoter-specific acetylation and deacetylation has received most of the recent attention, it is superimposed upon a broader acting and dynamic acetylation that profoundly affects many nuclear processes. In this study, we monitored this broader histone acetylation as cells enter and exit mitosis. In contrast to the hypothesis that HATs and HDACs remain bound to mitotic chromosomes to provide an epigenetic imprint for postmitotic reactivation of the genome, we observed that HATs and HDACs are spatially reorganized and displaced from condensing chromosomes as cells progress through mitosis. During mitosis, HATs and HDACs are unable to acetylate or deacetylate chromatin in situ despite remaining fully catalytically active when isolated from mitotic cells and assayed in vitro. Our results demonstrate that HATs and HDACs do not stably bind to the genome to function as an epigenetic mechanism of selective postmitotic gene activation. Our results, however, do support a role for spatial organization of these enzymes within the cell nucleus and their relationship to euchromatin and heterochromatin postmitotically in the reactivation of the genome.
Collapse
Affiliation(s)
- M J Kruhlak
- Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Denis GV. Bromodomain motifs and "scaffolding"? FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2001; 6:D1065-8. [PMID: 11532602 PMCID: PMC3042883 DOI: 10.2741/a668] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bromodomain-containing multiprotein complexes share some of the properties of signal transduction scaffolds. Insights from MAP kinase signaling scaffolds, for example, may provide useful perspectives for future studies of bromodomain proteins. The regulatory processes of modification (phosphorylation, acetylation, ubiquitination), turnover, nuclear compartmentalization, feedback regulation and signaling pathway specificity are all likely to contribute to the mechanisms by which bromodomain-containing multiprotein complexes control transcription.
Collapse
Affiliation(s)
- G V Denis
- Cancer Research Center, Boston University School of Medicine, Room L910, 80 East Concord Street, Boston, MA, USA 02118, USA.
| |
Collapse
|
59
|
Abstract
Specific changes in chromatin structure are associated with transcriptional regulation. These chromatin alterations include both covalent modifications of the amino termini of histones as well as ATP-dependent non-covalent remodeling of nucleosomes. Certain protein domains, such as the bromodomains, are commonly associated with both of these classes of enzymes that alter chromatin. This review discusses recent advances in understanding the structure and function of bromodomains. Most significantly, a role of bromodomains has been revealed in binding to acetylated lysine residues in histone tails. Interactions between bromodomains and modified histones may be an important mechanism underlying chromatin structural changes and gene regulation.
Collapse
Affiliation(s)
- R Marmorstein
- Structural Biology Program, The Wistar Institute, Philadelphia, PA, USA
| | | |
Collapse
|
60
|
Manning ET, Ikehara T, Ito T, Kadonaga JT, Kraus WL. p300 forms a stable, template-committed complex with chromatin: role for the bromodomain. Mol Cell Biol 2001; 21:3876-87. [PMID: 11359896 PMCID: PMC87051 DOI: 10.1128/mcb.21.12.3876-3887.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nature of the interaction of coactivator proteins with transcriptionally active promoters in chromatin is a fundamental question in transcriptional regulation by RNA polymerase II. In this study, we used a biochemical approach to examine the functional association of the coactivator p300 with chromatin templates. Using in vitro transcription template competition assays, we observed that p300 forms a stable, template-committed complex with chromatin during the transcription process. The template commitment is dependent on the time of incubation of p300 with the chromatin template and occurs independently of the presence of a transcriptional activator protein. In studies examining interactions between p300 and chromatin, we found that p300 binds directly to chromatin and that the binding requires the p300 bromodomain, a conserved 110-amino-acid sequence found in many chromatin-associated proteins. Furthermore, we observed that the isolated p300 bromodomain binds directly to histones, preferentially to histone H3. However, the isolated p300 bromodomain does not bind to nucleosomal histones under the same assay conditions, suggesting that free histones and nucleosomal histones are not equivalent as binding substrates. Collectively, our results suggest that the stable association of p300 with chromatin is mediated, at least in part, by the bromodomain and is critically important for p300 function. Furthermore, our results suggest a model for p300 function that involves distinct activator-dependent targeting and activator-independent chromatin binding activities.
Collapse
Affiliation(s)
- E T Manning
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
61
|
Kumar BR, Swaminathan V, Banerjee S, Kundu TK. p300-mediated acetylation of human transcriptional coactivator PC4 is inhibited by phosphorylation. J Biol Chem 2001; 276:16804-9. [PMID: 11279157 DOI: 10.1074/jbc.m100934200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human positive coactivator 4 (PC4) acts as a general coactivator for activator-dependent transcription, the activity of which is regulated negatively by phosphorylation. We report here that PC4 can be acetylated specifically by another coactivator, p300. Interestingly, phosphorylation of PC4 by casein kinase II inhibits the p300-mediated acetylation. Mass spectral analysis revealed that there are at least two lysine residues acetylated in PC4, as a result of which its DNA binding activity is stimulated.
Collapse
Affiliation(s)
- B R Kumar
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064, India
| | | | | | | |
Collapse
|
62
|
Schild-Poulter C, Pope L, Giffin W, Kochan JC, Ngsee JK, Traykova-Andonova M, Haché RJ. The binding of Ku antigen to homeodomain proteins promotes their phosphorylation by DNA-dependent protein kinase. J Biol Chem 2001; 276:16848-56. [PMID: 11279128 DOI: 10.1074/jbc.m100768200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ku antigen (70- and 80-kDa subunits) is a regulatory subunit of DNA-dependent protein kinase (DNA-PK) that promotes the recruitment of the catalytic subunit of DNA-PK (DNA-PKcs) to DNA ends and to specific DNA sequences from which the kinase is activated. Ku and DNA-PKcs plays essential roles in double-stranded DNA break repair and V(D)J recombination and have been implicated in the regulation of specific gene transcription. In a yeast two-hybrid screen of a Jurkat T cell cDNA library, we have identified a specific interaction between the 70-kDa subunit of Ku heterodimer and the homeodomain of HOXC4, a homeodomain protein expressed in the hematopoietic system. Unexpectedly, a similar interaction with Ku was observed for several additional homeodomain proteins including octamer transcription factors 1 and 2 and Dlx2, suggesting that specific binding to Ku may be a property shared by many homeodomain proteins. Ku-homeodomain binding was mediated through the extreme C terminus of Ku70 and was abrogated by amino acid substitutions at Lys595/Lys596. Ku binding allowed the recruitment of the homeodomain to DNA ends and dramatically enhanced the phosphorylation of homeodomain-containing proteins by DNA-PK. These results suggest that Ku functions as a substrate docking protein for signaling by DNA-PK to homeodomain proteins from DNA ends.
Collapse
Affiliation(s)
- C Schild-Poulter
- Department of Medicine, The Loeb Health Research Institute at the Ottawa Hospital, University of Ottawa, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | | | | | |
Collapse
|
63
|
Nair AR, Boersma LJ, Schiltz L, Chaudhry MA, Muschel RJ, Chaudry A. Paradoxical effects of trichostatin A: inhibition of NF-Y-associated histone acetyltransferase activity, phosphorylation of hGCN5 and downregulation of cyclin A and B1 mRNA. Cancer Lett 2001; 166:55-64. [PMID: 11295287 DOI: 10.1016/s0304-3835(01)00418-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC), is widely used to study the role of histone acetylation in gene expression, since genes that use histone acetylation as a means of regulating expression may be up regulated when TSA is added. In this study, however, we show that TSA has an unexpected paradoxical effect leading to inhibition of NF-Y-associated histone acetyl transferase (HAT) activity and phosphorylation of the HAT, hGCN5. TSA treatment of cells resulted in diminished levels of NF-Y-associated HAT activity without changes in NF-Y(A) amount. hGCN5 is one of the HATs known to associate with NF-Y. The association of hGCN5 with NF-Y was not altered by TSA treatment. The enzymatic activity of hGCN5 is known to be inhibited by phosphorylation. TSA treatment of Hela cells resulted in phosphorylation of hGCN5. Exposure of the NF-Y immunoprecipitates from TSA-treated cells to a phosphatase resulted in enhanced HAT activity. We have also shown that the mRNA levels of several genes, cyclin B1 and cyclin A, are downregulated by TSA; these effects do not require protein synthesis and the downregulation of cyclin B1 by TSA occurs through transcription. These results suggest that TSA can have contradictory effects, on one hand stimulating HAT activity in general by inhibition of HDACs, but also resulting in inhibition of NF-Y-associated HAT activity and phosphorylation of hGCN5.
Collapse
Affiliation(s)
- A R Nair
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 269 John Morgan Building, 36th Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
It was shown recently that retroviral infection induces integrase-dependent apoptosis (programmed cell death) in DNA-dependent protein kinase (DNA-PK)-deficient scid pre-B cell lines, and it has been proposed that retroviral DNA integration is perceived as DNA damage that is repairable by the DNA-PK-dependent nonhomologous end-joining pathway (R. Daniel, R. A. Katz, and A. M. Skalka, Science 284:644-647, 1999). Very few infectious virions seem to be necessary to induce scid cell death. In this study, we used a modeling approach to estimate the number of integration events necessary to induce cell death of DNA-PK-deficient scid cells. Several models for integration-mediated cell killing were considered. Our analyses indicate that a single hit (integration event) is sufficient to kill a scid cell. Moreover, the closest fit between the experimental data and our computational simulations was achieved with a model in which the infected scid cell must pass through S phase to trigger apoptosis. This model is consistent with the findings that a single double-strand DNA break is sufficient to kill a cell deficient in DNA repair and illustrates the potential of a modeling approach to address quantitative aspects of virus-cell interactions.
Collapse
Affiliation(s)
- R Daniel
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
65
|
Abstract
The role of histone acetylation as a key mechanism of transcriptional regulation has been well established. Recent advances suggest that histone acetyltransferases also play important roles in histone-modulated processes such as DNA replication, recombination and repair. In addition, acetylation of transcriptional cofactors and other proteins is an efficient means of regulating a diverse range of molecular interactions. As new histone acetyltransferases and substrates are rapidly emerging, it is becoming apparent that protein acetylation may rival phosphorylation as a mechanism to transduce cellular regulatory signals.
Collapse
Affiliation(s)
- H Chen
- Department of Biological Chemistry, UC Davis Cancer Center/Basic Science Program, University of California at Davis, Sacramento, California 95817, USA.
| | | | | |
Collapse
|
66
|
Abstract
Ku is involved in the metabolism of DNA ends, DNA repair, and the maintenance of telomeres. It consists of a heterodimer of 70- and 80-kDa subunits. Recently we have demonstrated that Ku70 interacted with TRF2, a mammalian telomere-binding protein. Using the same yeast two-hybrid screening system, we now show that Ku70 also interacts with heterochromatin protein 1alpha (HP1alpha), a protein known to be associated with telomeres as well as heterochromatin. HP1 is a suppressor of the position effect variegation in Drosophila and acts as a transcriptional suppressor in mammalian cells. The interaction with Ku70 in the two-hybrid system was confirmed by a glutathione S-transferase pull-down study using bacterial recombinant proteins in vitro. The interaction was also reproduced in vivo in HeLa cells, where endogenous Ku70 coimmunoprecipitated with HP1alpha. This interaction was more effective in acidic pH and weakened considerably as the pH of the reaction buffer was elevated up to 7.5. Ku80 did not interact with HP1alpha directly. The interaction domains of Ku70 and HP1alpha included the Leu-Ser repeat (amino acids 200-385) and the chromo shadow domain, respectively. Ku70 was largely colocalized with transfected HP1alpha but not with a C-terminal deletion mutant, HP1alpha(Delta)C. In contrast to HP1alpha, Ku70 did not repress transcriptional activity of the reporter gene when tethered to DNA after transfection to mammalian cells. The implication of this interaction is discussed.
Collapse
Affiliation(s)
- K Song
- Department of Biochemistry, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | |
Collapse
|
67
|
Doerks T, Copley R, Bork P. DDT -- a novel domain in different transcription and chromosome remodeling factors. Trends Biochem Sci 2001; 26:145-6. [PMID: 11246006 DOI: 10.1016/s0968-0004(00)01769-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Homology-based sequence analyses have revealed the presence of a novel domain (DDT) in bromodomain PHD finger transcription factors (BPTFs), chromatin remodeling factors of the BAZ-family and other putative nuclear proteins. This domain is characterized by a number of conserved aromatic and charged residues and is predicted to consist of three alpha helices. Recent studies indicate a likely DNA-binding function for the DDT domain.
Collapse
Affiliation(s)
- T Doerks
- European Molecular Biology Laboratory, 69012 Heidelberg, Germany.
| | | | | |
Collapse
|
68
|
Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 2001; 104:119-30. [PMID: 11163245 DOI: 10.1016/s0092-8674(01)00196-9] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Acetylation of histones by p300/CBP and PCAF is considered to be a critical step in transcriptional regulation. In order to understand the role of cellular activities that modulate histone acetylation and transcription, we have purified and characterized a multiprotein cellular complex that potently inhibits the histone acetyltransferase activity of p300/CBP and PCAF. We have mapped a novel acetyltransferase-inhibitory domain of this INHAT (inhibitor of acetyltransferases) complex that binds to histones and masks them from being acetyltransferase substrates. Endogenous INHAT subunits, which include the Set/TAF-Ibeta oncoprotein, associate with chromatin in vivo and can block coactivatormediated transcription when transfected in cells. We propose that histone masking by INHAT plays a regulatory role in chromatin modification and serves as a novel mechanism of transcriptional regulation.
Collapse
Affiliation(s)
- S B Seo
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
69
|
Chen CJ, Deng Z, Kim AY, Blobel GA, Lieberman PM. Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol 2001; 21:476-87. [PMID: 11134336 PMCID: PMC86604 DOI: 10.1128/mcb.21.2.476-487.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2000] [Accepted: 10/27/2000] [Indexed: 11/20/2022] Open
Abstract
The transcriptional coactivator CREB binding protein (CBP) possesses intrinsic histone acetyltransferase (HAT) activity that is important for gene regulation. CBP binds to and cooperates with numerous nuclear factors to stimulate transcription, but it is unclear if these factors modulate CBP HAT activity. Our previous work showed that CBP interacts with the Epstein-Barr virus-encoded basic region zipper (b-zip) protein, Zta, and augments its transcriptional activity. Here we report that Zta strongly enhances CBP-mediated acetylation of nucleosomal histones. Zta stimulated the HAT activity of CBP that had been partially purified or immunoprecipitated from mammalian cells as well as from affinity-purified, baculovirus expressed CBP. Stimulation of nucleosome acetylation required the CBP HAT domain, the Zta DNA binding and transcription activation domain, and nucleosomal DNA. In addition to Zta, we found that two other b-zip proteins, NF-E2 and C/EBPalpha, strongly stimulated nucleosomal HAT activity. In contrast, several CBP-binding proteins, including phospho-CREB, JUN/FOS, GATA-1, Pit-1, and EKLF, failed to stimulate HAT activity. These results demonstrate that a subset of transcriptional activators enhance the nucleosome-directed HAT activity of CBP and suggest that nuclear factors may regulate transcription by altering substrate recognition and/or the enzymatic activity of chromatin modifying coactivators.
Collapse
Affiliation(s)
- C J Chen
- The Wistar Institute, The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
70
|
Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE. Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J Mol Biol 2000; 304:355-70. [PMID: 11090279 DOI: 10.1006/jmbi.2000.4207] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The solution structure of the bromodomain from the human transcriptional coactivator GCN5 has been determined using NMR methods. The structure has a left-handed four-helix bundle topology, with two short additional helices in a long connecting loop. A hydrophobic groove and deep hydrophobic cavity are formed by loops at one end of the molecule. NMR binding experiments show that the cavity forms a specific binding pocket for the acetamide moiety. Peptides containing an N(epsilon)-acetylated lysine residue bind in this pocket with modest affinity (K(D) approximately 0.9 mM); no comparable binding occurs with unacetylated peptides. The GCN5 bromodomain binds the small ligands N(omega)-acetylhistamine and N-methylacetamide, confirming specificity for the alkyl acetamide moiety and showing that the primary element of recognition is simply the sterically unhindered terminal acetamide moiety of an acetylated lysine residue. Additional experiments show that binding is enhanced if the acetyl-lysine residue occurs within the context of a basic peptide and is inhibited by the presence of nearby acidic residues and by the carboxyl group of the free acetyl-lysine amino acid. The binding of the GCN5 bromodomain to acetylated peptides appears to have little additional sequence dependence, although weak interactions with other regions of the peptide are implicated by the binding data. Discrimination between ligands of positive and negative charge is attributed to the presence of several acidic residues located on the loops that form the sides of the binding pocket. Unlike the residues forming the acetamide binding cavity, these acidic side-chains are not conserved in other bromodomain sequences, suggesting that bromodomains might display differences in substrate selectivity and specificity as well as differences in function in vivo.
Collapse
Affiliation(s)
- B P Hudson
- The Scripps Research Institute, Department of Molecular Biology and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | | |
Collapse
|
71
|
Abstract
Ku, a heterodimer of 70- and 80-kDa subunits, plays a general role in the metabolism of DNA ends in eukaryotic cells, including double-strand DNA break repair, V(D)J recombination, and maintenance of telomeres. We have utilized the yeast two-hybrid system to identify Ku70-interacting proteins other than Ku80. Two reactive clones were found to encode the dimerization domain of TRF2, a mammalian telomeric protein that binds to duplex TTAGGG repeats at chromosome ends. This interaction was confirmed using bacterial fusion proteins and co-immunoprecipitations from eukaryotic cells overexpressing TRF2. The transfected TFR2 colocalized with Ku70.
Collapse
Affiliation(s)
- K Song
- Department of Biochemistry, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
72
|
Abstract
The ends of chromosomal DNA double-strand breaks (DSBs) can be accurately rejoined by at least two discrete pathways, homologous recombination and nonhomologous end-joining (NHEJ). The NHEJ pathway is essential for repair of specific classes of DSB termini in cells of the budding yeast Saccharomyces cerevisiae. Endonuclease-induced DSBs retaining complementary single-stranded DNA overhangs are repaired efficiently by end-joining. In contrast, damaged DSB ends (e.g., termini produced by ionizing radiation) are poor substrates for this pathway. NHEJ repair involves the functions of at least 10 genes, including YKU70, YKU80, DNL4, LIF1, SIR2, SIR3, SIR4, RAD50, MRE11, and XRS2. Most or all of these genes are required for efficient recombination-independent recircularization of linearized plasmids and for rejoining of EcoRI endonuclease-induced chromosomal DSBs in vivo. Several NHEJ mutants also display aberrant processing and rejoining of DSBs that are generated by HO endonuclease or formed spontaneously in dicentric plasmids. In addition, all NHEJ genes except DNL4 and LIF1 are required for stabilization of telomeric repeat sequences. Each of the proteins involved in NHEJ appears to bind, directly or through protein associations, with the ends of linear DNA. Enzymatic and/or structural roles in the rejoining of DSB termini have been postulated for several proteins within the group. Most yeast NHEJ genes have homologues in human cells and many biochemical activities and protein:protein interactions have been conserved in higher eucaryotes. Similarities and differences between NHEJ repair in yeast and mammalian cells are discussed.
Collapse
Affiliation(s)
- L K Lewis
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, PO Box 12233, 111 Alexander Drive, NIH, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
73
|
Abstract
The state of chromatin (the packaging of DNA in eukaryotes) has long been recognized to have major effects on levels of gene expression, and numerous chromatin-altering strategies-including ATP-dependent remodeling and histone modification-are employed in the cell to bring about transcriptional regulation. Of these, histone acetylation is one of the best characterized, as recent years have seen the identification and further study of many histone acetyltransferase (HAT) proteins and their associated complexes. Interestingly, most of these proteins were previously shown to have coactivator or other transcription-related functions. Confirmed and putative HAT proteins have been identified from various organisms from yeast to humans, and they include Gcn5-related N-acetyltransferase (GNAT) superfamily members Gcn5, PCAF, Elp3, Hpa2, and Hat1: MYST proteins Sas2, Sas3, Esa1, MOF, Tip60, MOZ, MORF, and HBO1; global coactivators p300 and CREB-binding protein; nuclear receptor coactivators SRC-1, ACTR, and TIF2; TATA-binding protein-associated factor TAF(II)250 and its homologs; and subunits of RNA polymerase III general factor TFIIIC. The acetylation and transcriptional functions of these HATs and the native complexes containing them (such as yeast SAGA, NuA4, and possibly analogous human complexes) are discussed. In addition, some of these HATs are also known to modify certain nonhistone transcription-related proteins, including high-mobility-group chromatin proteins, activators such as p53, coactivators, and general factors. Thus, we also detail these known factor acetyltransferase (FAT) substrates and the demonstrated or potential roles of their acetylation in transcriptional processes.
Collapse
Affiliation(s)
- D E Sterner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
74
|
Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J 2000; 19:1176-9. [PMID: 10716917 PMCID: PMC305658 DOI: 10.1093/emboj/19.6.1176] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1999] [Revised: 01/11/2000] [Accepted: 01/17/2000] [Indexed: 11/13/2022] Open
Abstract
The fact that histones are modified by acetylation has been known for almost 30 years. The recent identification of enzymes that regulate histone acetylation has revealed a broader use of this modification than was suspected previously. Acetylases are now known to modify a variety of proteins, including transcription factors, nuclear import factors and alpha-tubulin. Acetylation regulates many diverse functions, including DNA recognition, protein-protein interaction and protein stability. There is even a conserved structure, the bromodomain, that recognizes acetylated residues and may serve as a signalling domain. If you think all this sounds familiar, it should be. These are features characteristic of kinases. So, is acetylation a modification analogous to phosphorylation? This review sets out what we know about the broader substrate specificity and regulation of acetyl- ases and goes on to compare acetylation with the process of phosphorylation.
Collapse
Affiliation(s)
- T Kouzarides
- Wellcome/CRC Institute, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
75
|
Chamberlin HM, Thomas JH. The bromodomain protein LIN-49 and trithorax-related protein LIN-59 affect development and gene expression in Caenorhabditis elegans. Development 2000; 127:713-23. [PMID: 10648230 DOI: 10.1242/dev.127.4.713] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have molecularly characterized the lin-49 and lin-59 genes in C. elegans, and found their products are related to Drosophila trithorax group (trx-G) proteins and other proteins implicated in chromatin remodelling. LIN-49 is structurally most similar to the human bromodomain protein BR140, and LIN-59 is most similar to the Drosophila trx-G protein ASH1. In C. elegans, lin-49 and lin-59 are required for the normal development of the mating structures of the adult male tail, for the normal morphology and function of hindgut (rectum) cells in both males and hermaphrodites and for the maintenance of structural integrity in the hindgut and egg-laying system in adults. Expression of the Hox genes egl-5 and mab-5 is reduced in lin-49 and lin-59 mutants, suggesting lin-49 and lin-59 regulate HOM-C gene expression in C. elegans as the trx-G genes do in Drosophila. lin-49 and lin-59 transgenes are expressed widely throughout C. elegans animals. Thus, in contrast to the C. elegans Polycomb group (Pc-G)-related genes mes-2 and mes-6 that function primarily in the germline, we propose lin-49 and lin-59 function in somatic development similar to the Drosophila trx-G genes.
Collapse
Affiliation(s)
- H M Chamberlin
- Department of Genetics, University of Washington, Seattle, WA 98195-7360, USA.
| | | |
Collapse
|
76
|
Abstract
The bromodomain is a structural motif characteristic of proteins involved in chromatin-dependent regulation of transcription. Bromodomain proteins have been identified as integral components of chromatin remodeling complexes and frequently possess histone acetyltransferase activity. Their encoding genes have been identified at translocation breakpoints, and at least one, CBP, is a tumor suppressor gene. We have identified a series of novel bromodomain genes by EST database and cDNA library screening. Comparison of sequences for four clones indicated that they represent genes belonging to a novel bromodomain family. Full-length sequences for these genes, which are widely expressed, predict encoded proteins of between 1527 and 1972 amino acids. In addition to a carboxy-terminal bromodomain, an adjacent PHD finger, and a WACZ motif, at least four other conserved novel motifs are present in each protein. The genes contain regions conserved with Drosophila Acf1 and Caenorhabditis elegans ZK783.4. The novel genes, termed BAZ1A, BAZ1B, BAZ2A, and BAZ2B, localize to chromosomes 14q12-q13, 7q11-q21, 12q24.3-qter, and 2q23-q24, respectively. Conservation of multiple domains throughout these genes with Acf1 indicates that they are likely to be components of chromatin remodeling complexes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromatin/metabolism
- Chromosome Mapping
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 7
- Expressed Sequence Tags
- Female
- Gene Library
- Humans
- Hybrid Cells
- Male
- Molecular Sequence Data
- Organ Specificity
- Polymerase Chain Reaction
- Protein Structure, Tertiary
- RNA, Messenger/analysis
- Sequence Alignment
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- M H Jones
- Chugai Research Institute for Molecular Medicine, 153-2 Nagai, Niihari, Ibaraki, 300-4101, Japan.
| | | | | | | |
Collapse
|
77
|
Jones MH, Hamana N, Shimane M. Identification and characterization of BPTF, a novel bromodomain transcription factor. Genomics 2000; 63:35-9. [PMID: 10662542 DOI: 10.1006/geno.1999.6070] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The bromodomain is a 110-amino-acid conserved structural region associated with proteins that regulate signal-dependent, nonbasal transcription. The bromodomain can regulate histone acetyl transferase activity and interacts specifically with acetylated lysine residues. A key role for bromodomain proteins in maintaining normal proliferation is indicated by the implication of several bromodomain proteins in cancer, with four of these identified at translocation breakpoints. We searched EST databases for novel bromodomain genes. The sequence from one EST was used to initiate generation of a full-length clone from a testis cDNA library. The completed sequence encodes a predicted protein of 2781 amino acids, which, in addition to the bromodomain, harbors further motifs characteristic of a transcriptional coactivator: two PHD fingers and an extensive glutamine-rich acidic domain. There are several other regions that are conserved with the Caenorhabditis elegans putative protein F26H11, which may be functionally homologous. The novel gene, called BPTF, is expressed in all tissues examined as a 10.5-kb transcript. The protein has extensive identity with the smaller FAC1 protein, suggesting that the two either are derived from the same locus or are synonymous. BPTF has been mapped to 17q23. Functional domains found within BPTF are consistent with a role for this protein in hormonally regulated, chromatin-mediated regulation of transcription.
Collapse
Affiliation(s)
- M H Jones
- Chugai Research Institute for Molecular Medicine, 153-2 Nagai, Niihari, Ibaraki, 300-4101, Japan
| | | | | |
Collapse
|
78
|
McCullagh P, Chaplin T, Meerabux J, Grenzelias D, Lillington D, Poulsom R, Gregorini A, Saha V, Young BD. The cloning, mapping and expression of a novel gene, BRL, related to the AF10 leukaemia gene. Oncogene 1999; 18:7442-52. [PMID: 10602503 DOI: 10.1038/sj.onc.1203117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The MLL gene is reciprocally translocated with one of a number of different partner genes in a proportion of human acute leukaemias. The precise mechanism of oncogenic transformation is unclear since most of the partner genes encode unrelated proteins. However, two partner genes, AF10 and AF17 are related through the presence of a cysteine rich region and a leucine zipper. The identification of other proteins with these structures will aid our understanding of their role in normal and leukaemic cells. We report the cloning of a novel human gene (BRL) which encodes a protein containing a cysteine rich region related to that of AF10 and AF17 and is overall most closely related to the previously known protein BR140. BRL maps to chromosome 22q13 and shows high levels of expression in testis and several cell lines. The deduced protein sequence also contains a bromodomain, four potential LXXLL motifs and four predicted nuclear localization signals. A monoclonal antibody raised to a BRL peptide sequence confirmed its widespread expression as a 120 Kd protein and demonstrated localization to the nucleus within spermatocytes.
Collapse
Affiliation(s)
- P McCullagh
- Imperial Cancer Research Fund, Department of Medical Oncology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London ECIM 6BQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Hettmann C, Soldati D. Cloning and analysis of a Toxoplasma gondii histone acetyltransferase: a novel chromatin remodelling factor in Apicomplexan parasites. Nucleic Acids Res 1999; 27:4344-52. [PMID: 10536141 PMCID: PMC148715 DOI: 10.1093/nar/27.22.4344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The yeast transcriptional adaptor GCN5 functions as a histone acetyltransferase, directly linking chromatin modification to transcriptional regulation. Homologues of yeast GCN5 have been found in Tetrahymena, Drosophila, Arabidopsis and human, suggesting that this pathway of chromatin remodelling is evolutionarily conserved. Consistent with this view, we have identified the Toxoplasma gondii homologue, referred to here as TgGCN5. The gene codes for a protein of 474 amino acids with an estimated molecular mass of 53 kDa. The protein reveals two regions of close similarity with the GCN5 family members, the HAT domain and the bromodomain. Tg GCN5 occurs in a single copy in the T.gondii genome. The introduction of a second copy of TgGCN5 in T.gondii tachyzoites is toxic unless the HAT activity is disrupted by a single point mutation. Full TgGCN5 does not complement the growth defect in a yeast gcn5 (-)mutant strain, but a chimera comprising the T.gondii HAT domain fused to the remainder of yGCN5 does. These data show that T.gondii GNC5 is a histone acetyltransferase attesting to the significance of chromatin remodelling in gene regulation of Apicomplexa.
Collapse
Affiliation(s)
- C Hettmann
- Zentrum für Molekulare Biologie Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | |
Collapse
|
80
|
Majumder S, Ghoshal K, Li Z, Jacob ST. Hypermethylation of metallothionein-I promoter and suppression of its induction in cell lines overexpressing the large subunit of Ku protein. J Biol Chem 1999; 274:28584-9. [PMID: 10497224 PMCID: PMC2276567 DOI: 10.1074/jbc.274.40.28584] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that the heavy metal-induced metallothionein-I (MT-I) gene expression is specifically repressed in a rat fibroblast cell line (Ku-80) overexpressing the 80-kDa subunit of Ku autoantigen but not in cell lines overexpressing the 70-kDa subunit or Ku heterodimer. Here, we explored the molecular mechanism of silencing of MT-I gene in Ku-80 cells. Genomic footprinting analysis revealed both basal and heavy metal-inducible binding at specific cis elements in the parental cell line (Rat-1). By contrast, MT-I promoter in Ku-80 cells was refractory to any transactivating factors, implying alteration of chromatin structure. Treatment of two clonal lines of Ku-80 cells with 5-azacytidine, a potent DNA demethylating agent, rendered MT-I gene inducible by heavy metals, suggesting that the gene is methylated in these cells. Bisulfite genomic sequencing revealed that all 21 CpG dinucleotides in MT-I immediate promoter were methylated in Ku-80 cells, whereas only four CpG dinucleotides were methylated in Rat-1 cells. Almost all methylated CpG dinucleotides were demethylated in Ku-80 cells after 5-azacytidine treatment. To our knowledge, this is the first report that describes hypermethylation of a specific gene promoter and its resultant silencing in response to overexpression of a cellular protein.
Collapse
Affiliation(s)
- S Majumder
- Department of Medical Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
81
|
Cuppen E, van Ham M, Pepers B, Wieringa B, Hendriks W. Identification and molecular characterization of BP75, a novel bromodomain-containing protein. FEBS Lett 1999; 459:291-8. [PMID: 10526152 DOI: 10.1016/s0014-5793(99)01191-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We here describe the identification and characterization of a novel bromodomain-containing protein, the bromodomain protein of 75 kDa (BP75). Initially, we identified BP75 in a two-hybrid screening for proteins that interact with the first PDZ (acronym for post-synaptic density protein PSD-95, Drosophila discs large tumor suppressor DlgA and the tight junction protein ZO-1) domain in protein tyrosine phosphatase-BAS-like (PTP-BL). We found that BP75 is expressed ubiquitously and show that both BP75 and a PTP-BL deletion mutant consisting of the first PDZ domain are located mainly in the nucleus, although cytoplasmic localization is also evident. Full-length PTP-BL, on the contrary, is predominantly localized in the cytoplasm, although some basal nuclear staining is observed. The described molecular interaction may reflect a mechanism of coupling submembraneous signalling events and nuclear events.
Collapse
Affiliation(s)
- E Cuppen
- Department of Cell Biology, Institute of Cellular Signalling, University of Nijmegen, Adelbertusplein 1, 6525 EK, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
82
|
Abstract
Recently, there has been a convergence of fields studying the processing of DNA, such as transcription, replication, and repair. This convergence has been centered around the packaging of DNA in chromatin. Chromatin structure affects all aspects of DNA processing because it modulates access of proteins to DNA. Therefore, a central theme has become the mechanism(s) for accessing DNA in chromatin. It seems likely that mechanisms involved in one of these processes may also be used in others. For example, the discovery of transcriptional coactivators with histone acetyltransferase activity and chromatin remodeling complexes has provided possible mechanisms required for efficient repair of DNA in chromatin.
Collapse
Affiliation(s)
- M Meijer
- Department of Biochemistry and biophysics, Washington State University, Pullman, USA
| | | |
Collapse
|
83
|
Massari ME, Grant PA, Pray-Grant MG, Berger SL, Workman JL, Murre C. A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol Cell 1999; 4:63-73. [PMID: 10445028 DOI: 10.1016/s1097-2765(00)80188-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The class I helix-loop-helix (HLH) proteins, which include E2A, HEB, and E2-2, have been shown to be required for lineage-specific gene expression during T and B lymphocyte development. Additionally, the E2A proteins function to regulate V(D)J recombination, possibly by allowing access of variable region segments to the recombination machinery. The mechanisms by which E2A regulates transcription and recombination, however, are largely unknown. Here, we identify a novel motif, LDFS, present in the vertebrate class I HLH proteins as well as in a yeast HLH protein that is essential for transactivation. We provide both genetic and biochemical evidence that the highly conserved LDFS motif stimulates transcription by direct recruitment of the SAGA histone acetyltransferase complex.
Collapse
Affiliation(s)
- M E Massari
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
84
|
Mizzen C, Kuo MH, Smith E, Brownell J, Zhou J, Ohba R, Wei Y, Monaco L, Sassone-Corsi P, Allis CD. Signaling to chromatin through histone modifications: how clear is the signal? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:469-81. [PMID: 10384311 DOI: 10.1101/sqb.1998.63.469] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C Mizzen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Barlev NA, Workman JL, Berger SL. Analysis of activity and regulation of hGcn5, a human histone acetyltransferase. Methods Enzymol 1999; 304:696-715. [PMID: 10372391 DOI: 10.1016/s0076-6879(99)04042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- N A Barlev
- Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | | | |
Collapse
|
86
|
Abstract
Persuasive evidence has emerged that acetyltransferases appear to truly function to acetylate both histones and transcription factors in vivo to effect gene activation. In the cell, acetyltransferases have been identified as components of large, multifunctional and evolutionarily conserved macromolecular assemblies, whose components and structures suggest complex functions. In addition, the first atomic resolution structures of HATs have revealed conserved mechanisms of acetyl-CoA interaction among the superfamily of GNATs (Gcn5-related N-acetyltransferases). Finally, enzymatic acetyltransferase activities are themselves regulated by phosphorylation and interaction with other proteins.
Collapse
Affiliation(s)
- S L Berger
- Molecular Genetics Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
87
|
Giffin W, Gong W, Schild-Poulter C, Haché RJ. Ku antigen-DNA conformation determines the activation of DNA-dependent protein kinase and DNA sequence-directed repression of mouse mammary tumor virus transcription. Mol Cell Biol 1999; 19:4065-78. [PMID: 10330147 PMCID: PMC104366 DOI: 10.1128/mcb.19.6.4065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) transcription is repressed by DNA-dependent protein kinase (DNA-PK) through a DNA sequence element, NRE1, in the viral long terminal repeat that is a sequence-specific DNA binding site for the Ku antigen subunit of the kinase. While Ku is an essential component of the active kinase, how the catalytic subunit of DNA-PK (DNA-PKcs) is regulated through its association with Ku is only beginning to be understood. We report that activation of DNA-PKcs and the repression of MMTV transcription from NRE1 are dependent upon Ku conformation, the manipulation of DNA structure by Ku, and the contact of Ku80 with DNA. Truncation of one copy of the overlapping direct repeat that comprises NRE1 abrogated the repression of MMTV transcription by Ku-DNA-PKcs. Remarkably, the truncated element was recognized by Ku-DNA-PKcs with affinity similar to that of the full-length element but was unable to promote the activation of DNA-PKcs. Analysis of Ku-DNA-PKcs interactions with DNA ends, double- and single-stranded forms of NRE1, and the truncated NRE1 element revealed striking differences in Ku conformation that differentially affected the recruitment of DNA-PKcs and the activation of kinase activity.
Collapse
Affiliation(s)
- W Giffin
- Departments of Medicine, Microbiology and Immunology, The Loeb Health Research Institute at the Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
88
|
Moll U, Lau R, Sypes MA, Gupta MM, Anderson CW. DNA-PK, the DNA-activated protein kinase, is differentially expressed in normal and malignant human tissues. Oncogene 1999; 18:3114-26. [PMID: 10340383 DOI: 10.1038/sj.onc.1202640] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA-PK is a nuclear, serine/threonine protein kinase required for repairing DNA double-strand breaks and for V(D)J recombination. To determine the distribution of DNA-PK in human tissues, we assayed paraffin-embedded sections of normal and cancerous tissues for DNA-PKcs and Ku80 by immunohistochemistry. We also assayed for Brca2, a human tumor suppressor gene that is implicated in the repair of DNA strand-breaks. Brca2 was strongly expressed in epithelial cells of the breast, endometrium, and thymus, in tingible body macrophages of follicular germinal centers of lymphoid tissue, and in reticuloendothelial cells in the spleen. DNA-PKcs and Ku80 expression was usually parallel, but both were expressed in a highly cell- and tissue-specific manner. The highest levels were observed in spermatogenic cells (but not in spermatozoa), and in neurons and glial cells of the central and autonomic nervous system. Neither protein was consistently expressed in liver nor in resting mammary epithelium, but lactating breast epithelium was strongly positive for DNA-PKcs and Ku80. In contrast to established human cell cultures, expression between cells in the same tissue was highly selective in the epidermis, exocrine pancreas, renal glomeruli, the red pulp of the spleen, and within cellular compartments of tonsils, lymph nodes, and thymus. Most cancerous tissues were consistently positive for DNA-PKcs and Ku80, except invasive carcinoma of the breast. DNA-PKcs, Ku80, and Ku70 mRNAs were expressed in all normal tissues with relatively little variation in levels. Our results suggest that the apparent absence of DNA-PKcs and Ku80 from some cells or tissues is a consequence of post-transcriptional mechanisms that regulate protein levels.
Collapse
Affiliation(s)
- U Moll
- Department of Pathology, State University of New York at Stony Brook, 11794, USA
| | | | | | | | | |
Collapse
|
89
|
Abstract
The Ku protein binds to DNA ends and other types of discontinuity in double-stranded DNA. It is a tightly associated heterodimer of approximately 70 kDa and approximately 80 kDa subunits that together with the approximately 470 kDa catalytic subunit, DNA-PKcs, form the DNA-dependent protein kinase. This enzyme is involved in repairing DNA double-strand breaks (DSBs) caused, for example, by physiological oxidation reactions, V(D)J recombination, ionizing radiation and certain chemotherapeutic drugs. The Ku-dependent repair process, called illegitimate recombination or nonhomologous end joining (NHEJ), appears to be the main DNA DSB repair mechanism in mammalian cells. Ku itself is probably involved in stabilizing broken DNA ends, bringing them together and preparing them for ligation. Ku also recruits DNA-PKcs to the DSB, activating its kinase function. Targeted disruption of the genes encoding Ku70 and Ku80 has identified significant differences between Ku-deficient mice and DNA-PKcs-deficient mice. Although all three gene products are clearly involved in repairing ionizing radiation-induced damage and in V(D)J recombination, Ku-knockout mice are small, and their cells fail to proliferate in culture and show signs of premature senescence. Recent findings have implicated yeast Ku in telomeric structure in addition to NHEJ. Some of the phenotypes of the Ku-knockout mice may indicate a similar role for Ku at mammalian telomeres.
Collapse
Affiliation(s)
- C Featherstone
- Wellcome/Cancer Research Campaign Institute, Cambridge University, UK.
| | | |
Collapse
|
90
|
Ornaghi P, Ballario P, Lena AM, González A, Filetici P. The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J Mol Biol 1999; 287:1-7. [PMID: 10074402 DOI: 10.1006/jmbi.1999.2577] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whereas the histone acetyltransferase activity of yeast Gcn5p has been widely studied, its structural interactions with the histones and the role of the carboxy-terminal bromodomain are still unclear. Using a glutathione S-transferase pull down assay we show that Gcn5p binds the amino-terminal tails of histones H3 and H4, but not H2A and H2B. The deletion of bromodomain abolishes this interaction and bromodomain alone is able to interact with the H3 and H4 N termini. The amino acid residues of the H4 N terminus involved in the binding with Gcn5p have been studied by site-directed mutagenesis. The substitution of amino acid residues R19 or R23 of the H4 N terminus with a glutamine (Q) abolishes the interaction with Gcn5p and the bromodomain. These residues differ from those known to be acetylated or to be involved in binding the SIR proteins. This evidence and the known dispensability of the bromodomain for Gcn5p acetyltransferase activity suggest a new structural role for the highly evolutionary conserved bromodomain.
Collapse
Affiliation(s)
- P Ornaghi
- Centro di studio per gli Acidi Nucleici, CNR, Dipartimento di Genetica e Biologia Molecolare, Università "La Sapienza", P.le A. Moro n degrees 5, Roma, 00185, Italy
| | | | | | | | | |
Collapse
|
91
|
Montecino M, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Phosphorylation-mediated control of chromatin organization and transcriptional activity of the tissue-specific osteocalcin gene. J Cell Biochem 1999; 72:586-94. [PMID: 10022617 DOI: 10.1002/(sici)1097-4644(19990315)72:4<586::aid-jcb13>3.0.co;2-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have analyzed the linkage of protein phosphorylation to the remodeling of chromatin structure that accompanies transcriptional activity of the rat osteocalcin (OC) gene in bone-derived cells. Short incubations with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, induced marked changes in the chromatin organization of the OC gene promoter. These changes were reflected by loss of the two DNase I hypersensitive sites normally present in bone-derived cells expressing this gene. These hypersensitive sites include the elements that control basal tissue-specific expression, as well as steroid hormone regulation. Indeed, the absence of hypersensitivity was accompanied by inhibition of basal and vitamin D-dependent enhancement of OC gene transcription. The effects of okadaic acid on OC chromatin structure and gene activity were specific and reversible. Staurosporine, a protein kinase C inhibitor, did not significantly affect transcriptional activity or DNase I hypersensitivity of the OC gene. We conclude that cellular phosphorylation-dephosphorylation events distinct from protein kinase C-dependent reactions are required for both chromatin remodeling and transcriptional activity of the OC gene in osseous cells.
Collapse
Affiliation(s)
- M Montecino
- Department of Cell Biology & Cancer Center, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
92
|
Masumi A, Wang IM, Lefebvre B, Yang XJ, Nakatani Y, Ozato K. The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness. Mol Cell Biol 1999; 19:1810-20. [PMID: 10022868 PMCID: PMC83974 DOI: 10.1128/mcb.19.3.1810] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription factors of the interferon regulatory factor (IRF) family bind to the type I interferon (IFN)-responsive element (ISRE) and activate transcription from IFN-inducible genes. To identify cofactors that associate with IRF proteins, DNA affinity binding assays were performed with nuclear extracts prepared from tissue culture cells. The results demonstrated that the endogenous IRFs bound to the ISRE are complexed with the histone acetylases, PCAF, GCN5, and p300/CREB binding protein and that histone acetylase activities are accumulated on the IRF-ISRE complexes. By testing recombinant proteins, we show that PCAF directly binds to some but not all members of the IRF family through distinct domains of the two proteins. This interaction was functionally significant, since transfection of PCAF strongly enhanced IRF-1- and IRF-2-dependent promoter activities. Further studies showed that expression of PCAF and other histone acetylases was markedly induced in U937 cells upon phorbol ester treatment, which led to increased recruitment of PCAF to the IRF-ISRE complexes. Coinciding with the induction of histone acetylases, phorbol ester markedly enhanced IFN-alpha-stimulated gene expression in U937 cells. Supporting the role for PCAF in conferring IFN responsiveness, transfection of PCAF into U937 cells led to a large increase in IFN-alpha-inducible promoter activity. These results demonstrate that PCAF is a phorbol ester-inducible coactivator of the IRF proteins which contributes to the establishment of type I IFN responsiveness.
Collapse
Affiliation(s)
- A Masumi
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | | | |
Collapse
|
93
|
Grandvaux N, Grizot S, Vignais PV, Dagher MC. The Ku70 autoantigen interacts with p40phox in B lymphocytes. J Cell Sci 1999; 112 ( Pt 4):503-13. [PMID: 9914162 DOI: 10.1242/jcs.112.4.503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ku70, a regulatory component of the DNA-dependent protein kinase, was identified by a yeast two-hybrid screen of a B lymphocyte cDNA library as a partner of p40phox, a regulatory component of the O2--producing NADPH oxidase. Truncated constructs of p40phox and Ku70 were used to map the interacting sites. The 186 C-terminal amino acids (aa) of Ku70 were found to interact with two distinct regions of p40phox, the central core region (aa 50–260) and the C-terminal extremity (aa 260–339). In complementary experiments, it was observed that Ku70 binds to immobilized recombinant p40phox fusion protein and that p40phox and Ku70 from a B lymphocyte cell extract comigrate in successive chromatographies on Q Separose, Superose 12 and hydroxylapatite columns. Moreover, we report that Ku70 and p40phox colocalize in B lymphocytes and in transfected Cos-7 cells. We also show that the two NADPH oxidase activating factors, p47phox and p67phox are substrates for DNA-PK in vitro and that they are present together with p40phox in the nucleus of B cells. These results may help solve the paradox that the phox protein triad, p40phox, p47phox and p67phox, is expressed equally in B lymphocytes and neutrophils, whereas the redox component of the NADPH oxidase, a flavocytochrome b, which is well expressed in neutrophils, is barely detectable in B lymphocytes.
Collapse
Affiliation(s)
- N Grandvaux
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 314/CNRS), Département de Biologie Moléculaire et Structurale, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble Cedex 9, France.
| | | | | | | |
Collapse
|
94
|
Chakravarti D, Ogryzko V, Kao HY, Nash A, Chen H, Nakatani Y, Evans RM. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 1999; 96:393-403. [PMID: 10025405 DOI: 10.1016/s0092-8674(00)80552-8] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nucleosomal histone modification is believed to be a critical step in the activation of RNA polymerase II-dependent transcription. p300/CBP and PCAF histone acetyltransferases (HATs) are coactivators for several transcription factors, including nuclear hormone receptors, p53, and Stat1alpha, and participate in transcription by forming an activation complex and by promoting histone acetylation. The adenoviral E1A oncoprotein represses transcriptional signaling by binding to p300/CBP and displacing PCAF and p/CIP proteins from the complex. Here, we show that E1A directly represses the HAT activity of both p300/CBP and PCAF in vitro and p300-dependent transcription in vivo. Additionally, E1A inhibits nucleosomal histone modifications by the PCAF complex and blocks p53 acetylation. These results demonstrate the modulation of HAT activity as a novel mechanism of transcriptional regulation.
Collapse
Affiliation(s)
- D Chakravarti
- Gene Expression Laboratory, The Salk Institute for Biological Sciences, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Lieber MR. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 1999; 4:77-85. [PMID: 10320474 DOI: 10.1046/j.1365-2443.1999.00245.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent progress over the past year has provided new insights into the proteins involved in nonhomologous end joining. The assembly of Ku and DNA-dependent protein kinase at DNA ends is now understood in greater detail. Murine genetic knockouts for DNA ligase IV and XRCC4 are embryonic lethal, indicating that nonhomologous end joining is essential for viability. Interestingly, neurones, in addition to lymphocytes, are particularly vulnerable to an absence of NHEJ.
Collapse
Affiliation(s)
- M R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, Los Angeles, CA 90033, USA.
| |
Collapse
|
96
|
Sterner DE, Grant PA, Roberts SM, Duggan LJ, Belotserkovskaya R, Pacella LA, Winston F, Workman JL, Berger SL. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 1999; 19:86-98. [PMID: 9858534 PMCID: PMC83868 DOI: 10.1128/mcb.19.1.86] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Accepted: 09/18/1998] [Indexed: 11/20/2022] Open
Abstract
SAGA, a recently described protein complex in Saccharomyces cerevisiae, is important for transcription in vivo and possesses histone acetylation function. Here we report both biochemical and genetic analyses of members of three classes of transcription regulatory factors contained within the SAGA complex. We demonstrate a correlation between the phenotypic severity of SAGA mutants and SAGA structural integrity. Specifically, null mutations in the Gcn5/Ada2/Ada3 or Spt3/Spt8 classes cause moderate phenotypes and subtle structural alterations, while mutations in a third subgroup, Spt7/Spt20, as well as Ada1, disrupt the complex and cause severe phenotypes. Interestingly, double mutants (gcn5Delta spt3Delta and gcn5Delta spt8Delta) causing loss of a member of each of the moderate classes have severe phenotypes, similar to spt7Delta, spt20Delta, or ada1Delta mutants. In addition, we have investigated biochemical functions suggested by the moderate phenotypic classes and find that first, normal nucleosomal acetylation by SAGA requires a specific domain of Gcn5, termed the bromodomain. Deletion of this domain also causes specific transcriptional defects at the HIS3 promoter in vivo. Second, SAGA interacts with TBP, the TATA-binding protein, and this interaction requires Spt8 in vitro. Overall, our data demonstrate that SAGA harbors multiple, distinct transcription-related functions, including direct TBP interaction and nucleosomal histone acetylation. Loss of either of these causes slight impairment in vivo, but loss of both is highly detrimental to growth and transcription.
Collapse
Affiliation(s)
- D E Sterner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Williams syndrome (WS) is a developmental disorder caused by deletion of multiple genes at chromosome 7q11.23. Here, we report the identification and characterization of a novel gene, WSTF, that maps to the common WS deletion region. WSTF encodes a novel protein of 1425 amino acids with unknown function. It contains one PHD-type zinc finger motif followed by a bromodomain. Both motifs are found in many transcription regulators, suggesting that WSTF may function as a transcription factor. WSTF is ubiquitously expressed in both adult and fetal tissues. The WSTF gene consists of 20 exons spanning about 80 kb. Fluorescence in situ hybridization analysis shows that WSTF is deleted in 50/50 WS individuals. Hemizygous deletion of WSTF may contribute to WS.
Collapse
Affiliation(s)
- X Lu
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | | | | |
Collapse
|
98
|
Du J, Nasir I, Benton BK, Kladde MP, Laurent BC. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics 1998; 150:987-1005. [PMID: 9799253 PMCID: PMC1460405 DOI: 10.1093/genetics/150.3.987] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The essential Sth1p is the protein most closely related to the conserved Snf2p/Swi2p in Saccharomyces cerevisiae. Sth1p purified from yeast has a DNA-stimulated ATPase activity required for its function in vivo. The finding that Sth1p is a component of a multiprotein complex capable of ATP-dependent remodeling of the structure of chromatin (RSC) in vitro, suggests that it provides RSC with ATP hydrolysis activity. Three sth1 temperature-sensitive mutations map to the highly conserved ATPase/helicase domain and have cell cycle and non-cell cycle phenotypes, suggesting multiple essential roles for Sth1p. The Sth1p bromodomain is required for wild-type function; deletion mutants lacking portions of this region are thermosensitive and arrest with highly elongated buds and 2C DNA content, indicating perturbation of a unique function. The pleiotropic growth defects of sth1-ts mutants imply a requirement for Sth1p in a general cellular process that affects several metabolic pathways. Significantly, an sth1-ts allele is synthetically sick or lethal with previously identified mutations in histones and chromatin assembly genes that suppress snf/swi, suggesting that RSC interacts differently with chromatin than Snf/Swi. These results provide a framework for understanding the ATP-dependent RSC function in modeling chromatin and its connection to the cell cycle.
Collapse
Affiliation(s)
- J Du
- Department of Microbiology and Immunology and Morse Institute for Molecular Genetics, State University of New York, Brooklyn, New York 11203, USA
| | | | | | | | | |
Collapse
|
99
|
Saleh A, Schieltz D, Ting N, McMahon SB, Litchfield DW, Yates JR, Lees-Miller SP, Cole MD, Brandl CJ. Tra1p is a component of the yeast Ada.Spt transcriptional regulatory complexes. J Biol Chem 1998; 273:26559-65. [PMID: 9756893 DOI: 10.1074/jbc.273.41.26559] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Ada and TBP class of Spt proteins interact in multiple complexes that are required for transcriptional regulation. We have identified Tra1p as a component of these complexes through tandem mass spectrometry analysis of proteins that associate with Ngg1p/Ada3p. TRA1 is an essential gene and encodes a 3744-amino acid protein that is a member of a group of proteins including the catalytic subunit of DNA-dependent protein kinase, ATM and TRRAP, with carboxyl-terminal regions related to phosphatidylinositol 3-kinases. The interaction between Tra1p and Ada/Spt components was verified by the reciprocal coimmunoprecipitation of Ada2p and Tra1p from whole cell extracts in one or more complexes containing Spt7p. Tra1p cofractionated with Ngg1p and Spt7p through consecutive chromatography on Mono Q, DNA-cellulose, and Superose 6 columns. Binding of Tra1p to DNA-cellulose required Ada components. The association of Tra1p with two Ada.Spt complexes was suggested by its cofractionation with Ngg1p and Spt7p in two peaks on the Mono Q column. In the absence of Ada2p, the elution profile of Tra1p shifted to a distinct peak. Despite the similarity of Tra1p to a group of putative protein kinases, we have not detected protein kinase activity within immunoprecipitates of Tra1p or the Ada.Spt complexes.
Collapse
Affiliation(s)
- A Saleh
- Department of Biochemistry, University of Western Ontario, London N6A 5C1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Smith ER, Belote JM, Schiltz RL, Yang XJ, Moore PA, Berger SL, Nakatani Y, Allis CD. Cloning of Drosophila GCN5: conserved features among metazoan GCN5 family members. Nucleic Acids Res 1998; 26:2948-54. [PMID: 9611240 PMCID: PMC147644 DOI: 10.1093/nar/26.12.2948] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PCAF and hGCN5 are distinct human genes that encode proteins related to the yeast histone acetyltransferase and transcriptional adapter GCN5. The PCAF protein shares extensive similarity with the 439 amino acids of yGCN5, but it has an approximately 350 amino acid N-terminal extension that interacts with the transcriptional co-activator p300/CBP. Adenoviral protein E1a can disrupt PCAF-CBP interactions and prevent PCAF-dependent cellular differentiation. In this report, we describe the cloning and initial characterization of a Drosophila homolog of yGCN5. In addition to the homology to yGCN5, the Drosophila protein shares sequencesimilarity with the N-terminal portion of human PCAF that is involved in binding to CBP. In the course of characterizing dGCN5, we have discovered that hGCN5 also contains an N-terminal extension with significant similarity to PCAF. Interestingly, in the case of the h GCN5 gene, alternative splicing may regulate the production of full-length hGCN5. The presence of the N-terminal domain in a Drosophila GCN5 homolog and both human homologs suggests that it was part of the ancestral form of metazoan GCN5.
Collapse
Affiliation(s)
- E R Smith
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | | | | | | | |
Collapse
|