51
|
Bailey LJ, Choudhary V, Merai P, Bollag WB. Preparation of primary cultures of mouse epidermal keratinocytes and the measurement of phospholipase D activity. Methods Mol Biol 2014; 1195:111-31. [PMID: 24840936 DOI: 10.1007/7651_2014_80] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter information is provided about the outer layer of the skin, the epidermis, and the predominant cells comprising this epithelium, the keratinocytes. The evidence supporting a possible role for the lipid-metabolizing enzyme phospholipase D in regulating keratinocyte differentiation is also discussed. A detailed protocol for the preparation of primary cultures of epidermal keratinocytes from neonatal mice is described, to allow other investigators to obtain data concerning these important cells involved in forming and maintaining the mechanical and water permeability of the skin. Finally, a complete protocol for monitoring phospholipase D activity in intact cells is supplied in the hope that additional research will result in a better understanding of the role of phospholipase D in controlling keratinocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Lakiea J Bailey
- Department of Physiology, Georgia Regents University, 1120 15th Street, Augusta, GA, 30912, USA
| | | | | | | |
Collapse
|
52
|
Meier NT, Haslam IS, Pattwell DM, Zhang GY, Emelianov V, Paredes R, Debus S, Augustin M, Funk W, Amaya E, Kloepper JE, Hardman MJ, Paus R. Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin. PLoS One 2013; 8:e73596. [PMID: 24023889 PMCID: PMC3759422 DOI: 10.1371/journal.pone.0073596] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 07/29/2013] [Indexed: 01/09/2023] Open
Abstract
There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters.
Collapse
Affiliation(s)
- Natalia T. Meier
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Department of Pathology, University of Luebeck, Luebeck, Germany
| | - Iain S. Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust and Institute of Inflammation and Repair, School of Translational Medicine, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | - David M. Pattwell
- The Dermatology Centre, Salford Royal NHS Foundation Trust and Institute of Inflammation and Repair, School of Translational Medicine, University of Manchester, Manchester, United Kingdom
| | - Guo-You Zhang
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Department of Hand and Plastic Surgery, the Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang Province, China
| | | | - Roberto Paredes
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sebastian Debus
- Department of Vascular Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Augustin
- Center for Dermatological Research, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Enrique Amaya
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Matthew J. Hardman
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- The Dermatology Centre, Salford Royal NHS Foundation Trust and Institute of Inflammation and Repair, School of Translational Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
53
|
Cheung WK, Zhao M, Liu Z, Stevens LE, Cao PD, Fang JE, Westbrook TF, Nguyen DX. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis. Cancer Cell 2013; 23:725-38. [PMID: 23707782 PMCID: PMC3697763 DOI: 10.1016/j.ccr.2013.04.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/10/2012] [Accepted: 04/08/2013] [Indexed: 12/21/2022]
Abstract
Molecular programs that mediate normal cell differentiation are required for oncogenesis and tumor cell survival in certain cancers. How cell-lineage-restricted genes specifically influence metastasis is poorly defined. In lung cancers, we uncovered a transcriptional program that is preferentially associated with distal airway epithelial differentiation and lung adenocarcinoma (ADC) progression. This program is regulated in part by the lineage transcription factors GATA6 and HOPX. These factors can cooperatively limit the metastatic competence of ADC cells, by modulating overlapping alveolar differentiation and invasogenic target genes. Thus, GATA6 and HOPX are critical nodes in a lineage-selective pathway that directly links effectors of airway epithelial specification to the inhibition of metastasis in the lung ADC subtype.
Collapse
Affiliation(s)
- William K.C. Cheung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Minghui Zhao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Zongzhi Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Laura E. Stevens
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Paul D. Cao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Justin E. Fang
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, U.S.A
| | | | - Don X. Nguyen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S.A
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
54
|
Simonetti O, Lucarini G, Cirioni O, Zizzi A, Orlando F, Provinciali M, Di Primio R, Giacometti A, Offidani A. Delayed wound healing in aged skin rat models after thermal injury is associated with an increased MMP-9, K6 and CD44 expression. Burns 2013; 39:776-87. [DOI: 10.1016/j.burns.2012.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/05/2012] [Accepted: 09/16/2012] [Indexed: 12/11/2022]
|
55
|
Than MP, Smith RA, Hammond C, Kelly R, Marsh C, Maderal AD, Kirsner RS. Keratin-based Wound Care Products for Treatment of Resistant Vascular Wounds. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2012; 5:31-35. [PMID: 23277802 PMCID: PMC3533319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Use of new keratin-based wound dressings represent a novel approach to wound management. The authors present three patients with recalcitrant, venous and mixed venous, and arterial leg ulcers treated with these dressings. Improvement in each case was observed.
Collapse
Affiliation(s)
| | | | | | | | - Clive Marsh
- Keraplast Technologies, LLC, San Antonio, Texas
| | - Andrea D. Maderal
- University of Miami, Department of Dermatology and Cutaneous Surgery, Miami, Florida
| | - Robert S. Kirsner
- University of Miami, Department of Dermatology and Cutaneous Surgery, Miami, Florida
| |
Collapse
|
56
|
Moriyasu M, Makanae A, Satoh A. Spatiotemporal regulation of keratin 5 and 17 in the axolotl limb. Dev Dyn 2012; 241:1616-24. [PMID: 22836940 DOI: 10.1002/dvdy.23839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Amphibians have greater regeneration capability than higher vertebrates. They can regenerate their limbs after an amputation. As a limb is regenerated, a regeneration-specific epithelium called the apical epithelial cap (AEC) is induced. The AEC is an essential structure for limb regeneration. Despite the importance of the AEC, molecular marker genes have not been well studied at the molecular level. RESULTS In the present study, keratin5 (KRT5) and KRT17 were investigated in an axolotl-regenerating limb. KRT5 and KRT17 were expressed in a regenerating limb but down-regulated in a differentiating limb. KRT5 showed characteristic regulation in a regenerating blastema. KRT5 was suppressed in the basal layer of the AEC. This KRT5 suppression was correlated to the blastema differentiation and nerve presence. Simple skin wounding could also upregulate both KRT5 and KRT17 gene expression. But these genes were suppressed within a shorter time than in limb regeneration. CONCLUSIONS The KRT5 and KRT17 gene profile can be a useful marker gene to investigate AEC in limb regeneration.
Collapse
Affiliation(s)
- Miyuki Moriyasu
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), Okayama, Japan
| | | | | |
Collapse
|
57
|
Abstract
Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue, and in particular the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease.
Collapse
Affiliation(s)
- Wa Xian
- Institute of Medical Biology, A-STAR, Singapore.
| | | |
Collapse
|
58
|
Wruck CJ, Wruck A, Brandenburg LO, Kadyrov M, Tohidnezhad M, Pufe T. Impact of Nrf2 on esophagus epithelium cornification. Int J Dermatol 2012; 50:1362-1365. [PMID: 22004488 DOI: 10.1111/j.1365-4632.2011.04989.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nrf2 is a transcription factor that is known to maintain cellular defense against the toxicity of electrophiles and reactive oxygen species (ROS). METHODS We show an effect of Nrf2 deficiency on the histology of the esophagus of Nrf2 knockout mice. RESULTS Quantitative analysis of esophageal cornification via hematoxylin and eosin (H&E) staining revealed significantly (P=0.0127) decreased stratification in Nrf2 knockout mice compared with wild-type controls. In addition, we show that Nrf2 is expressed solely in the stratum spinosum and not in the stratum basale of the epidermis. This expression pattern is exactly the same as those described for keratin K6 and K16. CONCLUSIONS We conclude that Nrf2 regulates the cornification of epithelia and may play a role in callus formation and wound healing of the skin, as well as in skin aging.
Collapse
Affiliation(s)
- Christoph J Wruck
- Department of Anatomy and Cell Biology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
59
|
Ren JW, Chan KM, Lai PKK, Lau CBS, Yu H, Leung PC, Fung KP, Yu WFX, Cho CH. Extracts from Radix Astragali and Radix Rehmanniae promote keratinocyte proliferation by regulating expression of growth factor receptors. Phytother Res 2012; 26:1547-54. [PMID: 22359405 DOI: 10.1002/ptr.4615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 02/04/2023]
Abstract
Chinese herbal medicine has long been used as a treatment for wounds. However, the underlying cellular and molecular mechanisms remain largely unknown. In this study it was shown that the proliferation of keratinocytes, which is known to play an important role in wound healing as the major cell type in the epidermis, was promoted by three herbal extracts/natural compounds: NF3 (an extract from the mixture of Radix Astragali (RA) and Radix Rehmanniae (RR) in the ratio of 2:1), stachyose (an isolated compound from Radix Rehmanniae) and extract P2-2 (a sub-fraction from the extract of Radix Astragali). The effect of the herbal extracts/natural compounds on the growth of keratinocytes was not influenced by a high glucose level, a condition similar to diabetic patients who usually suffer from diabetic foot ulcers. Real time RT-PCR results showed that the expression of epidermal growth factor (EGF) receptor, but not transforming growth factor-β (TGF-β) receptor, was up-regulated by NF3. Moreover, treatments with the EGF receptor kinase inhibitor AG1478 and the MEK inhibitor U0126 resulted in the diminishment of the effect of the three herbal extracts/natural compounds on keratinocyte proliferation, indicating that EGF receptor might have a significant role in this action. This study has further elucidated the molecular mechanism under which herbal extracts/natural compounds exert their effects on the wound healing process.
Collapse
Affiliation(s)
- J W Ren
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Liang X, Bhattacharya S, Bajaj G, Guha G, Wang Z, Jang HS, Leid M, Indra AK, Ganguli-Indra G. Delayed cutaneous wound healing and aberrant expression of hair follicle stem cell markers in mice selectively lacking Ctip2 in epidermis. PLoS One 2012; 7:e29999. [PMID: 22383956 PMCID: PMC3283611 DOI: 10.1371/journal.pone.0029999] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND COUP-TF interacting protein 2 [(Ctip2), also known as Bcl11b] is an important regulator of skin homeostasis, and is overexpressed in head and neck cancer. Ctip2(ep-/-) mice, selectively ablated for Ctip2 in epidermal keratinocytes, exhibited impaired terminal differentiation and delayed epidermal permeability barrier (EPB) establishment during development, similar to what was observed in Ctip2 null (Ctip2(-/-)) mice. Considering that as an important role of Ctip2, and the fact that molecular networks which underlie cancer progression partially overlap with those responsible for tissue remodeling, we sought to determine the role of Ctip2 during cutaneous wound healing. METHODOLOGY/PRINCIPAL FINDINGS Full thickness excisional wound healing experiments were performed on Ctip2(L2/L2) and Ctip2(ep-/-) animals per time point and used for harvesting samples for histology, immunohistochemistry (IHC) and immunoblotting. Results demonstrated inherent defects in proliferation and migration of Ctip2 lacking keratinocytes during re-epithelialization. Mutant mice exhibited reduced epidermal proliferation, delayed keratinocyte activation, altered cell-cell adhesion and impaired ECM development. Post wounding, Ctip2(ep-/-) mice wounds displayed lack of E-Cadherin suppression in the migratory tongue, insufficient expression of alpha smooth muscle actin (alpha SMA) in the dermis, and robust induction of K8. Importantly, dysregulated expression of several hair follicle (HF) stem cell markers such as K15, NFATc1, CD133, CD34 and Lrig1 was observed in mutant skin during wound repair. CONCLUSIONS/SIGNIFICANCE Results confirm a cell autonomous role of keratinocytic Ctip2 to modulate cell migration, proliferation and/or differentiation, and to maintain HF stem cells during cutaneous wounding. Furthermore, Ctip2 in a non-cell autonomous manner regulated granulation tissue formation and tissue contraction during wound closure.
Collapse
Affiliation(s)
- Xiaobo Liang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Shreya Bhattacharya
- Molecular and Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Gaurav Bajaj
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Gunjan Guha
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Zhixing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Hyo-Sang Jang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
- Molecular and Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Science Centre, Oregon State University, Corvallis, Oregon, United States of America
| | - Arup Kumar Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
- Molecular and Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Science Centre, Oregon State University, Corvallis, Oregon, United States of America
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
- Molecular and Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
61
|
Pechter PM, Gil J, Valdes J, Tomic-Canic M, Pastar I, Stojadinovic O, Kirsner RS, Davis SC. Keratin dressings speed epithelialization of deep partial-thickness wounds. Wound Repair Regen 2012; 20:236-42. [DOI: 10.1111/j.1524-475x.2012.00768.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 12/19/2011] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia M. Pechter
- Department of Dermatology; University of Miami Miller School of Medicine; Miami; FL; USA
| | - Joel Gil
- Department of Dermatology; University of Miami Miller School of Medicine; Miami; FL; USA
| | - Jose Valdes
- Department of Dermatology; University of Miami Miller School of Medicine; Miami; FL; USA
| | - Marjana Tomic-Canic
- Department of Dermatology; University of Miami Miller School of Medicine; Miami; FL; USA
| | - Irena Pastar
- Department of Dermatology; University of Miami Miller School of Medicine; Miami; FL; USA
| | - Olivera Stojadinovic
- Department of Dermatology; University of Miami Miller School of Medicine; Miami; FL; USA
| | - Robert S. Kirsner
- Department of Dermatology; University of Miami Miller School of Medicine; Miami; FL; USA
| | - Stephen C. Davis
- Department of Dermatology; University of Miami Miller School of Medicine; Miami; FL; USA
| |
Collapse
|
62
|
Heise R, Skazik C, Marquardt Y, Czaja K, Sebastian K, Kurschat P, Gan L, Denecke B, Ekanayake-Bohlig S, Wilhelm KP, Merk H, Baron J. Dexpanthenol Modulates Gene Expression in Skin Wound Healing in vivo. Skin Pharmacol Physiol 2012; 25:241-8. [DOI: 10.1159/000341144] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022]
|
63
|
Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS, Mu D, Sun Y, Joo LS, Dagher R, Zielonka EM, Wang DY, Lim B, Chow VT, Crum CP, Xian W, McKeon F. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 2011; 147:525-38. [PMID: 22036562 DOI: 10.1016/j.cell.2011.10.001] [Citation(s) in RCA: 445] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 08/28/2011] [Accepted: 10/04/2011] [Indexed: 11/19/2022]
Abstract
The extent of lung regeneration following catastrophic damage and the potential role of adult stem cells in such a process remains obscure. Sublethal infection of mice with an H1N1 influenza virus related to that of the 1918 pandemic triggers massive airway damage followed by apparent regeneration. We show here that p63-expressing stem cells in the bronchiolar epithelium undergo rapid proliferation after infection and radiate to interbronchiolar regions of alveolar ablation. Once there, these cells assemble into discrete, Krt5+ pods and initiate expression of markers typical of alveoli. Gene expression profiles of these pods suggest that they are intermediates in the reconstitution of the alveolar-capillary network eradicated by viral infection. The dynamics of this p63-expressing stem cell in lung regeneration mirrors our parallel finding that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease.
Collapse
|
64
|
Two- and Three-Dimensional Culture of Keratinocyte Stem and Precursor Cells Derived from Primary Murine Epidermal Cultures. Stem Cell Rev Rep 2011; 8:402-13. [DOI: 10.1007/s12015-011-9314-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
65
|
Gregorio J, Meller S, Conrad C, Di Nardo A, Homey B, Lauerma A, Arai N, Gallo RL, Digiovanni J, Gilliet M. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. ACTA ACUST UNITED AC 2010; 207:2921-30. [PMID: 21115688 PMCID: PMC3005239 DOI: 10.1084/jem.20101102] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cutaneous injury in mice drives transient TLR7- and TLR9-mediated production of type I interferon by plasmacytoid dendritic cells, which is required for re-epithelialization of the skin. Plasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-α/β)–producing cells that express intracellular toll-like receptor (TLR) 7 and TLR9 and recognize viral nucleic acids in the context of infections. We show that pDCs also have the ability to sense host-derived nucleic acids released in common skin wounds. pDCs were found to rapidly infiltrate both murine and human skin wounds and to transiently produce type I IFNs via TLR7- and TLR9-dependent recognition of nucleic acids. This process was critical for the induction of early inflammatory responses and reepithelization of injured skin. Cathelicidin peptides, which facilitate immune recognition of released nucleic acids by promoting their access to intracellular TLR compartments, were rapidly induced in skin wounds and were sufficient but not necessary to stimulate pDC activation and type I IFN production. These data uncover a new role of pDCs in sensing tissue damage and promoting wound repair at skin surfaces.
Collapse
Affiliation(s)
- Josh Gregorio
- Department of Immunology, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Loss of the desmosomal component perp impairs wound healing in vivo. Dermatol Res Pract 2010; 2010:759731. [PMID: 20628490 PMCID: PMC2902749 DOI: 10.1155/2010/759731] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/26/2010] [Accepted: 03/10/2010] [Indexed: 12/20/2022] Open
Abstract
Epithelial wound closure is a complex biological process that relies on the concerted action of activated keratinocytes and dermal fibroblasts to resurface and close the exposed wound. Modulation of cell-cell adhesion junctions is thought to facilitate cellular proliferation and migration of keratinocytes across the wound. In particular, desmosomes, adhesion complexes critical for maintaining epithelial integrity, are downregulated at the wound edge. It is unclear, however, how compromised desmosomal adhesion would affect wound reepithelialization, given the need for a delicate balance between downmodulating adhesive strength to permit changes in cellular morphology and maintaining adhesion to allow coordinated migration of keratinocyte sheets. Here, we explore the contribution of desmosomal adhesion to wound healing using mice deficient for the desmosomal component Perp. We find that Perp conditional knockout mice display delayed wound healing relative to controls. Furthermore, we determine that while loss of Perp compromises cell-cell adhesion, it does not impair keratinocyte proliferation and actually enhances keratinocyte migration in in vitro assays. Thus, Perp's role in promoting cell adhesion is essential for wound closure. Together, these studies suggest a role for desmosomal adhesion in efficient wound healing.
Collapse
|
67
|
Trost A, Desch P, Wally V, Haim M, Maier RH, Reitsamer HA, Hintner H, Bauer JW, Onder K. Aberrant heterodimerization of keratin 16 with keratin 6A in HaCaT keratinocytes results in diminished cellular migration. Mech Ageing Dev 2010; 131:346-53. [PMID: 20403371 DOI: 10.1016/j.mad.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 03/15/2010] [Accepted: 04/09/2010] [Indexed: 11/28/2022]
Abstract
Keratin filaments form obligatory heterodimers consisting of one type I and one type II keratin that build the intermediate filaments. In keratinocytes, type II keratin 6 (K6) interacts with type I keratin 16 (K16). We previously showed that the intermediate filament protein K16 is up-regulated in aged human skin. Here, we report that there is an obvious imbalance of K16 to K6 mRNA in in vivo and in vitro aging, which possibly leads to cellular effects. To unveil a possible biological function of K16 overexpression we investigated the migration potential of keratinocytes having up-regulated K16 expression in vitro. Two cell lines were established by transfection of human keratinocytes (HaCaT cells) with K16 or control vectors and subsequent fluorescence-activated cell sorting. By performing migration assays we were able to show a 90% reduction in the migration ability of the K16-overexpressing keratinocytes. In addition, a delay in wound closure associated with K16-overexpressing cells was shown by scratch assays. Transient overexpression of K6A in K16-overexpressing keratinocytes partially corrected the cell-migration defect. By real-time PCR we excluded co-regulation of the annotated interaction partner, K6, in the K16 cell line. Finally, we observed a decreased level of tyrosine phosphorylation in K16-overexpressing cells. Taken together, these data highlight the possibility of a physiological role for K6/K16 heterodimers in keratinocyte cell migration, in addition to the heterodimer's known functions in cell differentiation and mechanical resilience.
Collapse
Affiliation(s)
- A Trost
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, A-5020 Salzburg, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Asano Y, Stawski L, Hant F, Highland K, Silver R, Szalai G, Watson DK, Trojanowska M. Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1983-98. [PMID: 20228226 DOI: 10.2353/ajpath.2010.090593] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic sclerosis or scleroderma (SSc) is a complex autoimmune connective tissue disease characterized by obliterative vasculopathy and tissue fibrosis. The molecular mechanisms underlying SSc vasculopathy are largely unknown. Friend leukemia integration factor 1 (Fli1), an important regulator of immune function and collagen fibrillogenesis, is expressed at reduced levels in endothelial cells in affected skin of patients with SSc. To develop a disease model and to investigate the function of Fli1 in the vasculature, we generated mice with a conditional deletion of Fli1 in endothelial cells (Fli1 CKO). Fli1 CKO mice showed a disorganized dermal vascular network with greatly compromised vessel integrity and markedly increased vessel permeability. We show that Fli1 regulates expression of genes involved in maintaining vascular homeostasis including VE-cadherin, platelet endothelial cell adhesion molecule 1, type IV collagen, matrix metalloproteinase 9, platelet-derived growth factor B, and S1P(1) receptor. Accordingly, Fli1 CKO mice are characterized by down-regulation of VE-cadherin and platelet endothelial cell adhesion molecule 1, impaired development of basement membrane, and a decreased presence of alpha-smooth muscle actin-positive cells in dermal microvessels. This phenotype is consistent with a role of Fli1 as a regulator of vessel maturation and stabilization. Importantly, vascular characteristics of Fli1 CKO mice are recapitulated by SSc microvasculature. Thus, persistently reduced levels of Fli1 in endothelial cells may play a critical role in the development of SSc vasculopathy.
Collapse
Affiliation(s)
- Yoshihide Asano
- Arthritis Center, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Induction of focal epithelial hyperplasia in tongue of young bk6-E6/E7 HPV16 transgenic mice. Transgenic Res 2009; 18:513-27. [PMID: 19165615 DOI: 10.1007/s11248-009-9243-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
Abstract
Squamous cell carcinoma (SCC) of the oral cavity is one of the most common neoplasms in the world. During the past 2 decades, the role of high-risk human papilloma virus (HR-HPV) has been studied and the data supporting HPV as a one of the causative agents in the development and progression of a sub-set of head and neck squamous cell carcinomas (HNSCC) has accumulated. In order to investigate the role of HR-HPV oncogene expression in early epithelial alterations in vivo, we produced transgenic mice expressing HPV16 early region genes from the promoter of the bovine keratin 6 gene (Tg[bK6-E6/E7]). In this article, we demonstrate that E6/E7 transgene was abundantly expressed and cellular proliferation was increased in the middle tongue epithelia of transgenic mice, and that in the same region young (27 weeks old) Tg[bK6-E6/E7] mice spontaneously developed histological alterations, mainly focal epithelial hyperplasia (FEH).
Collapse
|
70
|
Borg DJ, Dawson RA, Leavesley DI, Hutmacher DW, Upton Z, Malda J. Functional and phenotypic characterization of human keratinocytes expanded in microcarrier culture. J Biomed Mater Res A 2009; 88:184-94. [DOI: 10.1002/jbm.a.31864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
71
|
Charles CA, Tomic-Canic M, Vincek V, Nassiri M, Stojadinovic O, Eaglstein WH, Kirsner RS. A gene signature of nonhealing venous ulcers: potential diagnostic markers. J Am Acad Dermatol 2008; 59:758-71. [PMID: 18718692 DOI: 10.1016/j.jaad.2008.07.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 06/17/2008] [Accepted: 07/10/2008] [Indexed: 12/22/2022]
Abstract
BACKGROUND Venous leg ulcers are responsible for more than half of all lower extremity ulcerations. Significant interest has been focused on understanding the physiologic basis on which patients fail to heal with standard therapy. OBJECTIVE This study uses complementary DNA microarray analysis of tissue samples from healing and nonhealing venous leg ulcers to identify the genetic expression profiles from these dichotomous populations. METHODS Ulcer size and chronicity, factors that have been identified as prognostic indicators for healing, were used to distribute venous leg ulcers as healing versus nonhealing. Punch biopsy samples were obtained from the wound edge and wound bed of all venous leg ulcers. The top 15 genes with differential expression greater than 2-fold between the two populations of wounds (P < .05) were reported. RESULTS Significant differences were demonstrated in the expression of a diverse collection of genes, with particular differences demonstrated by genes coding for structural epidermal proteins, genes associated with hyperproliferation and tissue injury, and transcription factors. LIMITATIONS Small sample size may mitigate potential clinical implications of findings. CONCLUSIONS The genetic expression profiles displayed here may have implications for the development of novel therapies for chronic venous leg ulcers, and may also serve as prognostic indicators for wound healing.
Collapse
Affiliation(s)
- Carlos A Charles
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Gu LH, Coulombe PA. Hedgehog signaling, keratin 6 induction, and sebaceous gland morphogenesis: implications for pachyonychia congenita and related conditions. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:752-61. [PMID: 18688029 DOI: 10.2353/ajpath.2008.071089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Keratins 6a and b (K6a, K6b) belong to a subset of keratin genes with constitutive expression in epithelial appendages, and inducible expression in additional epithelia, when subjected to environmental challenges or disease. Mutations in K6a or K6b cause a broad spectrum of epithelial lesions that differentially affect nail, hair, and glands in humans. Some lesions reflect a loss of the structural support function shared by K6, other keratins, and intermediate filament proteins. The formation of sebaceous gland-derived epithelial cysts does not fit this paradigm, raising the question of the unique functions of different K6 isoforms in this setting. Here, we exploit a mouse model of constitutively expressed Gli2, a Hedgehog (Hh) signal effector, to show that K6a expression correlates with duct fate in sebaceous glands (SGs). Whether in the setting of Gli2 transgenic mice skin, which develops a prominent SG duct and additional pairs of highly branched SGs, or in wild-type mouse skin, K6a expression consistently coincides with Hh signaling in ductal tissue. Gli2 expression modestly transactivates a K6a promoter-driven reporter in heterologous systems. Our findings thus identify K6 as a marker of duct fate in SGs, partly in response to Hh signaling, with implications for the pathological expansion of SGs that arises in the context of certain keratin-based diseases and related disorders.
Collapse
Affiliation(s)
- Li-Hong Gu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|
73
|
Chen J, Roop DR. Genetically engineered mouse models for skin research: taking the next step. J Dermatol Sci 2008; 52:1-12. [PMID: 18511240 DOI: 10.1016/j.jdermsci.2008.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/23/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Genetically engineered mouse models are invaluable to investigators in nearly all areas of biomedical research. The use of genetically engineered mice has allowed researchers to explore fundamental functions of genes in a mammal that shares substantial similarities with human physiology and pathology. Genetically engineered mice are often used as animal models of human diseases that are vital tools in investigating disease development and in developing and testing novel therapies. Gene targeting in embryonic stem cells allows endogenous genes to be specifically altered. As knowledge regarding precise genetic abnormalities underlying a variety of dermatological conditions continues to emerge, the ability to introduce corresponding alterations in endogenous gene loci in mice, often at a single base pair level, has become essential for detailed studies of these genetic diseases. In this review, we provide examples of mouse models harboring modified endogenous gene(s), generated using the technique commonly referred to as the "knock-in" approach, to exemplify the important and sometimes superior role of this methodology in dermatological research.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Dermatology and Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|
74
|
Leachman SA, Hickerson RP, Hull PR, Smith FJD, Milstone LM, Lane EB, Bale SJ, Roop DR, McLean WHI, Kaspar RL. Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita. J Dermatol Sci 2008; 51:151-7. [PMID: 18495438 DOI: 10.1016/j.jdermsci.2008.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 04/02/2008] [Indexed: 01/02/2023]
Abstract
The field of science and medicine has experienced a flood of data and technology associated with the human genome project. Over 10,000 human diseases have been genetically defined, but little progress has been made with respect to the clinical application of this knowledge. A notable exception to this exists for pachyonychia congenita (PC), a rare, dominant-negative keratin disorder. The establishment of a non-profit organization, PC Project, has led to an unprecedented coalescence of patients, scientists, and physicians with a unified vision of developing novel therapeutics for PC. Utilizing the technological by-products of the human genome project, such as RNA interference (RNAi) and quantitative RT-PCR (qRT-PCR), physicians and scientists have collaborated to create a candidate siRNA therapeutic that selectively inhibits a mutant allele of KRT6A, the most commonly affected PC keratin. In vitro investigation of this siRNA demonstrates potent inhibition of the mutant allele and reversal of the cellular aggregation phenotype. In parallel, an allele-specific quantitative real-time RT-PCR assay has been developed and validated on patient callus samples in preparation for clinical trials. If clinical efficacy is ultimately demonstrated, this "first-in-skin" siRNA may herald a paradigm shift in the treatment of dominant-negative genetic disorders.
Collapse
Affiliation(s)
- Sancy A Leachman
- Department of Dermatology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.
Collapse
|
76
|
Yu Z, Bhandari A, Mannik J, Pham T, Xu X, Andersen B. Grainyhead-like factor Get1/Grhl3 regulates formation of the epidermal leading edge during eyelid closure. Dev Biol 2008; 319:56-67. [PMID: 18485343 DOI: 10.1016/j.ydbio.2008.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/03/2008] [Accepted: 04/02/2008] [Indexed: 11/29/2022]
Abstract
Grainyhead transcription factors play an evolutionarily conserved role in regulating epidermal terminal differentiation. One such factor, the mammalian Grainyhead-like epithelial transactivator (Get1/Grhl3), is important for epidermal barrier formation. In addition to a role in barrier formation, Grainyhead genes play roles in closure of several structures such as the mouse neural tube and Drosophila wounds. Consistent with these observations, we found that Get1 knockout mice have an eye-open at birth phenotype. The failure of eyelid closure appears to be due to critical functions of Get1 in promoting F-actin polymerization, filopodia formation, and the cell shape changes that are required for migration of the keratinocytes at the leading edge during eyelid closure. The expression of TGFalpha, a known regulator of leading edge formation, is decreased in the eyelid tip of Get1(-/-) mice. Levels of phospho-EGFR and phospho-ERK are also decreased at the leading edge tip. Furthermore, in an organ culture model, TGFalpha can increase levels of phospho-EGFR and promote cell shape changes as well as leading edge formation in Get1(-/-) eyelids, indicating that in eyelid closure Get1 acts upstream of TGFalpha in the EGFR/ERK pathway.
Collapse
Affiliation(s)
- Zhengquan Yu
- Department of Medicine, University of California, Irvine, CA 92697-4030, USA
| | | | | | | | | | | |
Collapse
|
77
|
Somji S, Bathula CS, Zhou XD, Sens MA, Sens DA, Garrett SH. Transformation of human urothelial cells (UROtsa) by as and cd induces the expression of keratin 6a. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:434-40. [PMID: 18414623 PMCID: PMC2291003 DOI: 10.1289/ehp.10279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 12/17/2007] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cadmium and arsenite can directly and malignantly transform the UROtsa cell line. The tumor heterotransplants produced from these transformed cells have histologic features consistent with human bladder cancer. Previous microarray analysis of total RNA from the parental and transformed cells suggested that keratin 6a was overexpressed as a result of cell transformation. OBJECTIVES Our goals were to verify overexpression of keratin 6a in Cd(2+)- and As(3+)-transformed UROtsa cells, the corresponding tumor heterotransplants, and human bladder cancer biopsy specimens and to assess what factors may be involved in keratin 6a overexpression. METHODS Expression was assessed with real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry. We used the effect of addition and deletion of potential growth factors in the cell culture growth medium to assess possible pathways used in keratin 6a overexpression. RESULTS Cd(2+)- and As(3+)-transformed cells grown in serum-containing growth medium, as well as the derived tumor heterotransplants, overexpressed keratin 6a mRNA and protein compared with UROtsa cells grown in serum-containing growth medium. Immunostaining of keratin 6a in tumor heterotransplants showed focal staining of the tumor cells that was localized to the cytoplasm. Focal immunostaining of keratin 6a was also found in some but not all archival patient specimens of high-grade bladder cancer, confirming translation of the results to human bladder cancer. Studies on growth factor deletion and addition indicated that the level of keratin 6a expression was regulated by the presence of both insulin and epidermal growth factor (EGF). In contrast, growth factors had no effect on the elevated levels of keratin 6a expression found in transformed UROtsa cells. CONCLUSIONS Our present studies suggest that keratin 6a expression may be a biomarker for malignant urothelial cells that possess an activated EGF and or insulin growth factor pathway.
Collapse
Affiliation(s)
- Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Chandra S. Bathula
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Mary Ann Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
78
|
Lane EB, McLean WI. Broken bricks and cracked mortar – epidermal diseases resulting from genetic abnormalities. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.ddmec.2008.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
79
|
Lynch D, Svoboda J, Putta S, Hofland HEJ, Chern WH, Hansen LA. Mouse skin models for carcinogenic hazard identification: utilities and challenges. Toxicol Pathol 2008; 35:853-64. [PMID: 18098032 DOI: 10.1080/01926230701748131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This report addresses 1) the predictability of mouse skin models for carcinogenic hazard identification, 2) the association between early changes in the skin and later tumorigenic responses, and 3) the relative sensitivity of three mouse models of skin tumorigenesis; i.e. the genetically-initiated Tg.AC and RasH2 lines and the SENCAR mouse model. All three mouse models responded similarly, with mild inflammation and epidermal hyperplasia, to several weeks of treatment with a topical agent. Based on our previous research experience, we hypothesized that inflammation, irritation, proliferation, and/or hyperplasia in the skin would precede and predict the appearance of tumors in these sensitive mouse skin models. Consistent with our hypothesis, the test agent caused a low but significant tumorigenic response in Tg.AC mice. We propose that inflammation, irritation, and hyperplasia are sensitive predictors of a later tumorigenic response in Tg.AC mice. Further studies are needed, however, to better determine the relative sensitivity of these 3 models to a wider variety of agents.
Collapse
Affiliation(s)
- Dave Lynch
- Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | | | |
Collapse
|
80
|
Boldrup L, Coates PJ, Gu X, Nylander K. DeltaNp63 isoforms regulate CD44 and keratins 4, 6, 14 and 19 in squamous cell carcinoma of head and neck. J Pathol 2008; 213:384-91. [PMID: 17935121 DOI: 10.1002/path.2237] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human p63 gene codes for multiple protein isoforms and is commonly over-expressed in squamous cell carcinoma of head and neck (SCCHN). This expression is predominantly of the DeltaN- and beta-isoforms, the former lacking the p53-related transactivation domain. p63 can activate or repress transcription of p53 and p73 target genes, but also has unique transcriptional targets and, unlike other p53 family members, is required for normal development and differentiation of squamous epithelia. We have identified novel targets of p63, using microarray analysis of SCCHN cells that stably over-express individual DeltaNp63 isoforms. All three isoforms induced expression of the cancer stem cell marker, CD44, with the DeltaNp63beta isoform showing strongest induction. Using chromatin immunoprecipitation, we were unable to show direct binding of p63 to the CD44 promoter, but found that p63 specifically increased expression of CD44 lacking variant exon 2. Each of the DeltaNp63 isoforms up-regulated expression of keratins 6A and 14 and down-regulated expression of keratins 4 and 19, in keeping with their expression patterns in SCCHN. The data strengthen the idea that p63 has key roles in regulating normal and abnormal differentiation processes through both induction and repression of genes with opposite functions. The identification of up-regulation and differential splicing of CD44 following p63 over-expression indicates roles in the regulation of adhesion, metastasis and the cancer stem cell phenotype.
Collapse
Affiliation(s)
- L Boldrup
- Department of Medical Biosciences/Pathology, Building 6M, 2nd Floor, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | |
Collapse
|
81
|
Rugg EL. Therapeutic interference: a step closer for pachyonychia congenita? J Invest Dermatol 2008; 128:7-8. [PMID: 18071332 DOI: 10.1038/sj.jid.5701065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of mutations in keratin genes as the cause of several inherited skin disorders raised the possibility that molecular-based therapies might be developed to treat these conditions. In this issue, Smith et al. (2007) have identified small interfering RNAs that specifically and potently silence keratin 6a expression. These molecules have great promise as therapeutic agents for the treatment of pachyonychia congenita.
Collapse
Affiliation(s)
- Elizabeth L Rugg
- Department of Dermatology, University of California, Irvine, Irvine, California 92697, USA.
| |
Collapse
|
82
|
Chen J, Jaeger K, Den Z, Koch PJ, Sundberg JP, Roop DR. Mice expressing a mutant Krt75 (K6hf) allele develop hair and nail defects resembling pachyonychia congenita. J Invest Dermatol 2007; 128:270-9. [PMID: 17851587 DOI: 10.1038/sj.jid.5701038] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
KRT75 (formerly known as K6hf) is one of the isoforms of the keratin 6 (KRT6) family located within the type II cytokeratin gene cluster on chromosome 12 of humans and chromosome 15 of mice. KRT75 is expressed in the companion layer and upper germinative matrix region of the hair follicle, the medulla of the hair shaft, and in epithelia of the nail bed. Dominant mutations in members of the KRT6 family, such as in KRT6A and KRT6B cause pachyonychia congenita (PC) -1 and -2, respectively. To determine the function of KRT75 in skin appendages, we introduced a dominant mutation into a highly conserved residue in the helix initiation peptide of Krt75. Mice expressing this mutant form of Krt75 developed hair and nail defects resembling PC. This mouse model provides in vivo evidence for the critical roles played by Krt75 in maintaining hair shaft and nail integrity. Furthermore, the phenotypes observed in our mutant Krt75 mice suggest that KRT75 may be a candidate gene for screening PC patients who do not exhibit obvious mutations in KRT6A, KRT6B, KRT16, or KRT17, especially those with extensive hair involvement.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
83
|
McLaughlin PJ, Bakall B, Choi J, Liu Z, Sasaki T, Davis EC, Marmorstein AD, Marmorstein LY. Lack of fibulin-3 causes early aging and herniation, but not macular degeneration in mice. Hum Mol Genet 2007; 16:3059-70. [PMID: 17872905 DOI: 10.1093/hmg/ddm264] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A mutation in the EFEMP1 gene causes Malattia Leventinese, an inherited macular degenerative disease with strong similarities to age-related macular degeneration. EFEMP1 encodes fibulin-3, an extracellular matrix protein of unknown function. To investigate its biological role, the murine Efemp1 gene was inactivated through targeted disruption. Efemp1(-/-) mice exhibited reduced reproductivity, and displayed an early onset of aging-associated phenotypes including reduced lifespan, decreased body mass, lordokyphosis, reduced hair growth, and generalized fat, muscle and organ atrophy. However, these mice appeared to have normal wound healing ability. Efemp1(-/-) mice on a C57BL/6 genetic background developed multiple large hernias including inguinal hernias, pelvic prolapse and protrusions of the xiphoid process. In contrast, Efemp1(-/-) mice on a BALB/c background rarely had any forms of hernias, indicating the presence of modifiers for fibulin-3's function in different mouse strains. Histological analysis revealed a marked reduction of elastic fibers in fascia, a thin layer of connective tissue maintaining and protecting structures throughout the body. No apparent macular degeneration associated defects were found in Efemp1(-/-) mice, suggesting that loss of fibulin-3 function is not the mechanism by which the mutation in EFEMP1 causes macular degeneration. These data demonstrate that fibulin-3 plays an important role in maintaining the integrity of fascia connective tissues and regulates aging.
Collapse
Affiliation(s)
- Precious J McLaughlin
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Smith FJD, Hickerson RP, Sayers JM, Reeves RE, Contag CH, Leake D, Kaspar RL, McLean WHI. Development of therapeutic siRNAs for pachyonychia congenita. J Invest Dermatol 2007; 128:50-8. [PMID: 17762855 DOI: 10.1038/sj.jid.5701040] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pachyonychia congenita (PC) is an autosomal-dominant keratin disorder where the most painful, debilitating aspect is plantar keratoderma. PC is caused by mutations in one of four keratin genes; however, most patients carry K6a mutations. Knockout mouse studies suggest that ablation of one of the several K6 genes can be tolerated owing to compensatory expression of the others. Here, we have developed potent RNA interference against K6a as a paradigm for treating a localized dominant skin disorder. Four small interfering RNAs (siRNAs) were designed against unique sequences in the K6a 3'-untranslated region. We demonstrated near-complete ablation of endogenous K6a protein expression in two keratinocyte cell lines, HaCaT and NEB-1, by transient transfection of each of the four K6a siRNAs. The siRNAs were effective at very low, picomolar concentrations. One potent lead K6a inhibitor, which was highly specific for K6a, was tested in a mouse model where reporter gene constructs were injected intradermally into mouse paw and luciferase activity was used as an in vivo readout. Imaging in live mice using the Xenogen IVIS system demonstrated that the K6a-specific siRNA strongly inhibited bicistronic K6a-luciferase gene expression in vivo. These data suggest that siRNAs can specifically and very potently target mutated genes in the skin and support development of these inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Frances J D Smith
- Epithelial Genetics Group, Human Genetics Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Hudson LG, Choi C, Newkirk KM, Parkhani J, Cooper KL, Lu P, Kusewitt DF. Ultraviolet radiation stimulates expression of Snail family transcription factors in keratinocytes. Mol Carcinog 2007; 46:257-68. [PMID: 17295233 DOI: 10.1002/mc.20257] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The related zinc finger transcription factors Slug and Snail modulate epithelial mesenchymal transformation (EMT), the conversion of sessile epithelial cells into migratory fibroblast-like cells. EMT occurs during development, wound healing, and tumor progression. Growth factors, acting through mitogen-activated protein kinase (MAPK) cascades, regulate expression of Slug and Snail. Expression of Snail family transcription factors appears to be elevated in UVR-induced murine squamous cell carcinomas (SCC). We report here that ultraviolet radiation (UVR), which activates MAPK cascades, also stimulates Snail and Slug expression in epidermal keratinocytes. UVR exposure transiently elevated Slug and Snail mRNA expression in human keratinocytes in vitro and mouse epidermis in vivo. This induction was mediated, at least in part, through the ERK and p38 MAPK cascades, as pharmacological inhibition of these cascades partially or completely blocked Slug and Snail induction by UVR. On the other hand, UVR induction of Slug and Snail was enhanced by inhibition of JNK. Slug appears to play a functional role in the acute response of keratinocytes to UVR, as UVR induction of keratin 6 in the epidermis of Slug knockout mice was markedly delayed compared to wild-type mice. Slug and Snail are known to regulate molecules important in the cytoskeleton, intercellular adhesion, cell motility, and apoptosis, thus it seems probable that transiently or persistently elevated expression of these factors fosters the progression of UVR-induced SCC.
Collapse
Affiliation(s)
- Laurie G Hudson
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res 2007; 313:2021-32. [PMID: 17434482 DOI: 10.1016/j.yexcr.2007.03.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 12/11/2022]
Abstract
The diversity of epithelial functions is reflected by the expression of distinct keratin pairs that are responsible to protect epithelial cells against mechanical stress and to act as signaling platforms. The keratin cytoskeleton integrates these functions by forming a supracellular scaffold that connects at desmosomal cell-cell adhesions. Multiple human diseases and murine knockouts in which the integrity of this system is destroyed testify to its importance as a mechanical stabilizer in certain epithelia. Yet, surprisingly little is known about the precise mechanisms responsible for assembly and disease pathology. In addition to these structural aspects of keratin function, experimental evidence accumulating in recent years has led to a much more complex view of the keratin cytoskeleton. Distinct keratins emerge as highly dynamic scaffolds in different settings and contribute to cell size determination, translation control, proliferation, cell type-specific organelle transport, malignant transformation and various stress responses. All of these properties are controlled by highly complex patterns of phosphorylation and molecular associations.
Collapse
Affiliation(s)
- Thomas M Magin
- Institute for Physiological Chemistry, Division of Cell Biochemistry, Bonner Forum Biomedizin and LIMES, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| | | | | |
Collapse
|
87
|
Kairuz E, Upton Z, Dawson RA, Malda J. Hyperbaric oxygen stimulates epidermal reconstruction in human skin equivalents. Wound Repair Regen 2007; 15:266-74. [PMID: 17352760 DOI: 10.1111/j.1524-475x.2007.00215.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The crucial role of oxygen during the complex process of wound healing has been extensively described. In chronic or nonhealing wounds, much evidence has been reported indicating that a lack of oxygen is a major contributing factor. Although still controversial, the therapeutic application of hyperbaric oxygen (HBO) therapy can aid the healing of chronic wounds. However, how HBO affects reepithelization, involving processes such as keratinocyte proliferation and differentiation, remains unclear. We therefore used a three-dimensional human skin-equivalent (HSE) model to investigate the effects of daily 90-minute HBO treatments on the reconstruction of an epidermis. Epidermal markers of proliferation, differentiation, and basement membrane components associated with a developing epidermis, including p63, collagen type IV, and cytokeratins 6, 10, and 14, were evaluated. Morphometric analysis of hematoxylin and eosin-stained cross sections revealed that HBO treatments significantly accelerated cornification of the stratum corneum compared with controls. Protein expression as determined by immunohistochemical analysis confirmed the accelerated epidermal maturation. In addition, early keratinocyte migration was enhanced by HBO. Thus, HBO treatments stimulate epidermal reconstruction in an HSE. These results further support the importance of oxygen during the process of wound healing and the potential role of HBO therapy in cutaneous wound healing.
Collapse
Affiliation(s)
- Evette Kairuz
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | | | | |
Collapse
|
88
|
Crandall H, Dunn DM, Ma Y, Wooten RM, Zachary JF, Weis JH, Weiss RB, Weis JJ. Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis. THE JOURNAL OF IMMUNOLOGY 2007; 177:7930-42. [PMID: 17114465 DOI: 10.4049/jimmunol.177.11.7930] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The murine model of Lyme disease provides a unique opportunity to study the localized host response to similar stimulus, Borrelia burgdorferi, in the joints of mice destined to develop severe arthritis (C3H) or mild disease (C57BL/6). Pathways associated with the response to infection and the development of Lyme arthritis were identified by global gene expression patterns using oligonucleotide microarrays. A robust induction of IFN-responsive genes was observed in severely arthritic C3H mice at 1 wk of infection, which was absent from mildly arthritic C57BL/6 mice. In contrast, infected C57BL/6 mice displayed a novel expression profile characterized by genes involved in epidermal differentiation and wound repair, which were decreased in the joints of C3H mice. These expression patterns were associated with disease state rather than inherent differences between C3H and C57BL/6 mice, because C57BL/6-IL-10(-/-) mice infected with B. burgdorferi develop more severe arthritis than C57BL/6 mice and displayed an early gene expression profile similar to C3H mice. Gene expression profiles at 2 and 4 wk postinfection revealed a common response of all strains that was likely to be important for the host defense to B. burgdorferi and mediated by NF-kappaB-dependent signaling. The gene expression profiles identified in this study add to the current understanding of the host response to B. burgdorferi and identify two novel pathways that may be involved in regulating the severity of Lyme arthritis.
Collapse
Affiliation(s)
- Hillary Crandall
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, , Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Chen J, Cheng X, Merched-Sauvage M, Caulin C, Roop DR, Koch PJ. An unexpected role for keratin 10 end domains in susceptibility to skin cancer. J Cell Sci 2006; 119:5067-76. [PMID: 17118961 DOI: 10.1242/jcs.03298] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Keratin 10 (K10) is a type I keratin that is expressed in post-mitotic suprabasal keratinocytes of the skin. Based on cell culture experiments and transgenic mouse studies, it has been proposed that K10 suppresses cell proliferation and tumor formation in the skin. Furthermore, the ability of K10 to suppress cell proliferation was mapped to its unique N- and C-terminal protein domains. In the present study, we modified the endogenous keratin 14 (K14) gene of mice using a knock-in approach to encode a chimeric keratin that consists of the K14 rod domain fused to the K10 head and tail domains (K1014chim). This transgene was expressed in the basal layer of the epidermis and the outer root sheath of hair follicles. Unexpectedly, we found that the K10 end domains had no effect on basal keratinocyte proliferation in vivo. Moreover, when subjected to a chemical skin carcinogenesis protocol, papilloma formation in mutant mice was accelerated instead of being inhibited. Our data suggest that the increased tumor susceptibility of K1014chim mice is in part due to a suppression of apoptosis in mutant keratinocytes. Our results support the notion that intermediate filaments, in addition to their function as cytoskeletal components, affect tumor susceptibility of epithelial cells.
Collapse
Affiliation(s)
- Jiangli Chen
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
90
|
Cha MH, Rhim T, Kim KH, Jang AS, Paik YK, Park CS. Proteomic identification of macrophage migration-inhibitory factor upon exposure to TiO2 particles. Mol Cell Proteomics 2006; 6:56-63. [PMID: 17028300 DOI: 10.1074/mcp.m600234-mcp200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inhalation of particulate matter aggravates respiratory symptoms in patients with chronic airway diseases, but the mechanisms underlying this response remain poorly understood. We used a proteomics approach to examine this phenomenon. Treatment of epithelial cells with BSA-coated titanium dioxide (TiO(2)) particles altered 20 protein spots on the two-dimensional gel, and these were then analyzed by nano-LC-MS/MS. These proteins included defense-related, cell-activating, and cytoskeletal proteins implicated in the response to oxidative stress. The proteins were classified into four groups according to the time course of their expression patterns. For validation, RT-PCR was performed on extracts of in vitro TiO(2)-treated cells, and lung issues from TiO(2)-treated rats were analyzed by immunohistochemical staining and enzyme immunoassay. TiO(2) treatment was found to increase the amount of mRNA for macrophage migration-inhibitory factor (MIF). MIF was expressed primarily in epithelium and was elevated in lung tissues and bronchoalveolar lavage fluids of TiO(2)-treated rats as compared with sham-treated rats. Carbon black and diesel exhaust particles also induced expression of MIF protein in the epithelial cells.
Collapse
Affiliation(s)
- Myung-Hwa Cha
- Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Hospital, Bucheon-si, Gyeonggi-do 420-853, Korea
| | | | | | | | | | | |
Collapse
|
91
|
Grimm SL, Bu W, Longley MA, Roop DR, Li Y, Rosen JM. Keratin 6 is not essential for mammary gland development. Breast Cancer Res 2006; 8:R29. [PMID: 16790075 PMCID: PMC1557733 DOI: 10.1186/bcr1504] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/26/2006] [Accepted: 05/25/2006] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Keratin 6 (K6) has previously been identified as a marker of early mammary gland development and has also been proposed to be a marker of mammary gland progenitor cells. However, the function of K6 in the mammary gland was not known, so we examined the expression pattern of the protein during both embryonic and postnatal mammary development, as well as the mammary gland phenotype of mice that were null for both K6a and K6b isoforms. METHOD Immunostaining was performed to determine the expression pattern of K6a throughout mammary gland development, from the embryonic mammary bud to lactation. Double immunofluorescence was used to co-localize K6 with known markers of mammary gland development. Wild-type and K6ab-null mammary tissues were transplanted into the cleared fat pads of nude mice and the outgrowths were analyzed for morphology by whole-mount staining and for markers of mammary epithelium by immunostaining. Finally, progesterone receptor (PR) and bromodeoxyuridine co-localization was quantified by double immunofluorescence in wild-type and K6ab-null mammary outgrowths. RESULTS Here we report that K6 is expressed earlier than described previously, by embryonic day 16.5. K6a is the predominant isoform expressed in the mammary gland, localized in the body cells and luminal epithelial cells but not in the cap cells or myoepithelial cells. Co-localization studies showed that most K6a-positive cells express steroid receptors but do not proliferate. When both the K6a and K6b genes are deleted, mammary gland development appears normal, with similar expression of most molecular markers examined in both the pubertal gland and the mature gland. Loss of K6a and K6b, however, leads to an increase in the number of steroid-receptor-positive cells, and increased co-localization of steroid receptor expression and proliferation was observed. CONCLUSION Although K6a was not essential for mammary gland development, loss of both K6a and K6b resulted in an increase in PR-positive mammary epithelial cells and decreased proliferation after exposure to steroid hormones. There was also increased co-localization of PR and bromodeoxyuridine, suggesting alterations in patterning events important for normal lobuloalveolar development.
Collapse
Affiliation(s)
- Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Wen Bu
- Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary Ann Longley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dennis R Roop
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yi Li
- Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
92
|
Ekmektzoglou KA, Zografos GC. A concomitant review of the effects of diabetes mellitus and hypothyroidism in wound healing. World J Gastroenterol 2006; 12:2721-9. [PMID: 16718759 PMCID: PMC4130981 DOI: 10.3748/wjg.v12.i17.2721] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This paper reviews the negative impact of diabetes mellitus or hypothyroidism on wound healing, both in experimental and clinical settings. Since both are metabolic disorders of great clinical importance, special attention is given, not only to their pathophysiology, but also to their biochemical and histological effects on tissue integrity and regeneration. Also, special focus is awarded on wound healing of the gastrointestinal tract, i.e. in intestinal anastomosis, and how these disorders can lead to wound dehiscence. Since diabetes mellitus and hypothyroidism can coexist in clinical settings, more research must be directed on their influence on wound healing, considering them as one clinical entity.
Collapse
Affiliation(s)
- Konstantinos A Ekmektzoglou
- Laboratory of Experimental Surgery and Surgical Research, N.S. Christeas, Athens School of Medicine, Athens, Greece.
| | | |
Collapse
|
93
|
Buono KD, Robinson GW, Martin C, Shi S, Stanley P, Tanigaki K, Honjo T, Hennighausen L. The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol 2006; 293:565-80. [PMID: 16581056 DOI: 10.1016/j.ydbio.2006.02.043] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/16/2006] [Accepted: 02/18/2006] [Indexed: 11/30/2022]
Abstract
Mammary alveoli are composed of luminal (secretory) and basal (myoepithelial) cells, which are descendants of a common stem cell. This study addressed the role of RBP-J-dependent Notch signaling in the formation, maintenance and cellular composition of alveoli during pregnancy. For this purpose, the genes encoding RBP-J, the shared transcriptional mediator of Notch receptors, and Pofut1, a fucosyltransferase required for the activity of Notch receptors, were deleted in mammary progenitor cells in the mouse using Cre-mediated recombination. Loss of RBP-J and Pofut1 led to an accumulation of basal cell clusters characterized by the presence of cytokeratins (K5) and K14 and smooth muscle actin (SMA) during pregnancy. Hormonal stimulation of mutant tissue induced the expression of the basal cell transcription factor p63 in luminal cells and excessive proliferation of basal cells. A transient enrichment of K6-positive luminal cells was observed upon hormonal treatment suggesting a temporary arrest at an immature stage prior to transdifferentiation and expansion as basal cells. Despite the extensive proliferation of RBP-J-null basal cells during pregnancy, hormonal withdrawal during involution resulted in complete remodeling and the restoration of normal tissue architecture. We propose that the Notch-RBP-J pathway regulates alveolar development during pregnancy by maintaining luminal cell fate and preventing uncontrolled basal cell proliferation.
Collapse
Affiliation(s)
- Krista D Buono
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Patel GK, Wilson CH, Harding KG, Finlay AY, Bowden PE. Numerous keratinocyte subtypes involved in wound re-epithelialization. J Invest Dermatol 2006; 126:497-502. [PMID: 16374449 DOI: 10.1038/sj.jid.5700101] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expression of different keratin intermediate filaments has been used to define keratinocyte maturation and different phenotypic subtypes involved in acute wound (AW) healing. Immunohistochemistry with specific anti-keratin monoclonal and polyclonal antibodies was used to examine AW in normal healthy volunteers (n = 16). In all wounds examined, basal keratinocytes and cells at the leading edge of the wound expressed keratins K5 and K14. However, suprabasal cells had a more complex pattern of keratin expression, which was dependent on their position relative to the wound and location within the suprabasal compartment of the epidermis. In general, K10 was expressed in suprabasal keratinocytes at the wound edge, but not in keratinocytes covering the wound center, which expressed K6, K16, and K17 in a complex fashion. Ki67 expression, a marker of cell proliferation, was restricted to basal and immediate suprabasal layers at the wound edge. Keratinocytes populated the wound bed below the scab by migration, which was supported by keratinocyte proliferation in the surrounding epidermis both at and adjacent to the wound edge.
Collapse
Affiliation(s)
- Girish K Patel
- Department of Dermatology, School of Medicine,Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|
95
|
Kaspar RL. Challenges in developing therapies for rare diseases including pachyonychia congenita. J Investig Dermatol Symp Proc 2005; 10:62-6. [PMID: 16250210 DOI: 10.1111/j.1087-0024.2005.10208.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to attract sufficient resources to effectively develop therapeutics for rare diseases is a daunting task. This review summarizes existing resources for rare diseases and discusses some of the challenges and strategies associated with developing therapies for small patient populations with an emphasis on pachyonychia congenita.
Collapse
Affiliation(s)
- Roger L Kaspar
- Transderm and SomaGenics, Inc., Santa Cruz, California, USA.
| |
Collapse
|
96
|
Abstract
The similarities between the human and mouse genomes often allow researchers to make accurate predictions about the roles of their human counterparts. Because of the similar physiology between these two mammals, mice are used extensively in the laboratory to investigate the mechanisms of human diseases. Furthermore, mice provide us with the option of testing the toxicity of drugs and the safety of therapeutic approaches prior to human application. Here, we review the existing mouse models involving the keratin genes (K6a, K6b, K16, and K17) that cause the human genetic disorder pachyonychia congenita (PC). We also suggest methods to more accurately model this autosomal dominant skin condition in the mouse in order to better understand the pathophysiological processes underlying PC and importantly, provide a test-bed for testing emerging therapies in vivo.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
97
|
Abstract
Although the physiologic role of thyroid hormone in skin is not well understood, mounting evidence suggests that T3 plays an important role in epidermal proliferation. The goal of this project was to evaluate whether the topical application of supraphysiologic doses of T3 could accelerate wound healing. We evaluated mice treated with topical T3 vs. the same mice receiving vehicle alone (Novasome A). Ten-millimeter diameter (79 mm2) dorsal skin wounds were established in all animals, and wounds were remeasured 4 d after injury. All animals were evaluated twice: once with the T3 treatment and once with the vehicle alone. Daily topical application of 150 ng T3 resulted in 58% greater wound closure relative to wounds on the same animals receiving vehicle alone (P < 0.001). Furthermore, we determined that wound healing-associated keratin 6 protein expression in hair follicle keratinocytes increased in a dose-dependent manner in vivo during topical T3 treatment. The data support our previous hypothesis that T3 is necessary for optimal wound healing. Now, we further suggest that topical thyroid hormone may be an inexpensive agent to hasten healing of certain wounds.
Collapse
Affiliation(s)
- Joshua D Safer
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, 715 Albany Street, Room M-1016, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
98
|
Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, Merchant A, Galiano RD, Tomic-Canic M. Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:59-69. [PMID: 15972952 PMCID: PMC1603435 DOI: 10.1016/s0002-9440(10)62953-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lack of understanding of the molecular mechanisms and pathogenesis of impaired healing in chronic ulcers is a serious health issue that contributes to excessive limb amputations and mortality. Here we show that beta-catenin and its downstream targets in keratinocytes, c-myc, and keratins K6 and K16, play important roles in the development of chronic wounds. In contrast to normal epidermis, we observed a significant nuclear presence of beta-catenin and elevated c-myc expression at the nonhealing wound edge of chronic ulcers from 10 patients. In vitro studies indicated that stabilization of nuclear beta-catenin inhibited wound healing and keratinocyte migration by blocking epidermal growth factor response, inducing c-myc and repressing the K6/K16 keratins (cytoskeletal components important for migration). The molecular mechanism of K6/K16 repression involved beta-catenin and arginine methyltransferase (CARM-1) acting as co-repressors of glucocorticoid receptor monomers. We conclude that activation of the beta-catenin/c-myc pathway(s) contributes to impaired healing by inhibiting keratinocyte migration and altering their differentiation. The presence of activated beta-catenin and c-myc in the epidermis of chronic wounds may serve as a molecular marker of impaired healing and may provide future targets for therapeutic intervention.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, 550 First Ave., TH100, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Coulombe PA, Tong X, Mazzalupo S, Wang Z, Wong P. Great promises yet to be fulfilled: defining keratin intermediate filament function in vivo. Eur J Cell Biol 2005; 83:735-46. [PMID: 15679118 DOI: 10.1078/0171-9335-00443] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Keratins are abundant proteins in epithelial cells, in which they occur as a cytoplasmic network of 10 - 12 nm wide intermediate filaments (IFs). They are encoded by a large family of conserved genes in mammals, with more than 50 individual members partitioned into two sequence types. A strict requirement for the heteropolymerization of type I and type II keratin proteins during filament formation underlies the pairwise transcriptional regulation of keratin genes. In addition, individual pairs are regulated in a tissue-type and differentiation-specific manner. Elucidating the rationale behind the diversity and differential distribution of keratin proteins offers the promise of novel insight into epithelial biology. At present, we know that keratin IFs act as resilient yet pliable scaffolds that endow epithelial cells with the ability to sustain mechanical and non-mechanical stresses. Accordingly, inherited mutations altering the coding sequence of keratins underlie several epithelial fragility disorders. In addition, keratin IFs influence the cellular response to pro-apoptotic signals in specific settings, and the routing of membrane proteins in polarized epithelia. Here we review studies focused on a subset of keratin genes, K6, K16 and K17, showing a complex regulation in vivo, including a widely known upregulation during wound repair and in diseased skin. Progress in defining the function of these and other keratins through gene manipulation in mice has been hampered by functional redundancy within the family. Still, detailed studies of the phenotype exhibited by K6 and K17 null mice yielded novel insight into the properties and function of keratin IFs in vivo.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
100
|
Tammi R, Pasonen-Seppänen S, Kolehmainen E, Tammi M. Hyaluronan synthase induction and hyaluronan accumulation in mouse epidermis following skin injury. J Invest Dermatol 2005; 124:898-905. [PMID: 15854028 DOI: 10.1111/j.0022-202x.2005.23697.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hyaluronan, a major extracellular matrix component in the epidermis, has been shown to control keratinocyte proliferation and differentiation in vitro. We assayed hyaluronan and hyaluronan synthases (has1-3) in mouse epidermis during fetal development, postnatal life, and trauma reaction in vivo. Hyaluronan increased in the epidermis when keratinocytes started to stratify on day E15, remained high until birth, and then rapidly declined, with corresponding changes in the mRNA levels of has2 and has3. The hyaluronan in adult mouse epidermis mainly resided around the orifices of the hair follicles, and the overall concentration was about one order of magnitude lower than in adult human epidermis. In adult mice, epidermal trauma caused by tape stripping rapidly increased hyaluronan, leading to a 6-fold increase in epidermal hyaluronan on day 3 following trauma. The hyaluronan response was associated with a strong induction of has2 and has3 mRNA, slightly higher CD44 expression, and considerable epidermal hyperplasia. The data show that the pre- and postnatal fluctuations in epidermal hyaluronan content correlate with the expression levels of has2 and has3. Stimulated hyaluronan synthesis through upregulated has expression is an inherent feature of the keratinocyte activation triggered by tissue trauma, and presumably important for a proper healing response.
Collapse
Affiliation(s)
- Raija Tammi
- Department of Anatomy, University of Kuopio, Kuopio, Finland.
| | | | | | | |
Collapse
|