51
|
Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc Natl Acad Sci U S A 2013; 110:17290-5. [PMID: 24101474 DOI: 10.1073/pnas.1314754110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polymerase associated factor 1 complex (Paf1C) broadly influences gene expression by regulating chromatin structure and the recruitment of RNA-processing factors during transcription elongation. The Plus3 domain of the Rtf1 subunit mediates Paf1C recruitment to genes by binding a repeating domain within the elongation factor Spt5 (suppressor of Ty). Here we provide a molecular description of this interaction by reporting the structure of human Rtf1 Plus3 in complex with a phosphorylated Spt5 repeat. We find that Spt5 binding is mediated by an extended surface containing phosphothreonine recognition and hydrophobic interfaces that interact with residues outside the Spt5 motif. Changes within these interfaces diminish binding of Spt5 in vitro and chromatin localization of Rtf1 in vivo. The structure reveals the basis for recognition of the repeat motif of Spt5, a key player in the recruitment of gene regulatory factors to RNA polymerase II.
Collapse
|
52
|
Natarajan M, Schiralli Lester GM, Lee C, Missra A, Wasserman GA, Steffen M, Gilmour DS, Henderson AJ. Negative elongation factor (NELF) coordinates RNA polymerase II pausing, premature termination, and chromatin remodeling to regulate HIV transcription. J Biol Chem 2013; 288:25995-26003. [PMID: 23884411 DOI: 10.1074/jbc.m113.496489] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A barrier to eradicating HIV infection is targeting and eliminating latently infected cells. Events that contribute to HIV transcriptional latency include repressive chromatin structure, transcriptional interference, the inability of Tat to recruit positive transcription factor b, and poor processivity of RNA polymerase II (RNAP II). In this study, we investigated mechanisms by which negative elongation factor (NELF) establishes and maintains HIV latency. Negative elongation factor (NELF) induces RNAP II promoter proximal pausing and limits provirus expression in HIV-infected primary CD4(+) T cells. Decreasing NELF expression overcomes RNAP II pausing to enhance HIV transcription elongation in infected primary T cells, demonstrating the importance of pausing in repressing HIV transcription. We also show that RNAP II pausing is coupled to premature transcription termination and chromatin remodeling. NELF interacts with Pcf11, a transcription termination factor, and diminishing Pcf11 in primary CD4(+) T cells induces HIV transcription elongation. In addition, we identify NCoR1-GPS2-HDAC3 as a NELF-interacting corepressor complex that is associated with repressed HIV long terminal repeats. We propose a model in which NELF recruits Pcf11 and NCoR1-GPS2-HDAC3 to paused RNAP II, reinforcing repression of HIV transcription and establishing a critical checkpoint for HIV transcription and latency.
Collapse
Affiliation(s)
- Malini Natarajan
- From the Immunology and Infectious Diseases, Integrated Biosciences Graduate Program, Penn State University, University Park, Pennsylvania 16802,; the Departments of Medicine and Infectious Diseases
| | | | - Chanhyo Lee
- the Departments of Medicine and Infectious Diseases
| | - Anamika Missra
- the Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802
| | | | - Martin Steffen
- Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - David S Gilmour
- the Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802
| | - Andrew J Henderson
- the Departments of Medicine and Infectious Diseases,; Microbiology, and.
| |
Collapse
|
53
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
54
|
Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2013; 2:a006916. [PMID: 22355797 DOI: 10.1101/cshperspect.a006916] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Control of HIV-1 gene expression depends on two viral regulatory proteins, Tat and Rev. Tat stimulates transcription elongation by directing the cellular transcriptional elongation factor P-TEFb to nascent RNA polymerases. Rev is required for the transport from the nucleus to the cytoplasm of the unspliced and incompletely spliced mRNAs that encode the structural proteins of the virus. Molecular studies of both proteins have revealed how they interact with the cellular machinery to control transcription from the viral LTR and regulate the levels of spliced and unspliced mRNAs. The regulatory feedback mechanisms driven by HIV-1 Tat and Rev ensure that HIV-1 transcription proceeds through distinct phases. In cells that are not fully activated, limiting levels of Tat and Rev act as potent blocks to premature virus production.
Collapse
Affiliation(s)
- Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
55
|
Diamant G, Dikstein R. Transcriptional control by NF-κB: elongation in focus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:937-45. [PMID: 23624258 DOI: 10.1016/j.bbagrm.2013.04.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/01/2023]
Abstract
The NF-κB family of transcription factors governs the cellular reaction to a variety of extracellular signals. Following stimulation, NF-κB activates genes involved in inflammation, cell survival, cell cycle, immune cell homeostasis and more. This review focuses on studies of the past decade that uncover the transcription elongation process as a key regulatory stage in the activation pathway of NF-κB. Of interest are studies that point to the elongation phase as central to the selectivity of target gene activation by NF-κB. Particularly, the cascade leading to phosphorylation and acetylation of the NF-κB subunit p65 on serine 276 and lysine 310, respectively, was shown to mediate the recruitment of Brd4 and P-TEFb to many pro-inflammatory target genes, which in turn facilitate elongation and mRNA processing. On the other hand, some anti-inflammatory genes are refractory to this pathway and are dependent on the elongation factor DSIF for efficient elongation and mRNA processing. While these studies have advanced our knowledge of NF-κB transcriptional activity, they have also raised unresolved issues regarding the specific genomic and physiological contexts by which NF-κB utilizes different mechanisms for activation.
Collapse
Affiliation(s)
- Gil Diamant
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot , Israel
| | | |
Collapse
|
56
|
Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23202475 DOI: 10.1016/j.bbagrm.2012.11.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) were originally identified as factors responsible for transcriptional inhibition by 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB) and were later found to control transcription elongation, together with P-TEFb, at the promoter-proximal region. Although there is ample evidence that these factors play roles throughout the genome, other data also suggest gene- or tissue-specific roles for these factors. In this review, we discuss how these apparently conflicting data can be reconciled. In light of recent findings, we also discuss the detailed mechanism by which these factors control the elongation process at the molecular level. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
57
|
Prabhakaran M, Kelley RL. Mutations in the transcription elongation factor SPT5 disrupt a reporter for dosage compensation in Drosophila. PLoS Genet 2012; 8:e1003073. [PMID: 23209435 PMCID: PMC3510053 DOI: 10.1371/journal.pgen.1003073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/22/2012] [Indexed: 12/04/2022] Open
Abstract
In Drosophila, the MSL (Male Specific Lethal) complex up regulates transcription of active genes on the single male X-chromosome to equalize gene expression between sexes. One model argues that the MSL complex acts upon the elongation step of transcription rather than initiation. In an unbiased forward genetic screen for new factors required for dosage compensation, we found that mutations in the universally conserved transcription elongation factor Spt5 lower MSL complex dependent expression from the miniwhite reporter gene in vivo. We show that SPT5 interacts directly with MSL1 in vitro and is required downstream of MSL complex recruitment, providing the first mechanistic data corroborating the elongation model of dosage compensation. Drosophila males hypertranscribe most of the genes along their single X chromosome to match the output of females with two X chromosomes. It had been difficult to imagine how the MSL dosage compensation complex could impose a modest, but essential, ∼two-fold increase by interacting with hundreds of different factors that control transcription initiation for such a diverse collection of genes. An alternative model proposed that dosage compensation instead acted at some step of transcription elongation common to all genes. We performed a genetic screen for mutations that subtly reduce dosage compensation and recovered mutations in the Spt5 gene that encodes a universally conserved elongation factor. SPT5 closes the RNA polymerase II clamp around the DNA template to prevent pausing or premature termination. We find that the dosage compensation complex genetically and physically interacts with SPT5 on actively transcribed genes providing direct molecular support for the elongation model of dosage compensation.
Collapse
Affiliation(s)
- Mahalakshmi Prabhakaran
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard L. Kelley
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
58
|
Diamant G, Amir-Zilberstein L, Yamaguchi Y, Handa H, Dikstein R. DSIF restricts NF-κB signaling by coordinating elongation with mRNA processing of negative feedback genes. Cell Rep 2012; 2:722-31. [PMID: 23041311 DOI: 10.1016/j.celrep.2012.08.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/30/2012] [Accepted: 08/31/2012] [Indexed: 12/15/2022] Open
Abstract
NF-κB is central for immune response and cell survival, and its deregulation is linked to chronic inflammation and cancer through poorly defined mechanisms. IκBα and A20 are NF-κB target genes and negative feedback regulators. Upon their activation by NF-κB, DSIF is recruited, P-TEFb is released, and their elongating polymerase II (Pol II) C-terminal domain (CTD) remains hypophosphorylated. We show that upon DSIF knockdown, mRNA levels of a subset of NF-κB targets are not diminished; yet much less IκBα and A20 protein are synthesized, and NF-κB activation is abnormally prolonged. Further analysis of IκBα and A20 mRNA revealed that a significant portion is uncapped, unspliced, and retained in the nucleus. Interestingly, the Spt5 C-terminal repeat (CTR) domain involved in elongation stimulation through P-TEFb is dispensable for IκBα and A20 regulation. These findings assign a function for DSIF in cotranscriptional mRNA processing when elongating Pol II is hypophosphorylated and define DSIF as part of the negative feedback regulation of NF-κB.
Collapse
Affiliation(s)
- Gil Diamant
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
59
|
Tyagi M, Bukrinsky M. Human immunodeficiency virus (HIV) latency: the major hurdle in HIV eradication. Mol Med 2012; 18:1096-108. [PMID: 22692576 DOI: 10.2119/molmed.2012.00194] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/07/2012] [Indexed: 12/11/2022] Open
Abstract
Failure of highly active antiretroviral therapy to eradicate the human immunodeficiency virus (HIV), even in patients who suppress the virus to undetectable levels for many years, underscores the problems associated with fighting this infection. The existence of persistent infection in certain cellular and anatomical reservoirs appears to be the major hurdle in HIV eradication. The development of therapeutic interventions that eliminate or limit the latent viral pools or prevent the reemergence of the viruses from producing cells will therefore be required to enhance the effectiveness of current antiretroviral strategies. To achieve this goal, there is a pressing need to understand HIV latency at the molecular level to design novel and improved therapies to either eradicate HIV or find a functional cure in which patients could maintain a manageable viral pool without AIDS in the absence of antiretroviral therapy. The integrated proviral genome remains transcriptionally silent for a long period in certain subsets of T cells. This ability to infect cells latently helps HIV to establish a persistent infection despite strong humoral and cellular immune responses against the viral proteins. The main purpose of this report is to provide a general overview of the HIV latency. We will describe the hurdles being faced in eradicating latent HIV proviruses. We will also briefly discuss the ongoing strategies aimed toward curing HIV infection.
Collapse
Affiliation(s)
- Mudit Tyagi
- National Center for Biodefense and Infectious Disease, George Mason University, Manassas, Virginia 20109, United States of America.
| | | |
Collapse
|
60
|
Hartzog GA, Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:105-15. [PMID: 22982195 DOI: 10.1016/j.bbagrm.2012.08.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of MCD Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
61
|
Werner F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J Mol Biol 2012; 417:13-27. [PMID: 22306403 PMCID: PMC3382729 DOI: 10.1016/j.jmb.2012.01.031] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/25/2022]
Abstract
Evolutionary related multisubunit RNA polymerases (RNAPs) transcribe the genomes of all living organisms. Whereas the core subunits of RNAPs are universally conserved in all three domains of life—indicative of a common evolutionary descent—this only applies to one RNAP-associated transcription factor—Spt5, also known as NusG in bacteria. All other factors that aid RNAP during the transcription cycle are specific for the individual domain or only conserved between archaea and eukaryotes. Spt5 and its bacterial homologue NusG regulate gene expression in several ways by (i) modulating transcription processivity and promoter proximal pausing, (ii) coupling transcription and RNA processing or translation, and (iii) recruiting termination factors and thereby silencing laterally transferred DNA and protecting the genome against double-stranded DNA breaks. This review discusses recent discoveries that identify Spt5-like factors as evolutionary conserved nexus for the regulation and coordination of the machineries responsible for information processing in the cell.
Collapse
Affiliation(s)
- Finn Werner
- RNAP Laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
62
|
Giraud M, Yoshida H, Abramson J, Rahl PB, Young RA, Mathis D, Benoist C. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci U S A 2012; 109:535-40. [PMID: 22203960 PMCID: PMC3258631 DOI: 10.1073/pnas.1119351109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aire is a transcriptional regulator that induces expression of peripheral tissue antigens (PTA) in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in differentiating T cells. To elucidate its mechanistic pathways, we examined its transcriptional impact in MECs in vivo by microarray analysis with mRNA-spanning probes. This analysis revealed initiation of Aire-activated genes to be comparable in Aire-deficient and wild-type MECs, but with a block to elongation after 50-100 bp in the absence of Aire, suggesting activation by release of stalled polymerases by Aire. In contrast, patterns of activation by transcription factors such as Klf4 were consistent with regulation of initiation. Mapping of Aire and RNA polymerase-II (Pol-II) by ChIP and high-throughput sequencing (ChIP-seq) revealed that Aire bound all Pol-II-rich transcriptional start sites (TSS), irrespective of its eventual effect. However, the genes it preferentially activated were characterized by a relative surfeit of stalled polymerases at the TSS, which resolved once Aire was introduced into cells. Thus, transcript mapping and ChIP-seq data indicate that Aire activates ectopic transcription not through specific recognition of PTA gene promoters but by releasing stalled polymerases.
Collapse
Affiliation(s)
- Matthieu Giraud
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; and
| | - Hideyuki Yoshida
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; and
| | - Jakub Abramson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; and
| | | | - Richard A. Young
- Whitehead Institute for Biomedical Research and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; and
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
63
|
Mbonye U, Karn J. Control of HIV latency by epigenetic and non-epigenetic mechanisms. Curr HIV Res 2011; 9:554-67. [PMID: 22211660 PMCID: PMC3319922 DOI: 10.2174/157016211798998736] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 10/10/2011] [Accepted: 10/21/2011] [Indexed: 12/17/2022]
Abstract
Intensive antiretroviral therapy successfully suppresses viral replication but is unable to eradicate the virus. HIV persists in a small number of resting memory T cells where HIV has been transcriptionally silenced. This review will focus on recent insights into the HIV transcriptional control mechanisms that provide the biochemical basis for understanding latency. There are no specific repressors of HIV transcription encoded by the virus, instead latency arises when the regulatory feedback mechanism driven by HIV Tat expression is disrupted. Small changes in transcriptional initiation, induced by epigenetic silencing, lead to profound restrictions in Tat levels and force the entry of proviruses into latency. In resting memory T cells, which carry the bulk of the latent viral pool, additional restrictions, especially the limiting cellular levels of the essential Tat cofactor P-TEFb and the transcription initiation factors NF-κB and NFAT ensure that the provirus remains silenced unless the host cell is activated. The detailed understanding of HIV transcription is providing a framework for devising new therapeutic strategies designed to purge the latent viral pool. Importantly, the recognition that there are multiple restrictions imposed on latent proviruses suggest that proviral reactivation will not be achieved when only a single reactivation step is targeted and that any optimal activation strategy will require both removal of epigenetic blocks and the activation of P-TEFb.
Collapse
Affiliation(s)
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
64
|
Palermo RD, Webb HM, West MJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog 2011; 7:e1002334. [PMID: 22046134 PMCID: PMC3203192 DOI: 10.1371/journal.ppat.1002334] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/08/2011] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions.
Collapse
Affiliation(s)
- Richard D. Palermo
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Helen M. Webb
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
65
|
Kim YK, Mbonye U, Hokello J, Karn J. T-cell receptor signaling enhances transcriptional elongation from latent HIV proviruses by activating P-TEFb through an ERK-dependent pathway. J Mol Biol 2011; 410:896-916. [PMID: 21763495 DOI: 10.1016/j.jmb.2011.03.054] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/20/2011] [Accepted: 03/24/2011] [Indexed: 12/31/2022]
Abstract
Latent human immunodeficiency virus (HIV) proviruses are thought to be primarily reactivated in vivo through stimulation of the T-cell receptor (TCR). Activation of the TCR induces multiple signal transduction pathways, leading to the ordered nuclear migration of the HIV transcription initiation factors NF-κB (nuclear factor κB) and NFAT (nuclear factor of activated T-cells), as well as potential effects on HIV transcriptional elongation. We have monitored the kinetics of proviral reactivation using chromatin immunoprecipitation assays to measure changes in the distribution of RNA polymerase II in the HIV provirus. Surprisingly, in contrast to TNF-α (tumor necrosis factor α) activation, where early transcription elongation is highly restricted due to rate-limiting concentrations of Tat, efficient and sustained HIV elongation and positive transcription elongation factor b (P-TEFb) recruitment are detected immediately after the activation of latent proviruses through the TCR. Inhibition of NFAT activation by cyclosporine had no effect on either HIV transcription initiation or elongation. However, examination of P-TEFb complexes by gel-filtration chromatography showed that TCR signaling led to the rapid dissociation of the large inactive P-TEFb:7SK RNP (small nuclear RNA 7SK ribonucleoprotein) complex and the release of active low-molecular-weight P-TEFb complexes. Both P-TEFb recruitment to the HIV long terminal repeat and enhanced HIV processivity were blocked by the ERK (extracellular-signal-regulated kinase) inhibitor U0126, but not by AKT (serine/threonine protein kinase Akt) and PI3K (phosphatidylinositol 3-kinase) inhibitors. In contrast to treatment with HMBA (hexamethylene bisacetamide) and DRB (5,6-dichlorobenzimidazole 1-β-ribofuranoside), which disrupt the large 7SK RNP complex but do not stimulate early HIV elongation, TCR signaling provides the first example of a physiological pathway that can shift the balance between the inactive P-TEFb pool and the active P-TEFb pool and thereby stimulate proviral reactivation.
Collapse
Affiliation(s)
- Young Kyeung Kim
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Room W200, Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
66
|
Celastrol inhibits Tat-mediated human immunodeficiency virus (HIV) transcription and replication. J Mol Biol 2011; 410:972-83. [PMID: 21763500 DOI: 10.1016/j.jmb.2011.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 04/06/2011] [Indexed: 11/21/2022]
Abstract
Current drugs used for antiretroviral therapy against human immunodeficiency virus (HIV) have a narrow spectrum of activity and, more often, have associated toxicities and severe side effects in addition to developing resistance. Thus, there is a need to develop new therapeutic strategies against HIV/AIDS to complement the already existing ones. Surprisingly, transactivator of transcription (Tat), an early virus-encoded protein required for the efficient transcription of the HIV genome, has not been developed as a target for small molecular therapeutics. We have previously described the ability of an endogenous Michael acceptor electrophile (MAE), 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), to inhibit Tat-dependent transcription by targeting its cysteine (Cys)-rich domain. In an effort to identify other MAEs possessing inhibitory activity against HIV-1 Tat, we tested a collection of plant-derived compounds with electrophilic properties, including curcumin, rosmarinic acid, and gambogic acid, for their ability to inhibit Tat. Celastrol (Cel), a triterpenoid MAE isolated from Tripterygium wilfordii, exhibited the highest inhibitory activity against Tat. Using biochemical techniques, we demonstrate that Cel, by covalently modifying the cysteine thiols, inhibits Tat transactivation function. Using circular dichroism spectroscopy, we show that alkylation of Tat brought about a change in the secondary structure of Tat, which inhibited the transcription elongation of the HIV proviral genome by effecting mechanisms other than Tat-TAR (transactivation-responsive region) interaction. Our results demonstrate the underlying mechanism of antiretroviral activity of the plant-derived MAEs and suggest that Cel could serve as a lead compound to develop novel antiviral therapeutics.
Collapse
|
67
|
Peterlin BM, Brogie JE, Price DH. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:92-103. [PMID: 21853533 DOI: 10.1002/wrna.106] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human 7SK small nuclear RNA (snRNA) is an abundant noncoding RNA whose function has been conserved in evolution from invertebrates to humans. It is transcribed by RNA polymerase III (RNAPIII) and is located in the nucleus. Together with associated cellular proteins, 7SK snRNA regulates the activity of the positive transcription elongation factor b (P-TEFb). In humans, this regulation is accomplished by the recruitment of P-TEFb by the 7SK snRNA-binding proteins, hexamethylene bisacetamide (HMBA)-induced mRNA 1/2 (HEXIM1 or HEXIM2), which inhibit the kinase activity of P-TEFb. P-TEFb regulates the transition of promoter proximally paused RNA polymerase II (RNAPII) into productive elongation, thereby, allowing efficient mRNA production. The protein composition of the 7SK small nuclear ribonucleoprotein (snRNP) is regulated dynamically. While the Lupus antigen (La)-related protein 7 (LARP7) is a constitutive component, the methylphosphate capping enzyme (MePCE) associates secondarily to phosphorylate the 5' end of 7SK snRNA. The release of active P-TEFb is closely followed by release of HEXIM proteins and both are replaced by heterogeneous nuclear ribonucleoproteins (hnRNPs). The released P-TEFb activates the expression of most cellular and viral genes. Regulated release of P-TEFb determines the expression pattern of many of the genes that respond to environmental stimuli and regulate growth, proliferation, and differentiation of cells.
Collapse
Affiliation(s)
- B Matija Peterlin
- Department of Medicine, Rosalind Russel Medical Research Center, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|
68
|
Viktorovskaya OV, Appling FD, Schneider DA. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly. J Biol Chem 2011; 286:18825-33. [PMID: 21467036 PMCID: PMC3099699 DOI: 10.1074/jbc.m110.202119] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/23/2011] [Indexed: 11/06/2022] Open
Abstract
Spt5 is a transcription factor conserved in all three domains of life. Spt5 homologues from bacteria and archaea bind the largest subunit of their respective RNA polymerases. Here we demonstrate that Spt5 directly associates with RNA polymerase (Pol) I and RNA Pol II in yeast through its central region containing conserved NusG N-terminal homology and KOW domains. Deletion analysis of SPT5 supports our biochemical data, demonstrating the importance of the KOW domains in Spt5 function. Far Western blot analysis implicates A190 of Pol I as well as Rpb1 of Pol II in binding Spt5. Three additional subunits of Pol I may also participate in this interaction. One of these subunits, A49, has known roles in transcription elongation by Pol I. Interestingly, spt5 truncation mutations suppress the cold-sensitive phenotype of rpa49Δ strain, which lacks the A49 subunit in the Pol I complex. Finally, we observed that Spt5 directly binds to an essential Pol I transcription initiation factor, Rrn3, and to the ribosomal RNA. Based on these data, we propose a model in which Spt5 is recruited to the rDNA early in transcription and propose that it plays an important role in ribosomal RNA synthesis through direct binding to the Pol I complex.
Collapse
MESH Headings
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Models, Biological
- Pol1 Transcription Initiation Complex Proteins/genetics
- Pol1 Transcription Initiation Complex Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcription, Genetic/physiology
- Transcriptional Elongation Factors/genetics
- Transcriptional Elongation Factors/metabolism
Collapse
Affiliation(s)
- Olga V. Viktorovskaya
- From the Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024
| | - Francis D. Appling
- From the Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024
| | - David A. Schneider
- From the Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024
| |
Collapse
|
69
|
Close D, Johnson SJ, Sdano MA, McDonald SM, Robinson H, Formosa T, Hill CP. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain. J Mol Biol 2011; 408:697-713. [PMID: 21419780 PMCID: PMC3086336 DOI: 10.1016/j.jmb.2011.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/24/2011] [Accepted: 03/01/2011] [Indexed: 01/07/2023]
Abstract
The conserved and essential eukaryotic protein Spt6 functions in transcription elongation, chromatin maintenance, and RNA processing. Spt6 has three characterized functions. It is a histone chaperone capable of reassembling nucleosomes, a central component of transcription elongation complexes, and is required for recruitment of RNA processing factors to elongating RNA polymerase II (RNAPII). Here, we report multiple crystal structures of the 168-kDa Spt6 protein from Saccharomyces cerevisiae that together represent essentially all of the ordered sequence. Our two structures of the ∼900-residue core region reveal a series of putative nucleic acid and protein-protein interaction domains that fold into an elongated form that resembles the bacterial protein Tex. The similarity to a bacterial transcription factor suggests that the core domain performs nucleosome-independent activities, and as with Tex, we find that Spt6 binds DNA. Unlike Tex, however, the Spt6 S1 domain does not contribute to this activity. Crystal structures of the Spt6 C-terminal region reveal a tandem SH2 domain structure composed of two closely associated SH2 folds. One of these SH2 folds is cryptic, while the other shares striking structural similarity with metazoan SH2 domains and possesses structural features associated with the ability to bind phosphorylated substrates including phosphotyrosine. Binding studies with phosphopeptides that mimic the RNAPII C-terminal domain revealed affinities typical of other RNAPII C-terminal domain-binding proteins but did not indicate a specific interaction. Overall, these findings provide a structural foundation for understanding how Spt6 encodes several distinct functions within a single polypeptide chain.
Collapse
Affiliation(s)
- Devin Close
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | - Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300
| | - Matthew A Sdano
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | - Seth M McDonald
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | - Howard Robinson
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973
| | - Tim Formosa
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | - Christopher P Hill
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
- Corresponding author:
| |
Collapse
|
70
|
The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV AIDS 2011; 6:4-11. [PMID: 21242887 DOI: 10.1097/coh.0b013e328340ffbb] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Despite the remarkable success of intensive antiretroviral drug therapy in blocking the HIV replication, the virus persists in a small number of cells in which HIV has been transcriptionally silenced. This review will focus on recent insights into the HIV transcriptional control mechanisms that provide the biochemical basis for understanding latency. RECENT FINDINGS Latency arises when the regulatory feedback mechanism driven by HIV Tat expression is disrupted. Small changes in transcriptional initiation, induced by epigenetic silencing, can lead to restrictions in Tat levels and entry of proviruses into latency. In resting memory T-cells, which carry the bulk of the latent viral pool, additional restrictions limiting cellular levels of the essential Tat cofactor P-TEFb and the transcription initiation factors nuclear factor kappa B and nuclear factor of activated T cells ensure that the provirus remains silenced unless the host cell is activated. SUMMARY Strategies to purge the latent proviral pool require nontoxic activator molecules. The multiple restrictions imposed on latent proviruses that need to be overcome suggest that proviral reactivation will not be achieved when only a single reactivation step is targeted but will require both removal of epigenetic blocks and the activation of P-TEFb. Alternatively, new inhibitors that block proviral reactivation could be developed.
Collapse
|
71
|
Taneda T, Zhu W, Cao Q, Watanabe H, Yamaguchi Y, Handa H, Wada T. Erythropoiesis is regulated by the transcription elongation factor Foggy/Spt5 through gata1 gene regulation. Genes Cells 2011; 16:231-42. [DOI: 10.1111/j.1365-2443.2010.01481.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
72
|
Nechaev S, Adelman K. Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:34-45. [PMID: 21081187 DOI: 10.1016/j.bbagrm.2010.11.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 01/12/2023]
Abstract
Proper regulation of gene expression is essential for the differentiation, development and survival of all cells and organisms. Recent work demonstrates that transcription of many genes, including key developmental and stimulus-responsive genes, is regulated after the initiation step, by pausing of RNA polymerase II during elongation through the promoter-proximal region. Thus, there is great interest in better understanding the events that follow transcription initiation and the ways in which the efficiency of early elongation can be modulated to impact expression of these highly regulated genes. Here we describe our current understanding of the steps involved in the transition from an unstable initially transcribing complex into a highly stable and processive elongation complex. We also discuss the interplay between factors that affect early transcript elongation and the potential physiological consequences for genes that are regulated through transcriptional pausing.
Collapse
Affiliation(s)
- Sergei Nechaev
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
73
|
Abstract
The HIV-1 Tat protein promotes viral transcription elongation by recruiting P-TEFb to RNA element TAR on the viral mRNA. Recent work from D'Orso and Frankel uncovers unexpected aspects of this process.
Collapse
|
74
|
TIF1gamma controls erythroid cell fate by regulating transcription elongation. Cell 2010; 142:133-43. [PMID: 20603019 DOI: 10.1016/j.cell.2010.05.028] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/23/2010] [Accepted: 04/14/2010] [Indexed: 11/21/2022]
Abstract
Recent genome-wide studies have demonstrated that pausing of RNA polymerase II (Pol II) occurred on many vertebrate genes. By genetic studies in the zebrafish tif1gamma mutant moonshine we found that loss of function of Pol II-associated factors PAF or DSIF rescued erythroid gene transcription in tif1gamma-deficient animals. Biochemical analysis established physical interactions among TIF1gamma, the blood-specific SCL transcription complex, and the positive elongation factors p-TEFb and FACT. Chromatin immunoprecipitation assays in human CD34(+) cells supported a TIF1gamma-dependent recruitment of positive elongation factors to erythroid genes to promote transcription elongation by counteracting Pol II pausing. Our study establishes a mechanism for regulating tissue cell fate and differentiation through transcription elongation.
Collapse
|
75
|
Fujita T, Schlegel W. Promoter-proximal pausing of RNA polymerase II: an opportunity to regulate gene transcription. J Recept Signal Transduct Res 2010; 30:31-42. [PMID: 20170405 DOI: 10.3109/10799890903517921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (pol II) is a complex, highly regulated multiphasic process. Pol II pauses in the proximity of the promoter on a large fraction of transcribed genes. Transcription initiation and elongation of transcripts are under distinct control. Induced gene expression can thus be due to enhanced initiation and/or stimulated elongation. Pausing and resumption of the elongation of transcripts is under the control of transcription elongation factors. Three of them, P-TEFb, DSIF, and NELF have been well characterized as protein complexes with multiple general but also gene specific functions. Elongation factors execute checkpoint functions but serve also as targets for signaling processes which regulate gene expression. Due to the general importance of transcription elongation factors, it is difficult to delineate the mechanisms by which elongation of specific genes is regulated by specific intracellular signals. However, it is clear that the controlled pausing of pol II provides an opportunity to finely control timing and quantity of transcriptional output.
Collapse
|
76
|
Hirtreiter A, Damsma GE, Cheung ACM, Klose D, Grohmann D, Vojnic E, Martin ACR, Cramer P, Werner F. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res 2010; 38:4040-51. [PMID: 20197319 PMCID: PMC2896526 DOI: 10.1093/nar/gkq135] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spt5 is the only known RNA polymerase-associated factor that is conserved in all three domains of life. We have solved the structure of the Methanococcus jannaschii Spt4/5 complex by X-ray crystallography, and characterized its function and interaction with the archaeal RNAP in a wholly recombinant in vitro transcription system. Archaeal Spt4 and Spt5 form a stable complex that associates with RNAP independently of the DNA–RNA scaffold of the elongation complex. The association of Spt4/5 with RNAP results in a stimulation of transcription processivity, both in the absence and the presence of the non-template strand. A domain deletion analysis reveals the molecular anatomy of Spt4/5—the Spt5 Nus-G N-terminal (NGN) domain is the effector domain of the complex that both mediates the interaction with RNAP and is essential for its elongation activity. Using a mutagenesis approach, we have identified a hydrophobic pocket on the Spt5 NGN domain as binding site for RNAP, and reciprocally the RNAP clamp coiled-coil motif as binding site for Spt4/5.
Collapse
Affiliation(s)
- Angela Hirtreiter
- Division of Biosciences, University College London, Institute for Structural and Molecular Biology, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ding B, LeJeune D, Li S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J Biol Chem 2009; 285:5317-26. [PMID: 20042611 DOI: 10.1074/jbc.m109.082818] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In eukaryotic cells, transcription coupled nucleotide excision repair (TCR) is believed to be initiated by RNA polymerase II (Pol II) stalled at a lesion in the transcribed strand of a gene. Rad26, the yeast homolog of the human Cockayne syndrome group B (CSB) protein, plays an important role in TCR. Spt4, a transcription elongation factor that forms a complex with Spt5, has been shown to suppress TCR in rad26Delta cells. Here we present evidence that Spt4 indirectly suppresses Rad26-independent TCR by protecting Spt5 from degradation and stabilizing the interaction of Spt5 with Pol II. We further found that the C-terminal repeat (CTR) domain of Spt5, which is dispensable for cell viability and is not involved in interactions with Spt4 and Pol II, plays an important role in the suppression. The Spt5 CTR is phosphorylated by the Bur kinase. Inactivation of the Bur kinase partially alleviates TCR in rad26Delta cells. We propose that the Spt5 CTR suppresses Rad26-independent TCR by serving as a platform for assembly of a multiple protein suppressor complex that is associated with Pol II. Phosphorylation of the Spt5 CTR by the Bur kinase may facilitate the assembly of the suppressor complex.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
78
|
Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface. Biochem J 2009; 425:373-80. [DOI: 10.1042/bj20091422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eukaryotic transcription elongation factor DSIF [DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole) sensitivity-inducing factor] is composed of two subunits, hSpt4 and hSpt5, which are homologous to the yeast factors Spt4 and Spt5. DSIF is involved in regulating the processivity of RNA polymerase II and plays an essential role in transcriptional activation of eukaryotes. At several eukaryotic promoters, DSIF, together with NELF (negative elongation factor), leads to promoter-proximal pausing of RNA polymerase II. In the present paper we describe the crystal structure of hSpt4 in complex with the dimerization region of hSpt5 (amino acids 176–273) at a resolution of 1.55 Å (1 Å=0.1 nm). The heterodimer shows high structural similarity to its homologue from Saccharomyces cerevisiae. Furthermore, hSpt5-NGN is structurally similar to the NTD (N-terminal domain) of the bacterial transcription factor NusG. A homologue for hSpt4 has not yet been found in bacteria. However, the archaeal transcription factor RpoE” appears to be distantly related. Although a comparison of the NusG-NTD of Escherichia coli with hSpt5 revealed a similarity of the three-dimensional structures, interaction of E. coli NusG-NTD with hSpt4 could not be observed by NMR titration experiments. A conserved glutamate residue, which was shown to be crucial for dimerization in yeast, is also involved in the human heterodimer, but is substituted for a glutamine residue in Escherichia coli NusG. However, exchanging the glutamine for glutamate proved not to be sufficient to induce hSpt4 binding.
Collapse
|
79
|
Sun J, Li R. Human negative elongation factor activates transcription and regulates alternative transcription initiation. J Biol Chem 2009; 285:6443-52. [PMID: 20028984 DOI: 10.1074/jbc.m109.084285] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human negative elongation factor (NELF) is a four-subunit protein complex that inhibits the movement of RNA polymerase II (RNAPII) at an early elongation stage in vitro. NELF-mediated stalling of RNAPII also attenuates transcription of a number of inducible genes in human cells. To obtain a genome-wide understanding of human NELF-mediated transcriptional regulation in vivo, we carried out an exon array study in T47D breast cancer cells with transient small interfering RNA knockdown of individual NELF subunits. Upon depletion of NELF-A, -C, or -E, the vast majority of NELF-regulated genes were down-regulated. Many of the down-regulated genes encode proteins that play key roles in cell cycle progression. Consequently, NELF knockdown resulted in significant reduction in DNA synthesis and cell proliferation. Chromatin immunoprecipitation showed that NELF knockdown led to dissociation of RNAPII from the promoter-proximal region of the cell cycle-regulating genes. This was accompanied by decreased histone modifications associated with active transcription initiation (H3K9Ac) and elongation (H3K36Me3), as well as reduced recruitment of the general transcription factor TFIIB and increased overall histone occupancy at a subset of the down-regulated promoters. Lastly, our study indicates that NELF regulates alternative transcription initiation of BSG (Basigin) gene by differentially influencing RNAPII density at the two neighboring exons at the 5' end of the gene. Taken together, our data suggest a diverse transcriptional consequence of NELF-mediated RNAPII pausing in the human genome.
Collapse
Affiliation(s)
- Jianlong Sun
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | |
Collapse
|
80
|
Chen Y, Yamaguchi Y, Tsugeno Y, Yamamoto J, Yamada T, Nakamura M, Hisatake K, Handa H. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev 2009; 23:2765-77. [PMID: 19952111 DOI: 10.1101/gad.1834709] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcription elongation factor DSIF/Spt4-Spt5 is capable of promoting and inhibiting RNA polymerase II elongation and is involved in the expression of various genes. While it has been known for many years that DSIF inhibits elongation in collaboration with the negative elongation factor NELF, how DSIF promotes elongation is largely unknown. Here, an activity-based biochemical approach was taken to understand the mechanism of elongation activation by DSIF. We show that the Paf1 complex (Paf1C) and Tat-SF1, two factors implicated previously in elongation control, collaborate with DSIF to facilitate efficient elongation. In human cells, these factors are recruited to the FOS gene in a temporally coordinated manner and contribute to its high-level expression. We also show that elongation activation by these factors depends on P-TEFb-mediated phosphorylation of the Spt5 C-terminal region. A clear conclusion emerging from this study is that a set of elongation factors plays nonredundant, cooperative roles in elongation. This study also shows unambiguously that Paf1C, which is generally thought to have chromatin-related functions, is involve directlyd in elongation control.
Collapse
Affiliation(s)
- Yexi Chen
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Chen H, Contreras X, Yamaguchi Y, Handa H, Peterlin BM, Guo S. Repression of RNA polymerase II elongation in vivo is critically dependent on the C-terminus of Spt5. PLoS One 2009; 4:e6918. [PMID: 19742326 PMCID: PMC2735033 DOI: 10.1371/journal.pone.0006918] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/22/2009] [Indexed: 11/19/2022] Open
Abstract
The stalling of RNA polymerase II (RNAPII) at the promoters of many genes, including developmental regulators, stress-responsive genes, and HIVLTR, suggests transcription elongation as a critical regulatory step in addition to initiation. Spt5, the large subunit of the DRB sensitivity-inducing factor (DSIF), represses or activates RNAPII elongation in vitro. How RNAPII elongation is repressed in vivo is not well understood. Here we report that CTR1 and CTR2CT, the two repeat-containing regions constituting the C-terminus of Spt5, play a redundant role in repressing RNAPII elongation in vivo. First, mis-expression of Spt5 lacking CTR1 or CTR2CT is inconsequential, but mis-expression of Spt5 lacking the entire C-terminus (termed NSpt5) dominantly impairs embryogenesis in zebrafish. Second, NSpt5 de-represses the transcription of hsp70-4 in zebrafish embryos and HIVLTR in cultured human cells, which are repressed at the RNAPII elongation step under non-inducible conditions. Third, NSpt5 directly associates with hsp70-4 chromatin in vivo and increases the occupancy of RNAPII, positive transcription elongation factor b (P-TEFb), histone H3 Lys 4 trimethylation (H3K4Me3), and surprisingly, the negative elongation factor A (NELF-A) at the locus, indicating a direct action of NSpt5 on the elongation repressed locus. Together, these results reveal a dominant activity of NSpt5 to de-repress RNAPII elongation, and suggest that the C-terminus of Spt5 is critical for repressing RNAPII elongation in vivo.
Collapse
Affiliation(s)
- Hui Chen
- Department of Biopharmaceutical Sciences, and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Xavier Contreras
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Handa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - B. Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Su Guo
- Department of Biopharmaceutical Sciences, and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
82
|
He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, Liu HL, Wang CS, Jin H, Zhu JK. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 2009; 137:498-508. [PMID: 19410546 DOI: 10.1016/j.cell.2009.04.028] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/11/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing the siRNA triggers. KTF1 has similarity to the transcription elongation factor SPT5 and contains a C-terminal extension rich in GW/WG repeats. KTF1 colocalizes with ARGONAUTE 4 (AGO4) in punctate nuclear foci and binds AGO4 and RNA transcripts. Our results suggest KTF1 as an adaptor protein that binds scaffold transcripts generated by Pol V and recruits AGO4 and AGO4-bound siRNAs to form an RdDM effector complex. The dual interaction of an effector protein with AGO and small RNA target transcripts may be a general feature of RNA-silencing effector complexes.
Collapse
Affiliation(s)
- Xin-Jian He
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, 92521, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 2009; 29:4852-63. [PMID: 19581288 DOI: 10.1128/mcb.00609-09] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Saccharomyces cerevisiae kinase Bur1 is involved in coupling transcription elongation to chromatin modification, but not all important Bur1 targets in the elongation complex are known. Using a chemical genetics strategy wherein Bur1 kinase was engineered to be regulated by a specific inhibitor, we found that Bur1 phosphorylates the Spt5 C-terminal repeat domain (CTD) both in vivo and in isolated elongation complexes in vitro. Deletion of the Spt5 CTD or mutation of the Spt5 serines targeted by Bur1 reduces recruitment of the PAF complex, which functions to recruit factors involved in chromatin modification and mRNA maturation to elongating polymerase II (Pol II). Deletion of the Spt5 CTD showed the same defect in PAF recruitment as rapid inhibition of Bur1 kinase activity, and this Spt5 mutation led to a decrease in histone H3K4 trimethylation. Brief inhibition of Bur1 kinase activity in vivo also led to a significant decrease in phosphorylation of the Pol II CTD at Ser-2, showing that Bur1 also contributes to Pol II Ser-2 phosphorylation. Genetic results suggest that Bur1 is essential for growth because it targets multiple factors that play distinct roles in transcription.
Collapse
|
84
|
Schwer B, Schneider S, Pei Y, Aronova A, Shuman S. Characterization of the Schizosaccharomyces pombe Spt5-Spt4 complex. RNA (NEW YORK, N.Y.) 2009; 15:1241-50. [PMID: 19460865 PMCID: PMC2704081 DOI: 10.1261/rna.1572709] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Spt5-Spt4 complex regulates early transcription elongation by RNA polymerase II and has an imputed role in pre-mRNA processing via its physical association with mRNA capping enzymes. Here we characterize the Schizosaccharomyces pombe core Spt5-Spt4 complex as a heterodimer and map a trypsin-resistant Spt4-binding domain within the Spt5 subunit. A genetic analysis of Spt4 in S. pombe revealed it to be inessential for growth at 25 degrees C-30 degrees C but critical at 37 degrees C. These results echo the conditional spt4Delta growth phenotype in budding yeast, where we find that Saccharomyces cerevisiae and S. pombe Spt4 are functionally interchangeable. Complementation of S. cerevisiae spt4Delta and a two-hybrid assay for Spt4-Spt5 interaction provided a readout of the effects of 33 missense and truncation mutations on S. pombe Spt4 function in vivo, which were interpreted in light of the recent crystal structure of S. cerevisiae Spt4 fused to a fragment of Spt5. Our results highlight the importance of the Spt4 Zn2+-binding residues--Cys12, Cys15, Cys29, and Asp32--and of Ser57, a conserved constituent of the Spt4-Spt5 interface. The 990-amino acid S. pombe Spt5 protein has an exceptionally regular carboxyl-terminal domain (CTD) composed of 18 nonapeptide repeats. We find that as few as three nonamer repeats sufficed for S. pombe growth, but only when Spt4 was present. Synthetic lethality of the spt5(1-835) spt4Delta double mutant at 34 degrees C suggests that interaction of Spt4 with the central domain of Spt5 overlaps functionally with the Spt5 CTD.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | | | |
Collapse
|
85
|
Mooney RA, Schweimer K, Rösch P, Gottesman M, Landick R. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J Mol Biol 2009; 391:341-58. [PMID: 19500594 DOI: 10.1016/j.jmb.2009.05.078] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
NusG is a conserved regulatory protein that interacts with elongation complexes (ECs) of RNA polymerase, DNA, and RNA to modulate transcription in multiple and sometimes opposite ways. In Escherichia coli, NusG suppresses pausing and increases elongation rate, enhances termination by E. coli rho and phage HK022 Nun protein, and promotes antitermination by lambdaN and in ribosomal RNA operons. We report NMR studies that suggest that E. coli NusG consists of two largely independent N- and C-terminal structural domains, NTD and CTD, respectively. Based on tests of the functions of the NTD and CTD and variants of NusG in vivo and in vitro, we find that NTD alone is sufficient to suppress pausing and enhance transcript elongation in vitro. However, neither domain alone can enhance rho-dependent termination or support antitermination, indicating that interactions of both domains with ECs are required for these processes. We propose that the two domains of NusG mediate distinct interactions with ECs: the NTD interacts with RNA polymerase and the CTD interacts with rho and other regulators, providing NusG with different combinations of interactions to effect different regulatory outcomes.
Collapse
Affiliation(s)
- Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
86
|
Komori T, Inukai N, Yamada T, Yamaguchi Y, Handa H. Role of human transcription elongation factor DSIF in the suppression of senescence and apoptosis. Genes Cells 2009; 14:343-54. [PMID: 19210550 DOI: 10.1111/j.1365-2443.2008.01273.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DSIF is an evolutionarily conserved, ubiquitously expressed, heterodimeric transcription elongation factor composed of two subunits, Spt4 and Spt5. Previous biochemical studies have shown that DSIF positively and negatively regulates RNA polymerase II elongation in collaboration with other protein factors. While several data suggest that DSIF is a 'general' elongation factor, there is also evidence that DSIF exerts a tissue- and gene-specific function. Here we sought to address the question of whether physiological functions of DSIF are general or specific, by using a sophisticated knockdown approach and gene expression microarray analysis. We found that Spt5 is essential for cell growth of various human cell lines and that Spt5 knockdown causes senescence and apoptosis. However, Spt5 knockdown affects a surprisingly small number of genes. In Spt5 knockdown cells, the p53 signaling pathway is activated and mediates part of the knockdown-induced transcriptional change, but apoptotic cell death occurs in the absence of p53. Structure-function analysis of Spt5 shows that the C-terminal approximately 300 amino acid residues are not required to support cell proliferation. These results suggest that one of the functions of Spt5 is to suppress senescence and apoptosis, and that this function is exerted through its association with Spt4 and Pol II.
Collapse
Affiliation(s)
- Toshiharu Komori
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
87
|
Lolli G. Binding to DNA of the RNA-polymerase II C-terminal domain allows discrimination between Cdk7 and Cdk9 phosphorylation. Nucleic Acids Res 2009; 37:1260-8. [PMID: 19136461 PMCID: PMC2651791 DOI: 10.1093/nar/gkn1061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II regulates transcription through spatially and temporally coordinated events. Previous work had established that the CTD binds DNA but the significance of this interaction has not been determined. The present work shows that the CTD binds DNA in its unphosphorylated form, the form in which it is present in the pre-initiation complex. The CTD/DNA complex is recognized by and is phosphorylated by Cdk7 but not by Cdk9. Model-building studies indicate the structural mechanism underlying such specificity involves interaction of Cdk7 with DNA in the context of the CTD/DNA complex. The model has been tested by mutagenesis experiments. CTD dissociates from DNA following phosphorylation by Cdk7, allowing transcription initiation. The CTD then becomes accessible for further phosphorylation by Cdk9 that drives the transition to transcription elongation.
Collapse
Affiliation(s)
- Graziano Lolli
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
88
|
Krishnan K, Salomonis N, Guo S. Identification of Spt5 target genes in zebrafish development reveals its dual activity in vivo. PLoS One 2008; 3:e3621. [PMID: 18978947 PMCID: PMC2575381 DOI: 10.1371/journal.pone.0003621] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/30/2008] [Indexed: 11/19/2022] Open
Abstract
Spt5 is a conserved essential protein that represses or stimulates transcription elongation in vitro. Immunolocalization studies on Drosophila polytene chromosomes suggest that Spt5 is associated with many loci throughout the genome. However, little is known about the prevalence and identity of Spt5 target genes in vivo during development. Here, we identify direct target genes of Spt5 using fog(sk8) zebrafish mutant, which disrupts the foggy/spt5 gene. We identified that fog(sk8) and their wildtype siblings differentially express less than 5% of genes examined. These genes participate in diverse biological processes from stress response to cell fate specification. Up-regulated genes exhibit shorter overall gene length compared to all genes examined. Through chromatin immunoprecipitation in zebrafish embryos, we identified a subset of developmentally critical genes that are bound by both Spt5 and RNA polymerase II. The protein occupancy patterns on these genes are characteristic of both repressive and stimulatory elongation regulation. Together our findings establish Spt5 as a dual regulator of transcription elongation in vivo and identify a small but diverse set of target genes critically dependent on Spt5 during development.
Collapse
Affiliation(s)
- Keerthi Krishnan
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
| | - Nathan Salomonis
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
| | - Su Guo
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
89
|
Cheng B, Price DH. Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay. Nucleic Acids Res 2008; 36:e135. [PMID: 18832375 PMCID: PMC2582608 DOI: 10.1093/nar/gkn630] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/09/2008] [Accepted: 09/12/2008] [Indexed: 11/19/2022] Open
Abstract
The elongation phase of transcription by RNA polymerase II (RNAP II) is controlled by a carefully orchestrated series of interactions with both negative and positive factors. However, due to the limitations of current methods and techniques, not much is known about whether and how these proteins physically associate with the engaged polymerases. To gain insight into the detailed mechanisms involved, we established an experimental system for analyzing direct factor interactions to RNAP II elongation complexes on native gels, namely elongation complex electrophoretic mobility shift assay (EC-EMSA). This new assay effectively allowed detection of interactions of TFIIF, TTF2, TFIIS, DSIF and P-TEFb with elongation complexes generated from a natural promoter using an immobilized template. As an application of this assay system, we characterized the association of transcription elongation factor DSIF with RNAP II elongation complexes and discovered that the nascent transcript facilitated recruitment of DSIF. Examples of how the system can be manipulated to address different questions are provided. EC-EMSA should be useful for further investigation of factor interactions with RNAP II elongation complexes.
Collapse
Affiliation(s)
- Bo Cheng
- Molecular and Cellular Biology Program and Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - David H. Price
- Molecular and Cellular Biology Program and Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
90
|
Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J Virol 2008; 82:12291-303. [PMID: 18829756 DOI: 10.1128/jvi.01383-08] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanisms utilized by human immunodeficiency virus (HIV) to enter latency are poorly understood. Following the infection of Jurkat T cells with lentiviral vectors that express Tat in cis, gene expression is progressively silenced. Silencing is greatly enhanced when the lentiviral vectors carry an attenuated Tat gene with the H13L mutation. Individual clones of lentivirus-infected cells showed a wide range of shutdown rates, with the majority showing a 50% silencing frequency between 30 to 80 days. The silenced clones characteristically contained a small fraction (0 to 15%) of activated cells that continued to express d2EGFP. When d2EGFP(+) and d2EGFP(-) cell populations were isolated from the shutdown clones, they quickly reverted to the original distribution of inactive and active cells, suggesting that the d2EGFP(+) cells arise from stochastic fluctuations in gene expression. The detailed analysis of transcription initiation and elongation using chromatin immunoprecipitation (ChIP) assays confirms that Tat levels are restricted in the latently infected cells but gradually rise during proviral reactivation. ChIP assays using clones of latently infected cells demonstrate that the latent proviruses carry high levels of deacetylated histones and trimethylated histones. In contrast, the cellular genes IkappaB alpha and GAPDH had high levels of acetylated histones and no trimethylated histones. The levels of trimethylated histone H3 and HP1-alpha associated with HIV proviruses fell rapidly after tumor necrosis factor alpha activation. The progressive shutdown of HIV transcription following infection suggests that epigenetic mechanisms targeting chromatin structures selectively restrict HIV transcription initiation. This decreases Tat production below the levels that are required to sustain HIV gene expression.
Collapse
|
91
|
Gilchrist DA, Nechaev S, Lee C, Ghosh SKB, Collins JB, Li L, Gilmour DS, Adelman K. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev 2008; 22:1921-33. [PMID: 18628398 DOI: 10.1101/gad.1643208] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Negative Elongation Factor (NELF) is a transcription regulatory complex that induces stalling of RNA polymerase II (Pol II) during early transcription elongation and represses expression of several genes studied to date, including Drosophila Hsp70, mammalian proto-oncogene junB, and HIV RNA. To determine the full spectrum of NELF target genes in Drosophila, we performed a microarray analysis of S2 cells depleted of NELF and discovered that NELF RNAi affects many rapidly inducible genes involved in cellular responses to stimuli. Surprisingly, only one-third of NELF target genes were, like Hsp70, up-regulated by NELF-depletion, whereas the majority of target genes showed decreased expression levels upon NELF RNAi. Our data reveal that the presence of stalled Pol II at this latter group of genes enhances gene expression by maintaining a permissive chromatin architecture around the promoter-proximal region, and that loss of Pol II stalling at these promoters is accompanied by a significant increase in nucleosome occupancy and a decrease in histone H3 Lys 4 trimethylation. These findings identify a novel, positive role for stalled Pol II in regulating gene expression and suggest that there is a dynamic interplay between stalled Pol II and chromatin structure.
Collapse
Affiliation(s)
- Daniel A Gilchrist
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Nojima M, Huang Y, Tyagi M, Kao HY, Fujinaga K. The positive transcription elongation factor b is an essential cofactor for the activation of transcription by myocyte enhancer factor 2. J Mol Biol 2008; 382:275-87. [PMID: 18662700 DOI: 10.1016/j.jmb.2008.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/30/2008] [Accepted: 07/08/2008] [Indexed: 01/12/2023]
Abstract
The positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 and cyclin T1, stimulates the elongation of transcription by hyperphosphorylating the C-terminal region of RNA polymerase II. Aberrant activation of P-TEFb results in manifestations of cardiac hypertrophy in mice, suggesting that P-TEFb is an essential factor for cardiac myocyte function and development. Here, we present evidence that P-TEFb selectively activates transcription mediated by the myocyte enhancer factor 2 (MEF2) family of transcription factors, key regulatory factors for myocyte development. Knockdown of endogenous cyclin T1 in murine C2C12 cells abolishes MEF2-dependent reporter gene expression as well as transcription of endogenous MEF2 target genes, whereas overexpression of P-TEFb enhances MEF2-dependent transcription. P-TEFb interacts with MEF2 both in vitro and in vivo. Activation of MEF2-dependent transcription induced by serum starvation is mediated by a rapid dissociation of P-TEFb from its inhibitory subunit, HEXIM1, and a subsequent recruitment of P-TEFb to MEF2 binding sites in the promoter region of MEF2 target genes. These results indicate that recruitment of P-TEFb is a critical step for stimulation of MEF2-dependent transcription, therefore providing a fundamentally important regulatory mechanism underlying the transcriptional program in muscle cells.
Collapse
Affiliation(s)
- Masanori Nojima
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
93
|
Wenzel S, Schweimer K, Rösch P, Wöhrl BM. The small hSpt4 subunit of the human transcription elongation factor DSIF is a Zn-finger protein with α/β type topology. Biochem Biophys Res Commun 2008; 370:414-8. [DOI: 10.1016/j.bbrc.2008.03.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
|
94
|
Up-regulation of P-TEFb by the MEK1-extracellular signal-regulated kinase signaling pathway contributes to stimulated transcription elongation of immediate early genes in neuroendocrine cells. Mol Cell Biol 2007; 28:1630-43. [PMID: 18086894 DOI: 10.1128/mcb.01767-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The positive elongation factor P-TEFb appears to function as a crucial C-terminal-domain (CTD) kinase for RNA polymerase II (Pol II) transcribing immediate early genes (IEGs) in neuroendocrine GH4C1 cells. Chromatin immunoprecipitation indicated that in resting cells Pol II occupied the promoter-proximal regions of the c-fos and junB genes, together with the negative elongation factors DSIF and NELF. Thyrotropin-releasing hormone (TRH)-induced recruitment of positive transcription elongation factor b (P-TEFb) abolished the pausing of Pol II and enhanced phosphorylation of CTD serine 2, resulting in transcription elongation. In addition, P-TEFb was essential for splicing and 3'-end processing of IEG transcripts. Importantly, the MEK1-extracellular signal-regulated kinase (ERK) signaling pathway activated by TRH up-regulated nuclear CDK9 and CDK9/cyclinT1 dimers (i.e., P-TEFb), facilitating the recruitment of P-TEFb to c-fos and other IEGs. Thus, in addition to established gene transcription control via promoter response elements, the MEK1-ERK signaling pathway controls transcription elongation by Pol II via the up-regulation of nuclear CDK9 integrated into P-TEFb.
Collapse
|
95
|
P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Mol Cell Biol 2007; 28:1161-70. [PMID: 18070927 DOI: 10.1128/mcb.01859-07] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Positive transcription elongation factor b (P-TEFb) is the major metazoan RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) Ser2 kinase, and its activity is believed to promote productive elongation and coupled RNA processing. Here, we demonstrate that P-TEFb is critical for the transition of Pol II into a mature transcription elongation complex in vivo. Within 3 min following P-TEFb inhibition, most polymerases were restricted to within 150 bp of the transcription initiation site of the active Drosophila melanogaster Hsp70 gene, and live-cell imaging demonstrated that these polymerases were stably associated. Polymerases already productively elongating at the time of P-TEFb inhibition, however, proceeded with elongation in the absence of active P-TEFb and cleared from the Hsp70 gene. Strikingly, all transcription factors tested (P-TEFb, Spt5, Spt6, and TFIIS) and RNA-processing factor CstF50 exited the body of the gene with kinetics indistinguishable from that of Pol II. An analysis of the phosphorylation state of Pol II upon the inhibition of P-TEFb also revealed no detectable CTD Ser2 phosphatase activity upstream of the Hsp70 polyadenylation site. In the continued presence of P-TEFb inhibitor, Pol II levels across the gene eventually recovered.
Collapse
|
96
|
Biglione S, Byers SA, Price JP, Nguyen VT, Bensaude O, Price DH, Maury W. Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology 2007; 4:47. [PMID: 17625008 PMCID: PMC1948018 DOI: 10.1186/1742-4690-4-47] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/11/2007] [Indexed: 01/07/2023] Open
Abstract
Background The positive transcription elongation factor, P-TEFb, comprised of cyclin dependent kinase 9 (Cdk9) and cyclin T1, T2 or K regulates the productive elongation phase of RNA polymerase II (Pol II) dependent transcription of cellular and integrated viral genes. P-TEFb containing cyclin T1 is recruited to the HIV long terminal repeat (LTR) by binding to HIV Tat which in turn binds to the nascent HIV transcript. Within the cell, P-TEFb exists as a kinase-active, free form and a larger, kinase-inactive form that is believed to serve as a reservoir for the smaller form. Results We developed a method to rapidly quantitate the relative amounts of the two forms based on differential nuclear extraction. Using this technique, we found that titration of the P-TEFb inhibitors flavopiridol, DRB and seliciclib onto HeLa cells that support HIV replication led to a dose dependent loss of the large form of P-TEFb. Importantly, the reduction in the large form correlated with a reduction in HIV-1 replication such that when 50% of the large form was gone, HIV-1 replication was reduced by 50%. Some of the compounds were able to effectively block HIV replication without having a significant impact on cell viability. The most effective P-TEFb inhibitor flavopiridol was evaluated against HIV-1 in the physiologically relevant cell types, peripheral blood lymphocytes (PBLs) and monocyte derived macrophages (MDMs). Flavopiridol was found to have a smaller therapeutic index (LD50/IC50) in long term HIV-1 infectivity studies in primary cells due to greater cytotoxicity and reduced efficacy at blocking HIV-1 replication. Conclusion Initial short term studies with P-TEFb inhibitors demonstrated a dose dependent loss of the large form of P-TEFb within the cell and a concomitant reduction in HIV-1 infectivity without significant cytotoxicity. These findings suggested that inhibitors of P-TEFb may serve as effective anti-HIV-1 therapies. However, longer term HIV-1 replication studies indicated that these inhibitors were more cytotoxic and less efficacious against HIV-1 in the primary cell cultures.
Collapse
Affiliation(s)
- Sebastian Biglione
- Interdisciplinary Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah A Byers
- Interdisciplinary Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA
- Oregon Health & Science University, Department of Molecular and Medical Genetics, Portland, OR 97239, USA
| | - Jason P Price
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Van Trung Nguyen
- Laboratoire de Regulation de l'Expression Genetique, Ecole Normale Superieure, Paris, France
| | - Olivier Bensaude
- Laboratoire de Regulation de l'Expression Genetique, Ecole Normale Superieure, Paris, France
| | - David H Price
- Interdisciplinary Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Wendy Maury
- Interdisciplinary Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
97
|
Zhu W, Wada T, Okabe S, Taneda T, Yamaguchi Y, Handa H. DSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation. Nucleic Acids Res 2007; 35:4064-75. [PMID: 17567605 PMCID: PMC1919491 DOI: 10.1093/nar/gkm430] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The transcription elongation factor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) regulates RNA polymerase II (RNAPII) processivity by promoting, in concert with negative elongation factor (NELF), promoter-proximal pausing of RNAPII. DSIF is also reportedly involved in transcriptional activation. However, the role of DSIF in transcriptional activation by DNA-binding activators is unclear. Here we show that DSIF acts cooperatively with a DNA-binding activator, Gal4-VP16, to promote transcriptional activation. In the absence of DSIF, Gal4-VP16-activated transcription resulted in frequent pausing of RNAPII during elongation in vitro. The presence of DSIF reduced pausing, thereby supporting Gal4-VP16-mediated activation. We found that DSIF exerts its positive effects within a short time-frame from initiation to elongation, and that NELF does not affect the positive regulatory function of DSIF. Knockdown of the gene encoding the large subunit of DSIF, human Spt5 (hSpt5), in HeLa cells reduced Gal4-VP16-mediated activation of a reporter gene, but had no effect on expression in the absence of activator. Together, these results provide evidence that higher-level transcription has a stronger requirement for DSIF, and that DSIF contributes to efficient transcriptional activation by preventing RNAPII pausing during transcription elongation.
Collapse
Affiliation(s)
- Wenyan Zhu
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tadashi Wada
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- *To whom correspondence should be addressed. +81-45-924-5798+81-45-924-5834,
| | - Sachiko Okabe
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takuya Taneda
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Hiroshi Handa
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- *To whom correspondence should be addressed. +81-45-924-5798+81-45-924-5834,
| |
Collapse
|
98
|
Fu J, Yoon HG, Qin J, Wong J. Regulation of P-TEFb elongation complex activity by CDK9 acetylation. Mol Cell Biol 2007; 27:4641-51. [PMID: 17452463 PMCID: PMC1951478 DOI: 10.1128/mcb.00857-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P-TEFb, comprised of CDK9 and a cyclin T subunit, is a global transcriptional elongation factor important for most RNA polymerase II (pol II) transcription. P-TEFb facilitates transcription elongation in part by phosphorylating Ser2 of the heptapeptide repeat of the carboxy-terminal domain (CTD) of the largest subunit of pol II. Previous studies have shown that P-TEFb is subjected to negative regulation by forming an inactive complex with 7SK small RNA and HEXIM1. In an effort to investigate the molecular mechanism by which corepressor N-CoR mediates transcription repression, we identified HEXIM1 as an N-CoR-interacting protein. This finding led us to test whether the P-TEFb complex is regulated by acetylation. We demonstrate that CDK9 is an acetylated protein in cells and can be acetylated by p300 in vitro. Through both in vitro and in vivo assays, we identified lysine 44 of CDK9 as a major acetylation site. We present evidence that CDK9 is regulated by N-CoR and its associated HDAC3 and that acetylation of CDK9 affects its ability to phosphorylate the CTD of pol II. These results suggest that acetylation of CDK9 is an important posttranslational modification that is involved in regulating P-TEFb transcriptional elongation function.
Collapse
Affiliation(s)
- Junjiang Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
99
|
Fujita T, Ryser S, Tortola S, Piuz I, Schlegel W. Gene-specific recruitment of positive and negative elongation factors during stimulated transcription of the MKP-1 gene in neuroendocrine cells. Nucleic Acids Res 2007; 35:1007-17. [PMID: 17259211 PMCID: PMC1807974 DOI: 10.1093/nar/gkl1138] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
MAP kinase phosphatase-1 (MKP-1) controls nuclear MAP kinase activity with important consequences on cell growth or apoptosis. MKP-1 transcription is initiated constitutively but elongation is blocked within exon 1. It is unclear how induction of MKP-1 is controlled. Here, we report that the transcriptional elongation factors P-TEFb, DSIF and NELF regulate MKP-1 transcription in the pituitary GH4C1 cell line. Prior to stimulation, DSIF, NELF and RNA polymerase II (pol II) associate with the promoter-proximal region of the MKP-1 gene upstream of the elongation block site. Thyrotropin-releasing hormone (TRH) leads to recruitment of P-TEFb along the whole gene and a marked increase of DSIF and pol II downstream of the elongation block site, whereas NELF remains confined to the promoter-proximal region. 5,6-Dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) an inhibitor of P-TEFb eliminated TRH stimulation of MKP-1 transcription. DRB specifically inhibited TRH-induced recruitment of DSIF and P-TEFb to the MKP-1 gene. Furthermore, DRB treatment eliminated TRH-induced progression along the MKP-1 gene of pol II phosphorylated on Ser-2 of its CTD. These results indicate that P-TEFb is essential for gene-specific stimulated transcriptional elongation in mammalian cells via mechanisms which involve the activation of the DSIF–NELF complex and Ser-2 phosphorylation of pol II.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Fondation pour Recherches Médicales, University of Geneva, 64 av. de la Roseraie, 1211 Geneva, Switzerland
| | - Stephan Ryser
- Fondation pour Recherches Médicales, University of Geneva, 64 av. de la Roseraie, 1211 Geneva, Switzerland
| | | | - Isabelle Piuz
- Fondation pour Recherches Médicales, University of Geneva, 64 av. de la Roseraie, 1211 Geneva, Switzerland
| | - Werner Schlegel
- Fondation pour Recherches Médicales, University of Geneva, 64 av. de la Roseraie, 1211 Geneva, Switzerland
- *To whom correspondence should be addressed. Tel: +41 22 3823811; Fax: +41 22 3475979;
| |
Collapse
|
100
|
Wang Q, Young TM, Mathews MB, Pe’ery T. Developmental regulators containing the I-mfa domain interact with T cyclins and Tat and modulate transcription. J Mol Biol 2007; 367:630-46. [PMID: 17289077 PMCID: PMC1868487 DOI: 10.1016/j.jmb.2007.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 12/21/2006] [Accepted: 01/04/2007] [Indexed: 11/28/2022]
Abstract
Positive transcription elongation factor b (P-TEFb) complexes, composed of cyclin-dependent kinase 9 (CDK9) and cyclin T1 or T2, are engaged by many cellular transcription regulators that activate or inhibit transcription from specific promoters. The related I-mfa (inhibitor of MyoD family a) and HIC (human I-mfa-domain-containing) proteins function in myogenic differentiation and embryonic development by participating in the Wnt signaling pathway. We report that I-mfa is a novel regulator of P-TEFb. Both HIC and I-mfa interact through their homologous I-mfa domains with cyclin T1 and T2 at two binding sites. One site is the regulatory histidine-rich domain that interacts with CDK9 substrates including RNA polymerase II. The second site contains a lysine and arginine-rich motif that is highly conserved between the two T cyclins. This site overlaps and includes the previously identified Tat/TAR recognition motif of cyclin T1 required for activation of human immunodeficiency virus type 1 (HIV-1) transcription. HIC and I-mfa can serve as substrates for P-TEFb. Their I-mfa domains also bind the activation domain of HIV-1 Tat and inhibit Tat- and P-TEFb-dependent transcription from the HIV-1 promoter. This transcriptional repression is cell-type specific and can operate via Tat and cyclin T1. Genomic and sequence comparisons indicate that the I-mf and HIC genes, as well as flanking genes, diverged from a duplicated chromosomal region. Our findings link I-mfa and HIC to viral replication, and suggest that P-TEFb is modulated in the Wnt signaling pathway.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biochemistry and Molecular Biology, New Jersey Medical School
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., Newark, NJ 07103-2714
| | - Tara M. Young
- Department of Biochemistry and Molecular Biology, New Jersey Medical School
| | - Michael B. Mathews
- Department of Biochemistry and Molecular Biology, New Jersey Medical School
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., Newark, NJ 07103-2714
| | - Tsafi Pe’ery
- Department of Biochemistry and Molecular Biology, New Jersey Medical School
- Department of Medicine, New Jersey Medical School
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., Newark, NJ 07103-2714
- *Corresponding author: Ph:(973) 972-8763; Fax:(973) 972-5594 E-mail:
| |
Collapse
|