51
|
Audano M, Pedretti S, Ligorio S, Gualdrini F, Polletti S, Russo M, Ghisletti S, Bean C, Crestani M, Caruso D, De Fabiani E, Mitro N. Zc3h10 regulates adipogenesis by controlling translation and F-actin/mitochondria interaction. J Cell Biol 2021; 220:e202003173. [PMID: 33566069 PMCID: PMC7879490 DOI: 10.1083/jcb.202003173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
The commitment of mesenchymal stem cells to preadipocytes is stimulated by hormonal induction. Preadipocytes induced to differentiate repress protein synthesis, remodel their cytoskeleton, and increase mitochondrial function to support anabolic pathways. These changes enable differentiation into mature adipocytes. Our understanding of the factors that coordinately regulate the early events of adipocyte differentiation remains incomplete. Here, by using multipronged approaches, we have identified zinc finger CCCH-type containing 10 (Zc3h10) as a critical regulator of the early stages of adipogenesis. Zc3h10 depletion in preadipocytes resulted in increased protein translation and impaired filamentous (F)-actin remodeling, with the latter detrimental effect leading to mitochondrial and metabolic dysfunction. These defects negatively affected differentiation to mature adipocytes. In contrast, Zc3h10 overexpression yielded mature adipocytes with remarkably increased lipid droplet size. Overall, our study establishes Zc3h10 as a fundamental proadipogenic transcription factor that represses protein synthesis and promotes F-actin/mitochondria dynamics to ensure proper energy metabolism and favor lipid accumulation.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Ligorio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Humanitas University (Hunimed), Pieve Emanuele, Milan, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marta Russo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Camilla Bean
- Department of Biology, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
52
|
Petrosino JM, Longenecker JZ, Ramkumar S, Xu X, Dorn LE, Bratasz A, Yu L, Maurya S, Tolstikov V, Bussberg V, Janssen PM, Periasamy M, Kiebish MA, Duester G, von Lintig J, Ziouzenkova O, Accornero F. Paracardial fat remodeling affects systemic metabolism through alcohol dehydrogenase 1. J Clin Invest 2021; 131:141799. [PMID: 33586683 PMCID: PMC7880313 DOI: 10.1172/jci141799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
The relationship between adiposity and metabolic health is well established. However, very little is known about the fat depot, known as paracardial fat (pCF), located superior to and surrounding the heart. Here, we show that pCF remodels with aging and a high-fat diet and that the size and function of this depot are controlled by alcohol dehydrogenase 1 (ADH1), an enzyme that oxidizes retinol into retinaldehyde. Elderly individuals and individuals with obesity have low ADH1 expression in pCF, and in mice, genetic ablation of Adh1 is sufficient to drive pCF accumulation, dysfunction, and global impairments in metabolic flexibility. Metabolomics analysis revealed that pCF controlled the levels of circulating metabolites affecting fatty acid biosynthesis. Also, surgical removal of the pCF depot was sufficient to rescue the impairments in cardiometabolic flexibility and fitness observed in Adh1-deficient mice. Furthermore, treatment with retinaldehyde prevented pCF remodeling in these animals. Mechanistically, we found that the ADH1/retinaldehyde pathway works by driving PGC-1α nuclear translocation and promoting mitochondrial fusion and biogenesis in the pCF depot. Together, these data demonstrate that pCF is a critical regulator of cardiometabolic fitness and that retinaldehyde and its generating enzyme ADH1 act as critical regulators of adipocyte remodeling in the pCF depot.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jacob Z. Longenecker
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Xianyao Xu
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute
| | - Lisa E. Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Lianbo Yu
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Santosh Maurya
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Valerie Bussberg
- BERG, Precision Medicine Department, Framingham, Massachusetts, USA
| | - Paul M.L. Janssen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine, University of Central Florida, Orlando, Florida, USA
| | | | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ouliana Ziouzenkova
- Department of Human Sciences, College of Education and Human Ecology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
53
|
Baldini F, Fabbri R, Eberhagen C, Voci A, Portincasa P, Zischka H, Vergani L. Adipocyte hypertrophy parallels alterations of mitochondrial status in a cell model for adipose tissue dysfunction in obesity. Life Sci 2021; 265:118812. [PMID: 33278396 DOI: 10.1016/j.lfs.2020.118812] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
AIMS Adipocyte hypertrophy is the main cause of obesity. A deeper understanding of the molecular mechanisms regulating adipocyte dysfunction may help to plan strategies to treat/prevent obesity and its metabolic complications. Here, we investigated in vitro the molecular alterations associated with early adipocyte hypertrophy, focusing on mitochondrial dysfunction. MAIN METHODS As model of adipocyte hypertrophy, we employed 3T3-L1 preadipocytes firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids. As a function of differentiation and hypertrophy, we assessed triglyceride content, lipid droplet size, radical homeostasis by spectrophotometry and microscopy, as well as the expression of PPARγ, adiponectin and metallothioneins. Mitochondrial status was investigated by electron microscopy, oxygraph 2 k (O2K) high-resolution respirometry, fluorimetry and western blot. KEY FINDINGS Compared to mature adipocytes, hypertrophic adipocytes showed increased triglyceride accumulation and lipid peroxidation, larger or unique lipid droplet, up-regulated expression of PPARγ, adiponectin and metallothioneins. At mitochondrial level, early-hypertrophic adipocytes exhibited: (i) impaired mitochondrial oxygen consumption with parallel reduction in the mitochondrial complexes; (ii) no changes in citrate synthase and HSP60 expression, and in the inner mitochondrial membrane polarization; (iii) no stimulation of mitochondrial fatty acid oxidation. Our findings indicate that the content, integrity, and catabolic activity of mitochondria were rather unchanged in early hypertrophic adipocytes, while oxygen consumption and oxidant production were altered. SIGNIFICANCE In the model of early adipocyte hypertrophy exacerbated oxidative stress and impaired mitochondrial respiration were observed, likely depending on reduction in the mitochondrial complexes, without changes in mitochondrial mass and integrity.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Rita Fabbri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Piero Portincasa
- Division of Internal Medicine, Department of Biomedical Sciences and Human Oncology, University School of Medicine, 70124 Bari, Italy
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University of Munich, School of Medicine, Munich, Germany
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy.
| |
Collapse
|
54
|
Smith CO, Eliseev RA. Energy Metabolism During Osteogenic Differentiation: The Role of Akt. Stem Cells Dev 2021; 30:149-162. [PMID: 33307974 DOI: 10.1089/scd.2020.0141] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteogenic differentiation, the process by which bone marrow mesenchymal stem/stromal (a.k.a. skeletal stem) cells and osteoprogenitors form osteoblasts, is a critical event for bone formation during development, fracture repair, and tissue maintenance. Extra cellular and intracellular signaling pathways triggering osteogenic differentiation are relatively well known; however, the ensuing change in cell energy metabolism is less clearly defined. We and others have previously reported activation of mitochondria during osteogenic differentiation. To further elucidate the involved bioenergetic mechanisms and triggers, we tested the effect of osteogenic media containing ascorbate and β-glycerol phosphate, or various osteogenic hormones and growth factors on energy metabolism in long bone (ST2)- and calvarial bone (MC3T3-E1)-derived osteoprogenitors. We show that osteogenic media and differentiation factors, Wnt3a and BMP2, stimulate mitochondrial oxidative phosphorylation (OxPhos) with little effect on glycolysis. The activation of OxPhos occurs acutely, suggesting a metabolic signaling change rather than protein expression change. To this end, we found that the observed mitochondrial activation is Akt dependent. Akt is activated by osteogenic media, Wnt3a, and BMP2, leading to increased phosphorylation of various mitochondrial Akt targets, a phenomenon known to stimulate OxPhos. In sum, our data provide comprehensive analysis of cellular bioenergetics during osteoinduction in cells of two different origins (mesenchyme vs neural crest) and identify Wnt3a and BMP2 as physiological stimulators of mitochondrial respiration through Akt activation.
Collapse
Affiliation(s)
- Charles Owen Smith
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| |
Collapse
|
55
|
Zhang C, Qiao S, Wu J, Xu W, Ma S, Zhao B, Wang X. A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet β cells. Pharmacol Res 2021; 165:105416. [PMID: 33412277 DOI: 10.1016/j.phrs.2020.105416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/20/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Wacao pentacyclic triterpenoid saponins (WPTS) is a newly discovered insulin sensitivity enhancer. It is a powerful hypoglycemic compound derived from Silene viscidula, which has a hypoglycemic effect similar to that of insulin. It can rapidly reduce blood glucose levels, normalizing them within 3 days of administration. However, its mechanism of action is completely different from that of insulin. Thus, we aimed to determine the pharmacological effects and mechanism of activity of WPTS on type 2 diabetes to elucidate the main reasons for its rapid effects. The results showed that WPTS could effectively improve insulin resistance in KKAy diabetic mice. Comparative transcriptomics showed that WPTS could upregulate the expression of insulin resistance-related genes such as glucose transporter type 4 (Glut4), insulin receptor substrate 1 (Irs1), Akt, and phosphoinositide 3-kinase (PI3K), and downregulate the expression of lipid metabolism-related genes such as monoacylglycerol O-acyltransferase 1 (Moat1), lipase C (Lipc), and sphingomyelin phosphodiesterase 4 (Smpd4). The results indicated that the differentially expressed genes could regulate lipid metabolism via the PI3K/AKT metabolic pathway, and it is noteworthy that WPTS was found to upregulate Glut4 expression, decrease blood glucose levels, and attenuate insulin resistance via the PI3K/AKT pathway. Q-PCR and western blotting further validated the transcriptomics findings at the mRNA and protein levels, respectively. We believe that WPTS can achieve a rapid hypoglycemic effect by improving the lipid metabolism and insulin resistance of the diabetic KKAy mice. WPTS could be a very promising candidate drug for the treatment of diabetes and deserves further research.
Collapse
Affiliation(s)
- Caijuan Zhang
- School of Life Science, Beijing University of Chinese Medicine, China
| | - Sanyang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Jiahui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Wenjuan Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Baosheng Zhao
- Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China; Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China.
| |
Collapse
|
56
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
57
|
Mo J, Chen J, Zhang B. Critical roles of FAM134B in ER-phagy and diseases. Cell Death Dis 2020; 11:983. [PMID: 33199694 PMCID: PMC7670425 DOI: 10.1038/s41419-020-03195-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
FAM134B (also called JK-1, RETREG1), a member of the family with sequence similarity 134, was originally discovered as an oncogene in esophageal squamous cell carcinoma. However, its most famous function is that of an ER-phagy-regulating receptor. Over the decades, the powerful biological functions of FAM134B were gradually revealed. Overwhelming evidence indicates that its dysfunction is related to pathophysiological processes such as neuropathy, viral replication, inflammation, and cancer. This review describes the biological functions of FAM134B, focusing on its role in ER-phagy. In addition, we summarize the diseases in which it is involved and review the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Mo
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Jin Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
58
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
59
|
Hengpratom T, Lowe GM, Eumkeb G. An insight into anti-adipogenic properties of an Oroxylum indicum (L.) Kurz extract. BMC Complement Med Ther 2020; 20:319. [PMID: 33081786 PMCID: PMC7576871 DOI: 10.1186/s12906-020-03111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Background Oroxylum indicum fruit extract (OIE) has been reported to inhibit the development of adipocytes. However, the exact mechanism of its metabolic activity is not clearly defined. This study attempted to investigate whether OIE was involved in disrupting the cell cycle, glucose metabolism, and mitochondrial function in 3 T3-L1 cells. Methods The effect of the OIE on cell cycle progression was measured by flow cytometry along with observing the expression of the cycle regulator by immunoblotting. The effect of the OIE on glucose metabolism was investigated. The amount of glucose uptake (2-NBDG) influenced by insulin was determined as well as the protein tyrosine phosphorylation (PY20), and glucose transporter4 (GLUT4) expression was determined by immunoblotting assay. Mitochondria are also essential to metabolic processes. This study investigated mitochondrial activity using fluorescent lipophilic carbocyanine dye (JC-1) and mitochondria mass by MitoTracker Green (MTG) staining fluorescence dyes. Finally, cellular ATP concentration was measured using an ATP chemiluminescence assay. Results Treatment with OIE plus adipogenic stimulators for 24 h arrested cell cycle progression in the G2/M phase. Moreover, 200 μg/mL of OIE significantly diminished the expression of the insulin receptor (IR) and GLUT4 protein compared to the untreated-adipocytes (P < 0.05). The mitochondrial membrane potential (MMP) was significantly reduced (24 h) and increased (day 12) by OIE compared to untreated-adipocytes (P < 0.05). However, OIE maintained MMP and ATP at a similar level compared to the pre-adipocytes (day 12). Transmission electron microscope (TEM) results demonstrated that OIE could protect mitochondria deformation compared to the untreated-adipocytes. Conclusion These results suggest that the inhibitory effect of the OIE on adipogenesis may potentially inhibit the cell cycle and phosphorylation of IR, leading to a decrease in glucose uptake to the cells. The OIE also slows down the mitochondrial activity of the early phase of cell differentiation, which can also inhibit the development of fat cells. Supplementary information The online version contains supplementary material available at 10.1186/s12906-020-03111-2.
Collapse
Affiliation(s)
- Tanaporn Hengpratom
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Gordon M Lowe
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Griangsak Eumkeb
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
60
|
Yuan T, Keijer J, Guo AH, Lombard DB, de Boer VCJ. An optimized desuccinylase activity assay reveals a difference in desuccinylation activity between proliferative and differentiated cells. Sci Rep 2020; 10:17030. [PMID: 33046741 PMCID: PMC7552388 DOI: 10.1038/s41598-020-72833-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Succinylation is a novel post-translational modification identified on many proteins and is involved in multiple biological processes. Succinylation levels are dynamically regulated, balanced by succinylation and desuccinylation processes, and are closely connected to metabolic state in vivo. Sirtuins have been shown to possess NAD+-dependent desuccinylation activity in vitro and in vivo, among which the desuccinylation activity of SIRT5 is most extensively studied. Our understanding of the response of succinylation levels to different metabolic conditions, is hampered by the lack of a fast NAD+-dependent desuccinylation assay in a physiological context. In the present study, we therefore optimized and validated a fluorescence-based assay for measuring NAD+-dependent desuccinylation activity in cell lysates. Our results demonstrated that shorter and stricter reaction time was critical to approach the initial rate of NAD+-dependent desuccinylation activity in crude cell lysate systems, as compared to the desuccinylation reaction of purified His-SIRT5. Analysis of desuccinylation activity in SIRT5 knockout HEK293T cells confirmed the relevance of SIRT5 in cellular desuccinylation activity, as well as the presence of other NAD+-dependent desuccinylase activities. In addition, we were able to analyse desuccinylation and deacetylation activity in multiple cell lines using this assay. We showed a remarkably higher desuccinylase activity, but not deacetylase activity, in proliferative cultured muscle and adipose cells in comparison with their differentiated counterparts. Our results reveal an alteration in NAD+-dependent desuccinylation activity under different metabolic states.
Collapse
Affiliation(s)
- Taolin Yuan
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Angela H Guo
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands.
| |
Collapse
|
61
|
Mooli RGR, Mukhi D, Chen Z, Buckner N, Ramakrishnan SK. An indispensable role for dynamin-related protein 1 in beige and brown adipogenesis. J Cell Sci 2020; 133:jcs247593. [PMID: 32843579 PMCID: PMC10390025 DOI: 10.1242/jcs.247593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence indicates that proper mitochondrial dynamics are critical for adipocyte differentiation and functional thermogenic capacity. We found that the mitochondrial fission protein dynamin-related protein 1 (DRP1, also known as DNML1) is highly expressed in brown adipose tissue compared to expression in white adipose tissue, and these expression levels increase during brown adipocyte differentiation. Our results reveal that the inhibition of DRP1 using mdivi-1 mitigates beige adipocyte differentiation and differentiation-associated mitochondrial biogenesis. We found that DRP1 is essential for the induction of the early-phase beige adipogenic transcriptional program. Intriguingly, inhibition of DRP1 is dispensable following the induction of beige adipogenesis and adipogenesis-associated mitochondrial biogenesis. Altogether, we demonstrate that DRP1 in preadipocytes plays an essential role in beige and brown adipogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhonghe Chen
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nia Buckner
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
62
|
Paszkiewicz RL, Bergman RN, Santos RS, Frank AP, Woolcott OO, Iyer MS, Stefanovski D, Clegg DJ, Kabir M. A Peripheral CB1R Antagonist Increases Lipolysis, Oxygen Consumption Rate, and Markers of Beiging in 3T3-L1 Adipocytes Similar to RIM, Suggesting that Central Effects Can Be Avoided. Int J Mol Sci 2020; 21:E6639. [PMID: 32927872 PMCID: PMC7554772 DOI: 10.3390/ijms21186639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
With the increased prevalence of obesity and related co-morbidities, such as type 2 diabetes (T2D), worldwide, improvements in pharmacological treatments are necessary. The brain- and peripheral-cannabinoid receptor 1 (CB1R) antagonist rimonabant (RIM) has been shown to induce weight loss and improve glucose homeostasis. We have previously demonstrated that RIM promotes adipose tissue beiging and decreased adipocyte cell size, even during maintenance on a high-fat diet. Given the adverse side-effects of brain-penetrance with RIM, in this study we aimed to determine the site of action for a non-brain-penetrating CB1R antagonist AM6545. By using in vitro assays, we demonstrated the direct effects of this non-brain-penetrating CB1R antagonist on cultured adipocytes. Specifically, we showed, for the first time, that AM6545 significantly increases markers of adipose tissue beiging, mitochondrial biogenesis, and lipolysis in 3T3-L1 adipocytes. In addition, the oxygen consumption rate (OCR), consisting of baseline respiratory rate, proton leak, maximal respiratory capacity, and ATP synthase activity, was greater for cells exposed to AM6545, demonstrating greater mitochondrial uncoupling. Using a lipolysis inhibitor during real-time OCR measurements, we determined that the impact of CB1R antagonism on adipocytes is driven by increased lipolysis. Thus, our data suggest the direct role of CB1R antagonism on adipocytes does not require brain penetrance, supporting the importance of focus on peripheral CB1R antagonism pharmacology for reducing the incidence of obesity and T2D.
Collapse
Affiliation(s)
- Rebecca L. Paszkiewicz
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Richard N. Bergman
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Roberta S. Santos
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Aaron P. Frank
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Orison O. Woolcott
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Malini S. Iyer
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Darko Stefanovski
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Deborah J. Clegg
- The College of Nursing and Health Professions, Drexel University, Philadelphia, PA 19104, USA;
| | - Morvarid Kabir
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| |
Collapse
|
63
|
Zhang T, Qin X, Cao Y, Zhang J, Zhao J. Sea buckthorn ( Hippophae rhamnoides L.) oil enhances proliferation, adipocytes differentiation and insulin sensitivity in 3T3-L1 cells. Food Sci Biotechnol 2020; 29:1511-1518. [PMID: 33088600 DOI: 10.1007/s10068-020-00817-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
The objective of this study is to investigate the effects of sea buckthorn oil (SBO) on proliferation, adipogenic differentiation and insulin sensitivity of 3T3-L1 cells. Results showed that SBO increased cell proliferation ability, accompanied by up-regulated proliferating cell nuclear antigen content (p < 0.05) and p38 activity (p < 0.05). SBO also promoted adipogenesis and enhanced adipogenic transcriptional factors expression. Mitochondrial biogenesis related gene expressions were elevated in SBO treated cells (p < 0.05). Of note, SBO also increased glucose uptake and glucose transporter 4 abundance (p < 0.05). Cells treated with SBO exhibited greater phosphorylated insulin receptor substrate 1 (p < 0.05), phosphorylated-Akt (p < 0.05) and phosphorylated AMP-activated protein kinase (p < 0.01) contents. When taken together, these results suggest that SBO promotes 3T3-L1 cells proliferation, adipogenesis and insulin sensitivity.
Collapse
Affiliation(s)
- Ting Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| | - Xuze Qin
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| | - Yuxin Cao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| | - Jianxin Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| | - Junxing Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| |
Collapse
|
64
|
Increased mitochondrial respiration of adipocytes from metabolically unhealthy obese compared to healthy obese individuals. Sci Rep 2020; 10:12407. [PMID: 32709986 PMCID: PMC7382448 DOI: 10.1038/s41598-020-69016-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Among obese subjects, metabolically healthy (MHO) and unhealthy obese (MUHO) subjects exist, the latter being characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Insulin resistance and obesity are known to associate with alterations in mitochondrial density, morphology, and function. Therefore, we assessed mitochondrial function in human subcutaneous preadipocytes as well as in differentiated adipocytes derived from well-matched donors. Primary subcutaneous preadipocytes from 4 insulin-resistant (MUHO) versus 4 insulin-sensitive (MHO), non-diabetic, morbidly obese Caucasians (BMI > 40 kg/m2), matched for sex, age, BMI, and percentage of body fat, were differentiated in vitro to adipocytes. Real-time cellular respiration was measured using an XF24 Extracellular Flux Analyzer (Seahorse). Lipolysis was stimulated by forskolin (FSK) treatment. Mitochondrial respiration was fourfold higher in adipocytes versus preadipocytes (p = 1.6*10–9). In adipocytes, a negative correlation of mitochondrial respiration with donors’ insulin sensitivity was shown (p = 0.0008). Correspondingly, in adipocytes of MUHO subjects, an increased basal respiration (p = 0.002), higher proton leak (p = 0.04), elevated ATP production (p = 0.01), increased maximal respiration (p = 0.02), and higher spare respiratory capacity (p = 0.03) were found, compared to MHO. After stimulation with FSK, the differences in ATP production, maximal respiration and spare respiratory capacity were blunted. The differences in mitochondrial respiration between MUHO/MHO were not due to altered mitochondrial content, fuel switch, or lipid metabolism. Thus, despite the insulin resistance of MUHO, we could clearly show an elevated mitochondrial respiration of MUHO adipocytes. We suggest that the higher mitochondrial respiration reflects a compensatory mechanism to cope with insulin resistance and its consequences. Preserving this state of compensation might be an attractive goal for preventing or delaying the transition from insulin resistance to overt diabetes.
Collapse
|
65
|
Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. Maintaining social contacts: The physiological relevance of organelle interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118800. [PMID: 32712071 PMCID: PMC7377706 DOI: 10.1016/j.bbamcr.2020.118800] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Membrane-bound organelles in eukaryotic cells form an interactive network to coordinate and facilitate cellular functions. The formation of close contacts, termed "membrane contact sites" (MCSs), represents an intriguing strategy for organelle interaction and coordinated interplay. Emerging research is rapidly revealing new details of MCSs. They represent ubiquitous and diverse structures, which are important for many aspects of cell physiology and homeostasis. Here, we provide a comprehensive overview of the physiological relevance of organelle contacts. We focus on mitochondria, peroxisomes, the Golgi complex and the plasma membrane, and discuss the most recent findings on their interactions with other subcellular organelles and their multiple functions, including membrane contacts with the ER, lipid droplets and the endosomal/lysosomal compartment.
Collapse
Affiliation(s)
- Beatriz S C Silva
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Laura DiGiovanni
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
66
|
Overby H, Yang Y, Xu X, Wang S, Zhao L. Indomethacin promotes browning and brown adipogenesis in both murine and human fat cells. Pharmacol Res Perspect 2020; 8:e00592. [PMID: 32430973 PMCID: PMC7237299 DOI: 10.1002/prp2.592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 01/17/2023] Open
Abstract
Indomethacin (Indo), a nonsteroidal antiinflammatory drug, has been shown to promote murine brown adipogenesis both in vitro and in vivo, possibly due to its peroxisome proliferator-activated receptor gamma (PPARγ)-agonist activities. However, it is unclear whether Indo induces browning of white adipocytes from both murine and human origins or induces human brown adipogenesis. To bridge the gap, this study investigated the effects of increasing concentrations of Indo on murine 3T3-L1, human primary subcutaneous white adipocytes (HPsubQ), and human brown (HBr) adipocytes. The results show that Indo dose-dependently enhanced 3T3-L1 adipocyte differentiation and upregulated both mRNA and protein expression of brown and beige adipocyte markers, while simultaneously suppressing white adipocyte-specific marker mRNA expression. mRNA and protein expression of mitochondrial biogenesis and structural genes were dose-dependently enhanced in Indo treated 3T3-L1 adipocytes. This was accompanied by augmented mitochondrial DNA, enhanced oxygen consumption, proton leak, and maximal and spare respiratory capacity. Dose-dependent transactivation of PPARγ confirmed Indo's PPARγ-agonist activity in 3T3-L1 cells. Knockdown of PPARγ significantly attenuated Indo's activities in selective browning genes, demonstrating PPARγ dependence of these effects. Moreover, Indo enhanced mRNA and protein expression of brown markers in HPsubQ adipocytes. Interestingly, Indo-induced differential effects on individual PPARγ isoforms with significant dose-dependent induction of PPARγ-2 and suppression of PPARγ-1 protein expression. Finally, Indo significantly promoted brown adipogenesis in HBr cells. Taken together, these results demonstrate Indo to be a potent thermogenic compound in both murine and human fat cells and may be explored as a therapeutic agent for obesity treatment and prevention.
Collapse
Affiliation(s)
- Haley Overby
- Department of NutritionThe University of TennesseeKnoxvilleTNUSA
| | - Yang Yang
- Department of NutritionThe University of TennesseeKnoxvilleTNUSA
| | - Xinyun Xu
- Department of NutritionThe University of TennesseeKnoxvilleTNUSA
| | - Shu Wang
- Department of Nutritional SciencesTexas Tech UniversityLubbockTXUSA
| | - Ling Zhao
- Department of NutritionThe University of TennesseeKnoxvilleTNUSA
| |
Collapse
|
67
|
The biology of lipid droplet-bound mitochondria. Semin Cell Dev Biol 2020; 108:55-64. [PMID: 32446655 DOI: 10.1016/j.semcdb.2020.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
Proper regulation of cellular lipid storage and oxidation is indispensable for the maintenance of cellular energy homeostasis and health. Mitochondrial function has been shown to be a main determinant of functional lipid storage and oxidation, which is of particular interest for the adipose tissue, as it is the main site of triacylglyceride storage in lipid droplets (LDs). Recent studies have identified a subpopulation of mitochondria attached to LDs, peridroplet mitochondria (PDM) that can be separated from cytoplasmic mitochondria (CM) by centrifugation. PDM have distinct bioenergetics, proteome, cristae organization and dynamics that support LD build-up, however their role in adipose tissue biology remains largely unexplored. Therefore, understanding the molecular basis of LD homeostasis and their relationship to mitochondrial function and attachment in adipocytes is of major importance.
Collapse
|
68
|
Influenza infection rewires energy metabolism and induces browning features in adipose cells and tissues. Commun Biol 2020; 3:237. [PMID: 32409640 PMCID: PMC7224208 DOI: 10.1038/s42003-020-0965-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Like all obligate intracellular pathogens, influenza A virus (IAV) reprograms host cell's glucose and lipid metabolism to promote its own replication. However, the impact of influenza infection on white adipose tissue (WAT), a key tissue in the control of systemic energy homeostasis, has not been yet characterized. Here, we show that influenza infection induces alterations in whole-body glucose metabolism that persist long after the virus has been cleared. We report depot-specific changes in the WAT of IAV-infected mice, notably characterized by the appearance of thermogenic brown-like adipocytes within the subcutaneous fat depot. Importantly, viral RNA- and viral antigen-harboring cells are detected in the WAT of infected mice. Using in vitro approaches, we find that IAV infection enhances the expression of brown-adipogenesis-related genes in preadipocytes. Overall, our findings shed light on the role that the white adipose tissue, which lies at the crossroads of nutrition, metabolism and immunity, may play in influenza infection.
Collapse
|
69
|
Mor-Yossef Moldovan L, Kislev N, Lustig M, Pomeraniec L, Benayahu D. Biomechanical stimulation effects on the metabolism of adipocyte. J Cell Physiol 2020; 235:8702-8713. [PMID: 32330316 DOI: 10.1002/jcp.29714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 04/05/2020] [Indexed: 12/30/2022]
Abstract
Adipose tissue plays a leading role in obesity, which, in turn, can lead to Type 2 diabetes. Adipocytes (AD) respond to the biomechanical stimulation experienced in fat tissue under static stretch during prolonged sitting or lying. To investigate the effect of such chronic stimulation on adipocyte cell metabolism, we used an in vitro system to mimic the static stretch conditions. Under in vitro culture stretching, cells were analyzed at the single-cell level and we measured an increase in the projected area of the AD and higher content of lipid droplets. A decrease in the projected area of these cells' nucleus is associated with peroxisome proliferator-activated receptor-gamma expression and heterochromatin. This is the first study to reveal proteins that were altered under static stretch following a mass spectrometry analysis and main pathways that affect cell fate and metabolism. Bioinformatics analysis of the proteins indicated an increase in mitochondrial activity and associated pathways under static stretch stimulation. Quantification of the mitochondrial activity by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and the ATPase related proteins specifically measured ATP5B indicated an increase in adipogenesis which points to a higher rate of cell metabolism under static stretch. In summary, our results elaborate on the metabolism of AD exposed to biomechanical stimulation, that is, associated with altered cellular protein profile and thereby influenced cell fate. The static stretch stimulation accelerated adipocyte differentiation through increased mitochondrial activity. Hence, in this study, we introduce a new perspective in understanding the molecular regulation of mechano-transduction in adipogenesis.
Collapse
Affiliation(s)
- Lisa Mor-Yossef Moldovan
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Kislev
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maayan Lustig
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Leslie Pomeraniec
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
70
|
Chen Y, Cai GH, Xia B, Wang X, Zhang CC, Xie BC, Shi XC, Liu H, Lu JF, Zhang RX, Zhu MQ, Liu M, Yang SZ, Yang Zhang D, Chu XY, Khan R, Wang YL, Wu JW. Mitochondrial aconitase controls adipogenesis through mediation of cellular ATP production. FASEB J 2020; 34:6688-6702. [PMID: 32212192 DOI: 10.1096/fj.201903224rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/11/2022]
Abstract
Mitochondrial aconitase (Aco2) catalyzes the conversion of citrate to isocitrate in the TCA cycle, which produces NADH and FADH2, driving synthesis of ATP through OXPHOS. In this study, to explore the relationship between adipogenesis and mitochondrial energy metabolism, we hypothesize that Aco2 may play a key role in the lipid synthesis. Here, we show that overexpression of Aco2 in 3T3-L1 cells significantly increased lipogenesis and adipogenesis, accompanied by elevated mitochondrial biogenesis and ATP production. However, when ATP is depleted by rotenone, an inhibitor of the respiratory chain, the promotive role of Aco2 in adipogenesis is abolished. In contrast to Aco2 overexpression, deficiency of Aco2 markedly reduced lipogenesis and adipogenesis, along with the decreased mitochondrial biogenesis and ATP production. Supplementation of isocitrate efficiently rescued the inhibitory effect of Aco2 deficiency. Similarly, the restorative effect of isocitrate was abolished in the presence of rotenone. Together, these results show that Aco2 sustains normal adipogenesis through mediating ATP production, revealing a potential mechanistic link between TCA cycle enzyme and lipid synthesis. Our work suggest that regulation of adipose tissue mitochondria function may be a potential way for combating abnormal adipogenesis related diseases such as obesity and lipodystrophy.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guo He Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Cong Cong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bao Cai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shi Zhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dan Yang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rajwali Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Liang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
71
|
Baselet B, Driesen RB, Coninx E, Belmans N, Sieprath T, Lambrichts I, De Vos WH, Baatout S, Sonveaux P, Aerts A. Rosiglitazone Protects Endothelial Cells From Irradiation-Induced Mitochondrial Dysfunction. Front Pharmacol 2020; 11:268. [PMID: 32231569 PMCID: PMC7082323 DOI: 10.3389/fphar.2020.00268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Up to 50–60% of all cancer patients receive radiotherapy as part of their treatment strategy. However, the mechanisms accounting for increased vascular risks after irradiation are not completely understood. Mitochondrial dysfunction has been identified as a potential cause of radiation-induced atherosclerosis. Materials and Methods Assays for apoptosis, cellular metabolism, mitochondrial DNA content, functionality and morphology were used to compare the response of endothelial cells to a single 2 Gy dose of X-rays under basal conditions or after pharmacological treatments that either reduced (EtBr) or increased (rosiglitazone) mitochondrial content. Results Exposure to ionizing radiation caused a persistent reduction in mitochondrial content of endothelial cells. Pharmacological reduction of mitochondrial DNA content rendered endothelial cells more vulnerable to radiation-induced apoptosis, whereas rosiglitazone treatment increased oxidative metabolism and redox state and decreased the levels of apoptosis after irradiation. Conclusion Pre-existing mitochondrial damage sensitizes endothelial cells to ionizing radiation-induced mitochondrial dysfunction. Rosiglitazone protects endothelial cells from the detrimental effects of radiation exposure on mitochondrial metabolism and oxidative stress. Thus, our findings indicate that rosiglitazone may have potential value as prophylactic for radiation-induced atherosclerosis.
Collapse
Affiliation(s)
- Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Ronald B Driesen
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Emma Coninx
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Niels Belmans
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Tom Sieprath
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Ivo Lambrichts
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Winnok H De Vos
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Baatout
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pierre Sonveaux
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - An Aerts
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
72
|
Molecular Characterization of PGC-1β (PPAR Gamma Coactivator 1β) and its Roles in Mitochondrial Biogenesis in Blunt Snout Bream ( Megalobrama amblycephala). Int J Mol Sci 2020; 21:ijms21061935. [PMID: 32178369 PMCID: PMC7139572 DOI: 10.3390/ijms21061935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed at achieving the molecular characterization of peroxisome proliferator-activated receptor-gamma coactivator 1β (PGC-1β) and exploring its modulatory roles in mitochondria biogenesis in blunt snout bream (Megalobrama amblycephala). A full-length cDNA of PGC-1β was cloned from liver which covered 3110 bp encoding 859 amino acids. The conserved motifs of PGC-1β family proteins were gained by MEME software, and the phylogenetic analyses showed motif loss and rearrangement of PGC-1β in fish. The function of PGC-1β was evaluated through overexpression and knockdown of PGC-1β in primary hepatocytes of blunt snout bream. We observed overexpression of PGC-1β along with enhanced mitochondrial transcription factor A (TFAM) expression and mtDNA copies in hepatocytes, and its knockdown led to slightly reduced NRF1 expression. However, knockdown of PGC-1β did not significantly influence TFAM expression or mtDNA copies. The alterations in mitochondria biogenesis were assessed following high-fat intake, and the results showed that it induces downregulation of PGC-1β. Furthermore, significant decreases in mitochondrial respiratory chain activities and mitochondria biogenesis were observed by high-fat intake. Our findings demonstrated that overexpression of PGC-1β induces the enhancement of TFAM expression and mtDNA amount but not NRF-1. Therefore, it could be concluded that PGC-1β is involved in mitochondrial biogenesis in blunt snout bream but not through PGC-1β/NRF-1 pathway.
Collapse
|
73
|
Menikdiwela KR, Ramalingam L, Rasha F, Wang S, Dufour JM, Kalupahana NS, Sunahara KKS, Martins JO, Moustaid-Moussa N. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin-angiotensin system. Cell Death Dis 2020; 11:87. [PMID: 32015340 PMCID: PMC6997396 DOI: 10.1038/s41419-020-2275-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis.
Collapse
Affiliation(s)
- Kalhara R Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Jannette M Dufour
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Karen K S Sunahara
- Department of Experimental Physiopatholgy, Medical School University of São Paulo, São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
74
|
Burrell JA, Richard AJ, King WT, Stephens JM. Mitochondrial Pyruvate Carriers are not Required for Adipogenesis but are Regulated by High-Fat Feeding in Brown Adipose Tissue. Obesity (Silver Spring) 2020; 28:293-302. [PMID: 31970913 PMCID: PMC6986308 DOI: 10.1002/oby.22678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objectives of this study were to assess the role of mitochondrial pyruvate carriers (MPCs) in adipocyte development in vitro and determine whether MPCs are regulated in vivo by high-fat feeding in male and female C57BL/6J mice. METHODS This study utilized small interfering RNA-mediated knockdown to assess the requirement of MPC1 for adipogenesis in the 3T3-L1 model system. Treatment with UK-5099, a potent pharmacological MPC inhibitor, was also used to assess the loss of MPC activity. Western blot analysis was performed on adipose tissue samples from mice on a low-fat diet or a high-fat diet (HFD) for 12 weeks. RESULTS The loss of MPC expression via small interfering RNA-mediated knockdown or pharmacological inhibition did not affect adipogenesis of 3T3-L1 cells. In vivo studies indicated that expression of MPCs was significantly decreased in brown adipose tissue of male mice, but not female, on an HFD. CONCLUSIONS Although MPCs are essential for pyruvate transport, MPCs are not required for adipogenesis in vitro, suggesting that other substrates can be used for energy production when the MPC complex is not functional. Also, a significant decrease in MPC1 and 2 expression occurred in brown fat, but not white fat, of male mice fed an HFD.
Collapse
Affiliation(s)
- Jasmine A Burrell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Allison J Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - William T King
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Jacqueline M Stephens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
75
|
Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev 2020; 21:e12958. [PMID: 31777187 DOI: 10.1111/obr.12958] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
White adipose tissue is one of the largest organs of the body. It plays a key role in whole-body energy status and metabolism; it not only stores excess energy but also secretes various hormones and metabolites to regulate body energy balance. Healthy adipose tissue capable of expanding is needed for metabolic well-being and to prevent accumulation of triglycerides to other organs. Mitochondria govern several important functions in the adipose tissue. We review the derangements of mitochondrial function in white adipose tissue in the obese state. Downregulation of mitochondrial function or biogenesis in the white adipose tissue is a central driver for obesity-associated metabolic diseases. Mitochondrial functions compromised in obesity include oxidative functions and renewal and enlargement of the adipose tissue through recruitment and differentiation of adipocyte progenitor cells. These changes adversely affect whole-body metabolic health. Dysfunction of the white adipose tissue mitochondria in obesity has long-term consequences for the metabolism of adipose tissue and the whole body. Understanding the pathways behind mitochondrial dysfunction may help reveal targets for pharmacological or nutritional interventions that enhance mitochondrial biogenesis or function in adipose tissue.
Collapse
Affiliation(s)
- Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Jokinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
76
|
Masschelin PM, Cox AR, Chernis N, Hartig SM. The Impact of Oxidative Stress on Adipose Tissue Energy Balance. Front Physiol 2020; 10:1638. [PMID: 32038305 PMCID: PMC6987041 DOI: 10.3389/fphys.2019.01638] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
Overnutrition and sedentary activity reinforce the growing trend of worldwide obesity, insulin resistance, and type 2 diabetes. However, we have limited insight into how food intake generates sophisticated metabolic perturbations associated with obesity. Accumulation of mitochondrial oxidative stress contributes to the metabolic changes in obesity, but the mechanisms and significance are unclear. In white adipose tissue (WAT), mitochondrial oxidative stress, and the generation of reactive oxygen species (ROS) impact the endocrine and metabolic function of fat cells. The central role of mitochondria in nutrient handling suggests pharmacological targeting of pathological oxidative stress likely improves the metabolic profile of obesity. This review will summarize the critical pathogenic mechanisms of obesity-driven oxidative stress in WAT.
Collapse
Affiliation(s)
- Peter M Masschelin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Natasha Chernis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
77
|
Ferrero KM, Koch WJ. Metabolic Crosstalk between the Heart and Fat. Korean Circ J 2020; 50:379-394. [PMID: 32096362 PMCID: PMC7098822 DOI: 10.4070/kcj.2019.0400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
It is now recognized that the heart can behave as a true endocrine organ, which can modulate the function of other tissues. Emerging evidence has shown that visceral fat is one such distant organ the heart communicates with. In fact, it appears that bi-directional crosstalk between adipose tissue and the myocardium is crucial to maintenance of normal function in both organs. In particular, factors secreted from the heart are now known to influence the metabolic activity of adipose tissue and other organs, as well as modulate the release of metabolic substrates and signaling molecules from the periphery. This review summarizes current knowledge regarding primary cardiokines and adipokines involved in heart-fat crosstalk, as well as implications of their dysregulation for cardiovascular health.
Collapse
Affiliation(s)
- Kimberly M Ferrero
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
78
|
Chernis N, Masschelin P, Cox AR, Hartig SM. Bisphenol AF promotes inflammation in human white adipocytes. Am J Physiol Cell Physiol 2020; 318:C63-C72. [PMID: 31596606 PMCID: PMC6985838 DOI: 10.1152/ajpcell.00175.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals interact with transcription factors essential for adipocyte differentiation. Exposure to endocrine-disrupting chemicals corresponds with elevated risks of obesity, but the effects of these compounds on human cells remain largely undefined. Widespread use of bisphenol AF (BPAF) as a bisphenol A (BPA) alternative in the plastics industry presents unknown health risks. To this end, we discovered that BPAF interferes with the metabolic function of mature human adipocytes. Although 4-day exposures to BPAF accelerated adipocyte differentiation, we observed no effect on mature fat cell marker genes. Additional gene and protein expression analysis showed that BPAF treatment during human adipocyte differentiation failed to suppress the proinflammatory transcription factor STAT1. Microscopy and respirometry experiments demonstrated that BPAF impaired mitochondrial function and structure. To test the hypothesis that BPAF fosters vulnerabilities to STAT1 activation, we treated mature adipocytes previously exposed to BPAF with interferon-γ (IFNγ). BPAF increased IFNγ activation of STAT1 and exposed mitochondrial vulnerabilities that disrupt adipocyte lipid and carbohydrate metabolism. Collectively, our data establish that BPAF activates inflammatory signaling pathways that degrade metabolic activity in human adipocytes. These findings suggest how the BPA alternative BPAF contributes to metabolic changes that correspond with obesity.
Collapse
Affiliation(s)
- Natasha Chernis
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Peter Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
79
|
Nam W, Nam SH, Kim SP, Levin C, Friedman M. Anti-adipogenic and anti-obesity activities of purpurin in 3T3-L1 preadipocyte cells and in mice fed a high-fat diet. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:364. [PMID: 31829180 PMCID: PMC6907186 DOI: 10.1186/s12906-019-2756-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The body responds to overnutrition by converting stem cells to adipocytes. In vitro and in vivo studies have shown polyphenols and other natural compounds to be anti-adipogenic, presumably due in part to their antioxidant properties. Purpurin is a highly antioxidative anthraquinone and previous studies on anthraquinones have reported numerous biological activities in cells and animals. Anthraquinones have also been used to stimulate osteoblast differentiation, an inversely-related process to that of adipocyte differentiation. We propose that due to its high antioxidative properties, purpurin administration might attenuate adipogenesis in cells and in mice. METHODS Our study will test the effect purpurin has on adipogenesis using both in vitro and in vivo models. The in vitro model consists of tracking with various biomarkers, the differentiation of pre-adipocyte to adipocytes in cell culture. The compound will then be tested in mice fed a high-fat diet. Murine 3T3-L1 preadipocyte cells were stimulated to differentiate in the presence or absence of purpurin. The following cellular parameters were measured: intracellular reactive oxygen species (ROS), membrane potential of the mitochondria, ATP production, activation of AMPK (adenosine 5'-monophosphate-activated protein kinase), insulin-induced lipid accumulation, triglyceride accumulation, and expression of PPARγ (peroxisome proliferator activated receptor-γ) and C/EBPα (CCAAT enhancer binding protein α). In vivo, mice were fed high fat diets supplemented with various levels of purpurin. Data collected from the animals included anthropometric data, glucose tolerance test results, and postmortem plasma glucose, lipid levels, and organ examinations. RESULTS The administration of purpurin at 50 and 100 μM in 3T3-L1 cells, and at 40 and 80 mg/kg in mice proved to be a sensitive range: the lower concentrations affected several measured parameters, whereas at the higher doses purpurin consistently mitigated biomarkers associated with adipogenesis, and weight gain in mice. Purpurin appears to be an effective antiadipogenic compound. CONCLUSION The anthraquinone purpurin has potent in vitro anti-adipogenic effects in cells and in vivo anti-obesity effects in mice consuming a high-fat diet. Differentiation of 3T3-L1 cells was dose-dependently inhibited by purpurin, apparently by AMPK activation. Mice on a high-fat diet experienced a dose-dependent reduction in induced weight gain of up to 55%.
Collapse
Affiliation(s)
- Woo Nam
- Department of Biological Science, Ajou University, Suwon, 16499, Republic of Korea
| | - Seok Hyun Nam
- Department of Biological Science, Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Phil Kim
- Research Institute of Basic Science, Ajou University, Suwon, 16499, Republic of Korea.
- STR Biotech Co., Ltd., Chuncheon, 24232, Republic of Korea.
| | - Carol Levin
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, 94710, USA
| | - Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, 94710, USA.
| |
Collapse
|
80
|
Lee JH, Park A, Oh KJ, Lee SC, Kim WK, Bae KH. The Role of Adipose Tissue Mitochondria: Regulation of Mitochondrial Function for the Treatment of Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20194924. [PMID: 31590292 PMCID: PMC6801758 DOI: 10.3390/ijms20194924] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
: Mitochondria play a key role in maintaining energy homeostasis in metabolic tissues, including adipose tissues. The two main types of adipose tissues are the white adipose tissue (WAT) and the brown adipose tissue (BAT). WAT primarily stores excess energy, whereas BAT is predominantly responsible for energy expenditure by non-shivering thermogenesis through the mitochondria. WAT in response to appropriate stimuli such as cold exposure and β-adrenergic agonist undergoes browning wherein it acts as BAT, which is characterized by the presence of a higher number of mitochondria. Mitochondrial dysfunction in adipocytes has been reported to have strong correlation with metabolic diseases, including obesity and type 2 diabetes. Dysfunction of mitochondria results in detrimental effects on adipocyte differentiation, lipid metabolism, insulin sensitivity, oxidative capacity, and thermogenesis, which consequently lead to metabolic diseases. Recent studies have shown that mitochondrial function can be improved by using thiazolidinedione, mitochondria-targeted antioxidants, and dietary natural compounds; by performing exercise; and by controlling caloric restriction, thereby maintaining the metabolic homeostasis by inducing adaptive thermogenesis of BAT and browning of WAT. In this review, we focus on and summarize the molecular regulation involved in the improvement of mitochondrial function in adipose tissues so that strategies can be developed to treat metabolic diseases.
Collapse
Affiliation(s)
- Jae Ho Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Anna Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
81
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
82
|
Rosiglitazone-induced changes in the oxidative stress metabolism and fatty acid composition in relation with trace element status in the primary adipocytes. J Med Biochem 2019; 39:267-275. [PMID: 33746608 PMCID: PMC7955996 DOI: 10.2478/jomb-2019-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic syndrome, obesity and type 2 diabetes are metabolic disorders characterized by the insulin resistance and the impairment in the insulin secretion. Since impairment in the oxidative stress and adipocyte metabolism contribute to the formation of obesity and diabetes, targeting adipose tissue can be considered as an effective approach to fight against them. Rosiglitazone is used for treatment for patients with type 2 diabetes via inducing lipogenesis and transdifferentiation of white adipose tissue into brown adipose tissue. Since the development of such therapeutics is required to control the formation and function of brown fat cells, we aimed to reveal possible molecular mechanisms behind rosiglitazone induced biochemical changes in the adipose tissue. Methods Cells were expanded in the adipocyte culture medium supplemented with 5 µg/mL insulin following 2 days' induction. After those cells were treated with rosiglitazone 0, 0.13 mol/L and 10 µmol/L rosiglitazone for 48 hours and at 8th day, cells were collected and stored at -80 °C. Then the cells were used to evaluate antioxidant enzyme activities, mineral and trace element levels and fatty acid composition. Results Glucose-6-phosphate dehydrogenase and glutathione reductase significantly reduced in rosiglitazone-treated groups compared to the control. Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Cs, Ba and Pb were determined in the cell lysates via ICP-MS. Also, relative FAME content decreased in the rosiglitazone-treated groups compared to the control. Conclusions Rosiglitazone treatment at low doses showed promising results which may promote brown adipose tissue formation.
Collapse
|
83
|
Tomasello B, Malfa GA, La Mantia A, Miceli N, Sferrazzo G, Taviano MF, Di Giacomo C, Renis M, Acquaviva R. Anti-adipogenic and anti-oxidant effects of a standardised extract of Moro blood oranges (Citrus sinensis (L.) Osbeck) during adipocyte differentiation of 3T3-L1 preadipocytes. Nat Prod Res 2019; 35:2660-2667. [DOI: 10.1080/14786419.2019.1660337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Tomasello
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | | | - Alfonsina La Mantia
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Claudia Di Giacomo
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Marcella Renis
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| |
Collapse
|
84
|
Cai M, Zhao J, Liu Q, Wang X, Wang Y. FAM134B improves preadipocytes differentiation by enhancing mitophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158508. [PMID: 31446166 DOI: 10.1016/j.bbalip.2019.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/09/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022]
Abstract
Family with Sequence Similarity 134, Member B (FAM134B) is a protein that known to be necessary for the long-term survival of nociceptive and autonomic ganglion neurons. Recent work has exhibited that FAM134B plays a pivotal role in autophagy-mediated turnover of endoplasmic reticulum (ER) membranes, tumor inhibition and lipid homeostasis. In this study, we provide mechanistic links between FAM134B and adipocyte differentiation. Here, we found that adipocyte-specific FAM134B overexpression mice are obese and have increased white adipose tissue (WAT) mass. Serum tests showed that they developed high glucose level and severe insulin resistance. In addition, they also exhibited enhanced autophagy and reduced mitochondria amount, suggesting the function of FAM134B to promote autophagy in adipocytes. Overexpression of FAM134B in 3 T3-L1 preadipocytes promoted autophagy and differentiation, while the effect could be inhibited after treatment with autophagyinhibitors, 3-methyladenine (3-MA). Overexpressioncells also showed an early reduction of mitochondria number, while its autophagy flux level increased fast from differentiation day 2. These findings indicate that FAM134B improves adipocytes differentiation through enhancing mitophagy.
Collapse
Affiliation(s)
- Min Cai
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jing Zhao
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Qing Liu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
85
|
Wang S, Pan MH, Hung WL, Tung YC, Ho CT. From white to beige adipocytes: therapeutic potential of dietary molecules against obesity and their molecular mechanisms. Food Funct 2019; 10:1263-1279. [PMID: 30735224 DOI: 10.1039/c8fo02154f] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global incidence of obesity and its complications continue to rise along with a demand for novel therapeutic approaches. In addition to classic brown adipose tissue (BAT), the formation of brown-like adipocytes called beige adipocytes, within white adipose tissue (WAT), has attracted much attention as a therapeutic target due to its inducible features when stimulated, resulting in the dissipation of extra energy as heat. There are various dietary agents that are able to modulate the beige-development process by interacting with critical molecular signaling cascades, leading to the enhancement of thermogenesis. Although challenges still remain regarding the origin of the beige adipocytes, the crosstalk with activation of BAT and induction of the beiging of white fat may provide attractive potential strategies for management of obesity.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | | | | | |
Collapse
|
86
|
Tang X, Li J, Zhao WG, Sun H, Guo Z, Jing L, She Z, Yuan T, Liu SN, Liu Q, Fu Y, Sun W. Comprehensive map and functional annotation of the mouse white adipose tissue proteome. PeerJ 2019; 7:e7352. [PMID: 31380149 PMCID: PMC6661141 DOI: 10.7717/peerj.7352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022] Open
Abstract
White adipose tissue (WAT) plays a significant role in energy metabolism and the obesity epidemic. In this study, we sought to (1) profile the mouse WAT proteome with advanced 2DLC/MS/MS approach, (2) provide insight into WAT function based on protein functional annotation, and (3) predict potentially secreted proteins. A label-free 2DLC/MS/MS proteomic approach was used to identify the WAT proteome from female mouse WAT. A total of 6,039 proteins in WAT were identified, among which 5,160 were quantified (spanning a magnitude of 106) using an intensity-based absolute quantification algorithm, and 3,117 proteins were reported by proteomics technology for the first time in WAT. To comprehensively analyze the function of WAT, the proteins were divided into three quantiles based on abundance and we found that proteins of different abundance performed different functions. High-abundance proteins (the top 90%, 1,219 proteins) were involved in energy metabolism; middle-abundance proteins (90–99%, 2,273 proteins) were involved in the regulation of protein synthesis; and low-abundance proteins (99–100%, 1,668 proteins) were associated with lipid metabolism and WAT beiging. Furthermore, 800 proteins were predicted by SignalP4.0 to have signal peptides, 265 proteins had never been reported, and five have been reported as adipokines. The above results provide a large dataset of the normal mouse WAT proteome, which might be useful for WAT function research.
Collapse
Affiliation(s)
- Xiaoyue Tang
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Gang Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li Jing
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhufang She
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuai-Nan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Fu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
87
|
Kodde A, Engels E, Oosting A, van Limpt K, van der Beek EM, Keijer J. Maturation of White Adipose Tissue Function in C57BL/6j Mice From Weaning to Young Adulthood. Front Physiol 2019; 10:836. [PMID: 31354508 PMCID: PMC6629938 DOI: 10.3389/fphys.2019.00836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/17/2019] [Indexed: 01/13/2023] Open
Abstract
White adipose tissue (WAT) distribution and WAT mitochondrial function contribute to total body metabolic health throughout life. Nutritional interventions starting in the postweaning period may impact later life WAT health and function. We therefore assessed changes in mitochondrial density and function markers in WAT depots of young mice. Inguinal (ING), epididymal (EPI) and retroperitoneal (RP) WAT of 21, 42 and 98 days old C57BL/6j mice was collected. Mitochondrial density [citrate synthase (CS), mtDNA] and function [subunits of oxidative phosphorylation complexes (OXPHOS)] markers were analyzed, together with gene expression of browning markers (Ucp1, Cidea). mRNA of ING WAT of 21 and 98 old mice was sequenced to further investigate functional changes of the mitochondria and alterations in cell populations. CS levels decreased significantly over time in all depots. ING showed most pronounced changes, including significantly decreased levels of OXPHOS complex I, II, and III subunits and gene expression of Ucp1 (PN21-42 and PN42-98) and Cidea (PN42-98). White adipocyte markers were higher at PN98 in ING WAT. Analyses of RNA sequence data showed that the mitochondrial functional profile changed over time from “growth-supporting” mitochondria focused on ATP production (and dissipation), to more steady-state mitochondria with more diverse functions and higher biosynthesis. Mitochondrial density and energy metabolism markers declined in all three depots over time after weaning. This was most pronounced in ING WAT and associated with reduced browning markers, increased whitening and an altered metabolism. In particular the PN21-42 period may provide a time window to study mitochondrial adaptation and effects of nutritional exposures relevant for later life metabolic health.
Collapse
Affiliation(s)
| | | | | | | | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, Netherlands.,Department of Pediatrics, University Medical Center Groningen - University of Groningen, Groningen, Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
88
|
Woo CY, Jang JE, Lee SE, Koh EH, Lee KU. Mitochondrial Dysfunction in Adipocytes as a Primary Cause of Adipose Tissue Inflammation. Diabetes Metab J 2019; 43:247-256. [PMID: 30968618 PMCID: PMC6581541 DOI: 10.4093/dmj.2018.0221] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/19/2019] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue inflammation is considered a major contributing factor in the development of obesity-associated insulin resistance and cardiovascular diseases. However, the cause of adipose tissue inflammation is presently unclear. The role of mitochondria in white adipocytes has long been neglected because of their low abundance. However, recent evidence suggests that mitochondria are essential for maintaining metabolic homeostasis in white adipocytes. In a series of recent studies, we found that mitochondrial function in white adipocytes is essential to the synthesis of adiponectin, which is the most abundant adipokine synthesized from adipocytes, with many favorable effects on metabolism, including improvement of insulin sensitivity and reduction of atherosclerotic processes and systemic inflammation. From these results, we propose a new hypothesis that mitochondrial dysfunction in adipocytes is a primary cause of adipose tissue inflammation and compared this hypothesis with a prevailing concept that "adipose tissue hypoxia" may underlie adipose tissue dysfunction in obesity. Recent studies have emphasized the role of the mitochondrial quality control mechanism in maintaining mitochondrial function. Future studies are warranted to test whether an inadequate mitochondrial quality control mechanism is responsible for mitochondrial dysfunction in adipocytes and adipose tissue inflammation.
Collapse
Affiliation(s)
- Chang Yun Woo
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Eun Jang
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Seung Eun Lee
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Eun Hee Koh
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
89
|
Keuper M. On the role of macrophages in the control of adipocyte energy metabolism. Endocr Connect 2019; 8:R105-R121. [PMID: 31085768 PMCID: PMC6590200 DOI: 10.1530/ec-19-0016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
The crosstalk between macrophages (MΦ) and adipocytes within white adipose tissue (WAT) influences obesity-associated insulin resistance and other associated metabolic disorders, such as atherosclerosis, hypertension and type 2 diabetes. MΦ infiltration is increased in WAT during obesity, which is linked to decreased mitochondrial content and activity. The mechanistic interplay between MΦ and mitochondrial function of adipocytes is under intense investigation, as MΦ and inflammatory pathways exhibit a pivotal role in the reprogramming of WAT metabolism in physiological responses during cold, fasting and exercise. Thus, the underlying immunometabolic pathways may offer therapeutic targets to correct obesity and metabolic disease. Here, I review the current knowledge on the quantity and the quality of human adipose tissue macrophages (ATMΦ) and their impact on the bioenergetics of human adipocytes. The effects of ATMΦ and their secreted factors on mitochondrial function of white adipocytes are discussed, including recent research on MΦ as part of an immune signaling cascade involved in the 'browning' of WAT, which is defined as the conversion from white, energy-storing adipocytes into brown, energy-dissipating adipocytes.
Collapse
Affiliation(s)
- Michaela Keuper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
90
|
Cho E, Jung W, Joo HY, Park ER, Kim MY, Kim SB, Kim KS, Lim YB, Lee KH, Shin HJ. Cluh plays a pivotal role during adipogenesis by regulating the activity of mitochondria. Sci Rep 2019; 9:6820. [PMID: 31048716 PMCID: PMC6497719 DOI: 10.1038/s41598-019-43410-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/01/2019] [Indexed: 01/01/2023] Open
Abstract
Cluh is a cytosolic protein that is known to specifically bind the mRNAs of nuclear-encoded mitochondrial proteins and play critical roles in mitochondrial biogenesis. Here, we report the role of Cluh in adipogenesis. Our study shows that mRNA expression of Cluh is stimulated during adipogenesis, and that cAMP/Creb signalling increases its transcription. Cluh depletion impaired proper adipocyte differentiation, with reductions seen in lipid droplets and adipogenic marker gene expression. Interestingly, the inductions of the brown adipocyte-specific genes, Ucp1, Cidea and Cox7a1, are severely blocked by Cluh depletion during brown adipogenesis. Mitochondrial respiration and the stability of mRNAs encoding mitochondrial proteins are reduced by Cluh depletion during brown adipogenesis. These results suggest that Cluh, which is induced during adipogenesis, promotes the post-transcriptional regulation of mitochondrial proteins and supports differentiation.
Collapse
Affiliation(s)
- Eugene Cho
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Wonhee Jung
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyun-Yoo Joo
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Eun-Ran Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Mi-Yeon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Su-Bin Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Bin Lim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kee Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyun Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| |
Collapse
|
91
|
Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. FRONT BIOSCI-LANDMRK 2019; 24:890-934. [PMID: 30844720 PMCID: PMC6689231 DOI: 10.2741/4758] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment of inflammatory cells, and impaired metabolic homeostasis that eventually results in the development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review explores the interplay between arginase and NO, and their effect on the development of metabolic disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive understanding of the mechanisms involved in the development of obesity-induced metabolic and vascular dysfunction is necessary for the identification of more effective and tailored therapeutic avenues for their prevention and treatment.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Katharine L Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology,and Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Robert W Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904,USA,
| |
Collapse
|
92
|
Small molecules for fat combustion: targeting obesity. Acta Pharm Sin B 2019; 9:220-236. [PMID: 30976490 PMCID: PMC6438825 DOI: 10.1016/j.apsb.2018.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/01/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is increasing in an alarming rate worldwide, which causes higher risks of some diseases, such as type 2 diabetes, cardiovascular diseases, and cancer. Current therapeutic approaches, either pancreatic lipase inhibitors or appetite suppressors, are generally of limited effectiveness. Brown adipose tissue (BAT) and beige cells dissipate fatty acids as heat to maintain body temperature, termed non-shivering thermogenesis; the activity and mass of BAT and beige cells are negatively correlated with overweight and obesity. The existence of BAT and beige cells in human adults provides an effective weight reduction therapy, a process likely to be amenable to pharmacological intervention. Herein, we combed through the physiology of thermogenesis and the role of BAT and beige cells in combating with obesity. We summarized the thermogenic regulators identified in the past decades, targeting G protein-coupled receptors, transient receptor potential channels, nuclear receptors and miscellaneous pathways. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of thermogenesis in energy homeostasis to the representative thermogenic regulators for treating obesity. Thermogenic regulators might have a large potential for further investigations to be developed as lead compounds in fighting obesity.
Collapse
Key Words
- AKT, protein kinase B
- ALDH9, aldehyde dehydrogenase 9
- AMPK, AMP-activated protein kinase
- ATP, adenosine triphosphate
- BA, bile acids
- BAT, brown adipose tissue
- BMP8b, bone morphogenetic protein 8b
- Beige cells
- Brown adipose tissue
- C/EBPα, CCAAT/enhancer binding protein α
- CLA, cis-12 conjugated linoleic acid
- CRABP-II, cellular RA binding protein type II
- CRE, cAMP response element
- Cidea, cell death-inducing DNA fragmentation factor α-like effector A
- Dio2, iodothyronine deiodinase type 2
- ERE, estrogen response element
- ERs, estrogen receptors
- FAS, fatty acid synthase
- FGF21, fibroblast growth factor 21
- GPCRs, G protein-coupled receptors
- HFD, high fat diet
- LXR, liver X receptors
- MAPK, mitogen-activated protein kinase
- OXPHOS, oxidative phosphorylation
- Obesity
- PDEs, phosphodiesterases
- PET-CT, positron emission tomography combined with computed tomography
- PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1-α
- PKA, protein kinase A
- PPARs, peroxisome proliferator-activated receptors
- PPREs, peroxisome proliferator response elements
- PRDM16, PR domain containing 16
- PTP1B, protein-tyrosine phosphatase 1B
- PXR, pregnane X receptor
- RA, retinoic acid
- RAR, RA receptor
- RARE, RA response element
- RMR, resting metabolic rate
- RXR, retinoid X receptor
- SIRT1, silent mating type information regulation 2 homolog 1
- SNS, sympathetic nervous system
- TFAM, mitochondrial transcription factor A
- TMEM26, transmembrane protein 26
- TRPs, transient receptor potential cation channels
- Thermogenesis
- UCP1, uncoupling protein 1
- Uncoupling protein 1
- VDR, vitamin D receptor
- VDRE, VDR response elements
- WAT, white adipose tissue
- cAMP, cyclic adenosine monophosphate
- cGMP, cyclic guanosine monophosphate
- β3-AR, β3-adrenergic receptor
Collapse
|
93
|
Kolenc OI, Quinn KP. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD. Antioxid Redox Signal 2019; 30:875-889. [PMID: 29268621 PMCID: PMC6352511 DOI: 10.1089/ars.2017.7451] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Optical imaging using the endogenous fluorescence of metabolic cofactors has enabled nondestructive examination of dynamic changes in cell and tissue function both in vitro and in vivo. Quantifying NAD(P)H and FAD fluorescence through an optical redox ratio and fluorescence lifetime imaging (FLIM) provides sensitivity to the relative balance between oxidative phosphorylation and glucose catabolism. Since its introduction decades ago, the use of NAD(P)H imaging has expanded to include applications involving almost every major tissue type and a variety of pathologies. Recent Advances: This review focuses on the use of two-photon excited fluorescence and NAD(P)H fluorescence lifetime techniques in cancer, neuroscience, tissue engineering, and other biomedical applications over the last 5 years. In a variety of cancer models, NAD(P)H fluorescence intensity and lifetime measurements demonstrate a sensitivity to the Warburg effect, suggesting potential for early detection or high-throughput drug screening. The sensitivity to the biosynthetic demands of stem cell differentiation and tissue repair processes indicates the range of applications for this imaging technology may be broad. CRITICAL ISSUES As the number of applications for these fluorescence imaging techniques expand, identifying and characterizing additional intrinsic fluorophores and chromophores present in vivo will be vital to accurately measure and interpret metabolic outcomes. Understanding the full capabilities and limitations of FLIM will also be key to future advances. FUTURE DIRECTIONS Future work is needed to evaluate whether a combination of different biochemical and structural outcomes using these imaging techniques can provide complementary information regarding the utilization of specific metabolic pathways.
Collapse
Affiliation(s)
- Olivia I Kolenc
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
94
|
Bond ST, Moody SC, Liu Y, Civelek M, Villanueva CJ, Gregorevic P, Kingwell BA, Hevener AL, Lusis AJ, Henstridge DC, Calkin AC, Drew BG. The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes. Am J Physiol Endocrinol Metab 2019; 316:E293-E304. [PMID: 30512991 PMCID: PMC6397360 DOI: 10.1152/ajpendo.00394.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dynamics refers to the constant remodeling of mitochondrial populations by multiple cellular pathways that help maintain mitochondrial health and function. Disruptions in mitochondrial dynamics often lead to mitochondrial dysfunction, which is frequently associated with disease in rodents and humans. Consistent with this, obesity is associated with reduced mitochondrial function in white adipose tissue, partly via alterations in mitochondrial dynamics. Several proteins, including the E3 ubiquitin ligase membrane-associated RING-CH-type finger 5 (MARCH5), are known to regulate mitochondrial dynamics; however, the role of these proteins in adipocytes has been poorly studied. Here, we show that MARCH5 is regulated by peroxisome proliferator-activated receptor-γ (PPARγ) during adipogenesis and is correlated with fat mass across a panel of genetically diverse mouse strains, in ob/ob mice, and in humans. Furthermore, manipulation of MARCH5 expression in vitro and in vivo alters mitochondrial function, affects cellular metabolism, and leads to differential regulation of several metabolic genes. Thus our data demonstrate an association between mitochondrial dynamics and metabolism that defines MARCH5 as a critical link between these interconnected pathways.
Collapse
Affiliation(s)
- Simon T Bond
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Sarah C Moody
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Mete Civelek
- University of California , Los Angeles, California
| | | | - Paul Gregorevic
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | | | | | | | | | - Anna C Calkin
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
- Central Clinical School, Monash University , Melbourne, Victoria , Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
- Central Clinical School, Monash University , Melbourne, Victoria , Australia
| |
Collapse
|
95
|
Cardamone MD, Tanasa B, Cederquist CT, Huang J, Mahdaviani K, Li W, Rosenfeld MG, Liesa M, Perissi V. Mitochondrial Retrograde Signaling in Mammals Is Mediated by the Transcriptional Cofactor GPS2 via Direct Mitochondria-to-Nucleus Translocation. Mol Cell 2019; 69:757-772.e7. [PMID: 29499132 DOI: 10.1016/j.molcel.2018.01.037] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/15/2017] [Accepted: 01/29/2018] [Indexed: 12/24/2022]
Abstract
As most of the mitochondrial proteome is encoded in the nucleus, mitochondrial functions critically depend on nuclear gene expression and bidirectional mito-nuclear communication. However, mitochondria-to-nucleus communication pathways in mammals are incompletely understood. Here, we identify G-Protein Pathway Suppressor 2 (GPS2) as a mediator of mitochondrial retrograde signaling and a transcriptional activator of nuclear-encoded mitochondrial genes. GPS2-regulated translocation from mitochondria to nucleus is essential for the transcriptional activation of a nuclear stress response to mitochondrial depolarization and for supporting basal mitochondrial biogenesis in differentiating adipocytes and brown adipose tissue (BAT) from mice. In the nucleus, GPS2 recruitment to target gene promoters regulates histone H3K9 demethylation and RNA POL2 activation through inhibition of Ubc13-mediated ubiquitination. These findings, together, reveal an additional layer of regulation of mitochondrial gene transcription, uncover a direct mitochondria-nuclear communication pathway, and indicate that GPS2 retrograde signaling is a key component of the mitochondrial stress response in mammals.
Collapse
Affiliation(s)
- Maria Dafne Cardamone
- Biochemistry Department, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bogdan Tanasa
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carly T Cederquist
- Biochemistry Department, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jiawen Huang
- Biochemistry Department, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kiana Mahdaviani
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc Liesa
- Department of Medicine, Division of Endocrinology and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Valentina Perissi
- Biochemistry Department, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
96
|
Bauzá-Thorbrügge M, Rodríguez-Cuenca S, Vidal-Puig A, Galmés-Pascual BM, Sbert-Roig M, Gianotti M, Lladó I, Proenza AM. GPER and ERα mediate estradiol enhancement of mitochondrial function in inflamed adipocytes through a PKA dependent mechanism. J Steroid Biochem Mol Biol 2019; 185:256-267. [PMID: 30253224 DOI: 10.1016/j.jsbmb.2018.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/31/2018] [Accepted: 09/17/2018] [Indexed: 01/16/2023]
Abstract
Obesity is associated with inflammation, dysregulated adipokine secretion, and disrupted adipose tissue mitochondrial function. Estradiol (E2) has been previously reported to increase mitochondrial function and biogenesis in several cell lines, but neither the type of oestrogen receptor (ERα, ERβ and GPER) involved nor the mechanism whereby such effects are exerted have been fully described. Considering the anti-inflammatory activity of E2 as well as its effects in enhancing mitochondrial biogenesis, the aim of this study was to investigate the contribution of ERα, ERβ, and GPER signaling to the E2-mediated enhancement of adipocyte mitochondrial function in a pro-inflammatory situation. 3T3-L1 cells were treated for 24 h with ER agonists (PPT, DPN, and G1) and antagonists (MPP, PHTPP, and G15) in the presence or absence of interleukin 6 (IL6), as a pro-inflammatory stimulus. Inflammation, mitochondrial function and biogenesis markers were analyzed. To confirm the involvement of the PKA pathway, cells were treated with a GPER agonist, a PKA inhibitor, and IL6. Mitochondrial function markers were analyzed. Our results showed that activation of ERα and GPER, but not ERβ, was able to counteract the proinflammatory effects of IL6 treatment, as well as mitochondrial biogenesis and function indicators. Inhibition of PKA prevented the E2- and G1-associated increase in mitochondrial function markers. In conclusion E2 prevents IL6 induced inflammation in adipocytes and promotes mitochondrial function through the combined activation of both GPER and ERα. These findings expand our understanding of ER interactions under inflammatory conditions in female rodent white adipose tissue.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Sergio Rodríguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC-Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC-Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Bel M Galmés-Pascual
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Miquel Sbert-Roig
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Magdalena Gianotti
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Isabel Lladó
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Ana M Proenza
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
97
|
Cho YL, Park JG, Kang HJ, Kim W, Cho MJ, Jang JH, Kwon MG, Kim S, Lee SH, Lee J, Kim YG, Park YJ, Kim WK, Bae KH, Kwon BM, Chung SJ, Min JK. Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARγ and C/EBPα regulation. Pharmacol Res 2019; 139:325-336. [DOI: 10.1016/j.phrs.2018.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
|
98
|
Ježková J, Ďurovcová V, Wenchich L, Hansíková H, Zeman J, Hána V, Marek J, Lacinová Z, Haluzík M, Kršek M. The relationship of mitochondrial dysfunction and the development of insulin resistance in Cushing's syndrome. Diabetes Metab Syndr Obes 2019; 12:1459-1471. [PMID: 31695455 PMCID: PMC6707348 DOI: 10.2147/dmso.s209095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/13/2019] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Cushing's syndrome is characterized by metabolic disturbances including insulin resistance. Mitochondrial dysfunction is one pathogenic factor in the development of insulin resistance in patients with obesity. We explored whether mitochondrial dysfunction correlates with insulin resistance and other metabolic complications. PATIENTS AND METHODS We investigated the changes of mRNA expression of genes encoding selected subunits of oxidative phosphorylation system (OXPHOS), pyruvate dehydrogenase (PDH) and citrate synthase (CS) in subcutaneous adipose tissue (SCAT) and peripheral monocytes (PM) and mitochondrial enzyme activity in platelets of 24 patients with active Cushing's syndrome and in 9 of them after successful treatment and 22 healthy control subjects. RESULTS Patients with active Cushing's syndrome had significantly increased body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR) and serum lipids relative to the control group. The expression of all investigated genes for selected mitochondrial proteins was decreased in SCAT in patients with active Cushing's syndrome and remained decreased after successful treatment. The expression of most tested genes in SCAT correlated inversely with BMI and HOMA-IR. The expression of genes encoding selected OXPHOS subunits and CS was increased in PM in patients with active Cushing's syndrome with a tendency to decrease toward normal levels after cure. Patients with active Cushing's syndrome showed increased enzyme activity of complex I (NQR) in platelets. CONCLUSION Mitochondrial function in SCAT in patients with Cushing's syndrome is impaired and only slightly affected by its treatment which may reflect ongoing metabolic disturbances even after successful treatment of Cushing's syndrome.
Collapse
Affiliation(s)
- Jana Ježková
- Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Correspondence: Jana JežkováThird Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 1128 02 Praha 2, Prague, Czech RepublicTel +420 60 641 2613Fax +420 22 491 9780Email
| | - Viktória Ďurovcová
- Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Laszlo Wenchich
- Institute of Rheumatology, Prague, Czech Republic
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Hana Hansíková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiří Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Václav Hána
- Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Josef Marek
- Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zdeňka Lacinová
- Institute of Medical Biochemistry and Laboratory Diagnostic, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostic, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Kršek
- Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
99
|
Cui T, Xing T, Huang J, Mu F, Jin Y, You X, Chu Y, Li H, Wang N. Nuclear Respiratory Factor 1 Negatively Regulates the P1 Promoter of the Peroxisome Proliferator-Activated Receptor-γ Gene and Inhibits Chicken Adipogenesis. Front Physiol 2018; 9:1823. [PMID: 30618832 PMCID: PMC6305991 DOI: 10.3389/fphys.2018.01823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipogenesis, and alterations in its function are associated with various pathological processes related to metabolic syndrome. Recently, we found that the chicken PPARγ gene is regulated by three alternative promoters (P1, P2 and P3), producing five different transcript isoforms and two protein isoforms. In this study, the P1 promoter structure was characterized. Bioinformatics identified six putative nuclear respiratory factor 1 (NRF1) binding sites in the P1 promoter, and a reporter assay showed that NRF1 inhibited the activity of the P1 promoter. Of the six putative NRF1 binding sites, individual mutations of three of them abolished the inhibitory effect of NRF1 on P1 promoter activity. Furthermore, a ChIP assay indicated that NRF1 directly bound to the P1 promoter, and real-time quantitative RT-PCR analysis showed that NRF1 mRNA expression was negatively correlated with PPARγ1 expression (Pearson’s r = -0.148, p = 0.033). Further study showed that NRF1 overexpression inhibited the differentiation of the immortalized chicken preadipocyte cell line (ICP1), which was accompanied by reduced PPARγ1 mRNA expression. Taken together, our findings indicated that NRF1 directly negatively regulates the P1 promoter of the chicken PPARγ gene and inhibits adipogenesis.
Collapse
Affiliation(s)
- Tingting Cui
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Institute of Animal Science of Heilongjiang Province, Qiqihar, China
| | - Tianyu Xing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fang Mu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yanfei Jin
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xin You
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yankai Chu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
100
|
Al-Anazi A, Parhar R, Saleh S, Al-Hijailan R, Inglis A, Al-Jufan M, Bazzi M, Hashmi S, Conca W, Collison K, Al-Mohanna F. Intracellular calcium and NF- kB regulate hypoxia-induced leptin, VEGF, IL-6 and adiponectin secretion in human adipocytes. Life Sci 2018; 212:275-284. [PMID: 30308181 DOI: 10.1016/j.lfs.2018.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/19/2018] [Accepted: 10/06/2018] [Indexed: 11/26/2022]
Abstract
AIMS Hypoxia-induced adipokine release has been attributed mainly to HIF-1α. Here we investigate the role of intracellular calcium and NF-kB in the hypoxia-dependent release of leptin, VEGF, IL-6 and the hypoxia-induced inhibition of adiponectin release in human adipocytes. MAIN METHODS We used intracellular calcium imaging to compare calcium status in preadipocytes and in adipocytes. We subjected both cell types to hypoxic conditions and measured the release of adipokines induced by hypoxia in the presence and absence of HIF-1α inhibitor YC-1, NF-κB inhibitor SN50 and intracellular calcium chelator BAPTA-AM. KEY FINDINGS We demonstrate reduced intracellular calcium oscillations and increased oxidative stress as the cells transitioned from preadipocytes to adipocytes. We show that differentiation of preadipocytes to adipocytes is associated with distinct morphological changes in the mitochondria. We also show that hypoxia-induced secretion of leptin, VEGF, IL-6 and hypoxia-induced inhibition of adiponectin secretion are independent of HIF-1α expression. The hypoxia-induced leptin, VEGF and IL-6 release are [Ca++]i dependent whereas adiponectin is NF-kB dependent. SIGNIFICANCE Our work suggests a major role for [Ca++]i in preadipocyte differentiation to adipocytes and that changes in mitochondrial morphology in the adipocytes might underlie the reduced calcium oscillations observed in the adipocytes. It also demonstrates that multiple signaling pathways are associated with the hypoxia-induced adipokine secretion.
Collapse
Affiliation(s)
- Azizah Al-Anazi
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ranjit Parhar
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Soad Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Reem Al-Hijailan
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Angela Inglis
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mansour Al-Jufan
- Heart Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Bazzi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Sarwar Hashmi
- Developmental Biology, Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Walter Conca
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Kate Collison
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia.
| |
Collapse
|