51
|
Orbital-scale denitrification changes in the Eastern Arabian Sea during the last 800 kyrs. Sci Rep 2018; 8:7027. [PMID: 29728627 PMCID: PMC5935671 DOI: 10.1038/s41598-018-25415-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022] Open
Abstract
Denitrification in the Arabian Sea is closely related to the monsoon-induced upwelling and subsequent phytoplankton production in the surface water. The δ15N values of bulk sediments collected at Site U1456 of the International Ocean Discovery Program (IODP) Expedition 355 reveal the orbital-scale denitrification history in response to the Indian Monsoon. Age reconstruction based on the correlation of planktonic foraminifera (Globigerinoides ruber) δ18O values with the LR04 stack together with the shipboard biostratigraphic and paleomagnetic data assigns the study interval to be 1.2 Ma. Comparison of δ15N values during the last 800 kyrs between Site U1456 (Eastern Arabian Sea) and Site 722B (Western Arabian Sea) showed that δ15N values were high during interglacial periods, indicating intensified denitrification, while the opposite was observed during glacial periods. Taking 6‰ as the empirical threshold of denitrification, the Eastern Arabian Sea has experienced a persistent oxygen minimum zone (OMZ) to maintain strong denitrification whereas the Western Arabian Sea has undergone OMZ breakdown during some glacial periods. The results of this study also suggests that five principal oceanographic conditions were changed in response to the Indian Monsoon following the interglacial and glacial cycles, which controls the degree of denitrification in the Arabian Sea.
Collapse
|
52
|
Salahudeen JH, Reshmi RR, Anoop Krishnan K, Ragi MS, Vincent SGT. Denitrification rates in estuarine sediments of Ashtamudi, Kerala, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:323. [PMID: 29725770 DOI: 10.1007/s10661-018-6698-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Estuarine sediments are important sites for denitrification, which is microbially mediated reduction of nitrate to dinitrogen that also influences global climate change by co-production of nitrous oxide, a potent greenhouse gas. Physicochemical properties and nutrients of sediment samples that influence denitrification rate were studied in Ashtamudi estuarine sediments. They were pH, electrical conductivity (EC), salinity, nitrate-nitrogen (NO3--N), exchangeable ammonia (NH3--N), total kjeldahl nitrogen (TKN) and organic carbon (Corg). Sediment samples were collected from six stations during summer, monsoon of 2013 and 13 stations from monsoon 2014 and summer 2015. The sedimentary denitrification potential ranged from 0.49 ± 0.05 to 4.85 ± 0.782 mmol N2O m-2 h-1. Maximum denitrification was observed in S4, which is attributed to a local anthropogenic source coupled with intense rainfall episode preceding the sampling season of monsoon 2013. However, this trend was not repeated in the subsequent monsoon samples. This shows that in Ashtamudi, monsoonal effects do not influence sedimentary denitrification. Among the various environmental variables, NO3--N, Corg and NH3-N were the key factors that influence denitrification in the Ashtamudi estuarine sediments. Among these key factors, NO3--N was the limiting factor for denitrification, and hence, it is of prime importance to understand the source of NO3--N that fuel denitrification in the sediments. In Ashtamudi, the concentration of NO3--N in overlying water was very less, which suggests reduced nitrogen yield in the estuary from the fluvial input of Kallada River and agricultural runoff. Sedimentary NO3--N correlated with denitrification which reveals that denitrification is coupled with nitrification in the sediments. This is further explained by the fact that NH3-N positively correlated with denitrification. The anoxic sediments were the source of ammonia for nitrous oxide production by nitrogen mineralisation. Also, the Corg in sediment samples were sufficient to support denitrification and Corg was an important factor favouring but not limiting denitrification. The results of sediment denitrification in Ashtamudi can be a model for tropical estuaries experiencing unpredictable rainfall as well as high temperature than temperate systems.
Collapse
Affiliation(s)
| | - R R Reshmi
- University of Kerala, Thiruvananthapuram, Kerala, India
| | - K Anoop Krishnan
- National Centre for Earth Science Studies, Thiruvananthapuram, Kerala, India
| | - M S Ragi
- National Centre for Earth Science Studies, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
53
|
Sevda S, Sreekishnan TR, Pous N, Puig S, Pant D. Bioelectroremediation of perchlorate and nitrate contaminated water: A review. BIORESOURCE TECHNOLOGY 2018; 255:331-339. [PMID: 29439851 DOI: 10.1016/j.biortech.2018.02.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 05/20/2023]
Abstract
Fresh water is a fundamental source for humans, hence the recent shrinkage in freshwater and increase in water pollution are imperative problems that vigorously affect the people and the environment worldwide. The breakneck industrialization contributes to the procreation of substantial abundance of wastewater and its treatment becomes highly indispensable. Perchlorate and nitrate containing wastewaters poses a serious threat to human health and environment. Conventional biological treatment methods are expensive and also not effective for treating wastewater effectively and incapable of in situ bioremediation. Bioelectrochemical systems are emerging as a new technology platform for a sustainable removal of such contaminants from wastewater streams. This article reviews the state of art of bioelectroremediation of contaminated waters with perchlorate and nitrate. Different aspects of this technology such as configuration and design, mode of operation and type of substrate are considered in detail.
Collapse
Affiliation(s)
- Surajbhan Sevda
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - T R Sreekishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Girona 17003, Spain
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Girona 17003, Spain
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium.
| |
Collapse
|
54
|
Ribeiro H, de Sousa T, Santos JP, Sousa AGG, Teixeira C, Monteiro MR, Salgado P, Mucha AP, Almeida CMR, Torgo L, Magalhães C. Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation. CHEMOSPHERE 2018; 199:54-67. [PMID: 29428516 DOI: 10.1016/j.chemosphere.2018.01.171] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
This study investigates the potential of an indigenous estuarine microbial consortium to degrade two polycyclic aromatic hydrocarbons (PAHs), naphthalene and fluoranthene, under nitrate-reducing conditions. Two physicochemically diverse sediment samples from the Lima Estuary (Portugal) were spiked individually with 25 mg L-1 of each PAH in laboratory designed microcosms. Sediments without PAHs and autoclaved sediments spiked with PAHs were run in parallel. Destructive sampling at the beginning and after 3, 6, 12, 30 and 63 weeks incubation was performed. Naphthalene and fluoranthene levels decreased over time with distinct degradation dynamics varying with sediment type. Next-generation sequencing (NGS) of 16 S rRNA gene amplicons revealed that the sediment type and incubation time were the main drivers influencing the microbial community structure rather than the impact of PAH amendments. Predicted microbial functional analyses revealed clear shifts and interrelationships between genes involved in anaerobic and aerobic degradation of PAHs and in the dissimilatory nitrate-reducing pathways (denitrification and dissimilatory nitrate reduction to ammonium - DNRA). These findings reinforced by clear biogeochemical denitrification signals (NO3- consumption, and NH4+ increased during the incubation period), suggest that naphthalene and fluoranthene degradation may be coupled with denitrification and DNRA metabolism. The results of this study contribute to the understanding of the dissimilatory nitrate-reducing pathways and help uncover their involvement in degradation of PAHs, which will be crucial for directing remediation strategies of PAH-contaminated anoxic sediments.
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Trelita de Sousa
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - João P Santos
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - António G G Sousa
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Catarina Teixeira
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| | - Maria R Monteiro
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Paula Salgado
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| | - Ana P Mucha
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - C Marisa R Almeida
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Luís Torgo
- FCUP - Faculdade de Ciências da Universidade do Porto, Porto, Portugal; Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Catarina Magalhães
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
55
|
Effect of fluctuating hydraulic retention time (HRT) on denitrification in the UASB reactors. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
56
|
Blum JM, Su Q, Ma Y, Valverde-Pérez B, Domingo-Félez C, Jensen MM, Smets BF. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production. Environ Microbiol 2018; 20:1623-1640. [DOI: 10.1111/1462-2920.14063] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Jan-Michael Blum
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Qingxian Su
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Yunjie Ma
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Carlos Domingo-Félez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Marlene Mark Jensen
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Barth F. Smets
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| |
Collapse
|
57
|
Yazdani Foshtomi M, Leliaert F, Derycke S, Willems A, Vincx M, Vanaverbeke J. The effect of bio-irrigation by the polychaete Lanice conchilega on active denitrifiers: Distribution, diversity and composition of nosZ gene. PLoS One 2018; 13:e0192391. [PMID: 29408934 PMCID: PMC5800672 DOI: 10.1371/journal.pone.0192391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 01/23/2018] [Indexed: 11/18/2022] Open
Abstract
The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L. conchilega affected horizontal (m-scale) and vertical (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal ecosystems as the last step completing the denitrification pathway. We showed that both vertical and horizontal composition and richness of nosZ gene were indeed significantly affected when large densities of the bio-irrigator were present. This could be directly related to allogenic ecosystem engineering effects on the environment, reflected in increased oxygen penetration depth and oxygen concentrations in the upper cm of the sediment in high densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of nosZ observed in patches with high L. conchilega densities (3,185-3,440 ind. m-2) at deeper sediment layers could suggest a downward transport of NO3- to deeper layers resulting from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation activity on denitrifying organisms in L. conchilega reefs.
Collapse
Affiliation(s)
- Maryam Yazdani Foshtomi
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
- CeMoFE, Ghent University, Ghent, Belgium
| | - Frederik Leliaert
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
- Botanic Garden Meise, Meise, Belgium
| | - Sofie Derycke
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
- Aquatic Environment and Quality, Institute for Agricultural and Fisheries Research (ILVO), Ostend, Belgium
| | - Anne Willems
- CeMoFE, Ghent University, Ghent, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Magda Vincx
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
| | - Jan Vanaverbeke
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
- Marine Ecology and Management, Operational Directorate Natural Environment (OD Nature), Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
58
|
Tang Y, Li M, Xu D, Huang J, Sun J. Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5980-5993. [PMID: 29236243 DOI: 10.1007/s11356-017-0903-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Aerobic denitrifiers coupled with a denitrification agent were applied in the sediment of an urban river for the bioremediation of nitrogen pollution. The results revealed that 14.7% of the total nitrogen in the sediment was removed after 115 days of treatment and the nitrate nitrogen concentration removal rate was enhanced in the overlying water. Compared with the control, the total transferable nitrogen in the sediment increased from 0.097 to 0.166 mg/g, indicating that more nitrogen is likely to be involved in the biogeochemical cycling of nitrogen. Increased urease activity indicated the possible further potential of nitrogen biodegradation, while the decreased protease pointed to the low concentration of protein remaining in the sediment. Sequencing revealed that the bacterial community diversity in the sediment increased significantly after 43 days of treatment and that the effect persisted. Compared with other microcosms, the dominant phyla in the sediment after 43 days were Firmicutes, Elusimicrobia, Spirochaetae and Fibrobacteres; whereas, after 115 of treatment, the dominant bacteria were Nitrospirae, Deferribacteres and Chloroflexi. The dominant bacteria in the sediment are mainly associated with nitrogen cycling and thus contributed considerably to nitrogen removal in the sediment. Overall, the direction of species succession was similar to natural succession; namely, there were no undesirable ecological risks involved. This study highlights the possible benefits and feasibility of using bioaugmentation technology coupled with biostimulation to remediate nitrogen-polluted sediments.
Collapse
Affiliation(s)
- Yinqi Tang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Meng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Danning Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Jianjun Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Jingmei Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China.
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
59
|
Carrey R, Rodríguez-Escales P, Soler A, Otero N. Tracing the role of endogenous carbon in denitrification using wine industry by-product as an external electron donor: Coupling isotopic tools with mathematical modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 207:105-115. [PMID: 29154003 DOI: 10.1016/j.jenvman.2017.10.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Nitrate removal through enhanced biological denitrification (EBD), consisting of the inoculation of an external electron donor, is a feasible solution for the recovery of groundwater quality. In this context, liquid waste from wine industries (wine industry by-products, WIB) may be feasible for use as a reactant to enhance heterotrophic denitrification. To address the feasibility of WIB as electron donor to promote denitrification, as well as to evaluate the role of biomass as a secondary organic C source, a flow-through experiment was carried out. Chemical and isotopic characterization was performed and coupled with mathematical modeling. Complete nitrate attenuation with no nitrite accumulation was successfully achieved after 10 days. Four different C/N molar ratios (7.0, 2.0, 1.0 and 0) were tested. Progressive decrease of the C/N ratio reduced the remaining C in the outflow and favored biomass migration, producing significant changes in dispersivity in the reactor, which favored efficient nitrate degradation. The applied mathematical model described the general trends for nitrate, ethanol, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations. This model shows how the biomass present in the system is degraded to dissolved organic C (DOCen) and becomes the main source of DOC for a C/N ratio between 1.0 and 0. The isotopic model developed for organic and inorganic carbon also describes the general trends of δ13C of ethanol, DOC and DIC in the outflow water. The study of the evolution of the isotopic fractionation of organic C using a Rayleigh distillation model shows the shift in the organic carbon source from the WIB to the biomass and is in agreement with the isotopic fractionation values used to calibrate the model. Isotopic fractionations (ε) of C-ethanol and C-DOCen were -1‰ and -5‰ (model) and -3.3‰ and -4.8‰ (Rayleigh), respectively. In addition, an inverse isotopic fractionation of +10‰ was observed for biomass degradation to DOCen. Overall, WIB can efficiently promote nitrate reduction in EBD treatments. The conceptual model of the organic C cycle and the developed mathematical model accurately described the chemical and isotopic transformations that occur during this induced denitrification.
Collapse
Affiliation(s)
- R Carrey
- Grup d'Mineralogia Aplicada i Medi Ambient, Dep. Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/ Martí i Franquès s/n, 08028, Barcelona, Spain.
| | - P Rodríguez-Escales
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - A Soler
- Grup d'Mineralogia Aplicada i Medi Ambient, Dep. Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/ Martí i Franquès s/n, 08028, Barcelona, Spain
| | - N Otero
- Grup d'Mineralogia Aplicada i Medi Ambient, Dep. Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/ Martí i Franquès s/n, 08028, Barcelona, Spain; Serra Hunter Fellowship, Generalitat de Catalunya, Spain
| |
Collapse
|
60
|
Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: recent advances. SCIENCE CHINA-LIFE SCIENCES 2018; 61:753-761. [DOI: 10.1007/s11427-017-9228-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
|
61
|
Chen S, Wang F, Zhang Y, Qin S, Wei S, Wang S, Hu C, Liu B. Organic carbon availability limiting microbial denitrification in the deep vadose zone. Environ Microbiol 2018; 20:980-992. [PMID: 29266729 DOI: 10.1111/1462-2920.14027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 11/28/2022]
Abstract
Microbes in the deep vadose zone play an essential role in the mitigation of nitrate leaching; however, limited information is available on the mechanisms of microbial denitrification due to sampling difficulties. We experimentally studied the factors that affect denitrification in soils collected down to 10.5 meters deep along the soil profile. After an anoxic pre-incubation, denitrification rates moderately increased and the N2 O/(N2 O + N2 ) ratios declined while the microbial abundance and diversity did not change significantly in most of the layers. Denitrification rate was significantly enhanced and the abundance of the denitrification genes was simultaneously elevated by the increased availability of organic carbon in all studied layers, to a greater extent in the subsurface layers than in the surface layers, suggesting the severe scarcity of carbon in the deep vadose zone. The genera Pseudomonas and Bacillus, which are made up of a number of species that have been previously identified as denitrifiers in soil, were the major taxa that respond to carbon addition. Overall, our results suggested that the limited denitrification in the deep vadose zone is not because of the lack of denitrifiers, but due to the low abundance of denitrifiers which is caused by low carbon availability.
Collapse
Affiliation(s)
- Shuaimin Chen
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fenghua Wang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Yuming Zhang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Shuping Qin
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Shoucai Wei
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Binbin Liu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| |
Collapse
|
62
|
Faust DR, Kröger R, Moore MT, Rush SA. Management Practices Used in Agricultural Drainage Ditches to Reduce Gulf of Mexico Hypoxia. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:32-40. [PMID: 29238843 DOI: 10.1007/s00128-017-2231-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Agricultural non-point sources of nutrients and sediments have caused eutrophication and other water quality issues in aquatic and marine ecosystems, such as the annual occurrence of hypoxia in the Gulf of Mexico. Management practices have been implemented adjacent to and in agricultural drainage ditches to promote their wetland characteristics and functions, including reduction of nitrogen, phosphorus, and sediment losses downstream. This review: (1) summarized studies examining changes in nutrient and total suspended solid concentrations and loads associated with management practices in drainage ditches (i.e., riser and slotted pipes, two-stage ditches, vegetated ditches, low-grade weirs, and organic carbon amendments) with emphasis on the Lower Mississippi Alluvial Valley, (2) quantified management system effects on nutrient and total suspended solid concentrations and loads and, (3) identified information gaps regarding water quality associated with these management practices and research needs in this area. In general, management practices used in drainage ditches at times reduced losses of total suspended solids, N, and P. However, management practices were often ineffective during storm events that were uncommon and intense in duration and volume, although these types of events could increase in frequency and intensity with climate change. Studies on combined effects of management practices on drainage ditch water quality, along with research towards improved nutrient and sediment reduction efficiency during intense storm events are urgently needed.
Collapse
Affiliation(s)
- Derek R Faust
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Box 9690, Mississippi State, MS, 39762, USA.
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, P.O. Box 459, Mandan, ND, 58554, USA.
| | - Robert Kröger
- Covington Civil and Environmental, LLC, 2510 14th Street, Ste 1010, Gulfport, MS, 39501, USA
| | - Matthew T Moore
- USDA-Agricultural Research Service National Sedimentation Laboratory, Water Quality and Ecology Research Unit, 598 McElroy Drive, Oxford, MS, 38655, USA
| | - Scott A Rush
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Box 9690, Mississippi State, MS, 39762, USA
| |
Collapse
|
63
|
Peng Y, Liu L, Jiang L, Xiao L. The roles of cyanobacterial bloom in nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:297-303. [PMID: 28753504 DOI: 10.1016/j.scitotenv.2017.03.149] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Annually occurred cyanobacterial bloom aggravated eutrophication situation and changed the lacustrine ecosystem components. Recently, high concentration of bloom cyanobacteria had been found to accelerate total nitrogen (TN) removal. However, the contribution of cyanobacterial bloom to TN removal remained unclear. In this study, microcosms with different density of bloom cyanobacteria were constructed and quantitative PCR and structural equation modelling (SEM) were used to analyze the microbes, environmental variables and the causal relationship to TN removal. Total bacteria, ammonia-oxidizing archaea and nirS gene abundances were indirectly influenced by cyanobacteria biomass and all of them had a direct effect on TN removal. SEM confirmed that cyanobacteria made a direct contribution to ammonium‑nitrogen (NH4+-N) level in water and induced nitrification activity, which favored the process of denitrification by supplying substrate and aggravating the anoxic status. These results strongly suggested that an increased cyanobacteria biomass had strong impacts on mineralization, nitrification and denitrification by mediating TN, dissolved organic carbon and dissolved oxygen directly and subsequently influenced the nitrifiers and denitrifiers.
Collapse
Affiliation(s)
- Yuke Peng
- School of the Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China
| | - Lu Liu
- School of the Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China
| | - Lijuan Jiang
- School of the Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China.
| |
Collapse
|
64
|
Alvarez L, Quintáns NG, Blesa A, Baquedano I, Mencía M, Bricio C, Berenguer J. Hierarchical Control of Nitrite Respiration by Transcription Factors Encoded within Mobile Gene Clusters of Thermus thermophilus. Genes (Basel) 2017; 8:genes8120361. [PMID: 29194386 PMCID: PMC5748679 DOI: 10.3390/genes8120361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
Denitrification in Thermus thermophilus is encoded by the nitrate respiration conjugative element (NCE) and nitrite and nitric oxide respiration (nic) gene clusters. A tight coordination of each cluster’s expression is required to maximize anaerobic growth, and to avoid toxicity by intermediates, especially nitric oxides (NO). Here, we study the control of the nitrite reductases (Nir) and NO reductases (Nor) upon horizontal acquisition of the NCE and nic clusters by a formerly aerobic host. Expression of the nic promoters PnirS, PnirJ, and PnorC, depends on the oxygen sensor DnrS and on the DnrT protein, both NCE-encoded. NsrR, a nic-encoded transcription factor with an iron–sulfur cluster, is also involved in Nir and Nor control. Deletion of nsrR decreased PnorC and PnirJ transcription, and activated PnirS under denitrification conditions, exhibiting a dual regulatory role never described before for members of the NsrR family. On the basis of these results, a regulatory hierarchy is proposed, in which under anoxia, there is a pre-activation of the nic promoters by DnrS and DnrT, and then NsrR leads to Nor induction and Nir repression, likely as a second stage of regulation that would require NO detection, thus avoiding accumulation of toxic levels of NO. The whole system appears to work in remarkable coordination to function only when the relevant nitrogen species are present inside the cell.
Collapse
Affiliation(s)
- Laura Alvarez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
- Current Address: Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.
| | - Nieves G Quintáns
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Alba Blesa
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Ignacio Baquedano
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Mario Mencía
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Carlos Bricio
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
65
|
Yasuda T, Waki M, Fukumoto Y, Hanajima D, Kuroda K, Suzuki K, Matsumoto T, Uenishi H. Community structure of denitrifying and total bacteria during nitrogen accumulation in an ammonia‐loaded biofilter. J Appl Microbiol 2017; 123:1498-1511. [DOI: 10.1111/jam.13603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 11/29/2022]
Affiliation(s)
- T. Yasuda
- Institute of Livestock and Grassland Science National Agriculture and Food Research Organization Tsukuba Ibaraki Japan
| | - M. Waki
- Institute of Livestock and Grassland Science National Agriculture and Food Research Organization Tsukuba Ibaraki Japan
| | - Y. Fukumoto
- Institute of Livestock and Grassland Science National Agriculture and Food Research Organization Tsukuba Ibaraki Japan
| | - D. Hanajima
- Hokkaido Agricultural Research Center National Agriculture and Food Research Organization Sapporo Hokkaido Japan
| | - K. Kuroda
- Kyushu Okinawa Agricultural Research Center National Agriculture and Food Research Organization Koshi Kumamoto Japan
| | - K. Suzuki
- Institute of Livestock and Grassland Science National Agriculture and Food Research Organization Tsukuba Ibaraki Japan
| | - T. Matsumoto
- Institute of Crop Science National Agricultural and Food Research Organization Tsukuba Ibaraki Japan
| | - H. Uenishi
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Ibaraki Japan
| |
Collapse
|
66
|
Yao SQ, Groffman PM, Alewell C, Ballantine K. Soil amendments promote denitrification in restored wetlands. Restor Ecol 2017. [DOI: 10.1111/rec.12573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Si Qi Yao
- Department of Environmental Studies; Mount Holyoke College; South Hadley MA 01075 U.S.A
| | - Peter M. Groffman
- Advanced Science Research Center at the Graduate Center of the City University of New York; New York NY 10031 U.S.A
- Department of Earth and Environmental Sciences; Brooklyn College; Brooklyn NY 11210 U.S.A
| | - Christine Alewell
- Department of Environmental Geoscience; University of Basel; Basel 4056 Switzerland
| | - Kate Ballantine
- Department of Environmental Studies; Mount Holyoke College; South Hadley MA 01075 U.S.A
| |
Collapse
|
67
|
Ginger LJ, Zimmer KD, Herwig BR, Hanson MA, Hobbs WO, Small GE, Cotner JB. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:2155-2169. [PMID: 28692788 DOI: 10.1002/eap.1599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/11/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often managed for the clear-water state due to increased value as wildlife habitat. However, our results indicate lake state also influences N biogeochemistry, such that managing shallow lakes for the clear-water state may also mitigate excess N levels at a landscape scale.
Collapse
Affiliation(s)
- Luke J Ginger
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St. Paul, Minnesota, 55105, USA
| | - Kyle D Zimmer
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St. Paul, Minnesota, 55105, USA
| | - Brian R Herwig
- Fisheries Research, Minnesota Department of Natural Resources, 2114 Bemidji Avenue, Bemidji, Minnesota, 56601, USA
| | - Mark A Hanson
- Wetland Wildlife Populations and Research Group, Minnesota Department of Natural Resources, 2114 Bemidji Avenue, Bemidji, Minnesota, 56601, USA
| | - William O Hobbs
- St. Croix Watershed Research Station, Science Museum of Minnesota, 16910 152nd Street North, Marine on St. Croix, Minnesota, 55047, USA
| | - Gaston E Small
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St. Paul, Minnesota, 55105, USA
| | - James B Cotner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
68
|
Faubert P, Durocher S, Bertrand N, Ouimet R, Rochette P, Tremblay P, Boucher JF, Villeneuve C. Greenhouse Gas Emissions after Application of Landfilled Paper Mill Sludge for Land Reclamation of a Nonacidic Mine Tailings Site. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:950-960. [PMID: 28991966 DOI: 10.2134/jeq2017.03.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Large areas of mine tailings are reclaimed by applying organic amendments such as paper mill sludge (PMS). Although mining industries can use PMS freshly generated by paper mills, operational constraints on paper industries make temporary landfilling of this material an unavoidable alternative for the paper industries, creating the most prominent PMS source for mining industries. This study aimed to quantify soil greenhouse gas (GHG) emissions (NO, CO, and CH) after application of landfilled PMS (LPMS; i.e., excavated from a landfill site at a paper mill) and LPMS combined with a seeding treatment of white clover ( L.) on nonacidic mine tailings site prior to reforestation. Soil NO, CO, and CH fluxes were measured after applications of 50 and 100 Mg dry LPMS ha during two consecutive snow-free seasons on two adjacent sites; LPMS was applied once in the first season. The LPMS application increased NO emissions (7.6 to 34.7 kg NO-N ha, comprising 1.04 to 2.43% of applied N) compared with the unamended control during the first season; these emissions were negligible during the second season. The LPMS application increased CO emissions (∼5800 to 11,400 kg CO-C ha, comprising 7 to 27% of applied C) compared with the unamended control on both sites and in both seasons. Fluxes of CH were negligible. White clover combined with LPMS treatments did not affect soil GHG emissions. These new GHG emission factors should be integrated into life-cycle analyses to evaluate the C footprint of potential symbioses between the mining and paper industries. Future research should focus on the effect of PMS applications on soil GHG emissions from a variety of mine tailings under various management practices and climatic conditions to plan responsible and sustainable land reclamation.
Collapse
|
69
|
Coskun D, Britto DT, Shi W, Kronzucker HJ. How Plant Root Exudates Shape the Nitrogen Cycle. TRENDS IN PLANT SCIENCE 2017; 22:661-673. [PMID: 28601419 DOI: 10.1016/j.tplants.2017.05.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 05/23/2023]
Abstract
Although the global nitrogen (N) cycle is largely driven by soil microbes, plant root exudates can profoundly modify soil microbial communities and influence their N transformations. A detailed understanding is now beginning to emerge regarding the control that root exudates exert over two major soil N processes - nitrification and N2 fixation. We discuss recent breakthroughs in this area, including the identification of root exudates as nitrification inhibitors and as signaling compounds facilitating N-acquisition symbioses. We indicate gaps in current knowledge, including questions of how root exudates affect newly discovered microbial players and N-cycle components. A better understanding of these processes is urgent given the widespread inefficiencies in agricultural N use and their links to N pollution and climate change.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto M1C 1A4, ON, Canada; Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec G1V 0A6, QC, Canada
| | - Dev T Britto
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto M1C 1A4, ON, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Herbert J Kronzucker
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto M1C 1A4, ON, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
70
|
Denitrifying bacterial communities display different temporal fluctuation patterns across Dutch agricultural soils. Antonie van Leeuwenhoek 2017; 110:1453-1465. [PMID: 28608318 DOI: 10.1007/s10482-017-0898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
Abstract
Considering the great agronomic and environmental importance of denitrification, the aim of the present study was to study the temporal and spatial factors controlling the abundance and activity of denitrifying bacterial communities in a range of eight agricultural soils over 2 years. Abundance was quantified by qPCR of the nirS, nirK and nosZ genes, and the potential denitrification enzyme activity (DEA) was estimated. Our data showed a significant temporal variation considerably high for the abundance of nirK-harboring communities, followed by nosZ and nirS communities. Regarding soil parameters, the abundances of nosZ, nirS and nirK were mostly influenced by organic material, pH, and slightly by NO3-, respectively. Soil texture was the most important factor regulating DEA, which could not be explained by the abundance of denitrifiers. Analyses of general patterns across lands to understand the soil functioning is not an easy task because the multiple factors influencing processes such as denitrification can skew the data. Careful analysis of atypical sites are necessary to classify the soils according to trait similarity and in this way reach a better predictability of the denitrifiers dynamics.
Collapse
|
71
|
Smith RM, Kaushal SS, Beaulieu JJ, Pennino MJ, Welty C. Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams. ACTA ACUST UNITED AC 2017; 14. [PMID: 32665782 DOI: 10.5194/bg-14-2831-2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3 - ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3 - and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 = 0.78), carbon dioxide (CO2, r2 = 0.78) and methane (CH4, r 2 = 0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality.
Collapse
Affiliation(s)
- Rose M Smith
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.,Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA
| | - Sujay S Kaushal
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA
| | - Jake J Beaulieu
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45220, USA
| | - Michael J Pennino
- US Environmental Protection Agency National Health and Environmental Effects Research Lab, Corvallis, OR 97333, USA.,Department of Chemical, Biochemical, and Environmental Engineering, Center for Urban Environmental Research and Education, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Claire Welty
- Department of Chemical, Biochemical, and Environmental Engineering, Center for Urban Environmental Research and Education, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
72
|
Hang Q, Wang H, Chu Z, Hou Z, Zhou Y, Li C. Nitrate-rich agricultural runoff treatment by Vallisneria-sulfur based mixotrophic denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:108-117. [PMID: 28237469 DOI: 10.1016/j.scitotenv.2017.02.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Vallisneria-sulfur based mixotrophic denitrification (VSMD) process was put forward for the treatment of nitrate-rich agricultural runoff with low COD/TN (C/N) ratio in free water surface constructed wetland mesocosms, whose feasibility and mechanism were thoroughly studied through 273-day operation. The results showed that the average NO3--N removal efficiency and denitrification rate of VSMD mesocosms were 97.7% and 1.5gNO3--Nm-3d-1 under 5.0 or higher C/N ratio conditions in phase II (7-117d), which were similar with those of Vallisneria packed heterotrophic denitrification (VHD) mesocosms. However, VSMD mesocosms with 2.0 average C/N ratio in phase III (118-273d) were more stable and efficient than VHD mesocosms. More than 49.4mg NO3--N was reduced by VSMD mesocosms than that by VHD mesocosms throughout the operation. NO2--N accumulation in phase I (0-6d) had no influence on denitrification performance of VSMD mesocosms. In phase II and III, effluent COD, NH4+-N and NO2--N could meet the Class II standard of Environmental quality for surface water (GB3838-2002) if the experiment was carried out in batch mode. pH in VSMD mesocosms fluctuated between 7.0 and 8.9 throughout the operation without any pH buffer. The abundance of three denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in bottom soil and mixture from litter bags was quantified. VSMD could supply more favorable circumstances for the growth of denitrificans containing narG (3.1×108±7.9×107copiesg-1mixture-1) and nirS (2.1×108±2.0×106copiesg-1mixture-1) in litter bags than VHD, i.e., 8.7×107±1.4×107 and 1.4×108±1.5×107copiesg-1mixture-1 for narG and nirS respectively. Sulfur addition in VSMD mesocosms might increase the abundance of denitrificans containing narG and nirS, thus led to better denitrification performance.
Collapse
Affiliation(s)
- Qianyu Hang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China.
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center of Lake Eco-Environments, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China.
| | - Zeying Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center of Lake Eco-Environments, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China
| | - Chunmei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
73
|
Bacterial community dynamics in a biodenitrification reactor packed with polylactic acid/poly (3-hydroxybutyrate- co -3-hydroxyvalerate) blend as the carbon source and biofilm carrier. J Biosci Bioeng 2017; 123:606-612. [DOI: 10.1016/j.jbiosc.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022]
|
74
|
Determination of Water Quality Degradation Due to Industrial and Household Wastewater in the Galing River in Kuantan, Malaysia Using Ion Chromatograph and Water Quality Data. ENVIRONMENTS 2017. [DOI: 10.3390/environments4020035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
75
|
Responses of denitrifying bacterial communities to short-term waterlogging of soils. Sci Rep 2017; 7:803. [PMID: 28400580 PMCID: PMC5429771 DOI: 10.1038/s41598-017-00953-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Agricultural soil is often subjected to waterlogging after heavy rainfalls, resulting in sharp and explosive increases in the emission of nitrous oxide (N2O), an important greenhouse gas primarily released from agricultural soil ecosystems. Previous studies on waterlogged soil examined the abundance of denitrifiers but not the composition of denitrifier communities in soil. Also, the PCR primers used in those studies could only detect partial groups of denitrifiers. Here, we performed pyrosequencing analyses with the aid of recently developed PCR primers exhibiting high coverage for three denitrification genes, nirK, nirS, and nosZ to examine the effect of short-term waterlogging on denitrifier communities in soil. We found that microbial communities harboring denitrification genes in the top 5 cm of soil distributed according to soil depth, water-soluble carbon, and nitrate nitrogen. Short-term waterlogging scarcely affected abundance, richness, or the alpha-diversities of microbial communities harboring nirK, nirS, and nosZ genes, but significantly affected their composition, particularly in microbial communities at soil depths of 0 to 1 cm. Our results indicated that the composition of denitrifying microbial communities but not the abundance of denitrifiers in soil was responsive to short-term waterlogging of an agricultural soil ecosystem.
Collapse
|
76
|
Gao M, Liu J, Qiao Y, Zhao M, Zhang XH. Diversity and Abundance of the Denitrifying Microbiota in the Sediment of Eastern China Marginal Seas and the Impact of Environmental Factors. MICROBIAL ECOLOGY 2017; 73:602-615. [PMID: 27924403 DOI: 10.1007/s00248-016-0906-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
Investigating the environmental influence on the community composition and abundance of denitrifiers in marine sediment ecosystem is essential for understanding of the ecosystem-level controls on the biogeochemical process of denitrification. In the present study, nirK-harboring denitrifying communities in different mud deposit zones of eastern China marginal seas (ECMS) were investigated via clone library analysis. The abundance of three functional genes affiliated with denitrification (narG, nirK, nosZ) was assessed by fluorescent quantitative PCR. The nirK-harboring microbiota were dominated by a few operational taxonomic units (OTUs), which were widely distributed in different sites with each site harboring their unique phylotypes. The mean abundance of nirK was significantly higher than that of narG and nosZ genes, and the abundance of narG was higher than that of nosZ. The inconsistent abundance profile of different functional genes along the process of denitrification might indicate that nitrite reduction occurred independently of denitrification in the mud deposit zones of ECMS, and sedimentary denitrification was accomplished by cooperation of different denitrifying species rather than a single species. Such important information would be missed when targeting only a single denitrifying functional gene. Analysis of correlation between abundance ratios and environmental factors revealed that the response of denitrifiers to environmental factors was not invariable in different mud deposit zones. Our results suggested that a comprehensive analysis of different denitrifying functional genes may gain more information about the dynamics of denitrifying microbiota in marine sediments.
Collapse
Affiliation(s)
- Minghong Gao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yanlu Qiao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Meixun Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
77
|
Grau-Martínez A, Torrentó C, Carrey R, Rodríguez-Escales P, Domènech C, Ghiglieri G, Soler A, Otero N. Feasibility of two low-cost organic substrates for inducing denitrification in artificial recharge ponds: Batch and flow-through experiments. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 198:48-58. [PMID: 28131436 DOI: 10.1016/j.jconhyd.2017.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Anaerobic batch and flow-through experiments were performed to assess the capacity of two organic substrates to promote denitrification of nitrate-contaminated groundwater within managed artificial recharge systems (MAR) in arid or semi-arid regions. Denitrification in MAR systems can be achieved through artificial recharge ponds coupled with a permeable reactive barrier in the form of a reactive organic layer. In arid or semi-arid regions, short-term efficient organic substrates are required due to the short recharge periods. We examined the effectiveness of two low-cost, easily available and easily handled organic substrates, commercial plant-based compost and crushed palm tree leaves, to determine the feasibility of using them in these systems. Chemical and multi-isotopic monitoring (δ15NNO3, δ18ONO3, δ34SSO4, δ18OSO4) of the laboratory experiments confirmed that both organic substrates induced denitrification. Complete nitrate removal was achieved in all the experiments with a slight transient nitrite accumulation. In the flow-through experiments, ammonium release was observed at the beginning of both experiments and lasted longer for the experiment with palm tree leaves. Isotopic characterisation of the released ammonium suggested ammonium leaching from both organic substrates at the beginning of the experiments and pointed to ammonium production by DNRA for the palm tree leaves experiment, which would only account for a maximum of 15% of the nitrate attenuation. Sulphate reduction was achieved in both column experiments. The amount of organic carbon consumed during denitrification and sulphate reduction was 0.8‰ of the total organic carbon present in commercial compost and 4.4% for the palm tree leaves. The N and O isotopic fractionation values obtained (εN and εO) were -10.4‰ and -9.0‰ for the commercial compost (combining data from both batch and column experiments), and -9.9‰ and -8.6‰ for the palm tree column, respectively. Both materials showed a satisfactory capacity for denitrification, but the palm tree leaves gave a higher denitrification rate and yield (amount of nitrate consumed per amount of available C) than commercial compost.
Collapse
Affiliation(s)
- Alba Grau-Martínez
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, SIMGEO UB-CSIC, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/ Martí i Franquès, s/n, 08028 Barcelona, Spain.
| | - Clara Torrentó
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, SIMGEO UB-CSIC, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/ Martí i Franquès, s/n, 08028 Barcelona, Spain; Centre for Hydrogeology and Geothermics, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Raúl Carrey
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, SIMGEO UB-CSIC, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/ Martí i Franquès, s/n, 08028 Barcelona, Spain
| | - Paula Rodríguez-Escales
- Hydrogeology Group (GHS), Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), c/Jordi Girona 1-3, 08034 Barcelona, Spain
| | - Cristina Domènech
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, SIMGEO UB-CSIC, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/ Martí i Franquès, s/n, 08028 Barcelona, Spain
| | - Giorgio Ghiglieri
- Department of Chemical and Geological Sciences, University of Cagliari, Via Trentino 51, 09127 Cagliari, Italy; Desertification Research Center-NRD, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Albert Soler
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, SIMGEO UB-CSIC, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/ Martí i Franquès, s/n, 08028 Barcelona, Spain
| | - Neus Otero
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, SIMGEO UB-CSIC, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/ Martí i Franquès, s/n, 08028 Barcelona, Spain
| |
Collapse
|
78
|
Lennon EFE, Houlton BZ. Coupled molecular and isotopic evidence for denitrifier controls over terrestrial nitrogen availability. THE ISME JOURNAL 2017; 11:727-740. [PMID: 27935591 PMCID: PMC5322299 DOI: 10.1038/ismej.2016.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 11/08/2022]
Abstract
Denitrification removes ecologically available nitrogen (N) from the biosphere and influences both the pace and magnitude of global climate change. Disagreements exist over the degree to which this microbial process influences N-availability patterns across Earth's ecosystems. We combine natural stable isotope methods with qPCR to investigate how denitrifier gene abundance is related to variations in nitrate (NO3-) pool sizes across diverse terrestrial biomes and conditions. We analyze NO3- isotope composition (15N/14N, 18O/16O) and denitrifier gene nirS in 52 soil samples from different California ecosystems, spanning desert, chaparral, oak-woodland/savanna and forest. δ15N-NO3- correlates positively with δ18O-NO3- (P⩽0.03) and nirS abundance (P=0.00002) across sites, revealing the widespread importance of isotopic discrimination by soil denitrifiers. Furthermore, NO3- concentrations correlate negatively to nirS (P=0.002) and δ15N-NO3- (P=0.003) across sites. We also observe these spatial relationships in short-term (7-day), in situ soil-incubation experiments; NO3--depletion strongly corresponds with increased nirS, nirS/16 rRNA, and enrichment of heavy NO3- isotopes over time. Overall, these findings suggest that microbial denitrification can consume plant-available NO3- to low levels at multiple time scales, contributing to N-limitation patterns across sites, particularly in moist, carbon-rich soils. Furthermore, our study provides a new approach for understanding the relationships between microbial gene abundance and terrestrial ecosystem functioning.
Collapse
Affiliation(s)
- Erin F E Lennon
- Department of Land Air and Water Resources, University of California at Davis, Davis, CA, USA
| | - Benjamin Z Houlton
- Department of Land Air and Water Resources, University of California at Davis, Davis, CA, USA
| |
Collapse
|
79
|
Chen C, Xu XJ, Xie P, Yuan Y, Zhou X, Wang AJ, Lee DJ, Ren NQ. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations. CHEMOSPHERE 2017; 171:294-301. [PMID: 28027473 DOI: 10.1016/j.chemosphere.2016.11.159] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Integrated simultaneous desulfurization and denitrification (ISDD) process has proven to be feasible for the coremoval of sulfate, nitrate, and chemical oxygen demand (COD). In this study, we aimed to reveal the microbial community dynamics in the ISDD process with different influent nitrate (NO3-) concentrations. For all tested scenarios, full denitrification was accomplished while sulfate removal efficiency decreased along with increased influent NO3- concentrations. The proportion of S0 to influent SO42- maintained a low level (5.6-17.0%) regardless of the increased influent NO3- concentrations. Microbial community analysis results showed that higher influent NO3- concentrations affected the microbial community structure greatly. Phyla Proteobacteria, Spirochaetae, Firmicutes, Synergistetes, and Chloroflexi dominated in all the community compositions, of which Proteobacteria exhibited a clear difference among eight microbial samples. Members of δ-Proteobacteria, with 16S rRNA gene sequences related to Desulfobulbus, were clearly decreased at influent NO3- = 3000 and 3500 mg/L, suggesting an inhibitory effect of NO3- on sulfate reduction. In contrast, as influent NO3- concentration increased, microbial community was notably enriched in γ-Proteobacteria and ε-Proteobacteria, which revealed the enrichment of 16S rRNA gene sequences related to Pseudomonas (γ-Proteobacteria), and Arcobacteria and Sulfurospirillum (ε-Proteobacteria).
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China.
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
80
|
Wang H, Zhang L, Yao X, Xue B, Yan W. Dissolved nitrous oxide and emission relating to denitrification across the Poyang Lake aquatic continuum. J Environ Sci (China) 2017; 52:130-140. [PMID: 28254031 DOI: 10.1016/j.jes.2016.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/15/2016] [Accepted: 03/31/2016] [Indexed: 06/06/2023]
Abstract
Most aquatic ecosystems contribute elevated N2O to atmosphere due to increasing anthropogenic nitrogen loading. To further understand the spatial heterogeneity along an aquatic continuum from the upriver to wetland to lake to downriver, the study was conducted on spatial variations in N2O emission along Poyang Lake aquatic continuum during the flood season from 15 July 2013 to 10 August 2013. The results showed the N2O concentrations, the ratio of N2O/dinitrogen (N2) gases production, N2O emission and denitrification rates ranged from 0.10 to 1.11μgN/L, -0.007% to 0.051%, -9.73 to 127μgN/m2/hr and 1.33×104 to 31.9×104μgN2/m2/hr, respectively, across the continuum. The average N2O concentrations, the ratio of N2O/N2 and N2O emission was significantly lower in wetlands as compared to the rivers and lake (p<0.01). The significantly high denitrification rate and low N2O emission together highlighted that most N2O can be converted into N2 via near complete denitrification in the Poyang Lake wetlands. Our study suggests that the wetlands might impact N2O budget in an integrated aquatic ecosystems. Moreover, N2O emission from different aquatic ecosystem should be considered separately when quantifying the regional budget in aquatic ecosystem.
Collapse
Affiliation(s)
- Huaxin Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weijin Yan
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
81
|
Gooding RM, Baulch HM. Small Reservoirs as a Beneficial Management Practice for Nitrogen Removal. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:96-104. [PMID: 28177420 DOI: 10.2134/jeq2016.07.0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There are few beneficial management practices (BMPs) with demonstrated efficacy in snowmelt-dominated regions. Small reservoirs are a BMP that can help mitigate flooding and reduce sediment transport, while reducing export of dissolved nutrients. To understand controls on nitrate removal and assess how this ecosystem service can be optimized, denitrification activity was measured in reservoirs and stream pools of the Tobacco Creek Model Watershed (Manitoba, Canada) via the chloramphenicol-amended acetylene block technique. Denitrification activity was positively correlated with nitrate and sediment organic carbon (SOC), and negatively correlated with sediment particle size and pH. Reservoirs exhibited higher denitrification activity than stream pools and were associated with higher levels of SOC, higher nitrate in early summer, and lower concentrations of dissolved oxygen. Nitrate was added to a set of samples to test for nitrate saturation, an indicator of poor ecological status, where nitrate concentrations exceed the denitrification capacity of microbes. Forty-nine percent of measurements demonstrated nitrate saturation, indicative of the need for additional remediation activity. Findings from this research suggest this BMP has higher capacity for nitrogen removal than stream pools because of higher denitrification rates and a higher apparent threshold for nitrate saturation, coupled with increased residence times. Results also inform the construction of additional reservoirs, which have been identified as a priority BMP in this region. Siting reservoirs in areas where conditions contribute to buildup of fine sediments and planting riparian vegetation to foster high organic C availability may help optimize denitrification, although tradeoffs in terms of other ecosystem services must be considered.
Collapse
|
82
|
Horrell S, Kekilli D, Strange RW, Hough MA. Recent structural insights into the function of copper nitrite reductases. Metallomics 2017; 9:1470-1482. [DOI: 10.1039/c7mt00146k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper nitrite reductases (CuNiRs) catalyse the reduction of nitrite to nitric oxide as part of the denitrification pathway. In this review, we describe insights into CuNiR function from structural studies.
Collapse
Affiliation(s)
- Sam Horrell
- School of Biological Sciences
- University of Essex
- Colchester
- UK
| | - Demet Kekilli
- School of Biological Sciences
- University of Essex
- Colchester
- UK
| | | | | |
Collapse
|
83
|
Nakai R, Fujisawa T, Nakamura Y, Baba T, Nishijima M, Karray F, Sayadi S, Isoda H, Naganuma T, Niki H. Genome sequence and overview of Oligoflexus tunisiensis Shr3 T in the eighth class Oligoflexia of the phylum Proteobacteria. Stand Genomic Sci 2016; 11:90. [PMID: 27999625 PMCID: PMC5154148 DOI: 10.1186/s40793-016-0210-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/26/2016] [Indexed: 11/10/2022] Open
Abstract
Oligoflexus tunisiensis Shr3T is the first strain described in the newest (eighth) class Oligoflexia of the phylum Proteobacteria. This strain was isolated from the 0.2-μm filtrate of a suspension of sand gravels collected in the Sahara Desert in the Republic of Tunisia. The genome of O. tunisiensis Shr3T is 7,569,109 bp long and consists of one scaffold with a 54.3% G + C content. A total of 6,463 genes were predicted, comprising 6,406 protein-coding and 57 RNA genes. Genome sequence analysis suggested that strain Shr3T had multiple terminal oxidases for aerobic respiration and various transporters, including the resistance-nodulation-cell division-type efflux pumps. Additionally, gene sequences related to the incomplete denitrification pathway lacking the final step to reduce nitrous oxide (N2O) to nitrogen gas (N2) were found in the O. tunisiensis Shr3T genome. The results presented herein provide insight into the metabolic versatility and N2O-producing activity of Oligoflexus species.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, 411-8540 Japan
| | - Takatomo Fujisawa
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, 411-8540 Japan
| | - Yasukazu Nakamura
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, 411-8540 Japan ; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, 411-8540 Japan
| | - Tomoya Baba
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, 411-8540 Japan
| | - Miyuki Nishijima
- Technical Department, TechnoSuruga Laboratory Co., Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka, 424-0065 Japan
| | - Fatma Karray
- Centre of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, km 6, BP 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Centre of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, km 6, BP 1177, 3018 Sfax, Tunisia
| | - Hiroko Isoda
- Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8572 Japan
| | - Takeshi Naganuma
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, 739-8528 Japan
| | - Hironori Niki
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, 411-8540 Japan ; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, 411-8540 Japan
| |
Collapse
|
84
|
Mekuto L, Ntwampe SKO, Akcil A. An integrated biological approach for treatment of cyanidation wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:711-720. [PMID: 27424119 DOI: 10.1016/j.scitotenv.2016.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
The cyanidation process has been, and still remains, a profitable and highly efficient process for the recovery of precious metals from ores. However, this process has contributed to environmental deterioration and potable water reserve contamination due to the discharge of poorly treated, or untreated, cyanide containing wastewater. The process produces numerous cyanide complexes in addition to the gold cyanocomplex. Additionally, the discharge constituents also include hydrogen cyanide (HCN) - metallic complexes with iron, nickel, copper, zinc, cobalt and other metals; thiocyanate (SCN); and cyanate (CNO). The fate of these complexes in the environment dictates the degree to which these species pose a threat to living organisms. This paper reviews the impact that the cyanidation process has on the environment, the ecotoxicology of the cyanidation wastewater and the treatment methods that are currently utilised to treat cyanidation wastewater. Furthermore, this review proposes an integrated biological approach for the treatment of the cyanidation process wastewater using microbial consortia that is insensitive and able to degrade cyanide species, in all stages of the proposed process.
Collapse
Affiliation(s)
- Lukhanyo Mekuto
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town 8000, South Africa
| | - S K O Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town 8000, South Africa.
| | - Ata Akcil
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Div., Dept. of Mining Eng., Suleyman Demirel University, TR32260 Isparta, Turkey
| |
Collapse
|
85
|
Wen Y, Chen Z, Dannenmann M, Carminati A, Willibald G, Kiese R, Wolf B, Veldkamp E, Butterbach-Bahl K, Corre MD. Disentangling gross N 2O production and consumption in soil. Sci Rep 2016; 6:36517. [PMID: 27812012 PMCID: PMC5109911 DOI: 10.1038/srep36517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
The difficulty of measuring gross N2O production and consumption in soil impedes our ability to predict N2O dynamics across the soil-atmosphere interface. Our study aimed to disentangle these processes by comparing measurements from gas-flow soil core (GFSC) and 15N2O pool dilution (15N2OPD) methods. GFSC directly measures soil N2O and N2 fluxes, with their sum as the gross N2O production, whereas 15N2OPD involves addition of 15N2O into a chamber headspace and measuring its isotopic dilution over time. Measurements were conducted on intact soil cores from grassland, cropland, beech and pine forests. Across sites, gross N2O production and consumption measured by 15N2OPD were only 10% and 6%, respectively, of those measured by GFSC. However, 15N2OPD remains the only method that can be used under field conditions to measure atmospheric N2O uptake in soil. We propose to use different terminologies for the gross N2O fluxes that these two methods quantified. For 15N2OPD, we suggest using 'gross N2O emission and uptake', which encompass gas exchange within the 15N2O-labelled, soil air-filled pores. For GFSC, 'gross N2O production and consumption' can be used, which includes both N2O emitted into the soil air-filled pores and N2O directly consumed, forming N2, in soil anaerobic microsites.
Collapse
Affiliation(s)
- Yuan Wen
- Buesgen Institute - Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Zhe Chen
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Michael Dannenmann
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Andrea Carminati
- Department of Crop Sciences - Soil Hydrology Division, Faculty of Agricultural Sciences, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Georg Willibald
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Ralf Kiese
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Benjamin Wolf
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Edzo Veldkamp
- Buesgen Institute - Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Klaus Butterbach-Bahl
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Marife D. Corre
- Buesgen Institute - Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| |
Collapse
|
86
|
Highton MP, Roosa S, Crawshaw J, Schallenberg M, Morales SE. Physical Factors Correlate to Microbial Community Structure and Nitrogen Cycling Gene Abundance in a Nitrate Fed Eutrophic Lagoon. Front Microbiol 2016; 7:1691. [PMID: 27826296 PMCID: PMC5078687 DOI: 10.3389/fmicb.2016.01691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/10/2016] [Indexed: 12/04/2022] Open
Abstract
Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries) creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN) and phosphorous gradient (DRP). Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH, nirS, nosZI, and nosZII using qPCR), potential activity (via denitrification enzyme activity), as well as using changes in total community (via 16S rRNA gene amplicon sequencing). Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance) and functional level (proportion of the microbial community carrying nifH and nosZI genes) were most strongly associated with physical gradients (e.g., lake depth, sediment grain size, sediment porosity) and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.
Collapse
Affiliation(s)
- Matthew P Highton
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Stéphanie Roosa
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Josie Crawshaw
- Department of Marine Science, University of Otago Dunedin, New Zealand
| | | | - Sergio E Morales
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| |
Collapse
|
87
|
|
88
|
Musgrove M, Opsahl SP, Mahler BJ, Herrington C, Sample TL, Banta JR. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:457-469. [PMID: 27314899 DOI: 10.1016/j.scitotenv.2016.05.201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3(-)) loading to surface and groundwater. We investigate variability and sources of NO3(-) in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008-12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3(-) stable isotopes (δ(15)N and δ(18)O). These data were augmented by historical data collected from 1937 to 2007. NO3(-) concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3(-) concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3(-) concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3(-). These results highlight the vulnerability of karst aquifers to NO3(-) contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008-10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3(-) than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously unrecognized source of NO3(-) to karst groundwater or other oxic groundwater systems.
Collapse
Affiliation(s)
- M Musgrove
- U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754, United States.
| | - S P Opsahl
- U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249, United States
| | - B J Mahler
- U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754, United States
| | - C Herrington
- City of Austin Watershed Protection Department, Austin, TX 78704, United States
| | - T L Sample
- U.S. Geological Survey, 19241 David Memorial Dr., Ste. 180, Conroe, TX 77385, United States
| | - J R Banta
- U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249, United States
| |
Collapse
|
89
|
Bruun J, Hoffmann CC, Kjaergaard C. Nitrogen Removal in Permeable Woodchip Filters Affected by Hydraulic Loading Rate and Woodchip Ratio. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1688-1695. [PMID: 27695766 DOI: 10.2134/jeq2015.11.0583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unregulated and event-driven agricultural tile drainage discharge poses several challenges that potentially limit the nitrate (NO) removal performance of woodchip-based wetlands constructed to intercept subsurface tile drain flows. Laboratory column tests were conducted to evaluate the biogeochemical response of mixed reactive media (woodchips-seashells and woodchips-Filtralite mixtures) at two woodchip ratios to changes in hydraulic loading rate (HLR). The tests involved continuous loading of aerated artificial drainage water spiked with NO-N and tritium (HO) breakthrough experiments. Flow-normalized NO reduction rates ranged from 0.35 to 3.97 g N m L, corresponding to N removal efficiencies of 5 to 64%, depending on HLR and filter mixtures. At high HLRs, oxic conditions prevailed in the woodchip filters, resulting in reduced N removal. At low HLRs, progressively lower pore-water velocities extended the period for consumption of terminal electron acceptors, increasing N removal. When increasing the content of mineral material, N removal declined, probably due to a lower denitrifying biomass at lower woodchip mass. The effect of woodchip ratios on solute transport characteristics was difficult to assess. However, woodchip media including a mineral fraction of crushed seashells demonstrated the highest N removal rates and efficiencies, most likely due to the alkalizing effect of the seashells. In conclusion, filter mixtures consisting of woodchips and seashells were the most effective material for N removal in subsurface flow-constructed wetlands treating agricultural drainage water.
Collapse
|
90
|
Myrstener M, Jonsson A, Bergström AK. The effects of temperature and resource availability on denitrification and relative N2O production in boreal lake sediments. J Environ Sci (China) 2016; 47:82-90. [PMID: 27593275 DOI: 10.1016/j.jes.2016.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 06/06/2023]
Abstract
Anthropogenic environmental stressors (like atmospheric deposition, land use change, and climate warming) are predicted to increase inorganic nitrogen and organic carbon loading to northern boreal lakes, with potential consequences for denitrification in lakes. However, our ability to predict effects of these changes is currently limited as northern boreal lakes have been largely neglected in denitrification studies. The aim of this study was therefore to assess how maximum potential denitrification and N2O production rates, and the relationship between the two (relative N2O production), is controlled by availability of nitrate (NO3(-)), carbon (C), phosphorus (P), and temperature. Experiments were performed using the acetylene inhibition technique on sediments from a small, nutrient poor boreal lake in northern Sweden in 2014. Maximum potential denitrification and N2O production rates at 4°C were reached already at NO3(-) additions of 106-120μg NO3(-)-N/L, and remained unchanged with higher NO3 amendments. Higher incubation temperatures increased maximum potential denitrification and N2O production rates, and Q10 was somewhat higher for N2O production (1.77) than for denitrification (1.69). The relative N2O production ranged between 13% and 64%, and was not related to NO3(-) concentration, but the ratio increased when incubations were amended with C and P (from a median of 16% to 27%). Combined, our results suggests that unproductive northern boreal lakes currently have low potential for denitrification but are susceptible to small changes in NO3 loading especially if these are accompanied by enhanced C and P availability, likely promoting higher N2O production relative to N2.
Collapse
Affiliation(s)
- Maria Myrstener
- Department of Ecology and Environmental Science, Umeå University, 901 87 Umeå, Sweden.
| | - Anders Jonsson
- Department of Ecology and Environmental Science, Umeå University, 901 87 Umeå, Sweden
| | - Ann-Kristin Bergström
- Department of Ecology and Environmental Science, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
91
|
Owens J, Clough TJ, Laubach J, Hunt JE, Venterea RT, Phillips RL. Nitrous Oxide Fluxes, Soil Oxygen, and Denitrification Potential of Urine- and Non-Urine-Treated Soil under Different Irrigation Frequencies. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1169-1177. [PMID: 27380064 DOI: 10.2134/jeq2015.10.0516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite increased use of irrigation to improve forage quality and quantity for grazing cattle ( Linnaeus), there is a lack of data that assess how irrigation practices influence nitrous oxide (NO) emissions from urine-affected soils. Irrigation effects on soil oxygen (O) availability, a primary controller of NO fluxes, is poorly understood. It was hypothesized that increased irrigation frequency would result in lower NO emissions by increasing soil moisture and decreasing soil O concentrations. This would favor more NO reduction to dinitrogen (N). We examined effects of high (3-d) versus low (6-d) irrigation frequency with and without bovine urine addition to pasture. Nitrous oxide fluxes were measured daily for 35 d. Soil O, temperature, and water content were continuously measured at multiple depths. Inorganic nitrogen, organic carbon, and soil pH were measured at 6-d intervals. Measurements of denitrification enzyme activity with and without acetylene inhibition were used to infer the NO/(NO + N) ratio. The NO/(NO + N) ratio was lower under high- compared with low-frequency irrigation, suggesting greater potential for NO reduction to N with more frequent irrigation. Although NO fluxes were increased by urine addition, they were not affected by irrigation frequency. Soil O decreased temporarily after urine deposition, but O dynamics did not explain NO dynamics. Relative soil gas diffusivity (/) was a better predictor of NO fluxes than O concentration. On a free-draining soil, increasing irrigation frequency while providing the same total water volume did not enhance NO emissions under ruminant urine patches in a grazed pasture.
Collapse
|
92
|
Zhang X, Fang J, Bach W, Edwards KJ, Orcutt BN, Wang F. Nitrogen Stimulates the Growth of Subsurface Basalt-associated Microorganisms at the Western Flank of the Mid-Atlantic Ridge. Front Microbiol 2016; 7:633. [PMID: 27199959 PMCID: PMC4853389 DOI: 10.3389/fmicb.2016.00633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/18/2016] [Indexed: 02/01/2023] Open
Abstract
Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program. Enrichment experiments with different carbon (bicarbonate, acetate, methane) and nitrogen (nitrate and ammonium) sources revealed significant cell growth (one magnitude higher cell abundance), higher intracellular DNA content, and increased Fe3+/ΣFe ratios only when nitrogen substrates were added. Furthermore, a Marinobacter strain with neutrophilic iron-oxidizing capabilities was isolated from the basalt. This work reveals that basalt-associated microorganisms at North Pond had the potential for activity and that microbial growth could be stimulated by in vitro nitrogen addition. Furthermore, iron oxidation is supported as an important process for microbial communities in subsurface basalts from young and cool ridge flank basement.
Collapse
Affiliation(s)
- Xinxu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Jing Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Wolfgang Bach
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen Bremen, Germany
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
93
|
Fox S, Bruner T, Oren Y, Gilron J, Ronen Z. Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor. Biotechnol Bioeng 2016; 113:1881-91. [DOI: 10.1002/bit.25960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/06/2016] [Accepted: 02/15/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Shalom Fox
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research; Ben Gurion University of the Negev Sede Boqer Campus; Midreshet Ben Gurion Israel
| | - Tali Bruner
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research; Ben Gurion University of the Negev Sede Boqer Campus; Midreshet Ben Gurion 84990 Israel
| | - Yoram Oren
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research; Ben Gurion University of the Negev Sede Boqer Campus; Midreshet Ben Gurion Israel
| | - Jack Gilron
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research; Ben Gurion University of the Negev Sede Boqer Campus; Midreshet Ben Gurion Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research; Ben Gurion University of the Negev Sede Boqer Campus; Midreshet Ben Gurion 84990 Israel
| |
Collapse
|
94
|
Zhu J, Wang Q, Yuan M, Tan GYA, Sun F, Wang C, Wu W, Lee PH. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review. WATER RESEARCH 2016; 90:203-215. [PMID: 26734780 DOI: 10.1016/j.watres.2015.12.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking water and groundwater, bottlenecks and potential issues are also discussed.
Collapse
Affiliation(s)
- Jing Zhu
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qian Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Mengdong Yuan
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Giin-Yu Amy Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Faqian Sun
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Cheng Wang
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
95
|
Zhou EM, Murugapiran SK, Mefferd CC, Liu L, Xian WD, Yin YR, Ming H, Yu TT, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Ngan CY, Daum C, Shapiro N, Markowitz V, Ivanova N, Spunde A, Kyrpides N, Woyke T, Li WJ, Hedlund BP. High-quality draft genome sequence of the Thermus amyloliquefaciens type strain YIM 77409(T) with an incomplete denitrification pathway. Stand Genomic Sci 2016; 11:20. [PMID: 26925197 PMCID: PMC4769583 DOI: 10.1186/s40793-016-0140-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Thermus amyloliquefaciens type strain YIM 77409(T) is a thermophilic, Gram-negative, non-motile and rod-shaped bacterium isolated from Niujie Hot Spring in Eryuan County, Yunnan Province, southwest China. In the present study we describe the features of strain YIM 77409(T) together with its genome sequence and annotation. The genome is 2,160,855 bp long and consists of 6 scaffolds with 67.4 % average GC content. A total of 2,313 genes were predicted, comprising 2,257 protein-coding and 56 RNA genes. The genome is predicted to encode a complete glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle. Additionally, a large number of transporters and enzymes for heterotrophy highlight the broad heterotrophic lifestyle of this organism. A denitrification gene cluster included genes predicted to encode enzymes for the sequential reduction of nitrate to nitrous oxide, consistent with the incomplete denitrification phenotype of this strain.
Collapse
Affiliation(s)
- En-Min Zhou
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
- />School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV USA
| | | | | | - Lan Liu
- />State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Wen-Dong Xian
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Yi-Rui Yin
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Hong Ming
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Tian-Tian Yu
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Marcel Huntemann
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Alicia Clum
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Manoj Pillay
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | - Neha Varghese
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | | | - T. B. K. Reddy
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Chew Yee Ngan
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Chris Daum
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Nicole Shapiro
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Victor Markowitz
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Natalia Ivanova
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Alexander Spunde
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Nikos Kyrpides
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Tanja Woyke
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Wen-Jun Li
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
- />State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Brian P. Hedlund
- />School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV USA
- />Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV USA
| |
Collapse
|
96
|
Jia Z, Liu T, Xia X, Xia N. Effect of particle size and composition of suspended sediment on denitrification in river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:934-940. [PMID: 26461138 DOI: 10.1016/j.scitotenv.2015.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/22/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Rivers with high suspended sediment (SPS) concentration are common worldwide, and previous studies reported the occurrence of denitrification on SPS. In this work, effect of particle size and composition of SPS on denitrification in river water was studied in laboratory. The (15)N isotope tracer technique was used to investigate the denitrification in water containing 8 g L(-1) SPS with different particle sizes, including <20 μm, 20-50 μm, 50-100 μm, and 100-200 μm. The results showed that the denitrification rate was negatively related to particle size, and the SPS with particle size below 20 μm had the highest (15)N2 emission rate of 0.27 mg-N/m(3) · d, which was twice that of 100-200 μm. The denitrifying bacteria population in the system decreased with the increase of particle size, which was positively correlated with denitrification rate (p<0.05). There was a positive correlation between organic carbon content of SPS and denitrifying bacteria population (p<0.01), indicating that organic carbon is a key factor influencing denitrifying bacteria. Different from the (15)N2 production, (15)N2O emission rate reached the highest of 1.02 μg-N/m(3) · d in the system containing SPS of 20-50 μm, which was 14.8 times that of 100-200 μm. This was due to the difference in denitrifying bacteria species in different systems due to different oxic/anoxic conditions around SPS. This study suggests that not only the SPS concentration but also the SPS size and composition should be considered in studying the nitrogen cycle in river systems, especially for the production of N2O.
Collapse
Affiliation(s)
- Zhimei Jia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ting Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Na Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
97
|
Whole-Catchment Manipulations of Internal and External Loading Reveal the Sensitivity of a Century-Old Reservoir to Hypoxia. Ecosystems 2016. [DOI: 10.1007/s10021-015-9951-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
98
|
Jia D, Qi F, Xu X, Feng J, Wu H, Guo J, Lu W, Peng R, Zhu X, Luo Y, Lin G. Co-Regulations of Spartina alterniflora Invasion and Exogenous Nitrogen Loading on Soil N2O Efflux in Subtropical Mangrove Mesocosms. PLoS One 2016; 11:e0146199. [PMID: 26727205 PMCID: PMC4701003 DOI: 10.1371/journal.pone.0146199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/13/2015] [Indexed: 12/04/2022] Open
Abstract
Both plant invasion and nitrogen (N) enrichment should have significant impact on mangrove ecosystems in coastal regions around the world. However, how N2O efflux in mangrove wetlands responds to these environmental changes has not been well studied. Here, we conducted a mesocosm experiment with native mangrove species Kandelia obovata, invasive salt marsh species Spartina alterniflora, and their mixture in a simulated tide rotation system with or without nitrogen addition. In the treatments without N addition, the N2O effluxes were relatively low and there were no significant variations among the three vegetation types. A pulse loading of exogenous ammonium nitrogen increased N2O effluxes from soils but the stimulatory effect gradually diminished over time, suggesting that frequent measurements are necessary to accurately understand the behavior of N-induced response of N2O emissions. With the N addition, the N2O effluxes from the invasive S. alterniflora were lower than that from native K. obovata mesocosms. This result may be attributed to higher growth of S. alterniflora consuming most of the available nitrogen in soils, and thus inhibiting N2O production. We concluded that N loading significantly increased N2O effluxes, while the invasion of S. alterniflora reduced N2O effluxes response to N loading in this simulated mangrove ecosystem. Thus, both plant invasion and excessive N loading can co-regulate soil N2O emissions from mangrove wetlands, which should be considered when projecting future N2O effluxes from this type of coastal wetland.
Collapse
Affiliation(s)
- Dai Jia
- Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing, China
- Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Division of Ocean Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Fei Qi
- Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Division of Ocean Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xia Xu
- Department of Microbiology and Plant Biology, University of Oklahoma, Oklahoma City, OK, United States of America
| | - Jianxiang Feng
- Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Division of Ocean Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Hao Wu
- Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Division of Ocean Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jiemin Guo
- Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Division of Ocean Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Weizhi Lu
- Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Division of Ocean Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ronghao Peng
- Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing, China
| | - Xiaoshan Zhu
- Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Division of Ocean Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Yiqi Luo
- Department of Microbiology and Plant Biology, University of Oklahoma, Oklahoma City, OK, United States of America
| | - Guanghui Lin
- Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing, China
- Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Division of Ocean Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
99
|
Schmalenberger A, Fox A. Bacterial Mobilization of Nutrients From Biochar-Amended Soils. ADVANCES IN APPLIED MICROBIOLOGY 2016; 94:109-59. [PMID: 26917243 DOI: 10.1016/bs.aambs.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur.
Collapse
|
100
|
Wang X, Zhang Y, Zhang T, Zhou J. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis. Appl Microbiol Biotechnol 2015; 100:2895-905. [PMID: 26603764 DOI: 10.1007/s00253-015-7146-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 11/30/2022]
Abstract
Microaerobic bioreactor treatment for enriched sulfide and nitrate has been demonstrated as an effective strategy to improve the efficiencies of elemental sulfur (S(0)) generation, sulfide oxidation, and nitrate reduction. However, there is little detailed information for the effect and mechanism of dissolved oxygen (DO) on the variations of microbial community in sulfur generation, sulfide oxidation, and nitrate reduction systems. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was employed to evaluate the variations of microbial community structures in a sulfide oxidation and nitrate reduction reactor under different DO conditions (DO 0-0.7 mg · L(-1)). Experimental results revealed that the activity of sulfide-oxidizing bacteria (SOB) and nitrate-reducing bacteria (NRB) could be greatly stimulated in 0.1-0.3 mg-DO · L(-1). However, when the DO concentration was further elevated to more than 0.5 mg · L(-1), the abundance of NRB was markedly decreased, while the heterotrophic microorganisms, especially carbon degradation species, were enriched. The reaction pathways for sulfide and nitrate removal under microaerobic conditions were also deduced by combining batch experiments with functional species analysis. It was likely that the oxidation of sulfide to sulfur could be performed by both aerobic heterotrophic SOB and sulfur-based autotrophic denitrification bacteria with oxygen and nitrate as terminal electron acceptor, respectively. The nitrate could be reduced to nitrite by both autotrophic and heterotrophic denitrification, and then the generated nitrite could be completely converted to nitrogen gas via heterotrophic denitrification. This study provides new insights into the impacts of microaerobic conditions on the microbial community functional structures of sulfide-oxidizing, nitrate-reducing, and sulfur-producing bioreactors, which revealing the potential linkage between functional microbial communities and reactor performance.
Collapse
Affiliation(s)
- Xiaowei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China.
| | - Tingting Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| |
Collapse
|