51
|
The functional role of miRNAs in inflammatory pathways associated with intestinal epithelial tight junction barrier regulation in IBD. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Inflammatory bowel disease – Crohn's disease and ulcerative colitis – is an immune-mediated chronic disorder with still not fully elucidated complex mechanisms of pathogenesis and pathophysiology. Intestinal epithelial barrier (IEB) dysregulation is one of the major underlying mechanisms of inflammatory process induction in IBD. Proper IEB integrity is maintained to a large extent by intercellular tight junctions, the function of which can be modified by many molecules, including miRNAs. MiRNAs belong to noncoding and non-messenger RNAs, which can modulate gene expression by binding predicted mRNAs.
In this review, we summarize and discuss the potential role of miRNAs in the regulation of inflammatory signaling pathways affecting the function of the intestinal epithelial barrier in IBD, with particular emphasis on therapeutic potentials. The aim of the review is also to determine the further development directions of the studies on miRNA in the modulation of the intestinal epithelial barrier in IBD.
Collapse
|
52
|
Lin R, Ma C, Fang L, Xu C, Zhang C, Wu X, Wu W, Zhu R, Cong Y, Liu Z. TOB1 Blocks Intestinal Mucosal Inflammation Through Inducing ID2-Mediated Suppression of Th1/Th17 Cell Immune Responses in IBD. Cell Mol Gastroenterol Hepatol 2021; 13:1201-1221. [PMID: 34920145 PMCID: PMC8881672 DOI: 10.1016/j.jcmgh.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS TOB1 is an anti-proliferative protein of Tob/BTG family and typically involved in the tumorigenesis and T cell activation. Although TOB1 is associated with T helper 17 cell-related autoimmunity, its role in modulating T cell-mediated immune responses in IBD remains poorly understood. Here, we explored its expression and the underlying mechanisms involved in the pathogenesis of inflammatory bowel disease (IBD). METHODS TOB1 and ID2 expression in IBD patients was examined by quantitative real time polymerase chain reaction and immunohistochemistry. IBD CD4+ T cells were transfected with lentivirus expressing TOB1, ID2, TOB1 short hairpin RNA and ID2 short hairpin RNA, respectively, and Tob1-/-CD4+ T cells were transfected with lentivirus expressing Id2. Experimental colitis was established in Tob1-/- mice by trinitrobenzene sulfonic acid enema and in Rag1-/- mice reconstituted with Tob1-/-CD45RBhighCD4+ T cells to further explore the role of Tob1 in intestinal mucosal inflammation. Splenic CD4+ T cells of Tob1-/- mice were sorted to determine transcriptome differences by RNA sequencing. RESULTS TOB1 expression was decreased in inflamed mucosa and peripheral blood CD4+ T cells of IBD patients compared with healthy subjects. Overexpression of TOB1 downregulated IBD CD4+ T cells to differentiate into Th1/Th17 cells compared with control subjects. Severe colitis was observed in Tob1-/- mice through trinitrobenzene sulfonic acid enema or in Rag1-/- mice reconstituted with Tob1-/-CD45RBhighCD4+ T cells, compared with control animals. RNA sequencing analysis revealed ID2 as functional target of TOB1 to inhibit IBD CD4+ T cell differentiation into Th1/Th17 cells. Mechanistically, TOB1 was associated with Smad4/5 to induce ID2 expression and restrain Th1/Th17 cell differentiation. CONCLUSIONS TOB1 restrains intestinal mucosal inflammation through suppressing Th1/Th17 cell-mediated immune responses via the Smad4/5-ID2 pathway. It may serve as a novel therapeutic target for treatment of human IBD.
Collapse
Affiliation(s)
- Ritian Lin
- Center for IBD Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caiyun Ma
- Center for IBD Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Leilei Fang
- Center for IBD Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunjin Xu
- Department of Gastroenterology, First People’s Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu, China
| | - Cui Zhang
- Center for IBD Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohan Wu
- Center for IBD Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Wu
- Center for IBD Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Department of Gastroenterology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Correspondence Address correspondence to: Zhanju Liu, MD, PhD, Center for IBD Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China. fax: +86 21 66303983.
| |
Collapse
|
53
|
Zhang LC, Wu XY, Yang RB, Chen F, Liu JH, Hu YY, Wu ZD, Wang LF, Sun X. Recombinant protein Schistosoma japonicum-derived molecule attenuates dextran sulfate sodium-induced colitis by inhibiting miRNA-217-5p to alleviate apoptosis. World J Gastroenterol 2021; 27:7982-7994. [PMID: 35046625 PMCID: PMC8678816 DOI: 10.3748/wjg.v27.i46.7982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) affects millions of people worldwide and has emerged as a growing problem in industrialized nations. The lack of therapeutic targets has limited the treatment of IBD. Studies found that parasitic nematode infections can ameliorate clinical and experimental colitis. Our previous study found that rSj16, a 16-kDa secreted protein of Schistosoma japonicum produced by Escherichia coli, has protective effects on dextran sulfate sodium (DSS)-induced colitis in mice. Apoptosis is an important factor in the pathogenesis of colitis. However, it is not clear whether the effect of rSj16 on colitis is related to apoptosis.
AIM To investigate whether the protective effects of rSj16 on colitis is related to apoptosis and its mechanism.
METHODS In-vivo, colitis was induced by DSS. The severity of colitis was assessed. WB was used to detect the changes of apoptosis-related genes in colon tissues. Q-PCR was used to detect the changes of miRNA-217-5p and HNF1B. In-vitro, WB was used to detect the changes of apoptosis-related genes in intestinal epithelial cells. TUNNEL staining and flow cytometry were used to detect cell apoptosis.
RESULTS rSj16 attenuates clinical activity in DSS-induced colitis mice. TUNNEL staining and WB results showed that apoptosis was increased in colon tissue after treatment with DSS, and the apoptosis of colon tissue was significantly reduced after treatment with rSj16. Compared with normal mice, the expression of miR-217-5p was increased in colon tissue of DSS-induced colitis mice. In addition, the miR-217-5p target gene hnf1b was decreased after administration of DSS. After treatment with rSj16, the expression of miR-217-5p was decreased and the expression of HNF1B was increased compared with the DSS-treated group. When Etoposide was used in combination with miR-217-5p mimic on MODE-K cells, the expression of cleaved-Caspase-3 and Bax was increased, and Bcl-2 was decreased compared with only Etoposide treatment, the expression of HNF1B was significantly reduced, suggesting that miR-217-5p acts as a pro-apoptotic in colon epithelial cells and down-regulates the target gene hnf1b. After rSj16 administration in MODE-K cells, miR-217-5p expression was significantly decreased, HNF1B expression was increased, and apoptosis was reduced.
CONCLUSION The protective effects of rSj16 on colitis is related to apoptosis and miRNA-217-5p may be a further target for therapeutic intervention against IBD.
Collapse
Affiliation(s)
- Li-Chao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Ying Wu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Rui-Bing Yang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Fang Chen
- School of Medicine, South China University of Technology, South China University of Technology, Guangzhou 510000, Guangdong Province, China
| | - Jia-Hua Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Yun-Yi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Zhong-Dao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Li-Fu Wang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
54
|
Luo S, Wu R, Li Q, Zhang G. MiR-301a-3p Advances IRAK1-Mediated Differentiation of Th17 Cells to Promote the Progression of Systemic Lupus Erythematosus via Targeting PELI1. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2982924. [PMID: 34931135 PMCID: PMC8684520 DOI: 10.1155/2021/2982924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/11/2023]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with high incidence in females. The pathogenesis of SLE is complex, and healing SLE has become a serious challenge for clinical treatment. Aberrant expression of miR-301a-3p involves the progressions of multiple diseases, and some studies have indicated that increased miR-301a-3p could induce the inflammatory injury of some organs. However, the role and molecular mechanism of miR-301a-3p in SLE remain unclear. In this study, the miR-301a-3p levels in peripheral blood mononuclear cells (PBMCs) of the patients with SLE and health subjects were measured with qRT-PCR. The ELISA assay was used to investigate the effect of miR-301a-3p on the levels of inflammatory factors in PBMCs, and flow cytometry assays were used to observe the effect of miR-301a-3p on the levels of CD4+ T cells and Th17 cells in PBMCs. Moreover, TargetScan, dual-luciferase reporter assay, and western blot were used to reveal the downstream targets and regulation mechanism of miR-301a-3p in SLE. The results showed that miR-301a-3p was significantly upregulated in PBMCs of the SLE patients, and increased miR-301a-3p could boost the expression of IL-6, IL-17, and INF-γ in PBMCs and promote the differentiation of Th17 cells. It was found that PELI1 was a target of miR-301a-3p, and PELI1 upregulation could effectively reverse the effect of miR-301a-3p on PBMCs. Besides, this study also found that miR-301a-3p could promote the expression of IRAK1 to involve the progression of SLE via targeting PELI1. In conclusion, this study suggests that increased miR-301a-3p serves as a pathogenic factor in SLE to promote IRAK1-mediated differentiation of Th17 cells via targeting PELI1.
Collapse
Affiliation(s)
- Shuaihantian Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Ruifang Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Qianwen Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Guiying Zhang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
55
|
Zhang M, Yang D, Yu H, Li Q. MicroRNA-497 inhibits inflammation in DSS-induced IBD model mice and lipopolysaccharide-induced RAW264.7 cells via Wnt/β-catenin pathway. Int Immunopharmacol 2021; 101:108318. [PMID: 34775365 DOI: 10.1016/j.intimp.2021.108318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS MicroRNA (miR)-497 is downregulated in several inflammatory diseases, excluding inflammatory bowel disease (IBD). The aim of this study is to evaluate whether miR-497 inhibits gut inflammation both in vivo and in vitro. METHODS The 3% dextran sulphate sodium (DSS) was used to induce experimental colitis, while 1 μg/ml lipopolysaccharide (LPS) was for RAW264.7 cell damage.Colitis severity was evaluated by disease activity index (DAI), colon length, histopathologic injury, etc. The nuclear transcription factor NF-κB activity in colon tissues was also estimated by western blot. Then, the quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate the expression levels of miR-497, pro-inflammatory cytokines and chemokines in colon tissues and RAW264.7 cells. Furthermore, the activity of Wnt/β-catenin pathway was determined by western blot and TOP/FOP-flash reporter assays. RESULTS The level of miR-497 was reduced in inflamed mucosa from IBD patients, mice with colitis and LPS-treated RAW264.7 cells. miR-497 knockout (miR-497 KO) mice were more susceptible to DSS-induced colitis, with increased inflammatory response, compared with control mice. Furthermore, the overexpression of miR-497 reduced the release of pro-inflammatory cytokines and chemokines in LPS-treated RAW264.7 cells. Finally, we found that miR-497 inhibited inflammation through Wnt/β-catenin pathway both in vitro and in vivo. CONCLUSION Our data indicate that miR-497 inhibits inflammation in DSS-induced IBD model mice and LPS-induced RAW264.7 cells by inhibiting the activation of NF-κB pathway and the release of cytokines, indicating that miR-497 plays a key role in the progression of IBD. Thus, therapeutic regulation of miR-497 expression may be beneficial for the treatment of IBD.
Collapse
Affiliation(s)
- Mengjiao Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongmei Yang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
56
|
Sun N, Xue Y, Wei S, Wu B, Wang H, Zeng D, Zhao Y, Khalique A, Pan K, Zeng Y, Shu G, Jing B, Ni X. Compound Probiotics Improve Body Growth Performance by Enhancing Intestinal Development of Broilers with Subclinical Necrotic Enteritis. Probiotics Antimicrob Proteins 2021; 15:558-572. [PMID: 34735679 DOI: 10.1007/s12602-021-09867-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study is to explore whether or not the combined application of BS15 and H2 is capable to have a more effective control effect on SNE in broilers. A total of 240 1-day-old female chickens were randomly divided into 5 groups: (a) basal diet in negative control group (NC group); (b) basal diet + SNE infection (coccidiosis vaccine + CP) (PC group); (c) basal diet + SNE infection + H2 pre-treatment (BT group); (d) basal diet + SNE infection + BS15 pre-treatment (LT group); and (e) basal diet + SNE infection + H2 pre-treatment + BS15 pre-treatment (MT group). The results showed the MT group had the most positive effect on inhibiting the negative effect of growth performance at 42 days of age. In the detection of the NC, PC, and MT group indicators at 28 days of age, we found that MT group significantly promoted ileum tissue development of broilers, and the ileum of broilers in the MT group formed a flora structure different from NC and PC, although it was found that the MT group had no effect on the butyrate level in the cecum, but it could affect the serum immune level, such as significantly reducing the level of pro-inflammatory cytokine IL-8 and increasing the content of immunoglobulin IgM and IgG. In conclusion, the composite preparation of Lactobacillus johnsonii BS15 and Bacillus licheniformis H2 could effectively improve the growth performance against SNE broilers, which is possibly caused by the improvement of the immune levels, the reduction of inflammation levels, and the promotion of the intestinal development.
Collapse
Affiliation(s)
- Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Xue
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siyi Wei
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Hesong Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Zhao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
57
|
Yu L, Chen Y, Xu X, Dong Q, Xiu W, Chen Q, Wang J, He C, Ye J, Lu F. Alterations in Peripheral B Cell Subsets Correlate with the Disease Severity of Human Glaucoma. J Inflamm Res 2021; 14:4827-4838. [PMID: 34584441 PMCID: PMC8464325 DOI: 10.2147/jir.s329084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Glaucoma is a group of retinal neurodegenerative diseases causing irreversible visual impairment. The pathogenesis of this disease is complicated. Studies have shown that the immune system is involved in the neurodegenerative process of glaucoma. There are continuous evidences that autoantibodies play a crucial role in the pathogenesis of glaucoma. However, focuses on B cells, the antibody-producing cells in glaucoma are surprisingly limited. Methods Fresh peripheral blood samples were collected from 44 glaucoma patients (38 with primary angle-closure glaucoma (PACG) and 6 with (primary open-angle glaucoma POAG)) and 36 age-matched healthy donors (HD). Density gradient centrifugation was performed to obtain peripheral blood mononuclear cells (PBMC). Flow cytometry was performed to determine B cell phenotypes. The severity of glaucoma was determined based on the mean deviation (MD) of visual field. Results In this study, we demonstrated that total B cells was significantly increased in glaucoma patients compared to HD. Next, we checked changes of different B cell subsets in glaucoma. Glaucoma patients were found to have a significant increase in the frequencies of antibody-secreting cells (ASC)/plasmablasts, naïve, and CD19+ CD27− IgD− double negative (DN) subpopulations, but a decrease in the CD27+ IgD+ unswitched memory compartment. Notably, we found that the increment of CD27− IgD− DN B cells was significantly magnified according to the clinical severity. Conclusion We demonstrate, for the first time, that peripheral B cell subsets are altered and unveil the correlation of a newly identified pro-inflammatory CD27− IgD− DN subset with clinical features of glaucoma, suggesting that these B cell subsets could serve as potential biomarkers to monitor the disease progression of glaucoma patients.
Collapse
Affiliation(s)
- Ling Yu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, People's Republic of China
| | - Yang Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiang Xu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qiwei Dong
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qinyuan Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jinxia Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Chong He
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, People's Republic of China
| | - Fang Lu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
58
|
Grillo TG, Quaglio AEV, Beraldo RF, Lima TB, Baima JP, Di Stasi LC, Sassaki LY. MicroRNA expression in inflammatory bowel disease-associated colorectal cancer. World J Gastrointest Oncol 2021; 13:995-1016. [PMID: 34616508 PMCID: PMC8465441 DOI: 10.4251/wjgo.v13.i9.995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules composed of 19-25 nucleotides that regulate gene expression and play a central role in the regulation of several immune-mediated disorders, including inflammatory bowel diseases (IBD). IBD, represented by ulcerative colitis and Crohn's disease, is characterized by chronic intestinal inflammation associated with an increased risk of colorectal cancer (CRC). CRC is one of the most prevalent tumors in the world, and its main risk factors are obesity, physical inactivity, smoking, alcoholism, advanced age, and some eating habits, in addition to chronic intestinal inflammatory processes and the use of immunosuppressants administered to IBD patients. Recent studies have identified miRNAs associated with an increased risk of developing CRC in this population. The identification of miRNAs involved in this tumorigenic process could be useful to stratify cancer risk development for patients with IBD and to monitor and assess prognosis. Thus, the present review aimed to summarize the role of miRNAs as biomarkers for the diagnosis and prognosis of IBD-associated CRC. In the future, therapies based on miRNA modulation could be used both in clinical practice to achieve remission of the disease and restore the quality of life for patients with IBD, and to identify the patients with IBD at high risk for tumor development.
Collapse
Affiliation(s)
- Thais Gagno Grillo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Ana Elisa Valencise Quaglio
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Rodrigo Fedatto Beraldo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Talles Bazeia Lima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Julio Pinheiro Baima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Luiz Claudio Di Stasi
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
59
|
Li B, Li Y, Li L, Yu Y, Gu X, Liu C, Long X, Yu Y, Zuo X. Hsa_circ_0001021 regulates intestinal epithelial barrier function via sponging miR-224-5p in ulcerative colitis. Epigenomics 2021; 13:1385-1401. [PMID: 34528447 DOI: 10.2217/epi-2021-0230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Aims: Few circRNAs have been thoroughly explored in ulcerative colitis (UC). Materials & methods: Microarrays and qualitative real-time PCRs were used to detect and confirm dysregulated circRNAs associated with UC. Functional analysis was performed to explore the roles. Results: A total of 580 circRNAs and 87 miRNAs were simultaneously dysregulated in both inflamed and noninflamed UC colonic mucosa compared with healthy controls. Accordingly, hsa_circ_0001021 was significantly downregulated in patients with UC and was related to Mayo scores. Clinical samples and cell experiments revealed that hsa_circ_0001021 was expressed in epithelial cells and correlated with ZO-1, occludin and CLDN-2. Moreover, hsa_circ_0001021 sponged miR-224-5p to upregulate smad4 and increased ZO-1 and occludin. Conclusion: Hsa_circ_0001021 is related to UC severity and regulates epithelial barrier function via sponging miR-224-5p.
Collapse
Affiliation(s)
- Bing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiang Gu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chang Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Long
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
60
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
61
|
Yang W, Chen L, Xu L, Bilotta AJ, Yao S, Liu Z, Cong Y. MicroRNA-10a Negatively Regulates CD4 + T Cell IL-10 Production through Suppression of Blimp1. THE JOURNAL OF IMMUNOLOGY 2021; 207:985-995. [PMID: 34301843 DOI: 10.4049/jimmunol.2100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022]
Abstract
An uncontrolled CD4+ T cell response is a critical hallmark of autoimmune diseases. IL-10, which can be produced by both effector and regulatory CD4+ T cells, plays an essential role in the inhibition of autoimmunity. MicroRNAs are key molecules involved in regulating immune responses. However, how miR-10a regulates CD4+ T cell function in the pathogenesis of intestinal immune responses is not fully understood. In this study, we show that the mice with deficient miR-10a in CD4+ T cells were more resistant to intestinal inflammation upon inflammatory insult. miR-10a-deficient CD4+CD45Rbhi T cells were less colitogenic in Rag -/- mice, in which CD4+ T cell production of IL-10 was increased. miR-10a-deficient CD4+ T cells expressed a higher expression of IL-10 in vitro. Blocking the IL-10/IL-10R pathway in vivo aggravated colitis induced by miR-10a-deficient CD4+CD45Rbhi T cells. Mechanically, miR-10a suppressed CD4+ T cell production of IL-10 through targeting Prdm1, which encodes Blimp1. We further show that that CD4+ T cells lacking Blimp1 produced lower levels of IL-10 and induced more severe colitis in Rag -/- mice. These data thus establish the role of miR-10a in the inhibition of IL-10 production in CD4+ T cells to regulate intestinal homeostasis.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX
| | - Liang Chen
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Shanghai, China; and
| | - Leiqi Xu
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX
| | - Suxia Yao
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Shanghai, China; and
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX; .,Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX
| |
Collapse
|
62
|
The Role of microRNAs in Cholangiocarcinoma. Int J Mol Sci 2021; 22:ijms22147627. [PMID: 34299246 PMCID: PMC8306241 DOI: 10.3390/ijms22147627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), an aggressive malignancy, is typically diagnosed at an advanced stage. It is associated with dismal 5-year postoperative survival rates, generating an urgent need for prognostic and diagnostic biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are associated with cancer regulation, including modulation of cell cycle progression, apoptosis, metastasis, angiogenesis, autophagy, therapy resistance, and epithelial–mesenchymal transition. Several miRNAs have been found to be dysregulated in CCA and are associated with CCA-related risk factors. Accumulating studies have indicated that the expression of altered miRNAs could act as oncogenic or suppressor miRNAs in the development and progression of CCA and contribute to clinical diagnosis and prognosis prediction as potential biomarkers. Furthermore, miRNAs and their target genes also contribute to targeted therapy development and aid in the determination of drug resistance mechanisms. This review aims to summarize the roles of miRNAs in the pathogenesis of CCA, their potential use as biomarkers of diagnosis and prognosis, and their utilization as novel therapeutic targets in CCA.
Collapse
|
63
|
Zhou J, Liu J, Gao Y, Shen L, Li S, Chen S. miRNA-Based Potential Biomarkers and New Molecular Insights in Ulcerative Colitis. Front Pharmacol 2021; 12:707776. [PMID: 34305614 PMCID: PMC8298863 DOI: 10.3389/fphar.2021.707776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, which usually manifests as abdominal pain, diarrhea and hematochezia. The disease often recurs and is difficult to cure. At present, the pathogenesis is not clear, but it is believed that the disease is caused by a complex interaction among immunity, heredity, environment and intestinal microflora disorders. MicroRNA (miRNA) is endogenous single-stranded non-coding RNA of 17–25 nucleotides (nts). They target the 3'Untranslated Region of a target gene and inhibit or degrade the target gene according to the extent of complementary bases. As important gene expression regulators, miRNAs are involved in regulating the expression of most human genes, and play an important role in the pathogenesis of many autoimmune diseases including UC. Studies in recent years have illustrated that abnormal expression of miRNA occurs very early in disease pathogenesis. Moreover, this abnormal expression is highly related to disease activity of UC and colitis-associated cancer, and involves virtually all key UC-related mechanisms, such as immunity and intestinal microbiota dysregulation. Recently, it was discovered that miRNA is highly stable outside the cell in the form of microvesicles, exosomes or apoptotic vesicles, which raises the possibility that miRNA may serve as a novel diagnostic marker for UC. In this review, we summarize the biosynthetic pathway and the function of miRNA, and summarize the usefulness of miRNA for diagnosis, monitoring and prognosis of UC. Then, we described four types of miRNAs involved in regulating the mechanisms of UC occurrence and development: 1) miRNAs are involved in regulating immune cells; 2) affect the intestinal epithelial cells barrier; 3) regulate the homeostasis between gut microbiota and the host; and 4) participate in the formation of tumor in UC. Altogether, we aim to emphasize the close relationship between miRNA and UC as well as to propose that the field has value for developing potential biomarkers as well as therapeutic targets for UC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jialing Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangyang Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liwei Shen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng Li
- Center for Health Policy & Drug Affairs Operation Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
64
|
Zhao J, Chu F, Xu H, Guo M, Shan S, Zheng W, Tao Y, Zhou Y, Hu Y, Chen C, Ren T, Xu L. C/EBPα/miR-7 Controls CD4 + T-Cell Activation and Function and Orchestrates Experimental Autoimmune Hepatitis in Mice. Hepatology 2021; 74:379-396. [PMID: 33125780 DOI: 10.1002/hep.31607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/01/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Increasing evidence in recent years has suggested that microRNA-7 (miR-7) is an important gene implicated in the development of various diseases including HCC. However, the role of miR-7 in autoimmune hepatitis (AIH) is unknown. APPROACH AND RESULTS Herein, we showed that miR-7 deficiency led to exacerbated pathology in Concanavalin-A-induced murine acute autoimmune liver injury (ALI) model, accompanied by hyperactivation state of CD4+ T cells. Depletion of CD4+ T cells reduced the effect of miR-7 deficiency on the pathology of ALI. Interestingly, miR-7 deficiency elevated CD4+ T-cell activation, proliferation, and cytokine production in vitro. Adoptive cell transfer experiments showed that miR-7def CD4+ T cells could exacerbate the pathology of ALI. Further analysis showed that miR-7 expression was up-regulated in activated CD4+ T cells. Importantly, the transcription of pre-miR-7b, a major resource of mature miR-7 in CD4+ T cells, was dominantly dependent on transcription factor CCAAT enhancer binding protein alpha (C/EBPα), which binds to the core promoter region of the miR-7b gene. Global gene analysis showed that mitogen-activated protein kinase 4 (MAPK4) is a target of miR-7 in CD4+ T cells. Finally, the loss of MAPK4 could ameliorate the activation state of CD4+ T cells with or without miR-7 deficiency. Our studies document the important role of miR-7 in the setting of AIH induced by Concanavalin-A. Specifically, we provide evidence that the C/EBPα/miR-7 axis negatively controls CD4+ T-cell activation and function through MAPK4, thereby orchestrating experimental AIH in mice. CONCLUSIONS This study expands on the important role of miR-7 in liver-related diseases and reveals the value of the C/EBPα/miR-7 axis in CD4+ T-cell biological function for the pathogenesis of immune-mediated liver diseases.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Fengyun Chu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Hualin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wen Zheng
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yijing Tao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Ya Zhou
- Department of Medical physics, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
65
|
Huo LL, Sun ZR. MiR-128-3p alleviates TNBS-induced colitis through inactivating TRAF6/NF-κB signaling pathway in rats. Kaohsiung J Med Sci 2021; 37:795-802. [PMID: 34042286 DOI: 10.1002/kjm2.12397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 01/17/2023] Open
Abstract
miR-128-3p is reported to involve in pathogenesis of several autoimmune diseases, yet the role of miR-128-3p in inflammatory bowel disease (IBD) remains unknown. To investigate miR-128-3p in IBD, experimental colitis animal model was generated by 2,4,6-Trinitrobenzenesulfonic acid solution (TNBS). miR-128-3p agomir was used to overexpress miR-128-3p in rats. Histological assessment and myeloperoxidase activity were conducted to evaluate the TNBS-induced colitis. Effect of miR-128-3p overexpression on levels of TNF-α, IL-1β, ICAM-1, and MCP-1 was tested by ELISA assay. The target of miR-128-3p was predicted and further confirmed by dual-luciferase reporter assay. The expressions of TRAF6, p-NF-κB, and NF-κB were determined by western blot. The miR-128-3p level was significantly decreased in rats with TNBS-induced colitis. miR-128-3p could alleviate TNBS-induced colitis and inhibit production of inflammatory factors. We found TRAF6 was a direct target of miR-128-3p using bioinformatics and luciferase assay. By western blot, we discovered miR-128-3p activates NF-κB by targeting TRAF6. Our data reveal a novel mechanism that a decreased miR-128-3p level in TNBS-induced colitis could inhibit production of inflammatory factors, which activates NF-κB signaling by targeting TRAF6. Our findings might provide a novel therapeutic target for drug design and development for IBD therapeutics.
Collapse
Affiliation(s)
- Ling-Ling Huo
- Department of Gastroenterology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| | - Zhao-Rui Sun
- Department of Critical Care Medicine, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| |
Collapse
|
66
|
Guo J, Zhang R, Zhao Y, Wang J. MiRNA-29c-3p Promotes Intestinal Inflammation via Targeting Leukemia Inhibitory Factor in Ulcerative Colitis. J Inflamm Res 2021; 14:2031-2043. [PMID: 34040415 PMCID: PMC8140949 DOI: 10.2147/jir.s302832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dysregulation of micro-RNAs (miRNAs) is profoundly linked to inflammatory bowel diseases (IBD), but little is known about the specific biological functions of miRNAs in IBD. This study sought to elucidate the effect and the underlying target of miR-29c-3p in ulcerative colitis (UC). METHODS The levels of miR-29c-3p and leukemia inhibitory factor (LIF) were measured in inflamed lesions of UC patients and dextran sulfate sodium (DSS)-induced colitis mice by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. MiR-29c-3p was predicted to target LIF by bioinformatics software, which was verified via luciferase reporter assay and transfection of miR-29c-3p mimics or inhibitor. The role of miR-29c-3p/LIF axis in intestinal inflammation was explored in experimental colitis mice and Caco-2 cells. RESULTS MiR-29c-3p was markedly downregulated while LIF was upregulated in colon tissues of UC patients and DSS-challenged colitis mice as well as in primary intestinal epithelial cells (IECs) and LPS-treated Caco-2 cells. MiR-29c-3p inhibited LIF expression at the transcriptional level via binding to LIF 3'-untranslated region (UTR) in Caco-2 cells. Targeting miR-29c-3p/LIF axis regulated inflammatory cytokines production, cell proliferation and apoptosis. Overexpression of miR-29c-3p aggravated mice experimental colitis via suppressing LIF. CONCLUSION Our findings demonstrate that the upregulation of miR-29c-3p promotes gut inflammation and the expression of pro-inflammatory mediators via suppressing LIF, thereby modulating the pathogenesis of UC.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, People’s Republic of China
- Department of General Surgery, Shanxi Provincial People’s Hospital, The Affiliated People’s Hospital of Shanxi Medical University, Taiyuan, 030012, People’s Republic of China
| | - Ruiya Zhang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, The Affiliated People’s Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Yiqing Zhao
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, The Affiliated People’s Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Junping Wang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, The Affiliated People’s Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, People’s Republic of China
| |
Collapse
|
67
|
Vega-Tapia F, Bustamante M, Valenzuela RA, Urzua CA, Cuitino L. miRNA Landscape in Pathogenesis and Treatment of Vogt-Koyanagi-Harada Disease. Front Cell Dev Biol 2021; 9:658514. [PMID: 34041239 PMCID: PMC8141569 DOI: 10.3389/fcell.2021.658514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs, one of the members of the noncoding RNA family, are regulators of gene expression in inflammatory and autoimmune diseases. Changes in miRNA pool expression have been associated with differentiation of CD4+ T cells toward an inflammatory phenotype and with loss of self-tolerance in autoimmune diseases. Vogt–Koyanagi–Harada (VKH) disease is a chronic multisystemic pathology, affecting the uvea, inner ear, central nervous system, and skin. Several lines of evidence support an autoimmune etiology for VKH, with loss of tolerance against retinal pigmented epithelium-related self-antigens. This deleterious reaction is characterized by exacerbated inflammation, due to an aberrant TH1 and TH17 polarization and secretion of their proinflammatory hallmark cytokines interleukin 6 (IL-6), IL-17, interferon γ, and tumor necrosis factor α, and an impaired CD4+ CD25high FoxP3+ regulatory T cell function. To restrain inflammation, VKH is pharmacologically treated with corticosteroids and immunosuppressive drugs as first and second line of therapy, respectively. Changes in the expression of miRNAs related to immunoregulatory pathways have been associated with VKH development, whereas some genetic variants of miRNAs have been found to be risk modifiers of VKH. Furthermore, the drugs commonly used in VKH treatment have great influence on miRNA expression, including those miRNAs associated to VKH disease. This relationship between response to therapy and miRNA regulation suggests that these small noncoding molecules might be therapeutic targets for the development of more effective and specific pharmacological therapy for VKH. In this review, we discuss the latest evidence regarding regulation and alteration of miRNA associated with VKH disease and its treatment.
Collapse
Affiliation(s)
- Fabian Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mario Bustamante
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Núcleo de Ciencias Biológicas, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Rodrigo A Valenzuela
- Department de Health Science, Universidad de Aysén, Coyhaique, Chile.,Department of Chemical and Biological Sciences, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cristhian A Urzua
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Ophthalmology, University of Chile, Santiago, Chile.,Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Loreto Cuitino
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
68
|
Feng R, Cui Z, Liu Z, Zhang Y. Upregulated microRNA-132 in T helper 17 cells activates hepatic stellate cells to promote hepatocellular carcinoma cell migration in vitro. Scand J Immunol 2021; 93:e13007. [PMID: 33264420 DOI: 10.1111/sji.13007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/14/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs play an important role in the modulation of the immune system. T helper 17 (Th17) cells are involved in the modulation of the tumour microenvironment. However, the function of miRNA in Th17 cells in the tumour microenvironment is unclear. In this study, we analysed miR-132 expression in Th17 cells and assessed the function of miR-132 on Th17 cell differentiation. In addition, the effect of miR-132 on Th17 cells in the tumour microenvironment, especially hepatic stellate cells (HSCs), was confirmed. CD4+ IL-17 ∓ cells were isolated from hepatocellular carcinoma (HCC) tumour tissues. The expression of miR-132 was higher in CD4+ IL-17 + cells than in CD4+ IL-17- cells. Human primary CD4+ T cells were used for Th17 cell differentiation. Compared with primary CD4+ T cells, Th17 cells expressed high levels of miR-132. During Th17 cell differentiation, a miR-132 mimic and inhibition were applied. After treatment with the miR-132 mimic, the differentiation of Th17 cells accelerated, showing a a higher percentage of Th17 cells and the expression and secretion of IL-17 and IL-22. Smad nuclear interacting protein 1 (SNIP1), as one of the targets of miR-132, decreased during Th17 cell differentiation-related Th17 differentiation and IL-17 expression. The conditioned medium of miR-132-overexpressing Th17 cells could increase the activation of the HSCs, which strongly promoted HCC cell migration and epithelial-mesenchymal transition (EMT). In summary, miR-132 positively regulates Th17 cell differentiation and improves the function of Th17 on HSCs for their tumour-promoting effects.
Collapse
Affiliation(s)
- Rui Feng
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Zilin Cui
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
69
|
Huang J, Xu X, Yang J. miRNAs Alter T Helper 17 Cell Fate in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:593473. [PMID: 33968012 PMCID: PMC8096907 DOI: 10.3389/fimmu.2021.593473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
T helper 17 (Th17) cells are characterized by the secretion of the IL-17 cytokine and are essential for the immune response against bacterial and fungal infections. Despite the beneficial roles of Th17 cells, unrestrained IL-17 production can contribute to immunopathology and inflammatory autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Although these diverse outcomes are directed by the activation of Th17 cells, the regulation of Th17 cells is incompletely understood. The discovery that microRNAs (miRNAs) are involved in the regulation of Th17 cell differentiation and function has greatly improved our understanding of Th17 cells in immune response and disease. Here, we provide an overview of the biogenesis and function of miRNA and summarize the role of miRNAs in Th17 cell differentiation and function. Finally, we focus on recent advances in miRNA-mediated dysregulation of Th17 cell fate in autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
70
|
Zhang C, Ju J, Wu X, Yang J, Yang Q, Liu C, Chen L, Sun X. Tripterygium wilfordii Polyglycoside Ameliorated TNBS-Induced Colitis in Rats via Regulating Th17/Treg Balance in Intestinal Mucosa. J Inflamm Res 2021; 14:1243-1255. [PMID: 33833546 PMCID: PMC8021269 DOI: 10.2147/jir.s293961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate the therapeutic effect of Tripterygium wilfordii polyglycoside (TWP), a derivative from a Chinese traditional herb, on 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis, in a model for inflammatory bowel disease (IBD) in rats. Methods TWP was administrated to Wistar rats during TNBS-induced colitis to determine its therapeutic effect on active inflammation using the Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), flow cytometry, and Western blotting. Peripheral blood CD4+ T-cells were isolated from patients with ulcerative colitis (UC) and incubated with TWP to verify its immune regulation mechanism by qRT-PCR and flow cytometry. Results Intragastric administration of TWP attenuated the severity of intestinal inflammation in TNBS-induced rat colitis, characterized by decreased DAI, histopathological scores, and expression of IL-6, TNFα, IFNγ, and IL-17A in intestinal mucosa. Furthermore, TWP reduced IL-17A+CD4+ T-cells, while enhanced Foxp3+CD25+CD4+ T-cells in peripheral blood, mesenteric lymph nodes (MLN), and spleen in rat colitis. Downstream signaling including ROR-γt, STAT3, and HIF1α expression in intestinal mucosa were suppressed by TWP. In addition, incubation with TWP suppressed IL-17A+CD4+ T-cell differentiation, while it promoted Foxp3+CD25+CD4+ T-cell differentiation in CD4+ T-cells isolated from UC patients. Conclusion TWP successfully ameliorated experimental rat colitis via regulating innate immune responses as well as Th17/Treg balance in intestinal mucosa, peripheral blood, MLN, and spleen. Moreover, the differentiation of peripheral blood CD4+ T-cell isolated from patients with UC was modulated by TWP. TWP may act as an optional complementary and alternative medicine for IBD.
Collapse
Affiliation(s)
- Cui Zhang
- Gastroenterology Department, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Jingyi Ju
- Gastroenterology Department, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xiaohan Wu
- Gastroenterology Department, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Jiaolan Yang
- Gastroenterology Department, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Qinglu Yang
- Gastroenterology Department, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Changqin Liu
- Gastroenterology Department, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Liang Chen
- Gastroenterology Department, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xiaomin Sun
- Gastroenterology Department, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.,Gastroenterology Department, The Shanghai Tenth People's Hospital, Chongming Branch, Shanghai, People's Republic of China
| |
Collapse
|
71
|
Jiang H, Lv J. MicroRNA-301a-3p increases oxidative stress, inflammation and apoptosis in ox-LDL-induced HUVECs by targeting KLF7. Exp Ther Med 2021; 21:569. [PMID: 33850541 PMCID: PMC8027757 DOI: 10.3892/etm.2021.10001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Arteriosclerotic cardiovascular disease is an inflammatory disease of ischemia or endothelial dysfunction caused by atherosclerosis, thereby causing high mortality. The viability and apoptosis of human umbilical vein endothelial cells (HUVECs) following oxidized low-density lipoprotein (ox-LDL) induction or transfection was detected by Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis. MicroRNA (miR)-301a-3p and Krueppel-like factor 7 (KLF7) mRNA expression was determined by reverse transcription-quantitative PCR (RT-qPCR). The levels of monocyte chemoattractant protein-1 (MCP-1) and IL-6, activities of reactive oxygen species and superoxide dismutase and lactate dehydrogenase leakage were analyzed by respective commercial assay kits. The protein expression of IL-6, MCP-1, Bcl2, Bax, poly (ADP-ribose) polymerase (PARP), cleaved PARP, pro-caspase3 and cleaved caspase-3 was detected by western blotting. miR-301a-3p expression is highly expressed in ox-LDL-induced HUVECs. miR-301a-3p is also a target of KLF7. Inhibition of miR-301a-3p suppressed oxidative stress, inflammation and apoptosis in ox-LDL-induced HUVECs, which was reversed by KLF7 inhibition. In conclusion, miR-301a-3p promotes oxidative stress, inflammation and apoptosis in ox-LDL-induced HUVECs via decreasing KLF7 expression.
Collapse
Affiliation(s)
- Huiqiong Jiang
- Cardiac Function Examination Room, Quanzhou First Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Jiaren Lv
- Cardiac Function Examination Room, Quanzhou First Hospital, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
72
|
Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients 2021; 13:nu13031016. [PMID: 33801082 PMCID: PMC8003974 DOI: 10.3390/nu13031016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.
Collapse
|
73
|
Jonaitis P, Kiudelis V, Streleckiene G, Gedgaudas R, Skieceviciene J, Kupcinskas J. Novel Biomarkers in the Diagnosis of Benign and Malignant Gastrointestinal Diseases. Dig Dis 2021; 40:1-13. [PMID: 33647906 DOI: 10.1159/000515522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Various noninvasive biomarkers have been used in the diagnosis, prognosis, and treatment of different gastrointestinal (GI) diseases for years. Novel technological developments and profound perception of molecular processes related to GI diseases over the last decade have allowed researchers to evaluate genetic, epigenetic, and many other potential molecular biomarkers in different diseases and clinical settings. Here, we present a review of recent and most relevant articles in order to summarize major findings on novel biomarkers in the diagnosis of benign and malignant GI diseases. SUMMARY Genetic variations, noncoding RNAs (ncRNAs), cell-free DNA (cfDNA), and microbiome-based biomarkers have been extensively analyzed as potential biomarkers in benign and malignant GI diseases. Multiple single-nucleotide polymorphisms have been linked with a number of GI diseases, and these observations are further being used to build up disease-specific genetic risk scores. Micro-RNAs and long ncRNAs have a large potential as noninvasive biomarkers in the management of inflammatory bowel diseases and GI tumors. Altered microbiome profiles were observed in multiple GI diseases, but most of the findings still lack translational clinical application. As of today, cfDNA appears to be the most potent biomarker for early detection and screening of GI cancers. Key Messages: Novel noninvasive molecular biomarkers show huge potential as useful tools in the diagnostics and management of different GI diseases. However, the use of these biomarkers in real-life clinical practice still remains limited, and further large studies are needed to elucidate the ultimate role of these potential noninvasive clinical tools.
Collapse
Affiliation(s)
- Paulius Jonaitis
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytautas Kiudelis
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Streleckiene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rolandas Gedgaudas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
74
|
Abstract
Inflammatory bowel disease (IBD) as a chronic inflammation in colon and small intestine has two subtypes: ulcerative colitis (UC) and Crohn's disease (CD). Genome studies have shown that UC and CD are related to microRNAs (miRNAs) expression in addition to environmental factors. This article reviews important researches that have recently been done on miRNAs roles in CD and UC disease. First, miRNA is introduced and its biogenesis and function are discussed. Afterward, roles of miRNAs in inflammatory processes involved in IBD are showed. Finally, this review proposes some circulating and tissue-specific miRNAs, which are useful for CD and UC fast diagnosis and grade prediction. As a conclusion, miRNAs are efficient diagnostic molecules especially in IBD subtypes discrimination and can be used by microarray and real time PCR methods for disease detection and classification.
Collapse
|
75
|
Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies. J Immunol Res 2021; 2021:8816041. [PMID: 33553436 PMCID: PMC7846404 DOI: 10.1155/2021/8816041] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
Autoimmune diseases (such as rheumatoid arthritis, asthma, autoimmune bowel disease) are a complex disease. Improper activation of the immune system or imbalance of immune cells can cause the immune system to transform into a proinflammatory state, leading to autoimmune pathological damage. Recent studies have shown that autoimmune diseases are closely related to CD4+ T helper cells (Th). The original CD4 T cells will differentiate into different T helper (Th) subgroups after activation. According to their cytokines, the types of Th cells are different to produce lineage-specific cytokines, which play a role in autoimmune homeostasis. When Th differentiation and its cytokines are not regulated, it will induce autoimmune inflammation. Autoimmune bowel disease (IBD) is an autoimmune disease of unknown cause. Current research shows that its pathogenesis is closely related to Th17 cells. This article reviews the role and plasticity of the upstream and downstream cytokines and signaling pathways of Th17 cells in the occurrence and development of autoimmune bowel disease and summarizes the new progress of IBD immunotherapy.
Collapse
|
76
|
MAdCAM-1 mediates retinal neuron degeneration in experimental colitis through recruiting gut-homing CD4 + T cells. Mucosal Immunol 2021; 14:152-163. [PMID: 32203063 DOI: 10.1038/s41385-020-0282-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 02/04/2023]
Abstract
Extra-intestinal manifestations (EIMs) of the eyes are found in IBD patients, but the underlying pathogenesis remains unknown. To investigate the pathogenesis of IBD-associated retinal dysfunction, chronic colitis was induced in mice by oral administration of dextran sodium sulfate (DSS). Electroretinography (ERG) was performed to evaluate retinal function. Retinal neuron degeneration was analyzed by immunohistochemistry. Colitic mice displayed aberrant amplitudes of ERG a-, b-wave and oscillatory potentials (OP). Importantly, we observed severe degeneration of bipolar and ganglion cells. In contrast, outer retinal neurons (mainly photoreceptor cells) are mildly affected by colitis. Moreover, retinal inflammatory responses were significantly upregulated during colitis, including microglia activation, lymphocyte infiltration and cytokine/chemokine production. Notably, mucosal addressin cell adhesion molecule 1 (MAdCAM-1) was upregulated in retinal microvessels, especially the superficial and deep plexuses, and recruited gut-homing CD4+ T cells to be co-localized with bipolar and ganglion cells during colitis. Expectedly, in vivo depletion of CD4+ T cells or blockade of MAdCAM-1 greatly alleviated colitis-induced retinal inflammatory responses and neuron degeneration. Therefore, our data provide novel insight into the pathogenesis of IBD-associated retinal dysfunction, and targeted immune therapy directly against MAdCAM-1 might provide a novel approach in the management of eye EIM of IBD.
Collapse
|
77
|
Lin J, Li G, Xu C, Lu H, Zhang C, Pang Z, Liu Z. Monocyte Chemotactic Protein 1-Induced Protein 1 Is Highly Expressed in Inflammatory Bowel Disease and Negatively Regulates Neutrophil Activities. Mediators Inflamm 2020; 2020:8812020. [PMID: 33488293 PMCID: PMC7803109 DOI: 10.1155/2020/8812020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Monocyte chemotactic protein 1-induced protein 1 (MCPIP-1) is highly expressed in activated immune cells and plays an important role in negatively regulating immune responses. However, its role in regulating neutrophil functions in the pathogenesis of inflammatory bowel disease (IBD) is still unclear. Here, we found that MCPIP-1 was markedly increased at both the transcriptional and translational levels in inflamed mucosa of IBD patients compared with healthy controls, which was mainly expressed in neutrophils. Interestingly, MG-132, a proteasome inhibitor reducing the degradation of MCPIP-1, further facilitated neutrophils to express MCPIP-1 in vitro. Importantly, MCPIP-1 markedly downregulated the production of ROS, MPO, and proinflammatory cytokines (e.g., interleukin-1β, interleukin-6, tumor necrosis factor-α, interleukin-8, and interferon-γ) and suppressed the migration of IBD neutrophils. Consistently, the same functional changes were observed in neutrophils from mice with myeloid-targeted overexpression of MCPIP-1 as MG-132 did. Altogether, these findings suggest that MCPIP-1 plays a negative role in regulating neutrophil activities through suppressing the production of ROS, MPO, and proinflammatory cytokines and inhibiting the migration. MG-132 may partially modulate the function of neutrophils via the induction of MCPIP-1. Therefore, targeting MCPIP-1 or exogenous supplementation of MG-132 may provide a therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Jian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, China
| | - Gengfeng Li
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chunjin Xu
- Department of Gastroenterology, The First People's Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu, China
| | - Huiying Lu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhi Pang
- Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
78
|
Niu X, Shang H, Chen S, Chen R, Huang J, Miao Y, Cui W, Wang H, Sha Z, Peng D, Zhu R. Effects of Pinus massoniana pollen polysaccharides on intestinal microenvironment and colitis in mice. Food Funct 2020; 12:252-266. [PMID: 33295902 DOI: 10.1039/d0fo02190c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The stability of the intestinal microenvironment is the basis for maintaining the normal physiological activities of the intestine. On the contrary, disordered dynamic processes lead to chronic inflammation and disease pathology. Pinus massoniana pollen polysaccharide (PPPS), isolated from Taishan Pinus massoniana pollen, has been reported with extensive biological activities, including immune regulation. However, the role of PPPS in the intestinal microenvironment and intestinal diseases is still unknown. In this work, we initiated our investigation by using 16S rRNA high-throughput sequencing technology to assess the effect of PPPS on gut microbiota in mice. The result showed that PPPS regulated the composition of gut microbiota in mice and increased the proportion of probiotics. Subsequently, we established immunosuppressive mice using cyclophosphamide (CTX) and found that PPPS regulated the immunosuppressive state of lymphocytes in Peyer's patches (PPs). Moreover, PPPS also regulated systemic immunity by acting on intestinal PPs. PPPS alleviated lipopolysaccharide (LPS) -induced Caco2 cell damage, indicating that PPPS has the ability to reduce the damage and effectively improve the barrier dysfunction in Caco2 cells. In addition, PPPS alleviated colonic injury and relieved colitis symptoms in dextran sodium sulfate (DSS)-induced colitis mice. Overall, our findings indicate that PPPS shows a practical regulatory effect in the intestinal microenvironment, which provides an essential theoretical basis for us to develop the potential application value of PPPS further.
Collapse
Affiliation(s)
- Xiangyun Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hongqi Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Siyan Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ruichang Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jin Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yongqiang Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Wenping Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Huan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Zhou Sha
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
79
|
Analysis of molecular and clinical parameters of 4-year adalimumab therapy in psoriatic patients. Postepy Dermatol Alergol 2020; 37:736-745. [PMID: 33240014 PMCID: PMC7675078 DOI: 10.5114/ada.2020.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022] Open
Abstract
Introdcution Through interaction with receptors TNFR1 and TNFR2, TNF-α activates a signal path, which exacerbates an inflammatory process, constituting an inseparable element of psoriasis. Aim To evaluate changes in the expression of TNF-α, TNFR1, TNFR2 during the 4-year-long adalimumab therapy in psoriatic patients, searching for the correlation between molecular and clinical markers. In addition, the role of miRNAs was analysed. Material and methods Whole blood and serum samples of psoriatic patients treated with adalimumab constituted material for the study. Changes in the expression of TNF-α and its receptors were evaluated with the use of the RTqPCR method and MALDI ToF mass spectroscopy, PASI, BSA, DAS28 indexes were used for the clinical analysis of the patients, while the role of miRNA molecules was determined basing on microrna.org database. Results Different TNF-α expression patterns were determined in patients with observed resistance to the medicine. We found that there is a correlation between the molecular markers of an inflammatory process and the clinical indexes. The bioinformatic analysis indicates the potential role of miRNAs in the regulation of expression of the analysed genes. Changes in the profile of TNF-α during adalimumab therapy are significantly determined by the individual variability and susceptibility to the biological medicine or its loss. Conclusions TNF-α seems to be a useful marker to evaluate the efficacy of therapy and occurring resistance to the medicine. A complex mechanism for the regulation of the analysed gene expression was underlined, which involved the potential role of miRNAs.
Collapse
|
80
|
MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int J Mol Sci 2020; 21:ijms21217893. [PMID: 33114313 PMCID: PMC7660644 DOI: 10.3390/ijms21217893] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal tract. The IBD population includes a heterogeneous group of patients with varying disease courses requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these important epigenetic regulators and the cellular localization may even contribute to an alternative repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling, next generation sequencing and in situ hybridization of microRNA biomarkers identified in the circulation and in tissue biopsies.
Collapse
|
81
|
Ghafouri-Fard S, Eghtedarian R, Taheri M. The crucial role of non-coding RNAs in the pathophysiology of inflammatory bowel disease. Biomed Pharmacother 2020; 129:110507. [DOI: 10.1016/j.biopha.2020.110507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
|
82
|
Gareb B, Otten AT, Frijlink HW, Dijkstra G, Kosterink JGW. Review: Local Tumor Necrosis Factor-α Inhibition in Inflammatory Bowel Disease. Pharmaceutics 2020; 12:E539. [PMID: 32545207 PMCID: PMC7356880 DOI: 10.3390/pharmaceutics12060539] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) characterized by intestinal inflammation. Increased intestinal levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) are associated with disease activity and severity. Anti-TNF-α therapy is administered systemically and efficacious in the treatment of IBD. However, systemic exposure is associated with adverse events that may impede therapeutic treatment. Clinical studies show that the efficacy correlates with immunological effects localized in the gastrointestinal tract (GIT) as opposed to systemic effects. These data suggest that site-specific TNF-α inhibition in IBD may be efficacious with fewer expected side effects related to systemic exposure. We therefore reviewed the available literature that investigated the efficacy or feasibility of local TNF-α inhibition in IBD. A literature search was performed on PubMed with given search terms and strategy. Of 8739 hits, 48 citations were included in this review. These studies ranged from animal studies to randomized placebo-controlled clinical trials. In these studies, local anti-TNF-α therapy was achieved with antibodies, antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and genetically modified organisms. This narrative review summarizes and discusses these approaches in view of the clinical relevance of local TNF-α inhibition in IBD.
Collapse
Affiliation(s)
- Bahez Gareb
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Martini Hospital Groningen, Department of Clinical Pharmacy and Toxicology, Van Swietenplein 1, 9728 NT Groningen, The Netherlands
| | - Antonius T. Otten
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Jos G. W. Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
83
|
Nie J, Zhao Q. Lnc-ITSN1-2, Derived From RNA Sequencing, Correlates With Increased Disease Risk, Activity and Promotes CD4 + T Cell Activation, Proliferation and Th1/Th17 Cell Differentiation by Serving as a ceRNA for IL-23R via Sponging miR-125a in Inflammatory Bowel Disease. Front Immunol 2020; 11:852. [PMID: 32547537 PMCID: PMC7271921 DOI: 10.3389/fimmu.2020.00852] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background: This study aimed to investigate long-non-coding RNA (lncRNA) expression profiles and the correlation of lnc-ITSN1-2 expression with disease risk, activity and inflammation, and its influence on CD4+ T cell activation, proliferation, and differentiation of inflammatory bowel disease (IBD). Methods: LncRNA expression profiles were detected in intestinal mucosa samples from six IBD patients and six healthy controls (HCs). Intestinal mucosa and PBMC lnc-ITSN1-2, IL-23R, and inflammatory cytokines were measured in 120 IBD patients [60 Crohn's disease (CD) and 60 ulcerative colitis (UC)] and 30 HCs. Effect of lnc-ITSN1-2 on IBD CD4+ T cell activation, proliferation, and differentiation was determined and its regulatory interaction with miR-125a and IL-23R was detected. Results: Three-hundred-and-nine upregulated and 310 downregulated lncRNAs were identified in IBD patients by RNA-Sequencing, which were enriched in regulating immune and inflammation related pathways. Large-sample qPCR validation disclosed that both intestinal mucosa and PBMC lnc-ITSN1-2 expressions were increased in IBD patients compared to HCs, and presented with good predictive values for IBD risk, especially for active disease conditions, and they positively correlated with disease activity, inflammation cytokines, and IL-23R in IBD patients. Lnc-ITSN1-2 was decreased after infliximab treatment in active-CD patients. Furthermore, lnc-ITSN1-2 promoted IBD CD4+ T cell activation and proliferation, and stimulated Th1/Th17 cell differentiation. Multiple rescue experiments disclosed that lnc-ITSN1-2 functioned in IBD CD4+ T cells via targeting miR-125a, then positively regulating IL-23R. Luciferase Reporter assay observed that lnc-ITSN1-2 bound miR-125a, and miR-125a bound IL-23R. Conclusion: Lnc-ITSN1-2 correlates with increased disease risk, activity, and inflammatory cytokines of IBD, and promotes IBD CD4+ T cell activation, proliferation, and Th1/Th17 cell differentiation by serving as a competing endogenous RNA for IL-23R via sponging miR-125a.
Collapse
Affiliation(s)
- Jiayan Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
84
|
Verdugo-Meza A, Ye J, Dadlani H, Ghosh S, Gibson DL. Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients 2020; 12:E1434. [PMID: 32429195 PMCID: PMC7285036 DOI: 10.3390/nu12051434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The role of the microbiome in health and disease has gained considerable attention and shed light on the etiology of complex diseases like inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Since the microorganisms inhabiting the gut can confer either protective or harmful signals, understanding the functional network between the gut microbes and the host provides a comprehensive picture of health and disease status. In IBD, disruption of the gut barrier enhances microbe infiltration into the submucosae, which enhances the probability that gut-derived metabolites are translocated from the gut to the liver and pancreas. Considering inflammation and the gut microbiome can trigger intestinal barrier dysfunction, risk factors of metabolic diseases such as insulin resistance may have common roots with IBD. In this review, we focus on the overlap between IBD and MetS, and we explore the role of common metabolites in each disease in an attempt to connect a common origin, the gut microbiome and derived metabolites that affect the gut, liver and pancreas.
Collapse
Affiliation(s)
- Andrea Verdugo-Meza
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Jiayu Ye
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Hansika Dadlani
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
- Department of Medicine, University of British Columbia, Okanagan campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
85
|
Yao J, Gao R, Luo M, Li D, Guo L, Yu Z, Xiong F, Wei C, Wu B, Xu Z, Zhang D, Wang J, Wang L. miR-802 participates in the inflammatory process of inflammatory bowel disease by suppressing SOCS5. Biosci Rep 2020; 40:BSR20192257. [PMID: 32211804 PMCID: PMC7138906 DOI: 10.1042/bsr20192257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/01/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aims to reveal the detailed molecular mechanism of microRNA (miR)-802 in the progression of inflammatory bowel disease (IBD). IBD tissues were obtained from IBD patients, followed by CD4+ cells isolation. Then, qRT-PCR and ELISA were used to detect the expression of miR-802, suppressor of cytokine signaling 5 (SOCS5), interleukin (IL)-17A and tumor necrosis factor (TNF)-α. Transfection of miR-802 mimics and miR-802 inhibitor in CD4+ cells was detected by Western blot. TargetScan and luciferase reporter assay were used to detect the relationship between SOCS5 and miR-802. Finally, colitis mice model was established to verify whether miR-802 inhibitor was involved in the protective effect of colonic mucosa. The miR-802 was highly expressed in inflamed mucosa and PBMC cells of IBD. The highest expression of miR-802 was observed in CD4+ T cells based on different immune cell subsets analysis. SOCS5 was the target gene of miR-802. The mice model experiments showed that blockade of miR-802 could alleviate mice colitis. Our study suggests that up-regulation of miR-802 plays an important role in inflammatory process of IBD via targeting SOCS5. Moreover, the differentiation of Th17 and secretion of TNF-α in IBD could be stimulated by miR-802.
Collapse
Affiliation(s)
- Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Ruoyu Gao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Minghan Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Defeng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Liliangzi Guo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zichao Yu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Feng Xiong
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Benhua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zhenglei Xu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Dingguo Zhang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, No. 7019, Yitian Road Road, Shenzhen City, Guangdong Province 518026, China
| | - Lisheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| |
Collapse
|
86
|
Wu F, Shao Q, Hu M, Zhao Y, Dong R, Fang K, Xu L, Zou X, Lu F, Li J, Chen G. Wu-Mei-Wan ameliorates chronic colitis-associated intestinal fibrosis through inhibiting fibroblast activation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112580. [PMID: 31972322 DOI: 10.1016/j.jep.2020.112580] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wu-Mei-Wan (WMW), a classic traditional Chinese herb medicine, is one of the most important formulations to treat digestive diseases from ancient times to the present. Previous study showed that WMW has satisfactory curative effects on experimental colitis, which motivating the application of WMW on colitis-associated complications. AIM OF THE STUDY Intestinal fibrosis is usually considered to be a common complication of inflammatory bowel disease (IBD), particularly Crohn's disease (CD). Currently, no effective preventive measures or medical therapies are available for that. This work was designed to evaluate the effect and related mechanism of WMW on chronic colitis-associated intestinal fibrosis mice model. MATERIALS AND METHODS The chronic colitis-associated intestinal fibrosis mice model was established by weekly intrarectal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS). The mice survival rate, disease activity index (DAI), colon length and histological score were examined to assess the therapeutic effect of WMW. Masson's trichrome staining, hydroxyproline assay, immunohistochemical staining and western blot analysis were used to evaluate fibrosis level. Colon inflammation was determined by ELISA and immunofluorescence staining. Immunofluorescence staining was used to evaluate fibroblasts proliferation and epithelial to mesenchymal transition (EMT), and the expression of key molecules in fibrosis was analyzed by western blot. RESULTS Here we showed that WMW alleviates chronic colitis with improved survival rate, DAI, colon length and histological score. WMW inhibited the progression of intestinal fibrosis, decreased the expression of various fibrosis markers, such as α-SMA, collagen I, MMP-9 and fibronectin. In addition, WMW treatment reduced cytokines IL-6 and IFN-γ, and downregulated proinflammatory NF-κBp65 and STAT3 signaling pathways. Importantly, administration of WMW led to the inhibition of colon fibroblast proliferation and EMT, which are important mediators during fibrosis. Several key profibrotic pathways, including TGF-β/Smad and Wnt/β-catenin pathways, were downregulated by WMW treatment. CONCLUSION Our work demonstrated that WMW can prevent intestinal fibrosis and the mechanisms involved may be related to the inhibition of colon fibroblasts activation.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jingbin Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
87
|
Chen Q, He Q, Xiu W, Chen Y, Guo Z. miR-340 affects sauchinone inhibition of Th17 cell differentiation and promotes intestinal inflammation in inflammatory bowel disease. Biochem Biophys Res Commun 2020; 526:1157-1163. [PMID: 32321642 DOI: 10.1016/j.bbrc.2020.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
The pathogenesis of inflammation bowel disease (IBD) involves exaggerated effector T cell responses and impaired regulatory T cell functions. We previously found that sauchinone (SAU) ameliorated experimental colitis via facilitating Th17 cell production of IL-10, but how SAU regulated Th17 cell differentiation remains unknown. MicroRNAs (miR) have been recognized as a crucial regulator of T cell biology and play a considerable role in IBD. Here, we demonstrated that SAU significantly suppressed miR-340 expression in Th17 cells, and enforced miR-340 expression abrogated SAU inhibition of Th17 differentiation. miR-340 itself was found to facilitate Th17 differentiation, especially the pathogenic "Th1-like" subset. In human IBD, miR-340 was intimately correlated with the disease severity. SAU markedly decreased miR-340 in the inflamed mucosa tissues from IBD patients. Scaffold/matrix-associated region-binding protein 1 (SMAR1) was identified as a target gene of miR-340. We revealed that blockade of miR-340 significantly reduced mucosal damage and Th17 responses in the lamina propria in a mouse colitis model. Our findings suggest that miR-340 negatively affects SAU inhibition of Th17 differentiation and might play a crucial role in the regulation of pathogenic "Th1-like" Th17 cell generation, which might serve as a novel therapeutic target of IBD.
Collapse
Affiliation(s)
- Qinyuan Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinyu He
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanxi Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhenzhen Guo
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
88
|
Shi Y, Dai S, Qiu C, Wang T, Zhou Y, Xue C, Yao J, Xu Y. MicroRNA-219a-5p suppresses intestinal inflammation through inhibiting Th1/Th17-mediated immune responses in inflammatory bowel disease. Mucosal Immunol 2020; 13:303-312. [PMID: 31628427 DOI: 10.1038/s41385-019-0216-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/11/2019] [Accepted: 09/28/2019] [Indexed: 02/04/2023]
Abstract
MicroRNA (miR)-219a-5p has been implicated in the development of numerous progression of carcinoma and autoimmune diseases. However, whether miR-219a-5p is involved in the pathogenesis of inflammatory bowel disease (IBD) remains elusive. In this study, we demonstrated that miR-219a-5p expression was significantly decreased in the inflamed intestinal mucosa and peripheral blood (PB)-CD4+ T cells from patients with IBD. Proinflammatory cytokines (e.g., IL-6, IL-12, IL-23 and TNF-α) inhibited miR-219a-5p expression in CD4+ T cells in vitro. Lentivirus-mediated miR-219a-5p downregulation facilitated Th1/Th17 cell differentiation, whereas miR-219a-5p overexpression exerted an opposite effect. Luciferase assays confirmed that ETS variant 5 (ETV5) was a functional target of miR-219a-5p and ETV5 expression was significantly increased in the inflamed intestinal mucosa and PB-CD4+ T cells from IBD patients. ETV5 overexpression enhanced Th1/Th17 immune response through upregulating the phosphorylation of STAT3 and STAT4. Importantly, supplementation of miR-219a-5p ameliorated TNBS-induced intestinal mucosal inflammation, characterized by decreased IFN-γ+ CD4+ T cells and IL-17A+ CD4+ T cells infiltration in the colonic lamina propria. Our data thus reveal a novel mechanism whereby miR-219a-5p suppresses intestinal inflammation through inhibiting Th1/Th17-mediated immune responses. miR-219a-5p might be a target for the treatment of IBD.
Collapse
Affiliation(s)
- Yan Shi
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Shenglan Dai
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Caiyu Qiu
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Tao Wang
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Yong Zhou
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Cuihua Xue
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Jun Yao
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China.
| | - Yaping Xu
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China.
| |
Collapse
|
89
|
Verdier J, Breunig IR, Ohse MC, Roubrocks S, Kleinfeld S, Roy S, Streetz K, Trautwein C, Roderburg C, Sellge G. Faecal Micro-RNAs in Inflammatory Bowel Diseases. J Crohns Colitis 2020; 14:110-117. [PMID: 31209454 DOI: 10.1093/ecco-jcc/jjz120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Faecal biomarkers are used as indicators of disease activity in inflammatory bowel diseases [IBD], which include Crohn's disease [CD] and ulcerative colitis [UC]. Micro-RNAs [miRNAs] are small non-coding RNAs detectable in extracellular fluids and can be used as clinical biomarkers. The aim of this study was to determine if faecal miRNA composition is altered in IBD. METHODS More than 800 different human faecal miRNAs were measured in stool samples from control individuals and patients with active CD by using NanoString technology. Selected miRNAs were quantified by qRT-PCR in faeces, serum and intestinal tissue of controls [n = 23] and patients with inactive or active CD [n = 22, n = 22] or UC [n = 11, n = 24] as well as patients with Clostridium difficile infection [CDI, n = 8]. RESULTS In total, 150 miRNAs were significantly detected in faeces from controls and patients, and multivariate analyses showed that CD patients with high disease activities had a distinct miRNA profile and that miR-223 and miR-1246 were distinct from other faecal miRNAs. In a larger cohort, active UC patients displayed significantly higher levels of miR-223 and miR-1246 than controls while patients with CDI had higher levels of faecal miR-1246 but not miR-223. No differences were noted in serum samples. CONCLUSIONS To our knowledge, this is the first comprehensive screen of faecal miRNAs performed in IBD. Further investigation will aim to confirm these findings in a larger cohort and to understand the biological function and cellular sources of faecal miRNAs.
Collapse
Affiliation(s)
- Julien Verdier
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,INSERM, Sorbonne Universités, UPMC Univ Paris, AIM-Institute of Myology, Paris, France
| | | | - Margarete Clara Ohse
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Silvia Roubrocks
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sandra Kleinfeld
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sanchari Roy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Roderburg
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
90
|
Hsu LW, Huang KT, Nakano T, Chiu KW, Chen KD, Goto S, Chen CL. MicroRNA-301a inhibition enhances the immunomodulatory functions of adipose-derived mesenchymal stem cells by induction of macrophage M2 polarization. Int J Immunopathol Pharmacol 2020; 34:2058738420966092. [PMID: 33121303 PMCID: PMC7607751 DOI: 10.1177/2058738420966092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that play a significant role in biological processes in various cell types, including mesenchymal stem cells (MSCs). However, how miRNAs regulate the immunomodulatory functions of adipose-derived MSCs (AD-MSCs) remains unknown. Here, we showed that modulation of miR-301a in AD-MSCs altered macrophage polarization. Bone marrow (BM)-derived macrophages were stimulated with LPS (1 μg/ml) and co-cultured with miRNA transfected AD-MSCs for 24 h. The expression of M1 and M2 markers in macrophages was analyzed. Inhibition of miR-301a induced M2 macrophage with arginase-1, CD163, CD206, and IL-10 upregulation. Additionally, toll-like receptor (TLR)-4 mRNA expression in macrophages was downregulated in co-cultures with AD-MSCs transfected with a miR-301a inhibitor. Nitric oxide (NO) in the supernatant of AD-MSC/macrophage co-culture was also suppressed by inhibition of miR-301a in AD-MSCs. We further found that suppression of miR-301a in AD-MSCs increased prostaglandin E2 (PGE2) concentration in the conditioned medium of the co-culture. Taken together, the results of our study indicate that miR-301a can modulate the immunoregulatory functions of AD-MSCs that favor the applicability as a potential immunotherapeutic agent.
Collapse
Affiliation(s)
- Li-Wen Hsu
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Kuang-Tzu Huang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Toshiaki Nakano
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung
| | - King-Wah Chiu
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Kuang-Den Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Shigeru Goto
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Faculty of Nursing, Department of Nursing, Josai International University, Togane, Chiba, Japan
| | - Chao-Long Chen
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| |
Collapse
|
91
|
Wang Y, Zhang H, He H, Ai K, Yu W, Xiao X, Qin Y, Zhang L, Xiong H, Zhou G. LRCH1 suppresses migration of CD4 + T cells and refers to disease activity in ulcerative colitis. Int J Med Sci 2020; 17:599-608. [PMID: 32210709 PMCID: PMC7085219 DOI: 10.7150/ijms.39106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a chronically remittent and progressive inflammatory disorder. LRCH1 is reported to be involved in the immune-regulation of several diseases. However, the exact roles of LRCH1 in UC are still obscure. Materials and Methods: LRCH1 expression was analyzed in the inflamed mucosa and peripheral blood mononuclear cells (PBMCs) from patients with UC by quantitative RT-PCR and immunohistochemistry. Peripheral blood CD4+ T cells were transfected with lentivirus-expressing LRCH1 (LV-LRCH1) or LV-sh-LRCH1, and cytokine expression was determined by using flow cytometry, quantitative RT-PCR and ELISA. Transfected CD4+ T cells were harvested to examine the capacity of chemotaxis using Transwell plate. Results: LRCH1 expression was highly decreased in colonic mucosa and PBMCs from patients with A-UC, and negatively correlated with disease activity. Up or down regulation of LRCH1 did not affect the differentiation of CD4+ T cells, and the related cytokines expression. Moreover, LRCH1 inhibited migratory capacity of CD4+ T cells toward CXCL12 by PKCα. Conclusion: LRCH1 plays an important role in the pathogenesis of UC, possibly through modulating the migration of CD4+ T cells. Therefore, targeting LRCH1 might serve as a novel therapeutic approach in the management of UC.
Collapse
Affiliation(s)
- Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Kuankuan Ai
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Wei Yu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Xiao Xiao
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yufen Qin
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Lingming Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
92
|
Notoginsenoside R1 suppresses miR-301a via NF-κB pathway in lipopolysaccharide-treated ATDC5 cells. Exp Mol Pathol 2019; 112:104355. [PMID: 31837326 DOI: 10.1016/j.yexmp.2019.104355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Notoginsenoside R1 (NG-R1) exhibits a pharmacological activity against excessive inflammation. Here, we aimed to ascertain the anti-inflammatory role of NG-R1 in ankylosing spondylitis (AS) as well as the possible mechanism which is still under to be elucidated. METHODS In this study, lipopolysaccharide (LPS) was applied to evoke extreme inflammation in ATDC5 cells. To investigate the anti-inflammatory property of NG-R1, ATDC5 cells were exposed to NG-R1 prior to LPS stimulation. microRNA-301a (miR-301a)-overexpressed ATDC5 cells were established which confirmed by qRT-PCR. Then, inflammatory lesions were indicated by cell viability, apoptosis and inflammatory factors, including interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α). Nuclear factor-kappa B (NF-κB) pathway was determined by Western blotting assay. RESULTS We found NG-R1 dramatically dampened the decrease of cell viability, facilitation of apoptosis and abundance of inflammatory factors induced by LPS. Additionally, NG-R1 pre-incubation impeded LPS-induced accumulation of miR-301a. However, the protective capacity of NG-R1 was impaired by miR-301a overexpression. Of note, LPS-caused phosphorylation of p65 and inhibitor of nuclear factor kappa-B alpha (IκBα) was repressed by NG-R1, while further enhanced in miR-301-transfected ATDC5 cells. CONCLUSION NG-R1 relived LPS-elicited inflammatory damages via blocking NF-κB in a miR-301a-silenced manner.
Collapse
|
93
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
94
|
Zeng Z, Mukherjee A, Zhang H. From Genetics to Epigenetics, Roles of Epigenetics in Inflammatory Bowel Disease. Front Genet 2019; 10:1017. [PMID: 31737035 PMCID: PMC6834788 DOI: 10.3389/fgene.2019.01017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a destructive, recurrent, and heterogeneous disease. Its detailed pathogenesis is still unclear, although available evidence supports that IBD is caused by a complex interplay between genetic predispositions, environmental factors, and aberrant immune responses. Recent breakthroughs with regard to its genetics have offered valuable insights into the sophisticated genetic basis, but the identified genetic factors only explain a small part of overall disease variance. It is becoming increasingly apparent that epigenetic factors can mediate the interaction between genetics and environment, and play a fundamental role in the pathogenesis of IBD. This review outlines recent genetic and epigenetic discoveries in IBD, with a focus on the roles of epigenetics in disease susceptibility, activity, behavior and colorectal cancer (CRC), and their potential translational applications.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
95
|
|
96
|
MicroRNA-125a suppresses intestinal mucosal inflammation through targeting ETS-1 in patients with inflammatory bowel diseases. J Autoimmun 2019; 101:109-120. [DOI: 10.1016/j.jaut.2019.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
|
97
|
Li A, Wang Y, Li Z, Qamar H, Mehmood K, Zhang L, Liu J, Zhang H, Li J. Probiotics isolated from yaks improves the growth performance, antioxidant activity, and cytokines related to immunity and inflammation in mice. Microb Cell Fact 2019; 18:112. [PMID: 31217027 PMCID: PMC6585042 DOI: 10.1186/s12934-019-1161-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Yaks living in the high-altitude hypoxic environment of Tibetan plateau (3600 m) have special gut microbes. However, it is still little research on yak probiotics until now. Therefore, the purpose of our study was to evaluate the growth promoting effect, antioxidant capability, immune effect, and anti-inflammatory ability of Bacillus subtilis and Bacillus velezensis isolated from Tibetan yaks in mice model. RESULTS The results showed that the isolated strains supplementation not only improve the growth performance but also increased the length of villus in the small intestine and intestinal digestive enzyme activity. Importantly, we observed that the T-AOC, SOD, and GSH-PX levels were increased and the MDA content was reduced in probiotic-treated mice, which implied that probiotics supplementation can ameliorate the antioxidative activity of mice. The levels of AST and ALT correlated with the hepatic injury were reduced and the levels of AKP, TP, GLB, ALB, Ca, and P were markedly higher than those in the control group. Additionally, mice treated with probiotics exhibited higher serum IgG, IgM and IgA, which can reflect the immune status to some extent. At the same time, the major pro-inflammatory factor TNF-α, IL-6, and IL-8 were down-regulated and the anti-inflammatory factor IL-10 was up-regulated compared with the control groups. CONCLUSIONS In conclusion, these results demonstrated that Bacillus subtilis and Bacillus velezensis supplementation can increase overall growth performance and ameliorate the blood parameters related to inflammation and immunity of mice.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhixing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Juanjuan Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, People's Republic of China.
| |
Collapse
|
98
|
Feng Y, Zhang Y, Zhou D, Chen G, Li N. MicroRNAs, intestinal inflammatory and tumor. Bioorg Med Chem Lett 2019; 29:2051-2058. [PMID: 31213403 DOI: 10.1016/j.bmcl.2019.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) is the third most malignant tumor. Inflammatory bowel disease (IBD) can increase the risk of colorectal cancer. And colitis-associated cancer (CAC) is a CRC subtype, representing the inflammation-related colorectal cancer. For the past decades, we have known that ectopic microRNA (miRNA) expression was involved in the pathogenesis of IBD and CRC, playing a pivotal role in the progression of inflammation to colorectal cancer. Thus, this review provides the recent advances in altered human tissue-specific miRNAs that contribute to IBD, CRC and CAC pathogenesis, diagnosis and treatment. Meanwhile, the potential utilization of miRNAs as novel therapeutic targets for the prevention of CRC was also discussed.
Collapse
Affiliation(s)
- Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Yuan Zhang
- Tianjin Vocational College of Bioengineering, Tianjin 300462, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
99
|
Yan Y, Qin D, Hu B, Zhang C, Liu S, Wu D, Huang W, Huang X, Wang L, Chen X, Zhang L. Deletion of miR-126a Promotes Hepatic Aging and Inflammation in a Mouse Model of Cholestasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:494-504. [PMID: 31051334 PMCID: PMC6495079 DOI: 10.1016/j.omtn.2019.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) act as regulators of aging at the tissue or organism level or as regulators of cellular senescence. Targeted deletion of miR-126 in mice causes partial embryonic lethality, but its biological function in the liver is still largely unknown. Here, we deleted miR-126a, using the CRISPR/Cas9 system in vitro and in vivo. miR-126a was reduced in the aging livers, and disruption of miR-126a in bone mesenchymal stem cells (BMSCs) induced age-associated telomere shortening, DNA damage responses, and proinflammatory cytokines. Moreover, disruption of miR-126a in mice caused hepatocyte senescence, inflammation, and metabolism deficiency. In addition, disruption of miR-126a via BMSC transplantation aggravated the severity of liver defects induced by cholestasis compared with that in the functional miR-126a BMSC group. Mechanistically, we identified versican (VCAN) as a novel direct miR-126a-5p target that induces telomere shortening, BMSC senescence, and nuclear factor κB (NF-κB) pathway activation. This study identified aging-related reduced expression of miR-126a and promotion of its target VCAN as a key mechanism in the regulation of hepatic metabolic function during aging and hepatic damage by inducing NF-κB pathway activation, DNA repair function disorder, and telomere attrition. The findings indicate that miR-126a may be a drug target for the treatment of hepatic failure.
Collapse
Affiliation(s)
- Yi Yan
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| | - Dan Qin
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| | - Bian Hu
- School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Pudong New Area, Shanghai 201210, China
| | - Chunjing Zhang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| | - Shenghui Liu
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| | - Dongde Wu
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital of Wuhan University (Hubei Cancer Hospital), Wuhan, Hubei 430079, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Pudong New Area, Shanghai 201210, China
| | - Liqiang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28th Fuxing Road, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28th Fuxing Road, Beijing 100853, China
| | - Lisheng Zhang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China.
| |
Collapse
|
100
|
Tian Y, Xu J, Li Y, Zhao R, Du S, Lv C, Wu W, Liu R, Sheng X, Song Y, Bi X, Li G, Li M, Wu X, Lou P, You H, Cui W, Sun J, Shuai J, Ren F, Zhang B, Guo M, Hou X, Wu K, Xue L, Zhang H, Plikus MV, Cong Y, Lengner CJ, Liu Z, Yu Z. MicroRNA-31 Reduces Inflammatory Signaling and Promotes Regeneration in Colon Epithelium, and Delivery of Mimics in Microspheres Reduces Colitis in Mice. Gastroenterology 2019; 156:2281-2296.e6. [PMID: 30779922 DOI: 10.1053/j.gastro.2019.02.023] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Levels of microRNA 31 (MIR31) are increased in intestinal tissues from patients with inflammatory bowel diseases and colitis-associated neoplasias. We investigated the effects of this microRNA on intestinal inflammation by studying mice with colitis. METHODS We obtained colon biopsy samples from 82 patients with ulcerative colitis (UC), 79 patients with Crohn's disease (CD), and 34 healthy individuals (controls) at Shanghai Tenth People's Hospital. MIR31- knockout mice and mice with conditional disruption of Mir31 specifically in the intestinal epithelium (MIR31 conditional knockouts) were given dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS) to induce colitis. We performed chromatin immunoprecipitation and luciferase assays to study proteins that regulate expression of MIR31, including STAT3 and p65, in LOVO colorectal cancer cells and organoids derived from mouse colon cells. Partially hydrolyzed alpha-lactalbumin was used to generate peptosome nanoparticles, and MIR31 mimics were loaded onto their surface using electrostatic adsorption. Peptosome-MIR31 mimic particles were encapsulated into oxidized konjac glucomannan (OKGM) microspheres, which were administered by enema into the large intestines of mice with DSS-induced colitis. Intestinal tissues were collected and analyzed by histology and immunohistochemistry. RESULTS Levels of MIR31 were increased in inflamed mucosa from patients with CD or UC, and from mice with colitis, compared with controls. STAT3 and nuclear factor-κB activated transcription of MIR31 in colorectal cancer cells and organoids in response to tumor necrosis factor and interleukin (IL)6. MIR31-knockout and conditional-knockout mice developed more severe colitis in response to DSS and TNBS, with increased immune responses, compared with control mice. MIR31 bound to 3' untranslated regions of Il17ra and Il7r messenger RNAs (RNAs) (which encode receptors for the inflammatory cytokines IL17 and IL7) and Il6st mRNA (which encodes GP130, a cytokine signaling protein). These mRNAs and proteins were greater in MIR31-knockout mice with colitis, compared with control mice; MIR31 and MIR31 mimics inhibited their expression. MIR31 also promoted epithelial regeneration by regulating the WNT and Hippo signaling pathways. OKGM peptosome-MIR31 mimic microspheres localized to colonic epithelial cells in mice with colitis; they reduced the inflammatory response, increased body weight and colon length, and promoted epithelial cell proliferation. CONCLUSIONS MIR31, increased in colon tissues from patients with CD or UC, reduces the inflammatory response in colon epithelium of mice by preventing expression of inflammatory cytokine receptors (Il7R and Il17RA) and signaling proteins (GP130). MIR31 also regulates the WNT and Hippo signaling pathways to promote epithelial regeneration following injury. OKGM peptosome-MIR31 microspheres localize to the colon epithelium of mice to reduce features of colitis. Transcript Profiling: GSE123556.
Collapse
Affiliation(s)
- Yuhua Tian
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ran Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sujuan Du
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guilin Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengzhen Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xi Wu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengbo Lou
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiwen You
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Cui
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China; Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, UK
| | - Jinyue Sun
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bing Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Technology and Science, Wuhan, China
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lixiang Xue
- Medical Research Center. Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hongquan Zhang
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Beijing, China
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, California
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|