51
|
Zoledronate/Anti-VEGF Neutralizing Antibody Combination Administration Increases Osteal Macrophages in a Murine Model of MRONJ Stage 0-like Lesions. J Clin Med 2023; 12:jcm12051914. [PMID: 36902701 PMCID: PMC10004236 DOI: 10.3390/jcm12051914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The pathophysiology, pathogenesis, histopathology, and immunopathology of medication-related osteonecrosis of the jaw (MRONJ) Stage 0 remain unclear, although 50% of MRONJ Stage 0 cases could progress to higher stages. The aim of this study was to investigate the effects of zoledronate (Zol) and anti-vascular endothelial cell growth factor A (VEGFA) neutralizing antibody (Vab) administration on polarization shifting of macrophage subsets in tooth extraction sockets by creating a murine model of MRONJ Stage 0-like lesions. Eight-week-old, female C57BL/6J mice were randomly divided into 4 groups: Zol, Vab, Zol/Vab combination, and vehicle control (VC). Subcutaneous Zol and intraperitoneal Vab administration were performed for 5 weeks with extraction of both maxillary first molars 3 weeks after drug administration. Euthanasia was conducted 2 weeks after tooth extraction. Maxillae, tibiae, femora, tongues, and sera were collected. Structural, histological, immunohistochemical, and biochemical analyses were comprehensively performed. Tooth extraction sites appeared to be completely healed in all groups. However, osseous healing and soft tissue healing of tooth extraction sites were quite different. The Zol/Vab combination significantly induced abnormal epithelial healing, and delayed connective tissue healing due to decreased rete ridge length and thickness of the stratum granulosum and due to decreased collagen production, respectively. Moreover, Zol/Vab significantly increased necrotic bone area with increased numbers of empty lacunae compared with Vab and VC. Most interestingly, Zol/Vab significantly increased the number of CD169+ osteal macrophages (osteomacs) in the bone marrow and decreased F4/80+ macrophages, with a slightly increased ratio of F4/80+CD38+ M1 macrophages compared to VC. These findings are the first to provide new evidence of the involvement of osteal macrophages in the immunopathology of MRONJ Stage 0-like lesions.
Collapse
|
52
|
FUJIWARA SHINTARO, URATA KENTARO, OTO TATSUKI, HAYASHI YOSHINORI, HITOMI SUZURO, IWATA KOICHI, IINUMA TOSHIMITSU, SHINODA MASAMICHI. Age-related Changes in Trigeminal Ganglion Macrophages Enhance Orofacial Ectopic Pain After Inferior Alveolar Nerve Injury. In Vivo 2023; 37:132-142. [PMID: 36593019 PMCID: PMC9843755 DOI: 10.21873/invivo.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM The ectopic pain associated with inferior alveolar nerve (IAN) injury has been reported to involve macrophage expression in the trigeminal ganglion (TG). However, the effect of age-related changes on this abnormal pain conditions are still unknown. This study sought to clarify the involvement of age-related changes in macrophage expression and phenotypic conversion in the TG and how these changes enhance ectopic mechanical allodynia after IAN transection (IANX). MATERIALS AND METHODS We used senescence-accelerated mouse (SAM)-prone 8 (SAMP8) and SAM-resistance 1 (SAMR1) mice, which are commonly used to study ageing-related changes. Mechanical stimulation was applied to the whisker pad skin under light anaesthesia; the mechanical head withdrawal threshold (MHWT) was measured for 21 d post-IANX. We subsequently counted the numbers of Iba1 (macrophage marker)-immunoreactive (IR) cells, Iba1/CD11c (M1-like inflammatory macrophage marker)-co-IR cells, and Iba1/CD206 (M2-like anti-inflammatory macrophage marker)-co-IR cells in the TG innervating the whisker pad skin. After continuous intra-TG administration of liposomal clodronate Clophosome®-A (LCCA) to IANX-treated SAMP8-mice, the MHWT values of the whisker pad skin were examined. RESULTS Five days post-IANX, the MHWT had significantly decreased in SAMP8 mice compared to SAMR1-mice. Iba1-IR and Iba1/CD11c-co-IR cell counts were significantly increased in SAMP8 mice compared to SAMR1 mice 5 d post-IANX. LCCA administration significantly restored MHWT compared to control-LCCA administration. CONCLUSION Ectopic mechanical allodynia of whisker pad skin after IANX is exacerbated by ageing, which involves increases in M1-like inflammatory macrophages in the TG.
Collapse
Affiliation(s)
- SHINTARO FUJIWARA
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - KENTARO URATA
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - TATSUKI OTO
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - YOSHINORI HAYASHI
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - SUZURO HITOMI
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - KOICHI IWATA
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - TOSHIMITSU IINUMA
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - MASAMICHI SHINODA
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
53
|
Chang ZS, He ZM, Xia JB. FoxO3 Regulates the Progress and Development of Aging and Aging-Related Diseases. Curr Mol Med 2023; 23:991-1006. [PMID: 36239722 DOI: 10.2174/1566524023666221014140817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Aging is an inevitable risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases, cancer, and diabetes. Investigation into the molecular mechanisms involved in aging and longevity will benefit the treatment of age-dependent diseases and the development of preventative medicine for agingrelated diseases. Current evidence has revealed that FoxO3, encoding the transcription factor (FoxO)3, a key transcription factor that integrates different stimuli in the intrinsic and extrinsic pathways and is involved in cell differentiation, protein homeostasis, stress resistance and stem cell status, plays a regulatory role in longevity and in age-related diseases. However, the precise mechanisms by which the FoxO3 transcription factor modulates aging and promotes longevity have been unclear until now. Here, we provide a brief overview of the mechanisms by which FoxO3 mediates signaling in pathways involved in aging and aging-related diseases, as well as the current knowledge on the role of the FoxO3 transcription factor in the human lifespan and its clinical prospects. Ultimately, we conclude that FoxO3 signaling pathways, including upstream and downstream molecules, may be underlying therapeutic targets in aging and age-related diseases.
Collapse
Affiliation(s)
- Zao-Shang Chang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Zhi-Ming He
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Jing-Bo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, Guangdong, China
| |
Collapse
|
54
|
Limberg AK, Salib CG, Tibbo ME, Vargas-Hernandez JS, Bettencourt JW, Bayram B, Berry CE, Dudakovic A, Bolon B, van Wijnen AJ, Morrey ME, Sanchez-Sotelo J, Berry DJ, Carter JM, Abdel MP. Immune cell populations differ in patients undergoing revision total knee arthroplasty for arthrofibrosis. Sci Rep 2022; 12:22627. [PMID: 36587032 PMCID: PMC9805429 DOI: 10.1038/s41598-022-22175-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 01/01/2023] Open
Abstract
Arthrofibrosis following total knee arthroplasty (TKA) is a debilitating condition typically diagnosed based on clinical findings. To gain insight into the histopathologic immune cell microenvironment of arthrofibrosis, we assessed the extent of tissue fibrosis and quantified immune cell populations in specific tissue regions of the posterior capsule. We investigated specimens from three prospectively-collected, matched cohorts, grouped as patients receiving a primary TKA for osteoarthritis, revision TKA for arthrofibrosis, and revision TKA for non-arthrofibrotic, non-infectious reasons. Specimens were evaluated using hematoxylin and eosin staining, picrosirius red staining, immunofluorescence, and immunohistochemistry with Aperio®-based digital image analysis. Increased collagen deposition and increased number of α-SMA/ACTA2 expressing myofibroblasts were present in the arthrofibrosis group compared to the two non-arthrofibrotic groups. CD163 + macrophages were the most abundant immune cell type in any capsular sample with specific enrichment in the synovial tissue. CD163 + macrophages were significantly decreased in the fibrotic tissue region of arthrofibrosis patients compared to the patients with primary TKA, and significantly increased in adipose tissue region of arthrofibrotic specimens compared to non-arthrofibrotic specimens. Synovial CD117 + mast cells were significantly decreased in arthrofibrotic adipose tissue. Together, these findings inform diagnostic and targeted therapeutic strategies by providing insight into the underlying pathogenetic mechanisms of arthrofibrosis.
Collapse
Affiliation(s)
- Afton K. Limberg
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Christopher G. Salib
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Meagan E. Tibbo
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Juan S. Vargas-Hernandez
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Jacob W. Bettencourt
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Banu Bayram
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Charlotte E. Berry
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Amel Dudakovic
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Brad Bolon
- GEMpath Inc, 1927 Lincoln Street, Longmount, CO 80501 USA
| | - Andre J. van Wijnen
- grid.59062.380000 0004 1936 7689Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405 USA
| | - Mark E. Morrey
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Joaquin Sanchez-Sotelo
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Daniel J. Berry
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Jodi M. Carter
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Matthew P. Abdel
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| |
Collapse
|
55
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
56
|
Bishop ES, Namkoong H, Aurelian L, McCarthy M, Nallagatla P, Zhou W, Neshatian L, Gurland B, Habtezion A, Becker L. Age-dependent Microglial Disease Phenotype Results in Functional Decline in Gut Macrophages. GASTRO HEP ADVANCES 2022; 2:261-276. [PMID: 36908772 PMCID: PMC10003669 DOI: 10.1016/j.gastha.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND AIMS Muscularis macrophages (MMs) are tissue-resident macrophages in the gut muscularis externa which play a supportive role to the enteric nervous system. We have previously shown that age-dependent MM alterations drive low-grade enteric nervous system inflammation, resulting in neuronal loss and disruption of gut motility. The current studies were designed to identify the MM genetic signature involved in these changes, with particular emphasis on comparison to genes in microglia, the central nervous system macrophage population involved in age-dependent cognitive decline. METHODS Young (3 months) and old (16-24 months) C57BL/6 mice and human tissue were studied. Immune cells from mouse small intestine, colon, and spinal cord and human colon were dissociated, immunophenotyped by flow cytometry, and examined for gene expression by single-cell RNA sequencing and quantitative real-time PCR. Phagocytosis was assessed by in vivo injections of pHrodo beads (Invitrogen). Macrophage counts were performed by immunostaining of muscularis whole mounts. RESULTS MMs from young and old mice express homeostatic microglial genes, including Gpr34, C1qc, Trem2, and P2ry12. An MM subpopulation that becomes more abundant with age assumes a geriatric state (GS) phenotype characterized by increased expression of disease-associated microglia genes including Cd9, Clec7a, Itgax (CD11c), Bhlhe40, Lgals3, IL-1β, and Trem2 and diminished phagocytic activity. Acquisition of the GS phenotype is associated with clearance of α-synuclein aggregates. Human MMs demonstrate a similar age-dependent acquisition of the GS phenotype associated with intracellular α-synuclein accumulation. CONCLUSION MMs demonstrate age-dependent genetic changes that mirror the microglial disease-associated microglia phenotype and result in functional decline.
Collapse
Affiliation(s)
- Estelle Spear Bishop
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Hong Namkoong
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Laure Aurelian
- Stanford University School of Medicine OFDD, Stanford, California
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Madison McCarthy
- Department of Surgery, Stanford University, Stanford, California
| | - Pratima Nallagatla
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, California
| | - Wenyu Zhou
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Leila Neshatian
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Brooke Gurland
- Department of Surgery, Stanford University, Stanford, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Laren Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| |
Collapse
|
57
|
Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity 2022; 55:1530-1548. [PMID: 36103851 DOI: 10.1016/j.immuni.2022.08.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
The gastrointestinal tract has the important task of absorbing nutrients, a complex process that requires an intact barrier allowing the passage of nutrients but that simultaneously protects the host against invading microorganisms. To maintain and regulate intestinal homeostasis, the gut is equipped with one of the largest populations of macrophages in the body. Here, we will discuss our current understanding of intestinal macrophage heterogeneity and describe their main functions in the different anatomical niches of the gut during steady state. In addition, their role in inflammatory conditions such as infection, inflammatory bowel disease, and postoperative ileus are discussed, highlighting the roles of macrophages in immune defense. To conclude, we describe the interaction between macrophages and the enteric nervous system during development and adulthood and highlight their contribution to neurodegeneration in the context of aging and diabetes.
Collapse
Affiliation(s)
- Marcello Delfini
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Maria Francesca Viola
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
58
|
Ren B, Fu S, Liu Y, Kang J, Wang B, Yao Z, Wang H, Sun D. Dioscin ameliorates slow transit constipation in mice by up-regulation of the BMP2 secreted by muscularis macrophages. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1132-1140. [PMID: 36246057 PMCID: PMC9526884 DOI: 10.22038/ijbms.2022.64683.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Objectives The loss of enteric neurons has been shown to be a major cause of slow transit constipation (STC). Gut microbiota and muscularis macrophages (MMs) are associated with the enteric nervous system (ENS) development and gastrointestinal (GI) motility. This study aimed to investigate whether Dioscin (DIO) increased GI motility and inhibited neuron loss by modulating gut microbiota profile, improving inflammation in the ENS microenvironment. Materials and Methods The STC model was established by loperamide. The alteration of the gut microbiota was analyzed by 16S rDNA sequencing. The longitudinal muscle and myenteric plexus (LMMP) from the colon were prepared for flow cytometry, immunofluorescence, western blot, and qRT-PCR. Results DIO increased the stool number, stool water content and shortened whole gut transit time, helped to recover the gut microbial diversity and microbiota community structure, and increased the abundance of Muribaculaceae in STC mice. Compared with the STC group, the number of MMs and the level of the iNOS, IL-6, and TNFα genes were significantly decreased following DIO treatment. Moreover, DIO may increase the number of HuC/D+ neurons per ganglion by up-regulating the BMP2 secreted by MMs and activating the BMP2/p-Smad1/5/9 signaling pathway. Furthermore, the level of excitatory neurotransmitter AchE in colon tissues exhibited a substantial increase in the DIO group. However, the level of inhibitory neurotransmitter VIP was markedly decreased. Conclusion Our results provide that DIO increases GI motility and inhibits neuron loss by modulating gut microbiota profile, improving inflammation in the ENS microenvironment and up-regulating the BMP2 secreted by MMs.
Collapse
Affiliation(s)
- BingBing Ren
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China,These authors contributed eqully to this work
| | - SiQi Fu
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China,These authors contributed eqully to this work
| | - Yong Liu
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China,These authors contributed eqully to this work
| | - JianYu Kang
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bo Wang
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China
| | - ZhiWei Yao
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hao Wang
- Department of General Surgery, General Hospital, Tianjin Medical University, Tianjin, China,Corresponding authors: Da-Qing Sun. Department of Pediatric Surgery, Tianjin Medical University General Hospital, 154 An-Shan Road, Heping, Tianjin 300052, China. , Hao Wang. Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China.
| | - DaQing Sun
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China,Corresponding authors: Da-Qing Sun. Department of Pediatric Surgery, Tianjin Medical University General Hospital, 154 An-Shan Road, Heping, Tianjin 300052, China. , Hao Wang. Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
59
|
Telocytes and Macrophages in the Gut: From Morphology to Function. Do the Two Cell Types Interact with Each Other? Which Helps Which? Int J Mol Sci 2022; 23:ijms23158435. [PMID: 35955569 PMCID: PMC9369081 DOI: 10.3390/ijms23158435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
Telocytes and macrophages are ubiquitous cells located in loose connective tissues and share the same mesenchymal origin. Despite these common elements, depending on where they reside, these two cell types are profoundly different in terms of their morphology and functions. The purpose of this review is to provide an update on the knowledge regarding telocytes and macrophages in the gut, where their presence and significance have long been underestimated or misunderstood. The focus will be on the possibility that these two cell types interact with each other and on the potential meaning of these interactions. Based on the complexity of the topic, the variety of possible methodological approaches and the expertise of the author, the point of view in the discussion of the literature data will be mainly morphological. Furthermore, considering the relatively recent period in which these cell types have acquired a primary role in gastrointestinal functions, the attention will be greatly confined to those articles published in the last decade. The microbiota, another main protagonist in this context, will be mentioned only in passing. It is hoped that this review, although not exhaustive, will highlight the importance of macrophages and telocytes in the complex mechanisms that ensure intestinal functions.
Collapse
|
60
|
Docsa T, Sipos A, Cox CS, Uray K. The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders. Int J Mol Sci 2022; 23:6917. [PMID: 35805922 PMCID: PMC9266627 DOI: 10.3390/ijms23136917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Feeding intolerance and the development of ileus is a common complication affecting critically ill, surgical, and trauma patients, resulting in prolonged intensive care unit and hospital stays, increased infectious complications, a higher rate of hospital readmission, and higher medical care costs. Medical treatment for ileus is ineffective and many of the available prokinetic drugs have serious side effects that limit their use. Despite the large number of patients affected and the consequences of ileus, little progress has been made in identifying new drug targets for the treatment of ileus. Inflammatory mediators play a critical role in the development of ileus, but surprisingly little is known about the direct effects of inflammatory mediators on cells of the gastrointestinal tract, and many of the studies are conflicting. Understanding the effects of inflammatory cytokines/chemokines on the development of ileus will facilitate the early identification of patients who will develop ileus and the identification of new drug targets to treat ileus. Thus, herein, we review the published literature concerning the effects of inflammatory mediators on gastrointestinal motility.
Collapse
Affiliation(s)
- Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.D.); (A.S.)
| | - Adám Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.D.); (A.S.)
| | - Charles S. Cox
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77204, USA;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.D.); (A.S.)
| |
Collapse
|
61
|
Neshatian L, Lam JP, Gurland BH, Liang T, Becker L, Sheth VR. MRI biomarker of muscle composition is associated with severity of pelvic organ prolapse. Tech Coloproctol 2022; 26:725-733. [PMID: 35727428 DOI: 10.1007/s10151-022-02651-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/29/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The pathophysiology of pelvic organ prolapse is largely unknown. We hypothesized that reduced muscle mass on magnetic resonance defecography (MRD) is associated with increased pelvic floor laxity. The aim of this study was to compare the psoas and puborectalis muscle mass composition and cross-sectional area among patients with or without pelvic laxity. METHODS An observational retrospective study was conducted on women > age 18 years old who had undergone MRD for pelvic floor complaints from January 2020 to December 2020 at Stanford Pelvic Health Center. Pelvic floor laxity, pelvic organ descent, and rectal prolapse were characterized by standard measurements on MRD and compared to the psoas (L4 level) and puborectalis muscle index (cross-sectional area adjusted by height) and relative fat fraction, quantified by utilizing a 2-point Dixon technique. Regression analysis was used to quantify the association between muscle characteristics and pelvic organ measurements. RESULTS The psoas fat fraction was significantly elevated in patients with abnormally increased resting and strain H and M lines (p < 0.05) and increased with rising grades of Oxford rectal prolapse (p = 0.0001), uterovaginal descent (p = 0.001) and bladder descent (p = 0.0005). In multivariate regression analysis, adjusted for age and body mass index, the psoas fat fraction (not muscle index) was an independent risk factor for abnormal strain H and M line; odds ratio (95% confidence interval) of 17.8 (2-155.4) and 18.5 (1.3-258.3) respectively, and rising Oxford grade of rectal prolapse 153.9 (4.4-5383) and bladder descent 12.4 (1.5-106). Puborectalis fat fraction was increased by rising grades of Oxford rectal prolapse (p = 0.0002). CONCLUSIONS Severity of pelvic organ prolapse appears to be associated with increasing psoas muscle fat fraction, a biomarker for reduced skeletal muscle mass. Future prospective research is needed to determine if sarcopenia may predict postsurgical outcomes after pelvic organ prolapse repair.
Collapse
Affiliation(s)
- L Neshatian
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CA, Stanford, USA.
| | - J P Lam
- American Radiology Associates, Dallas, TX, USA
| | - B H Gurland
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - T Liang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - L Becker
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CA, Stanford, USA
| | - V R Sheth
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
62
|
Nguyen VTT, Taheri N, Chandra A, Hayashi Y. Aging of enteric neuromuscular systems in gastrointestinal tract. Neurogastroenterol Motil 2022; 34:e14352. [PMID: 35279912 PMCID: PMC9308104 DOI: 10.1111/nmo.14352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aging is a complex biological process and associated with a progressive decline in functions of most organs including the gastrointestinal (GI) tract. Age-related GI motor disorders/dysfunctions include esophageal reflux, dysphagia, constipation, fecal incontinence, reduced compliance, and accommodation. Although the incidence and severity of these diseases and conditions increase with age, they are often underestimated due in part to nonspecific and variable symptoms and lack of sufficient medical attention. They negatively affect quality of life and predispose the elderly to other diseases, sarcopenia, and frailty. The mechanisms underlying aging-associated GI dysfunctions remain unclear, and there is limited data examining the effect of aging on GI motor functions. Many studies on aging-associated changes to cells within the tunica muscularis including enteric neurons, smooth muscles, and interstitial cells have proposed that cell loss and/or molecular changes may be involved in the pathogenesis of age-related GI motor disorders/dysfunctions. There is also evidence that the aging contributes to phenotypic changes in innate immune cells, which are physically and functionally linked to other cells in the tunica muscularis and can alter GI (patho) physiology. However, various patterns of changes have been reported, some of which are contradictory, indicating a need for additional work in this area. PURPOSE Although GI infection due to intestinal bacterial overgrowth, bleeding, and cancers are also important and common problems in the elderly patients, this mini-review focuses on data obtained from enteric neuromuscular aging research with the goal of better understanding the cellular and molecular mechanisms of enteric neuromuscular aging to enhance future therapy.
Collapse
Affiliation(s)
- Vy Truong Thuy Nguyen
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Abhishek Chandra
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
63
|
Zhao NO, Topolski N, Tusconi M, Salarda EM, Busby CW, Lima CN, Pillai A, Quevedo J, Barichello T, Fries GR. Blood-brain barrier dysfunction in bipolar disorder: Molecular mechanisms and clinical implications. Brain Behav Immun Health 2022; 21:100441. [PMID: 35308081 PMCID: PMC8924633 DOI: 10.1016/j.bbih.2022.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder affecting approximately 1-3% of the population and characterized by a chronic and recurrent course of debilitating symptoms. An increasing focus has been directed to discover and explain the function of Blood-Brain Barrier (BBB) integrity and its association with a number of psychiatric disorders; however, there has been limited research in the role of BBB integrity in BD. Multiple pathways may play crucial roles in modulating BBB integrity in BD, such as inflammation, insulin resistance, and alterations of neuronal plasticity. In turn, BBB impairment is hypothesized to have a significant clinical impact in BD patients. Based on the high prevalence of medical and psychiatric comorbidities in BD and a growing body of evidence linking inflammatory and neuroinflammatory mechanisms to the disorder, recent studies have suggested that BBB dysfunction may play a key role in BD's pathophysiology. In this comprehensive narrative review, we aim to discuss studies investigating biological markers of BBB in patients with BD, mechanisms that modulate BBB integrity, their clinical implications on patients, and key targets for future development of novel therapies.
Collapse
Affiliation(s)
- Ning O. Zhao
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Natasha Topolski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Massimo Tusconi
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Erika M. Salarda
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Christopher W. Busby
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Camila N.N.C. Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Anilkumar Pillai
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Gabriel R. Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. 7000 Fannin, 77030, Houston, TX, USA
| |
Collapse
|
64
|
Parker A, Romano S, Ansorge R, Aboelnour A, Le Gall G, Savva GM, Pontifex MG, Telatin A, Baker D, Jones E, Vauzour D, Rudder S, Blackshaw LA, Jeffery G, Carding SR. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. MICROBIOME 2022; 10:68. [PMID: 35501923 PMCID: PMC9063061 DOI: 10.1186/s40168-022-01243-w] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Altered intestinal microbiota composition in later life is associated with inflammaging, declining tissue function, and increased susceptibility to age-associated chronic diseases, including neurodegenerative dementias. Here, we tested the hypothesis that manipulating the intestinal microbiota influences the development of major comorbidities associated with aging and, in particular, inflammation affecting the brain and retina. METHODS Using fecal microbiota transplantation, we exchanged the intestinal microbiota of young (3 months), old (18 months), and aged (24 months) mice. Whole metagenomic shotgun sequencing and metabolomics were used to develop a custom analysis workflow, to analyze the changes in gut microbiota composition and metabolic potential. Effects of age and microbiota transfer on the gut barrier, retina, and brain were assessed using protein assays, immunohistology, and behavioral testing. RESULTS We show that microbiota composition profiles and key species enriched in young or aged mice are successfully transferred by FMT between young and aged mice and that FMT modulates resulting metabolic pathway profiles. The transfer of aged donor microbiota into young mice accelerates age-associated central nervous system (CNS) inflammation, retinal inflammation, and cytokine signaling and promotes loss of key functional protein in the eye, effects which are coincident with increased intestinal barrier permeability. Conversely, these detrimental effects can be reversed by the transfer of young donor microbiota. CONCLUSIONS These findings demonstrate that the aging gut microbiota drives detrimental changes in the gut-brain and gut-retina axes suggesting that microbial modulation may be of therapeutic benefit in preventing inflammation-related tissue decline in later life. Video abstract.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK.
| | - Stefano Romano
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Rebecca Ansorge
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Asmaa Aboelnour
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Gwenaelle Le Gall
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - George M Savva
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | | | - Andrea Telatin
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - David Baker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Emily Jones
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Steven Rudder
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - L Ashley Blackshaw
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Simon R Carding
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK.
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
65
|
Li L, Jin JH, Liu HY, Ma XF, Wang DD, Song YL, Wang CY, Jiang JZ, Yan GH, Qin XZ, Li LC. Notch1 signaling contributes to TLR4-triggered NF-κB activation in macrophages. Pathol Res Pract 2022; 234:153894. [DOI: 10.1016/j.prp.2022.153894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 01/12/2023]
|
66
|
Mischopoulou M, D'Ambrosio M, Bigagli E, Luceri C, Farrugia G, Cipriani G. Role of Macrophages and Mast Cells as Key Players in the Maintenance of Gastrointestinal Smooth Muscle Homeostasis and Disease. Cell Mol Gastroenterol Hepatol 2022; 13:1849-1862. [PMID: 35245688 PMCID: PMC9123576 DOI: 10.1016/j.jcmgh.2022.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
The gut contains the largest macrophage pool in the body, with populations of macrophages residing in the mucosa and muscularis propria of the gastrointestinal (GI) tract. Muscularis macrophages (MMs), which are located within the muscularis propria, interact with cells essential for GI function, such as interstitial cells of Cajal, enteric neurons, smooth muscle cells, enteric glia, and fibroblast-like cells, suggesting that these immune cells contribute to several aspects of GI function. This review focuses on the latest insights on the factors contributing to MM heterogeneity and the functional interaction of MMs with other cell types essential for GI function. This review integrates the latest findings on macrophages in other organs with increasing knowledge of MMs to better understand their role in a healthy and diseased gut. We describe the factors that contribute to (muscularis macrophage) MM heterogeneity, and the nature of MM interactions with cells regulating GI function. Finally, we also describe the increasing evidence suggesting a critical role of another immune cell type, the mast cell, in normal and diseased GI physiology.
Collapse
Affiliation(s)
| | - Mario D'Ambrosio
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Cristina Luceri
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | | | | |
Collapse
|
67
|
Hua RX, Gao H, Wang BY, Guo YX, Liang C, Gao L, Shang HW, Xu JD. Insights into correlation between intestinal flora-gut-brain axis and blood-brain barrier permeability. Shijie Huaren Xiaohua Zazhi 2022; 30:100-108. [DOI: 10.11569/wcjd.v30.i2.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A wide variety of gut microbes has a non-negligible physiological and pathological impact on the host. Studies show that gut microbes can influence the function of the central nervous system by synthesizing and releasing several key neurotransmitters and neuroregulatory factors. Decreasing the integrity of the blood-brain barrier is related to the disorder of gut microbes, and maintaining the homeostasis of gut microbes is of great significance in preventing and treating neurodegenerative diseases. This review summarizes the possible mechanism of the intestine flora-gut-brain axis as a signaling pathway and presents several ideas and potential directions for regulating gut microbes to achieve the purpose of disease treatment.
Collapse
Affiliation(s)
- Rong-Xuan Hua
- Clinical Medicine "5+3" Program, Capital Medical University, Beijing 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Bo-Ya Wang
- Clinical Medicine Program, Peking University Health Science Center, Beijing 100081, China
| | - Yue-Xin Guo
- Oral Medicine "5+3" Program, Capital Medical University, Beijing 100069, China
| | - Chen Liang
- Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
68
|
Hematopoiesis, Inflammation and Aging-The Biological Background and Clinical Impact of Anemia and Increased C-Reactive Protein Levels on Elderly Individuals. J Clin Med 2022; 11:jcm11030706. [PMID: 35160156 PMCID: PMC8836692 DOI: 10.3390/jcm11030706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Anemia and systemic signs of inflammation are common in elderly individuals and are associated with decreased survival. The common biological context for these two states is then the hallmarks of aging, i.e., genomic instability, telomere shortening, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Such aging-associated alterations of hematopoietic stem cells are probably caused by complex mechanisms and depend on both the aging of hematopoietic (stem) cells and on the supporting stromal cells. The function of inflammatory or immunocompetent cells is also altered by aging. The intracellular signaling initiated by soluble proinflammatory mediators (e.g., IL1, IL6 and TNFα) is altered during aging and contributes to the development of both the inhibition of erythropoiesis with anemia as well as to the development of the acute-phase reaction as a systemic sign of inflammation with increased CRP levels. Both anemia and increased CRP levels are associated with decreased overall survival and increased cardiovascular mortality. The handling of elderly patients with inflammation and/or anemia should in our opinion be individualized; all of them should have a limited evaluation with regard to the cause of the abnormalities, but the extent of additional and especially invasive diagnostic evaluation should be based on an overall clinical evaluation and the possible therapeutic consequences.
Collapse
|
69
|
Carbone SE. Neurons, Macrophages, and Glia: The Role of Intercellular Communication in the Enteric Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:251-258. [PMID: 36587164 DOI: 10.1007/978-3-031-05843-1_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurons of the enteric nervous system (ENS) are the primary controllers of gastrointestinal functions. Although the ENS has been the central focus of research areas such as motility, this has now expanded to include the modulatory roles that non-neuronal cells have on neuronal function. This review discusses how enteric glia (EGC) and resident muscularis macrophages (mMacs) influence ENS communication. It highlights how the understanding of neuroglia interactions has extended beyond EGCs responding to exogenously applied neurotransmitters. Proposed mechanisms for neuron-EGC and glio-glia communication are discussed. The significance of these interactions is evidenced by gut functions that rely on these processes. mMacs are commonly known for their roles as immune cells which sample and respond to changes in the tissue environment. However, a more recent theory suggests that mMacs and enteric neurons are mutually dependent for their maintenance and function. This review summarizes the supportive and contradictory evidence for this theory, including potential mechanisms for mMac-neuron interaction. The need for a more thorough classification scheme to define how the "state" of mMacs relates to neuron loss or impaired function in disease is discussed. Despite the growing literature suggesting EGCs and mMacs have supportive or modulatory roles in ENS communication and gut function, conflicting evidence from different groups suggests more investigation is required. A broader understanding of why enteric neurons may need assistance from EGCs and mMacs in neurotransmission is still missing.
Collapse
Affiliation(s)
- Simona Elisa Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.
- Monash University, Parkville, VIC, Australia.
| |
Collapse
|
70
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
|
71
|
Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022; 15:27-39. [PMID: 34471248 PMCID: PMC8732275 DOI: 10.1038/s41385-021-00443-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.
Collapse
|
72
|
Stenvall CGA, Tayyab M, Grönroos TJ, Ilomäki MA, Viiri K, Ridge KM, Polari L, Toivola DM. Targeted deletion of keratin 8 in intestinal epithelial cells disrupts tissue integrity and predisposes to tumorigenesis in the colon. Cell Mol Life Sci 2021; 79:10. [PMID: 34951664 PMCID: PMC8709826 DOI: 10.1007/s00018-021-04081-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 01/08/2023]
Abstract
Keratin 8 (K8) is the main intestinal epithelial intermediate filament protein with proposed roles for colonic epithelial cell integrity. Here, we used mice lacking K8 in intestinal epithelial cells (floxed K8 and Villin-Cre1000 and Villin-CreERt2) to investigate the cell-specific roles of intestinal epithelial K8 for colonocyte function and pathologies. Intestinal epithelial K8 deletion decreased K8 partner proteins, K18-K20, 75-95%, and the remaining keratin filaments were located at the colonocyte apical regions with type II K7, which decreased 30%. 2-Deoxy-2-[18F]-fluoroglucose positron emission tomography in vivo imaging identified a metabolic phenotype in the lower gut of the conditional K8 knockouts. These mice developed intestinal barrier leakiness, mild diarrhea, and epithelial damage, especially in the proximal colon. Mice exhibited shifted differentiation from enterocytes to goblet cells, displayed longer crypts and an increased number of Ki67 + transit-amplifying cells in the colon. Significant proproliferative and regenerative signaling occurred in the IL-22, STAT3, and pRb pathways, with minor effects on inflammatory parameters, which, however, increased in aging mice. Importantly, colonocyte K8 deletion induced a dramatically increased sensitivity to azoxymethane-induced tumorigenesis. In conclusion, intestinal epithelial K8 plays a significant role in colonocyte epithelial integrity maintenance, proliferation regulation and tumor suppression.
Collapse
Affiliation(s)
- Carl-Gustaf A Stenvall
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Mina Tayyab
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Maria A Ilomäki
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere University Hospital, Tampere, Finland
| | - Karen M Ridge
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
73
|
Liu R, Cui J, Sun Y, Xu W, Wang Z, Wu M, Dong H, Yang C, Hong S, Yin S, Wang H. Autophagy deficiency promotes M1 macrophage polarization to exacerbate acute liver injury via ATG5 repression during aging. Cell Death Dis 2021; 7:397. [PMID: 34930917 PMCID: PMC8688512 DOI: 10.1038/s41420-021-00797-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Aging disrupts the maintenance of liver homeostasis, which impairs hepatocyte regeneration and aggravates acute liver injury (ALI), ultimately leading to the development of acute liver failure (ALF), a systemic inflammatory response, and even death. Macrophages influence the progression and outcome of ALI through the innate immune system. However, it is still unclear how macrophages regulate ALI during aging. The variation in macrophage autophagy with aging and the influence on macrophage polarization and cytokine release were assessed in BMDMs in vitro. Then, after BMDMs subjected to several treatments were intravenously or intraperitoneally injected into mice, thioacetamide (TAA)-induced ALI (TAA-ALI) was established, and its effects on inflammation, injury, and mortality were assessed. We found that aging aggravated the liver injury, along with increases in the levels of proinflammatory mediators, presenting a senescence-associated secretory phenotype (SASP), which promoted macrophage polarization to the M1 phenotype. In addition, autophagy levels decreased significantly in aged mice, which was ascribed to ATG5 repression during aging. Notably, enhancing autophagy levels in aged BMDMs restored macrophage polarization to that observed under young conditions. Finally, autophagy restoration in aged BMDMs enhanced the protective effect against TAA-ALI, similar to M2 macrophages induced by IL-4. Overall, we demonstrated that the influence of aging on macrophage polarization is an important aggravating factor in TAA-ALI, and the autophagy in macrophages is associated with the aging phenotype.
Collapse
Affiliation(s)
- Rui Liu
- grid.412679.f0000 0004 1771 3402Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China
| | - Juanjuan Cui
- grid.412679.f0000 0004 1771 3402Department of Stomatology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Yating Sun
- grid.186775.a0000 0000 9490 772XDepartment of Genetics, School of Life Science, Anhui Medical University, Hefei, 230032 China
| | - Wentao Xu
- grid.412679.f0000 0004 1771 3402Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China ,grid.186775.a0000 0000 9490 772XFirst Clinical Medical College of Anhui Medical University, Hefei, 230036 China
| | - Ziming Wang
- grid.412679.f0000 0004 1771 3402Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Miaomiao Wu
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China
| | - Huke Dong
- grid.186775.a0000 0000 9490 772XFirst Clinical Medical College of Anhui Medical University, Hefei, 230036 China
| | - Congcong Yang
- grid.186775.a0000 0000 9490 772XDepartment of Genetics, School of Life Science, Anhui Medical University, Hefei, 230032 China
| | - Shaocheng Hong
- grid.186775.a0000 0000 9490 772XFirst Clinical Medical College of Anhui Medical University, Hefei, 230036 China
| | - Shi Yin
- grid.59053.3a0000000121679639Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
74
|
Xie T, Jin F, Jia X, Mao H, Xu Y, Zhang S. High cellulose diet promotes intestinal motility through regulating intestinal immune homeostasis and serotonin biosynthesis. Biol Chem 2021; 403:279-292. [PMID: 34536342 DOI: 10.1515/hsz-2021-0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
It is widely accepted dietary fiber intimately linked to inflammatory and nervous diseases, which often been described with altered gastrointestinal (GI) motility. However, how dose dietary fiber modulate inflammation and crosstalk influence GI function has not been explained in detail. We found fiber-free diet reduced intestinal motility, accompanied by upregulated proinflammatory immunocytes and inflammatory cytokines in colon of mice. We also discovered high-cellulose diet increased synthesis of serotonin and expression of neurotrophic factors, both of that have been reported involved in promoting intestinal motility. In addition, metabolomics analysis showed increased tryptophan metabolites in high-cellulose diet mice, which happened to be required for serotonin biosynthesis. Further analysis revealed high-cellulose diet changed the composition of gut microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes, consequently, concentration of short-chain fatty acids (SCFAs), especially acetate. Orally administration of acetate confirmed its modulating to serotonin synthesis, neurotrophic factors expression and immunocyte differentiation through regulating histone deacetylase (HDAC3) activity in colon. Together, our results demonstrated high-cellulose diet promote intestinal motility through regulating intestinal homeostasis and enteric nervous system by increasing acetate production and HDAC3 inhibition. Thus, rich cellulose diet or acetate supplement can be considered as dietary advice to improve clinically intestinal motility insufficiency.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Fa Jin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Xiaokun Jia
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Hengxu Mao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Yuting Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Shizhong Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| |
Collapse
|
75
|
Sharma R. Perspectives on the dynamic implications of cellular senescence and immunosenescence on macrophage aging biology. Biogerontology 2021; 22:571-587. [PMID: 34490541 DOI: 10.1007/s10522-021-09936-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
An intricate relationship between impaired immune functions and the age-related accumulation of tissue senescent cells is rapidly emerging. The immune system is unique as it undergoes mutually inclusive and deleterious processes of immunosenescence and cellular senescence with advancing age. While factors inducing immunosenescence and cellular senescence may be shared, however, both these processes are fundamentally different which holistically influence the aging immune system. Our understanding of the biological impact of immunosenescence is relatively well-understood, but such knowledge regarding cellular senescence in immune cells, especially in the innate immune cells such as macrophages, is only beginning to be elucidated. Tissue-resident macrophages are long-lived, and while functioning in tissue-specific and niche-specific microenvironments, senescence in macrophages can be directly influenced by senescent host cells which may impact organismal aging. In addition, evidence of age-associated immunometabolic changes as drivers of altered macrophage phenotype and functions such as inflamm-aging is also emerging. The present review describes the emerging impact of cellular senescence vis-à-vis immunosenescence in aging macrophages, its biological relevance with other senescent non-immune cells, and known immunometabolic regulators. Gaps in our present knowledge, as well as strategies aimed at understanding cellular senescence and its therapeutics in the context of macrophages, have been reviewed.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
76
|
COUNTEN, an AI-Driven Tool for Rapid and Objective Structural Analyses of the Enteric Nervous System. eNeuro 2021; 8:ENEURO.0092-21.2021. [PMID: 34266963 PMCID: PMC8328274 DOI: 10.1523/eneuro.0092-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
The enteric nervous system (ENS) consists of an interconnected meshwork of neurons and glia residing within the wall of the gastrointestinal (GI) tract. While healthy GI function is associated with healthy ENS structure, defined by the normal distribution of neurons within ganglia of the ENS, a comprehensive understanding of normal neuronal distribution and ganglionic organization in the ENS is lacking. Current methodologies for manual enumeration of neurons parse only limited tissue regions and are prone to error, subjective bias, and peer-to-peer discordance. There is accordingly a need for robust, and objective tools that can capture and quantify enteric neurons within multiple ganglia over large areas of tissue. Here, we report on the development of an AI-driven tool, COUNTEN (COUNTing Enteric Neurons), which is capable of accurately identifying and enumerating immunolabeled enteric neurons, and objectively clustering them into ganglia. We tested and found that COUNTEN matches trained humans in its accuracy while taking a fraction of the time to complete the analyses. Finally, we use COUNTEN's accuracy and speed to identify and cluster thousands of ileal myenteric neurons into hundreds of ganglia to compute metrics that help define the normal structure of the ileal myenteric plexus. To facilitate reproducible, robust, and objective measures of ENS structure across mouse models, experiments, and institutions, COUNTEN is freely and openly available to all researchers.
Collapse
|
77
|
You XY, Zhang HY, Han X, Wang F, Zhuang PW, Zhang YJ. Intestinal Mucosal Barrier Is Regulated by Intestinal Tract Neuro-Immune Interplay. Front Pharmacol 2021; 12:659716. [PMID: 34135754 PMCID: PMC8201607 DOI: 10.3389/fphar.2021.659716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease, irritable bowel syndrome and severe central nervous system injury can lead to intestinal mucosal barrier damage, which can cause endotoxin/enterobacteria translocation to induce infection and is closely related to the progression of metabolic diseases, cardiovascular and cerebrovascular diseases, tumors and other diseases. Hence, repairing the intestinal barrier represents a potential therapeutic target for many diseases. Enteral afferent nerves, efferent nerves and the intrinsic enteric nervous system (ENS) play key roles in regulating intestinal physiological homeostasis and coping with acute stress. Furthermore, innervation actively regulates immunity and induces inherent and adaptive immune responses through complex processes, such as secreting neurotransmitters or hormones and regulating their corresponding receptors. In addition, intestinal microorganisms and their metabolites play a regulatory role in the intestinal mucosal barrier. This paper primarily discusses the interactions between norepinephrine and β-adrenergic receptors, cholinergic anti-inflammatory pathways, nociceptive receptors, complex ENS networks, gut microbes and various immune cells with their secreted cytokines to summarize the key roles in regulating intestinal inflammation and improving mucosal barrier function.
Collapse
Affiliation(s)
- Xin-Yu You
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han-Yu Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Han
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fang Wang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Zhuang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Jun Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
78
|
Palacios-Pedrero MÁ, Osterhaus ADME, Becker T, Elbahesh H, Rimmelzwaan GF, Saletti G. Aging and Options to Halt Declining Immunity to Virus Infections. Front Immunol 2021; 12:681449. [PMID: 34054872 PMCID: PMC8149791 DOI: 10.3389/fimmu.2021.681449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Immunosenescence is a process associated with aging that leads to dysregulation of cells of innate and adaptive immunity, which may become dysfunctional. Consequently, older adults show increased severity of viral and bacterial infections and impaired responses to vaccinations. A better understanding of the process of immunosenescence will aid the development of novel strategies to boost the immune system in older adults. In this review, we focus on major alterations of the immune system triggered by aging, and address the effect of chronic viral infections, effectiveness of vaccination of older adults and strategies to improve immune function in this vulnerable age group.
Collapse
Affiliation(s)
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
79
|
Gao Y, Tang Y, Zhang H, Chu X, Yan B, Li J, Liu C. Vincristine leads to colonic myenteric neurons injury via pro-inflammatory macrophages activation. Biochem Pharmacol 2021; 186:114479. [PMID: 33617842 DOI: 10.1016/j.bcp.2021.114479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 01/28/2023]
Abstract
Vincristine is widely used in treatment of various malignant tumors. The clinical application of vincristine is accompanied by peripheral neurotoxicity which might not be strictly related to the mechanism of anti-tumor action. There are several possible mechanisms but the effect of vincristine on enteric neurons and the underlying mechanism are still unclear. C57BL6/J mice were systematically treated with vincristine for 10 days, and macrophages were depleted using clodronate liposomes. The colonic myenteric plexus neurons were extracted and cultured in vitro. Macrophages from different parts were extracted in an improved way. In the current study, we demonstrated that system treatment of vincristine resulted in colonic myenteric neurons injury, pro-inflammatory macrophages activation and total gastrointestinal transport time increase. Vincristine promoted the pro-inflammatory macrophages activation individually or in coordination with LPS and increased the expression of pro-inflammatory factors IL-1β, IL-6, TNF-α via increasing the phosphorylation of ERK1/2 and p38. In addition, pro-inflammatory macrophages led to colonic myenteric neurons apoptosis targeting on SGK1-FOXO3 pathway. These effects were attenuated by inhibitors of the ERK1/2 and p38-MAPK pathways. Importantly, macrophages depletion alleviated colonic myenteric neurons injury and the delay of gastrointestinal motility caused by system treatment of vincristine. Taken together, system treatment of vincristine led to colonic myenteric neurons injury via pro-inflammatory macrophages activation which was alleviated by depletion of macrophages.
Collapse
Affiliation(s)
- Yifei Gao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Yan Tang
- Department of Gastroenterology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, PR China
| | - Haojie Zhang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Bing Yan
- Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250012, PR China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Provincial Key Lab of Mental Disorders, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
80
|
Ebselen prevents cigarette smoke-induced gastrointestinal dysfunction in mice. Clin Sci (Lond) 2021; 134:2943-2957. [PMID: 33125061 PMCID: PMC7676466 DOI: 10.1042/cs20200886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Gastrointestinal (GI) dysfunction is a common comorbidity of chronic obstructive
pulmonary disease (COPD) for which a major cause is cigarette smoking (CS). The
underlying mechanisms and precise effects of CS on gut contractility, however,
are not fully characterised. Therefore, the aim of the present study was to
investigate whether CS impacts GI function and structure in a mouse model of
CS-induced COPD. We also aimed to investigate GI function in the presence of
ebselen, an antioxidant that has shown beneficial effects on lung inflammation
resulting from CS exposure. Mice were exposed to CS for 2 or 6 months. GI
structure was analysed by histology and immunofluorescence. After 2 months of CS
exposure, ex vivo gut motility was analysed using video-imaging
techniques to examine changes in colonic migrating motor complexes (CMMCs). CS
decreased colon length in mice. Mice exposed to CS for 2 months had a higher
frequency of CMMCs and a reduced resting colonic diameter but no change in
enteric neuron numbers. Ten days cessation after 2 months CS reversed CMMC
frequency changes but not the reduced colonic diameter phenotype. Ebselen
treatment reversed the CS-induced reduction in colonic diameter. After 6 months
CS, the number of myenteric nitric-oxide producing neurons was significantly
reduced. This is the first evidence of colonic dysmotility in a mouse model of
CS-induced COPD. Dysmotility after 2 months CS is not due to altered neuron
numbers; however, prolonged CS-exposure significantly reduced enteric neuron
numbers in mice. Further research is needed to assess potential therapeutic
applications of ebselen in GI dysfunction in COPD.
Collapse
|
81
|
Lu RJ, Wang EK, Benayoun BA. Functional genomics of inflamm-aging and immunosenescence. Brief Funct Genomics 2021; 21:43-55. [PMID: 33690792 DOI: 10.1093/bfgp/elab009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The aging population is at a higher risk for age-related diseases and infections. This observation could be due to immunosenescence: the decline in immune efficacy of both the innate and the adaptive immune systems. Age-related immune decline also links to the concept of 'inflamm-aging,' whereby aging is accompanied by sterile chronic inflammation. Along with a decline in immune function, aging is accompanied by a widespread of 'omics' remodeling. Transcriptional landscape changes linked to key pathways of immune function have been identified across studies, such as macrophages having decreased expression of genes associated to phagocytosis, a major function of macrophages. Therefore, a key mechanism underlying innate immune cell dysfunction during aging may stem from dysregulation of youthful genomic networks. In this review, we discuss both molecular and cellular phenotypes of innate immune cells that contribute to age-related inflammation.
Collapse
Affiliation(s)
- Ryan J Lu
- Leonard Davis School of Gerontology at the University of Southern California
| | - Emily K Wang
- Leonard Davis School of Gerontology at the University of Southern California
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology at the University of Southern California
| |
Collapse
|
82
|
Qi M, Tan B, Wang J, Liao S, Deng Y, Ji P, Song T, Zha A, Yin Y. The microbiota-gut-brain axis: A novel nutritional therapeutic target for growth retardation. Crit Rev Food Sci Nutr 2021; 62:4867-4892. [PMID: 33523720 DOI: 10.1080/10408398.2021.1879004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth retardation (GR), which commonly occurs in childhood, is a major health concern globally. However, the specific mechanism remains unclear. It has been increasingly recognized that changes in the gut microbiota may lead to GR through affecting the microbiota-gut-brain axis. Microbiota interacts with multiple factors such as birth to affect the growth of individuals. Microbiota communicates with the nerve system through chemical signaling (direct entry into the circulation system or stimulation of enteroendocrine cells) and nervous signaling (interaction with enteric nerve system and vagus nerve), which modulates appetite and immune response. Besides, they may also influence the function of enteric glial cells or lymphocytes and levels of systemic inflammatory cytokines. Environmental stress may cause leaky gut through perturbing the hypothalamic-pituitary-adrenal axis to further result in GR. Nutritional therapies involving probiotics and pre-/postbiotics are being investigated for helping the patients to overcome GR. In this review, we summarize the role of microbiota in GR with human and animal models. Then, existing and potential regulatory mechanisms are reviewed, especially the effect of microbiota-gut-brain axis. Finally, we propose nutritional therapeutic strategies for GR by the intervention of microbiota-gut-brain axis, which may provide novel perspectives for the treatment of GR in humans and animals.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuankun Deng
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California, USA
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
83
|
Zhang Y, Ogbu D, Garrett S, Xia Y, Sun J. Aberrant enteric neuromuscular system and dysbiosis in amyotrophic lateral sclerosis. Gut Microbes 2021; 13:1996848. [PMID: 34812107 PMCID: PMC8632307 DOI: 10.1080/19490976.2021.1996848] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a neuromuscular disease characterized by the progressive death of motor neurons and muscle atrophy. The gastrointestinal symptoms in ALS patients were largely ignored or underestimated. The relationship between the enteric neuromuscular system and microbiome in ALS progression is unknown. We performed longitudinal studies on the enteric neuron system (ENS) and microbiome in the ALS human-SOD1G93A (Superoxide Dismutase 1) transgenic mice. We treated age-matched wild-type and ALS mice with butyrate or antibiotics to investigate the microbiome and neuromuscular functions. We examined intestinal mobility, microbiome, an ENS marker GFAP (Glial Fibrillary Acidic Protein), a smooth muscle marker (SMMHC, Smooth Muscle Myosin Heavy Chain), and human colonoids. The distribution of human-G93A-SOD1 protein was tested as an indicator of ALS progression. At 2-month-old before ALS onset, SOD1G93A mice had significantly lower intestinal mobility, decreased grip strength, and reduced time in the rotarod. We observed increased GFAP and decreased SMMHC expression. These changes correlated with consistent increased aggregation of mutated SOD1G93A in the colon, small intestine, and spinal cord. Butyrate or antibiotics treated SOD1G93A mice had a significantly longer latency to fall in the rotarod test, reduced SOD1G93A aggregation, and enhanced enteric neuromuscular function. Feces from 2-month-old SOD1G93A mice significantly enhanced SOD1G93A aggregation in human colonoids transfected with a SOD1G93A-GFP plasmid. Longitudinal studies of microbiome data further showed the altered bacterial community related to autoimmunity (e.g., Clostridium sp. ASF502, Lachnospiraceae bacterium A4), inflammation (e.g., Enterohabdus Muris,), and metabolism (e.g., Desulfovibrio fairfieldensis) at 1- and 2-month-old SOD1G93A mice, suggesting the early microbial contribution to the pathological changes. We have demonstrated a novel link between the microbiome, hSOD1G93A aggregation, and intestinal mobility. Dysbiosis occurred at the early stage of the ALS mice before observed mutated-SOD1 aggregation and dysfunction of ENS. Manipulating the microbiome improves the muscle performance of SOD1G93A mice. We provide insights into the fundamentals of intestinal neuromuscular function and microbiome in ALS.
Collapse
MESH Headings
- Amyotrophic Lateral Sclerosis/drug therapy
- Amyotrophic Lateral Sclerosis/microbiology
- Amyotrophic Lateral Sclerosis/physiopathology
- Animals
- Anti-Bacterial Agents/therapeutic use
- Butyrates/therapeutic use
- Disease Models, Animal
- Dysbiosis/drug therapy
- Dysbiosis/microbiology
- Dysbiosis/physiopathology
- Enteric Nervous System/drug effects
- Enteric Nervous System/metabolism
- Enteric Nervous System/physiopathology
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Motility/drug effects
- Humans
- Intestine, Small/innervation
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Intestine, Small/physiopathology
- Longitudinal Studies
- Mice
- Mice, Transgenic
- Muscle Strength/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiopathology
- Protein Aggregation, Pathological/drug therapy
- Protein Aggregation, Pathological/microbiology
- Protein Aggregation, Pathological/physiopathology
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
Collapse
Affiliation(s)
- Yongguo Zhang
- Department of Microbiology/Immunology, University of Illinois at Chicago, Chicago, USA
| | - Destiny Ogbu
- Department of Microbiology/Immunology, University of Illinois at Chicago, Chicago, USA
| | - Shari Garrett
- Department of Microbiology/Immunology, University of Illinois at Chicago, Chicago, USA
| | - Yinglin Xia
- Department of Microbiology/Immunology, University of Illinois at Chicago, Chicago, USA
| | - Jun Sun
- Department of Microbiology/Immunology, University of Illinois at Chicago, Chicago, USA
- Department of Medicine, Jesse Brown Va Medical Center, Chicago, USA
| |
Collapse
|
84
|
Chandramowlishwaran P, Vijay A, Abraham D, Li G, Mwangi SM, Srinivasan S. Role of Sirtuins in Modulating Neurodegeneration of the Enteric Nervous System and Central Nervous System. Front Neurosci 2020; 14:614331. [PMID: 33414704 PMCID: PMC7783311 DOI: 10.3389/fnins.2020.614331] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration of the central and enteric nervous systems is a common feature of aging and aging-related diseases, and is accelerated in individuals with metabolic dysfunction including obesity and diabetes. The molecular mechanisms of neurodegeneration in both the CNS and ENS are overlapping. Sirtuins are an important family of histone deacetylases that are important for genome stability, cellular response to stress, and nutrient and hormone sensing. They are activated by calorie restriction (CR) and by the coenzyme, nicotinamide adenine dinucleotide (NAD+). Sirtuins, specifically the nuclear SIRT1 and mitochondrial SIRT3, have been shown to have predominantly neuroprotective roles in the CNS while the cytoplasmic sirtuin, SIRT2 is largely associated with neurodegeneration. A systematic study of sirtuins in the ENS and their effect on enteric neuronal growth and survival has not been conducted. Recent studies, however, also link sirtuins with important hormones such as leptin, ghrelin, melatonin, and serotonin which influence many important processes including satiety, mood, circadian rhythm, and gut homeostasis. In this review, we address emerging roles of sirtuins in modulating the metabolic challenges from aging, obesity, and diabetes that lead to neurodegeneration in the ENS and CNS. We also highlight a novel role for sirtuins along the microbiota-gut-brain axis in modulating neurodegeneration.
Collapse
Affiliation(s)
- Pavithra Chandramowlishwaran
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Research-Gastroenterology, Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Anitha Vijay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Daniel Abraham
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ge Li
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Research-Gastroenterology, Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Simon Musyoka Mwangi
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Research-Gastroenterology, Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Research-Gastroenterology, Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
85
|
Guo Y, Cheng Z, Liu J, He Y, Xiong Z, Yuan D, Dun Y, Zhang C. Protective effects of saponins from Panax japonicus on neurons of the colon myenteric plexus in aging rats through reduction of α-synuclein through endoplasmic reticulum stress. Geriatr Gerontol Int 2020; 21:85-93. [PMID: 33244850 DOI: 10.1111/ggi.13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 12/23/2022]
Abstract
AIM The enteric nervous system degenerates gradually with age, and α-synuclein (α-syn) is a suitable marker of enteric nervous system degeneration, which is intimately related with endoplasmic reticulum stress and unfolded protein response (UPRER ). Saponins from Panax japonicus (SPJ) have obvious protective effects on neurons in several degenerative disease models. Here, the study was designed to investigate whether SPJ could reverse the neuron degeneration through regulating the UPRER in the colon myenteric plexus of aging rats. METHODS Aging rats had been treated with SPJ for 6 months since they were aged 18 months. Then, the colon samples were collected and neuron morphology in the myenteric plexus was observed. Immunohistochemistry staining was used to detect the expressions of NeuN, α-syn, GRP78 and three different UPRER branches. Double immunofluorescence was used to determine the co-localization of α-syn and NeuN, GRP78 and NeuN. RESULTS Neurons degenerated in the colon myenteric plexus of aging rats, but co-localization of α-syn and NeuN increased. In addition, both the expressions of GRP78 and three UPRER branch signaling pathway proteins decreased in the colon myenteric plexus of aging rats. Treatment of SPJ almost alleviated the above effects in aging rats, except for ATF6. CONCLUSIONS SPJ could reverse the neuron loss caused by accumulation of α-syn in the myenteric plexus of colon in aging rats, which is potentially associated with increased GRP78 and most URPER changes. Geriatr Gerontol Int 2021; 21: 85-93.
Collapse
Affiliation(s)
- Yuhui Guo
- Medical College of China Three Gorges University, Yichang, China
| | - Zhihao Cheng
- Medical College of China Three Gorges University, Yichang, China
| | - Jie Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Yumin He
- Medical College of China Three Gorges University, Yichang, China
| | - Zhengguo Xiong
- Medical College of China Three Gorges University, Yichang, China
| | - Ding Yuan
- Medical College of China Three Gorges University, Yichang, China
| | - Yaoyan Dun
- Medical College of China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- Medical College of China Three Gorges University, Yichang, China
| |
Collapse
|
86
|
Giuffrè M, Moretti R, Campisciano G, da Silveira ABM, Monda VM, Comar M, Di Bella S, Antonello RM, Luzzati R, Crocè LS. You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. J Clin Med 2020; 9:3705. [PMID: 33218203 PMCID: PMC7699249 DOI: 10.3390/jcm9113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian organisms form intimate interfaces with commensal and pathogenic gut microorganisms. Increasing evidence suggests a close interaction between gut microorganisms and the enteric nervous system (ENS), as the first interface to the central nervous system. Each microorganism can exert a different effect on the ENS, including phenotypical neuronal changes or the induction of chemical transmitters that interact with ENS neurons. Some pathogenic bacteria take advantage of the ENS to create a more suitable environment for their growth or to promote the effects of their toxins. In addition, some commensal bacteria can affect the central nervous system (CNS) by locally interacting with the ENS. From the current knowledge emerges an interesting field that may shape future concepts on the pathogen-host synergic interaction. The aim of this narrative review is to report the current findings regarding the inter-relationships between bacteria, viruses, and parasites and the ENS.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Giuseppina Campisciano
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | | | | | - Manola Comar
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | - Stefano Di Bella
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberta Maria Antonello
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberto Luzzati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Lory Saveria Crocè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| |
Collapse
|
87
|
Gyawali CP, Sonu I, Becker L, Sarosiek J. The esophageal mucosal barrier in health and disease: mucosal pathophysiology and protective mechanisms. Ann N Y Acad Sci 2020; 1482:49-60. [PMID: 33128243 DOI: 10.1111/nyas.14521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Diseases of the esophagus, such as gastroesophageal reflux (GER), can result in changes to mucosal integrity, neurological function, and the microbiome. Although poorly understood, both age and GER can lead to changes to the enteric nervous system. In addition, the esophagus has a distinct microbiome that can be altered in GER. Mucosal integrity is also at risk due to persistent damage from acid. Diagnostic tools, such as ambulatory pH/impedance testing and esophageal mucosal impedance, can assess short-term and longitudinal GER burden, which can also assess the risk for mucosal compromise. The quality of the mucosal barrier is determined by its intercellular spaces, tight junctions, and tight junction proteins, which are represented by claudins, occludins, and adhesion molecules. Fortunately, there are protective factors for mucosal integrity that are secreted by the esophageal submucosal mucous glands and within saliva that are augmented by mastication. These protective factors have potential as therapeutic targets for GER. In this article, we aim to review diagnostic tools used to predict mucosal integrity, aging, and microbiome changes to the esophagus and esophageal mucosal defense mechanisms.
Collapse
Affiliation(s)
- C Prakash Gyawali
- Division of Gastroenterology and Hepatology, Washington University School of Medicine, St. Louis, Missouri
| | - Irene Sonu
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Laren Becker
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Jerzy Sarosiek
- Division of Gastroenterology and Hepatology, Molecular Medicine Research Laboratory, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas
| |
Collapse
|
88
|
Hall BM, Gleiberman AS, Strom E, Krasnov PA, Frescas D, Vujcic S, Leontieva OV, Antoch MP, Kogan V, Koman IE, Zhu Y, Tchkonia T, Kirkland JL, Chernova OB, Gudkov AV. Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. Aging Cell 2020; 19:e13219. [PMID: 32856419 PMCID: PMC7576241 DOI: 10.1111/acel.13219] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is recognized as a major source of systemic inflammation with age, driving age-related tissue dysfunction and pathogenesis. Macrophages (Mφ) are central to these changes yet adipose tissue Mφ (ATMs) from aged mice remain poorly characterized. To identify biomarkers underlying changes in aged adipose tissue, we performed an unbiased RNA-seq analysis of ATMs from young (8-week-old) and healthy aged (80-week-old) mice. One of the genes identified, V-set immunoglobulin-domain-containing 4 (VSIG4/CRIg), encodes a Mφ-associated complement receptor and B7 family-related immune checkpoint protein. Here, we demonstrate that Vsig4 expression is highly upregulated with age in perigonadal white adipose tissue (gWAT) in two mouse strains (inbred C57BL/6J and outbred NIH Swiss) independent of gender. The accumulation of VSIG4 was mainly attributed to a fourfold increase in the proportion of VSIG4+ ATMs (13%-52%). In a longitudinal study, VSIG4 expression in gWAT showed a strong correlation with age within a cohort of male and female mice and correlated strongly with physiological frailty index (PFI, a multi-parameter assessment of health) in male mice. Our results indicate that VSIG4 is a novel biomarker of aged murine ATMs. VSIG4 expression was also found to be elevated in other aging tissues (e.g., thymus) and was strongly induced in tumor-adjacent stroma in cases of spontaneous and xenograft lung cancer models. VSIG4 expression was recently associated with cancer and several inflammatory diseases with diagnostic and prognostic potential in both mice and humans. Further investigation is required to determine whether VSIG4-positive Mφ contribute to immunosenescence and/or systemic age-related deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga V. Leontieva
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Marina P. Antoch
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Valeria Kogan
- Institute for Translational ResearchAriel UniversityArielIsrael
| | - Igor E. Koman
- Institute for Translational ResearchAriel UniversityArielIsrael
| | - Yi Zhu
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | | | | | - Andrei V. Gudkov
- Everon Biosciences IncBuffaloNYUSA
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
- Genome Protection IncBuffaloNYUSA
| |
Collapse
|
89
|
Wasityastuti W, Habib NA, Sari DCR, Arfian N. Effects of low and moderate treadmill exercise on liver of d-galactose-exposed aging rat model. Physiol Rep 2020; 7:e14279. [PMID: 31724278 PMCID: PMC6854106 DOI: 10.14814/phy2.14279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Aging increases liver susceptibility to diseases and it causes inflammation in liver tissue which can lead to fibrosis. Studies suggest that aging is caused by the accumulation of free radicals. Lack of physical activity can lower hormone levels and increase free radicals that can accelerate the aging process. Hence, physical activity is very important to maintain functions of organs. This research was aimed to study the effects of low and moderate treadmill exercise on d‐Galactose‐exposed aging rat model by evaluating the degree of hepatic fibrosis, number of M1 and M2, and M1/M2 ratio. Twenty‐four 3‐month‐old male Wistar aging model rats were randomly divided into four groups, that is, three treatment groups with daily 300 mg kgBW−1d‐Galactose injection administrated intraperitoneally for 4 weeks and 1 control group with normal saline injection. Two of the d‐Galactose treated groups were given low and moderate treadmill exercise for 4 weeks. It was concluded that low intensity treadmill exercise significantly lowered the degree of d‐Galactose‐exposed hepatic fibrosis, and moderate treadmill exercise was able to restore the injured liver tissue back to the non‐aging state. Administration of d‐Galactose causes inflammation marked by the elevated number of M1 and M2 macrophages. Moderate treadmill exercise drove M1/M2 ratio back to the control condition.
Collapse
Affiliation(s)
- Widya Wasityastuti
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nurfatma A Habib
- Master in Biomedical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi C R Sari
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
90
|
Yarandi SS, Kulkarni S, Saha M, Sylvia KE, Sears CL, Pasricha PJ. Intestinal Bacteria Maintain Adult Enteric Nervous System and Nitrergic Neurons via Toll-like Receptor 2-induced Neurogenesis in Mice. Gastroenterology 2020; 159:200-213.e8. [PMID: 32234538 PMCID: PMC7387157 DOI: 10.1053/j.gastro.2020.03.050] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/01/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The enteric nervous system (ENS) exists in close proximity to luminal bacteria. Intestinal microbes regulate ENS development, but little is known about their effects on adult enteric neurons. We investigated whether intestinal bacteria or their products affect the adult ENS via toll-like receptors (TLRs) in mice. METHODS We performed studies with conventional C57/BL6, germ-free C57/BL6, Nestin-creERT2:tdTomato, Nestin-GFP, and ChAT-cre:tdTomato. Mice were given drinking water with ampicillin or without (controls). Germ-free mice were given drinking water with TLR2 agonist or without (controls). Some mice were given a blocking antibody against TLR2 or a TLR4 inhibitor. We performed whole gut transit, bead latency, and geometric center studies. Feces were collected and analyzed by 16S ribosomal RNA gene sequencing. Longitudinal muscle myenteric plexus (LMMP) tissues were collected, analyzed by immunohistochemistry, and levels of nitric oxide were measured. Cells were isolated from colonic LMMP of Nestin-creERT2:tdTomato mice and incubated with agonists of TLR2 (receptor for gram-positive bacteria), TLR4 (receptor for gram-negative bacteria), or distilled water (control) and analyzed by flow cytometry. RESULTS Stool from mice given ampicillin had altered composition of gut microbiota with reduced abundance of gram-positive bacteria and increased abundance of gram-negative bacteria, compared with mice given only water. Mice given ampicillin had reduced colon motility compared with mice given only water, and their colonic LMMP had reduced numbers of nitrergic neurons, reduced neuronal nitric oxide synthase production, and reduced colonic neurogenesis. Numbers of colonic myenteric neurons increased after mice were switched from ampicillin to plain water, with increased markers of neurogenesis. Nestin-positive enteric neural precursor cells expressed TLR2 and TLR4. In cells isolated from the colonic LMMP, incubation with the TLR2 agonist increased the percentage of neurons originating from enteric neural precursor cells to approximately 10%, compared with approximately 0.01% in cells incubated with the TLR4 agonist or distilled water. Mice given an antibody against TLR2 had prolonged whole gut transit times; their colonic LMMP had reduced total neurons and a smaller proportion of nitrergic neurons per ganglion, and reduced markers of neurogenesis compared with mice given saline. Colonic LMMP of mice given the TLR4 inhibitor did not have reduced markers of neurogenesis. Colonic LMMP of germ-free mice given TLR2 agonist had increased neuronal numbers compared with control germ-free mice. CONCLUSIONS In the adult mouse colon, TLR2 promotes colonic neurogenesis, regulated by intestinal bacteria. Our findings indicate that colonic microbiota help maintain the adult ENS via a specific signaling pathway. Pharmacologic and probiotic approaches directed towards specific TLR2 signaling processes might be developed for treatment of colonic motility disorders related to use of antibiotics or other factors.
Collapse
Affiliation(s)
- Shadi S Yarandi
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Subhash Kulkarni
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Monalee Saha
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristyn E Sylvia
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Cynthia L Sears
- Departments of Medicine, Oncology and Molecular Microbiology & Immunology, the Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, Maryland
| | - Pankaj J Pasricha
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
91
|
Preadipocyte secretory factors differentially modulate murine macrophage functions during aging which are reversed by the application of phytochemical EGCG. Biogerontology 2020; 21:325-343. [PMID: 32043170 DOI: 10.1007/s10522-020-09861-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023]
Abstract
The present study aimed at evaluating the role of senescent cell microenvironment as an extrinsic causal factor for altered age-associated macrophage functions, and that whether such changes could be ameliorated by the application of tea catechin epigallocatechin gallate (EGCG). To ascertain this, we analyzed the impact of secretory metabolites of proliferating (P) and senescent (S) preadipocyte cells on the induction of phenotypic and functional characteristics associated with aging in macrophages isolated from young (YM) and old (OM) C57BL/6J mice. The role of EGCG as alleviator of preadipocyte media-induced senescence and inflamm-aging was evaluated in OM. Results revealed strong age-related dysregulation in macrophage functions as evident by decreased CD11b expression, enhanced expression of cytokines (IL-6/TNF-α/IL-1β/IL-10) and cell cycle inhibitors p53/p21WAF1/p16Ink4a, as well as augmentation of M2 phenotype (Arg1/Msr1/Mrc1) and SA-β-gal activity. Ex vivo exposure of macrophages (YM and OM) to secretory factors of preadipocytes induced differential effects, and treatment with S culture media largely showed an augmentation of senescent phenotype, particularly in the YM. Pretreatment with EGCG (10 µM) to OM caused a dramatic reversal of both age-associated and preadipocyte media-induced changes as evident from upregulation of CD11b and ROS levels, inhibition of inflammatory makers, attenuation of p53/p21WAF1/p16Ink4a expression and SA-β-gal activity. Our results indicate vital role of adipose tissue-mediated extrinsic factors in shaping macrophage phenotype and functions during aging. It is also apparent that EGCG is a promising candidate in developing preventive therapies aimed at alleviating macrophage inflamm-aging and senescence that may help curb incidences of inflammatory disorders in elderly.
Collapse
|
92
|
Sun T, Li D, Hu S, Huang L, Sun H, Yang S, Wu B, Ji F, Zhou D. Aging-dependent decrease in the numbers of enteric neurons, interstitial cells of Cajal and expression of connexin43 in various regions of gastrointestinal tract. Aging (Albany NY) 2019; 10:3851-3865. [PMID: 30530917 PMCID: PMC6326649 DOI: 10.18632/aging.101677] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
Aging is a significant risk factor for gastrointestinal dysmotility, but aging-associated differences between different organs and the exact time to start degenerating have remained obscure. Here we evaluated alterations of interstitial cells of Cajal, enteric neurons and connexin43 expression in the stomach, jejunum and colon in 2-, 12-, 16-, 20- and 24-month-old mice, as well as in aged human colon. Interstitial cells of Cajal, cholinergic and nitrergic neurons within the whole digestive tract were reduced over time, but their loss first appeared in stomach, then in intestine, helping to understand that gastric function was first impaired during aging. The decrease of connexin43 expression occurred before interstitial cells of Cajal and neurons loss, suggesting that connexin43 might be the major target influenced during senescence. Furthermore, changes in expressions of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin-1β, interleukin-6) and apoptosis-related proteins (B-cell lymphoma-2, caspase-3) which indicated “inflammaging”, might contribute to the loss of enteric neurons and interstitial cells of Cajal in aged gastrointestinal tract. Our results provide possible therapeutic time window for beneficial intervention for geriatric patients with gastrointestinal motility disorders.
Collapse
Affiliation(s)
- Tingyi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Dandan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shilong Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Li Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Fengqing Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.,Cancer Institute of Capital Medical University, Beijing, 100069, China
| |
Collapse
|
93
|
Muller PA, Matheis F, Mucida D. Gut macrophages: key players in intestinal immunity and tissue physiology. Curr Opin Immunol 2019; 62:54-61. [PMID: 31841704 DOI: 10.1016/j.coi.2019.11.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
The mammalian gastrointestinal tract harbors a large reservoir of tissue macrophages, which, in concert with other immune cells, help to maintain a delicate balance between tolerance to commensal microbes and food antigens, and resistance to potentially harmful microbes or toxins. Beyond their roles in resistance and tolerance, recent studies have uncovered novel roles played by tissue-resident, including intestinal-resident macrophages in organ physiology. Here, we will discuss recent advances in the understanding of the origin, phenotype and function of macrophages residing in the different layers of the intestine during homeostasis and under pathological conditions.
Collapse
Affiliation(s)
- Paul A Muller
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
94
|
Spear ET, Mawe GM. Enteric neuroplasticity and dysmotility in inflammatory disease: key players and possible therapeutic targets. Am J Physiol Gastrointest Liver Physiol 2019; 317:G853-G861. [PMID: 31604034 PMCID: PMC6962496 DOI: 10.1152/ajpgi.00206.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal functions, including motility and secretion, are locally controlled by enteric neural networks housed within the wall of the gut. The fidelity of these functions depends on the precision of intercellular signaling among cellular elements, including enteric neurons, epithelial cells, immune cells, and glia, all of which are vulnerable to disruptive influences during inflammatory events. This review article describes current knowledge regarding inflammation-induced neuroplasticity along key elements of enteric neural circuits, what is known about the causes of these changes, and possible therapeutic targets for protecting and/or repairing the integrity of intrinsic enteric neurotransmission. Changes that have been detected in response to inflammation include increased epithelial serotonin availability, hyperexcitability of intrinsic primary afferent neurons, facilitation of synaptic activity among enteric neurons, and attenuated purinergic neuromuscular transmission. Dysfunctional propulsive motility has been detected in models of colitis, where causes include the changes described above, and in models of multiple sclerosis and other autoimmune conditions, where autoantibodies are thought to mediate dysmotility. Other cells implicated in inflammation-induced neuroplasticity include muscularis macrophages and enteric glia. Targeted treatments that are discussed include 5-hydroxytryptamine receptor 4 agonists, cyclooxygenase inhibitors, antioxidants, B cell depletion therapy, and activation of anti-inflammatory pathways.
Collapse
Affiliation(s)
- Estelle T. Spear
- 1Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Gary M. Mawe
- 2Department of Neurological Sciences, The University of Vermont, Burlington, Vermont
| |
Collapse
|
95
|
Lindahl M, Chalazonitis A, Palm E, Pakarinen E, Danilova T, Pham TD, Setlik W, Rao M, Võikar V, Huotari J, Kopra J, Andressoo JO, Piepponen PT, Airavaara M, Panhelainen A, Gershon MD, Saarma M. Cerebral dopamine neurotrophic factor-deficiency leads to degeneration of enteric neurons and altered brain dopamine neuronal function in mice. Neurobiol Dis 2019; 134:104696. [PMID: 31783118 PMCID: PMC7000201 DOI: 10.1016/j.nbd.2019.104696] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is neuroprotective for nigrostriatal dopamine neurons and restores dopaminergic function in animal models of Parkinson’s disease (PD). To understand the role of CDNF in mammals, we generated CDNF knockout mice (Cdnf−/−), which are viable, fertile, and have a normal life-span. Surprisingly, an age-dependent loss of enteric neurons occurs selectively in the submucosal but not in the myenteric plexus. This neuronal loss is a consequence not of increased apoptosis but of neurodegeneration and autophagy. Quantitatively, the neurodegeneration and autophagy found in the submucosal plexus in duodenum, ileum and colon of the Cdnf−/− mouse are much greater than in those of Cdnf+/+ mice. The selective vulnerability of submucosal neurons to the absence of CDNF is reminiscent of the tendency of pathological abnormalities to occur in the submucosal plexus in biopsies of patients with PD. In contrast, the number of substantia nigra dopamine neurons and dopamine and its metabolite concentrations in the striatum are unaltered in Cdnf−/− mice; however, there is an age-dependent deficit in the function of the dopamine system in Cdnf−/− male mice analyzed. This is observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter function, and as increased D-amphetamine-induced dopamine release demonstrating that dopaminergic axon terminal function in the striatum of the Cdnf−/− mouse brain is altered. The deficiencies of Cdnf−/− mice, therefore, are reminiscent of those seen in early stages of Parkinson’s disease.
Collapse
Affiliation(s)
- Maria Lindahl
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland.
| | | | - Erik Palm
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Emmi Pakarinen
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Tatiana Danilova
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Tuan D Pham
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Wanda Setlik
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Meenakshi Rao
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Vootele Võikar
- Neuroscience Center/Laboratory Animal Center, Mustialankatu 1, FI-00014, University of Helsinki, Finland
| | - Jatta Huotari
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, FI-00014, University of Helsinki, Finland
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Petteri T Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, FI-00014, University of Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Michael D Gershon
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| |
Collapse
|
96
|
Lin C, Zhao S, Zhu Y, Fan Z, Wang J, Zhang B, Chen Y. Microbiota-gut-brain axis and toll-like receptors in Alzheimer's disease. Comput Struct Biotechnol J 2019; 17:1309-1317. [PMID: 31921396 PMCID: PMC6944716 DOI: 10.1016/j.csbj.2019.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disease which involves both the periphery and central nervous system (CNS). It has been recently recognized that gut microbiota interacts with the gut and brain (microbiota-gut-brain axis), contributing to the pathogenesis of neurodegenerative diseases, such as AD. Dysbiosis of gut microbiota can induce increased intestinal permeability and systemic inflammation, which may lead to the development of AD pathologies and cognitive impairment via the neural, immune, endocrine, and metabolic pathways. Toll-like receptors (TLRs) play an important role in the innate immune system via recognizing microbes-derived pathogens and initiating the inflammatory process. TLRs have also been found in the brain, especially in the microglia, and have been indicated in the development of AD. In this review, we summarized the relationship between microbiota-gut-brain axis and AD, as well as the complex role of TLRs in AD. Intervention of the gut microbiota or modulation of TLRs properly might emerge as promising preventive and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Caixiu Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Zhu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Fan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- Department of Geriatric, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
97
|
Targeting IL-17A Improves the Dysmotility of the Small Intestine and Alleviates the Injury of the Interstitial Cells of Cajal during Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1475729. [PMID: 31531179 PMCID: PMC6721283 DOI: 10.1155/2019/1475729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/03/2019] [Accepted: 03/12/2019] [Indexed: 01/05/2023]
Abstract
Intestinal dysmotility is a frequent complication during sepsis and plays an important role in the development of secondary infections and multiple organ failure. However, the central mechanisms underlying this process have not been well elucidated. Currently, effective therapies are still lacking for the treatment of sepsis-induced intestinal dysmotility. In this study, we found that the activation of IL-17 signaling within the muscularis propria might be associated with dysmotility of the small intestine during polymicrobial sepsis. Furthermore, we demonstrated that targeting IL-17A partially rescued the motility of the small intestine and alleviated interstitial cells of Cajal (ICC) injury during sepsis. The blockade of IL-17A suppressed the dominant sepsis-induced infiltration of M1-polarized macrophages into the muscularis. Additionally, impaired ICC survival may be associated with the oxidative stress injury induced by dominant infiltration of M1-polarized macrophages. Our findings reveal the important role of the IL-17 signaling pathway in the small intestine during sepsis and provide clues for developing a novel therapeutic strategy for treating gastrointestinal dysmotility during sepsis.
Collapse
|
98
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
99
|
Broad J, Kung VWS, Palmer A, Elahi S, Karami A, Darreh-Shori T, Ahmed S, Thaha MA, Carroll R, Chin-Aleong J, Martin JE, Saffrey MJ, Knowles CH, Sanger GJ. Changes in neuromuscular structure and functions of human colon during ageing are region-dependent. Gut 2019; 68:1210-1223. [PMID: 30228216 PMCID: PMC6594449 DOI: 10.1136/gutjnl-2018-316279] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine if human colonic neuromuscular functions decline with increasing age. DESIGN Looking for non-specific changes in neuromuscular function, a standard burst of electrical field stimulation (EFS) was used to evoke neuronally mediated (cholinergic/nitrergic) contractions/relaxations in ex vivomuscle strips of human ascending and descending colon, aged 35-91 years (macroscopically normal tissue; 239 patients undergoing cancer resection). Then, to understand mechanisms of change, numbers and phenotype of myenteric neurons (30 306 neurons stained with different markers), densities of intramuscular nerve fibres (51 patients in total) and pathways involved in functional changes were systematically investigated (by immunohistochemistry and use of pharmacological tools) in elderly (≥70 years) and adult (35-60 years) groups. RESULTS With increasing age, EFS was more likely to evoke muscle relaxation in ascending colon instead of contraction (linear regression: n=109, slope 0.49%±0.21%/year, 95% CI), generally uninfluenced by comorbidity or use of medications. Similar changes were absent in descending colon. In the elderly, overall numbers of myenteric and neuronal nitric oxide synthase-immunoreactive neurons and intramuscular nerve densities were unchanged in ascending and descending colon, compared with adults. In elderly ascending, not descending, colon numbers of cell bodies exhibiting choline acetyltransferase immunoreactivity increased compared with adults (5.0±0.6 vs 2.4±0.3 neurons/mm myenteric plexus, p=0.04). Cholinergically mediated contractions were smaller in elderly ascending colon compared with adults (2.1±0.4 and 4.1±1.1 g-tension/g-tissue during EFS; n=25/14; p=0.04); there were no changes in nitrergic function or in ability of the muscle to contract/relax. Similar changes were absent in descending colon. CONCLUSION In ascending not descending colon, ageing impairs cholinergic function.
Collapse
Affiliation(s)
- John Broad
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Victor W S Kung
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alexandra Palmer
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shezan Elahi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Azadeh Karami
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, NEO, Stockholm, Sweden
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, NEO, Stockholm, Sweden
| | - Shafi Ahmed
- Department of Surgery, Barts Health NHS Trust, The Royal London Hospital, London, UK,Department of Pathology, Barts Health NHS Trust, The Royal London Hospital, London, UK
| | - Mohamed Adhnan Thaha
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK,Department of Surgery, Barts Health NHS Trust, The Royal London Hospital, London, UK,Department of Pathology, Barts Health NHS Trust, The Royal London Hospital, London, UK
| | - Rebecca Carroll
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joanne Chin-Aleong
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joanne E Martin
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M Jill Saffrey
- School of Life, Health and Chemical Sciences, Open University, Milton Keynes, UK
| | - Charles H Knowles
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK,Department of Surgery, Barts Health NHS Trust, The Royal London Hospital, London, UK,Department of Pathology, Barts Health NHS Trust, The Royal London Hospital, London, UK
| | - Gareth John Sanger
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
100
|
Sanese P, Forte G, Disciglio V, Grossi V, Simone C. FOXO3 on the Road to Longevity: Lessons From SNPs and Chromatin Hubs. Comput Struct Biotechnol J 2019; 17:737-745. [PMID: 31303978 PMCID: PMC6606898 DOI: 10.1016/j.csbj.2019.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Health span is driven by a precise interplay between genes and the environment. Cell response to environmental cues is mediated by signaling cascades and genetic variants that affect gene expression by regulating chromatin plasticity. Indeed, they can promote the interaction of promoters with regulatory elements by forming active chromatin hubs. FOXO3 encodes a transcription factor with a strong impact on aging and age-related phenotypes, as it regulates stress response, therefore affecting lifespan. A significant association has been shown between human longevity and several FOXO3 variants located in intron 2. This haplotype block forms a putative aging chromatin hub in which FOXO3 has a central role, as it modulates the physical connection and activity of neighboring genes involved in age-related processes. Here we describe the role of FOXO3 and its single-nucleotide polymorphisms (SNPs) in healthy aging, with a focus on the enhancer region encompassing the SNP rs2802292, which upregulates FOXO3 expression and can promote the activity of the aging hub in response to different stress stimuli. FOXO3 protective effect on lifespan may be due to the accessibility of this region to transcription factors promoting its expression. This could in part explain the differences in FOXO3 association with longevity between genders, as its activity in females may be modulated by estrogens through estrogen receptor response elements located in the rs2802292-encompassing region. Altogether, the molecular mechanisms described here may help establish whether the rs2802292 SNP can be taken advantage of in predictive medicine and define the potential of targeting FOXO3 for age-related diseases.
Collapse
Key Words
- 3C, Chromosome conformation capture
- 5′UTR, Five prime untranslated region
- ACH, Active chromatin hub
- Aging
- Chromatin hub
- ER, Estrogen receptor
- ERE, Estrogen-responsive element
- FHRE, Forkhead response element
- FOXO3
- FOXO3, Forkhead box 3
- GPx, Glutathione peroxidase
- GWAS, Genome-wide association study
- HPS, Hamartomatous polyposis syndrome
- HSE, Heat shock element
- HSF1, Heat shock factor 1
- IGF-1, Insulin growth factor-1
- LD, Linkage disequilibrium
- Longevity
- PHTS, PTEN hamartoma tumor syndrome
- PJS, Peutz-Jeghers syndrome
- ROS, Reactive oxygen species
- SNP
- SNP, Single nucleotide polymorphism
- SNV, Single nucleotide variant
- SOD2, Superoxide dismutase 2
- TAD, Topologically associated domain
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Cristiano Simone
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| |
Collapse
|