51
|
Wiącek J, Szurkowska J, Kryściak J, Galecka M, Karolkiewicz J. No changes in the abundance of selected fecal bacteria during increased carbohydrates consumption period associated with the racing season in amateur road cyclists. PeerJ 2023; 11:e14594. [PMID: 36700000 PMCID: PMC9869777 DOI: 10.7717/peerj.14594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 01/22/2023] Open
Abstract
Background Cyclists often use high-carbohydrate, low-fiber diets to optimize the glycogen stores and to avoid the gastrointestinal distress during both, the trainings and the competitions. The impact of such dietary changes on gut microbiota is not fully known. Methods We assessed the abundances of Faecalibacterium prausnitzii, Akkermansia muciniphila, Bifidobacterium spp., and Bacteroides spp. and the fecal pH in 14 amateur cyclists during the racing season. Eleven healthy men formed the control group. Results Despite significant differences in the diet composition and physical endurance levels of amateur cyclists before the competition season (1st term) and control group (carbohydrates: 52.2% ± 4.9% vs 41.9% ± 6.6%; VO2max: 56.1 ± 6.0 vs 39.7 ± 7.7; p < 0.01; respectively), we did not observe any significant differences in studied gut bacteria abundances or fecal pH between the groups. Although the cyclists' carbohydrates consumption (2nd term) have increased throughout the season (4.48 g/kg b.w. ± 1.56 vs 5.18 g/kg b.w. ± 1.99; p < 0.05), the studied gut bacteria counts and fecal pH remained unchanged. It seems that the amateur cyclists' diet with increased carbohydrates intake does not alter the gut microbiota, but further research is needed to assess the potential impact of even higher carbohydrates consumption (over 6 g/kg b.w.).
Collapse
Affiliation(s)
- Jakub Wiącek
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Greater Poland, Poland
| | - Joanna Szurkowska
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Greater Poland, Poland
| | - Jakub Kryściak
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poznań, Greater Poland, Poland
| | | | - Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Greater Poland, Poland
| |
Collapse
|
52
|
Kulecka M, Fraczek B, Balabas A, Czarnowski P, Zeber-Lubecka N, Zapala B, Baginska K, Glowienka M, Szot M, Skorko M, Kluska A, Piatkowska M, Mikula M, Ostrowski J. Characteristics of the gut microbiome in esports players compared with those in physical education students and professional athletes. Front Nutr 2023; 9:1092846. [PMID: 36726816 PMCID: PMC9884692 DOI: 10.3389/fnut.2022.1092846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Esports is a category of competitive video games that, in many aspects, may be similar to traditional sports; however, the gut microbiota composition of players has not been yet studied. Materials and methods Here, we investigated the composition and function of the gut microbiota, as well as short chain fatty acids (SCFAs), and amino acids, in a group of 109 well-characterized Polish male esports players. The results were compared with two reference groups: 25 endurance athletes and 36 healthy students of physical education. DNA and metabolites isolated from fecal samples were analyzed using shotgun metagenomic sequencing and mass spectrometry, respectively. Physical activity and nutritional measures were evaluated by questionnaire. Results Although anthropometric, physical activity and nutritional measures differentiated esports players from students, there were no differences in bacterial diversity, the Bacteroidetes/Firmicutes ratio, the composition of enterotype clusters, metagenome functional content, or SCFA concentrations. However, there were significant differences between esports players and students with respect to nine bacterial species and nine amino acids. By contrast, all of the above-mentioned measures differentiated professional athletes from esports players and students, with 45 bacteria differentiating professional athletes from the former and 31 from the latter. The only species differentiating all three experimental groups was Parabacteroides distasonis, showing the lowest and highest abundance in esports players and athletes, respectively. Conclusion Our study confirms the marked impact of intense exercise training on gut microbial structure and function. Differences in lifestyle and dietary habits between esports players and physical education students appear to not have a major effect on the gut microbiota.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Fraczek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Education, Krakow, Poland
| | - Aneta Balabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Zapala
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Baginska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Glowienka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Monika Szot
- Department of Sports Dietetics, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Maciek Skorko
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piatkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
53
|
Chew W, Lim YP, Lim WS, Chambers ES, Frost G, Wong SH, Ali Y. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Front Med (Lausanne) 2023; 9:1065365. [PMID: 36698827 PMCID: PMC9868714 DOI: 10.3389/fmed.2022.1065365] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Our gastrointestinal system functions to digest and absorb ingested food, but it is also home to trillions of microbes that change across time, nutrition, lifestyle, and disease conditions. Largely commensals, these microbes are gaining prominence with regards to how they collectively affect the function of important metabolic organs, from the adipose tissues to the endocrine pancreas to the skeletal muscle. Muscle, as the biggest utilizer of ingested glucose and an important reservoir of body proteins, is intricately linked with homeostasis, and with important anabolic and catabolic functions, respectively. Herein, we provide a brief overview of how gut microbiota may influence muscle health and how various microbes may in turn be altered during certain muscle disease states. Specifically, we discuss recent experimental and clinical evidence in support for a role of gut-muscle crosstalk and include suggested underpinning molecular mechanisms that facilitate this crosstalk in health and diseased conditions. We end with a brief perspective on how exercise and pharmacological interventions may interface with the gut-muscle axis to improve muscle mass and function.
Collapse
Affiliation(s)
- Weixuan Chew
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yen Peng Lim
- Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore,Department of Nutrition and Dietetics, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Wee Shiong Lim
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore
| | - Edward S. Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sunny Hei Wong
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Singapore General Hospital, Singapore Eye Research Institute (SERI), Singapore, Singapore,Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Singapore,*Correspondence: Yusuf Ali ✉
| |
Collapse
|
54
|
Brooks CN, Wight ME, Azeez OE, Bleich RM, Zwetsloot KA. Growing old together: What we know about the influence of diet and exercise on the aging host's gut microbiome. Front Sports Act Living 2023; 5:1168731. [PMID: 37139301 PMCID: PMC10149677 DOI: 10.3389/fspor.2023.1168731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The immune system is critical in defending against infection from pathogenic microorganisms. Individuals with weakened immune systems, such as the elderly, are more susceptible to infections and developing autoimmune and inflammatory diseases. The gut microbiome contains a plethora of bacteria and other microorganisms, which collectively plays a significant role in immune function and homeostasis. Gut microbiota are considered to be highly influential on host health and immune function. Therefore, dysbiosis of the microbiota could be a major contributor to the elevated incidence of multiple age-related pathologies. While there seems to be a general consensus that the composition of gut microbiota changes with age, very little is known about how diet and exercise might influence the aging microbiome. Here, we examine the current state of the literature regarding alterations to the gut microbiome as hosts age, drawing particular attention to the knowledge gaps in addressing how diet and exercise influence the aging microbiome. Further, we will demonstrate the need for more controlled studies to investigate the roles that diet and exercise play driving the composition, diversity, and function of the microbiome in an aging population.
Collapse
Affiliation(s)
- Chequita N. Brooks
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Madeline E. Wight
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Oluwatobi E. Azeez
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Rachel M. Bleich
- Department of Biology, Appalachian State University, Boone, NC, United States
- Correspondence: Kevin A. Zwetsloot Rachel M. Bleich
| | - Kevin A. Zwetsloot
- Department of Biology, Appalachian State University, Boone, NC, United States
- Department of Public Health and Exercise Science, Appalachian State University, Boone, NC, United States
- Correspondence: Kevin A. Zwetsloot Rachel M. Bleich
| |
Collapse
|
55
|
Li J, Ghosh TS, McCann R, Mallon P, Hill C, Draper L, Schult D, Fanning LJ, Shannon R, Sadlier C, Horgan M, O’Mahony L, O’Toole PW. Robust cross-cohort gut microbiome associations with COVID-19 severity. Gut Microbes 2023; 15:2242615. [PMID: 37550964 PMCID: PMC10411309 DOI: 10.1080/19490976.2023.2242615] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Although many recent studies have examined associations between the gut microbiome and COVID-19 disease severity in individual patient cohorts, questions remain on the robustness across international cohorts of the biomarkers they reported. Here, we performed a meta-analysis of eight shotgun metagenomic studies of COVID-19 patients (comprising 1,023 stool samples) and 23 > 16S rRNA gene amplicon sequencing (16S) cohorts (2,415 total stool samples). We found that disease severity (as defined by the WHO clinical progression scale) was associated with taxonomic and functional microbiome differences. This alteration in gut microbiome configuration peaks at days 7-30 post diagnosis, after which the gut microbiome returns to a configuration that becomes more similar to that of healthy controls over time. Furthermore, we identified a core set of species that were consistently associated with disease severity across shotgun metagenomic and 16S cohorts, and whose abundance can accurately predict disease severity category of SARS-CoV-2 infected subjects, with Actinomyces oris abundance predicting population-level mortality rate of COVID-19. Additionally, we used relational diet-microbiome databases constructed from cohort studies to predict microbiota-targeted diet patterns that would modulate gut microbiota composition toward that of healthy controls. Finally, we demonstrated the association of disease severity with the composition of intestinal archaeal, fungal, viral, and parasitic communities. Collectively, this study has identified robust COVID-19 microbiome biomarkers, established accurate predictive models as a basis for clinical prognostic tests for disease severity, and proposed biomarker-targeted diets for managing COVID-19 infection.
Collapse
Affiliation(s)
- Junhui Li
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Tarini Shankar Ghosh
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Rachel McCann
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorraine Draper
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David Schult
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Liam J. Fanning
- Department of Medicine, University College Cork, Cork, Ireland
| | - Robert Shannon
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Corinna Sadlier
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Mary Horgan
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Liam O’Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
56
|
Peng J, Gong H, Lyu X, Liu Y, Li S, Tan S, Dong L, Zhang X. Characteristics of the fecal microbiome and metabolome in older patients with heart failure and sarcopenia. Front Cell Infect Microbiol 2023; 13:1127041. [PMID: 36909727 PMCID: PMC9998919 DOI: 10.3389/fcimb.2023.1127041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Background Increasing evidence supports that gut microbiota plays an important role in the development of cardiovascular diseases. The prevalence of sarcopenia is increasing in patients with heart failure. Muscle wasting is an independent predictor of death in heart failure patients. Aims In this study, we aimed to explore the characteristics of gut microbiota and metabolites in heart failure patients with or without sarcopenia. Methods Fecal samples of 33 heart failure patients without sarcopenia, 29 heart failure patients with sarcopenia, and 15 controls were collected. The intestinal microbiota was analyzed using 16S rRNA sequencing and the metabolites were detected using the gas chromatography-mass spectrometry method. Results There were significant differences in the overall microbial community structure and diversity between control and heart failure patients with or without sarcopenia. However, no clear clustering of samples was observed in heart failure with and without sarcopenia patients. Several bacterial, particularly Nocardiaceae, Pseudonocardiaceae, Alphaproteobacteria, and Slackia were significantly enriched in the heart failure patients without sarcopenia, while Synergistetes was more abundant in the heart failure patients with sarcopenia. Isobutyric acid, isovaleric acid, and valeric acid were lower in heart failure patients with sarcopenia than that without sarcopenia but lacked significance. Conclusions This study demonstrates that there are differences in the gut microbiota between control individuals and heart failure patients with or without sarcopenia. Modulating the gut microbiota may be a new target for the prevention and treatment of sarcopenia in heart failure patients.
Collapse
Affiliation(s)
- Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shizhen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Xiangyu Zhang,
| |
Collapse
|
57
|
Zhong JG, Lan WT, Feng YQ, Li YH, Shen YY, Gong JH, Zou Z, Hou X. Associations between dysbiosis gut microbiota and changes of neurotransmitters and short-chain fatty acids in valproic acid model rats. Front Physiol 2023; 14:1077821. [PMID: 37035670 PMCID: PMC10073564 DOI: 10.3389/fphys.2023.1077821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: The microbiota-gut-brain axis plays an important role in the pathophysiology of autism spectrum disorder, but its specific mechanisms remain unclear. This study aimed to explore the associations of changes in neurotransmitters and short-chain fatty acids with alterations in gut microbiota in valproic acid model rats. Methods: The autism model rats were established by prenatal exposure to valproic acid (VPA). The Morris water maze test, open field test, and three-chamber test were conducted to assess the behaviors of rats. 16S rRNA gene sequences extracted from fecal samples were used to assess the gut microbial composition. Gas and liquid chromatography-mass spectroscopy was used to identify short-chain fatty acids in fecal samples and neurotransmitters in the prefrontal cortex (PFC). Results: The results showed that 28 bacterial taxa between valproic acid model rats and control rats were identified, and the most differential bacterial taxa in valproic acid model rats and control rats belonged to metagenomic species and Lactobacillus intestinalis. Acetic acid, butyric acid, valeric acid, isobutyric acid, and isovaleric acid were significantly decreased in the valproic acid model rats compared to those in control rats. Five neurotransmitters (threonine, kynurenine, tryptophan, 5-hydroxyindoleacetic acid, denoted as 5-HIAA, and betaine aldehyde chloride, denoted as BAC) were significantly decreased, whereas betaine was increased in the prefrontal cortex of valproic acid model rats compared to control rats. A variety of neurotransmitters (≥4) were correlated with Pseudomonas, Collisella, and Streptococcus at the genus level, and they were also related to the decrease of short-chain fatty acids. Discussion: According to this study, we can preliminarily infer that gut microbiota or their metabolic productions (such as SCFAs) may influence central neurotransmitter metabolism through related pathways of the gut-brain axis. These results provide microbial and short-chain fatty acid (SCFA) frameworks for understanding the role of the microbiota-gut-brain axis in autism spectrum disorder and shed new light on autism spectrum disorder treatment.
Collapse
Affiliation(s)
- Jiu-Gen Zhong
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Wan-Ting Lan
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Yan-Qing Feng
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Yin-Hua Li
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ying-Ying Shen
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Jia-Heng Gong
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Zhi Zou
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
- *Correspondence: Zhi Zou, ; Xiaohui Hou,
| | - Xiaohui Hou
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Zhi Zou, ; Xiaohui Hou,
| |
Collapse
|
58
|
Begum N, Mandhare A, Tryphena KP, Srivastava S, Shaikh MF, Singh SB, Khatri DK. Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front Aging Neurosci 2022; 14:1048333. [PMID: 36583185 PMCID: PMC9794020 DOI: 10.3389/fnagi.2022.1048333] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Gut-brain axis is a dynamic, complex, and bidirectional communication network between the gut and brain. Changes in the microbiota-gut-brain axis are responsible for developing various metabolic, neurodegenerative, and neuropsychiatric disorders. According to clinical and preclinical findings, the gut microbiota is a significant regulator of the gut-brain axis. In addition to interacting with intestinal cells and the enteric nervous system, it has been discovered that microbes in the gut can modify the central nervous system through metabolic and neuroendocrine pathways. The metabolites of the gut microbiome can modulate a number of diseases by inducing epigenetic alteration through DNA methylation, histone modification, and non-coding RNA-associated gene silencing. Short-chain fatty acids, especially butyrate, are well-known histone deacetylases inhibitors. Similarly, other microbial metabolites such as folate, choline, and trimethylamine-N-oxide also regulate epigenetics mechanisms. Furthermore, various studies have revealed the potential role of microbiome dysbiosis and epigenetics in the pathophysiology of depression. Hence, in this review, we have highlighted the role of gut dysbiosis in epigenetic regulation, causal interaction between host epigenetic modification and the gut microbiome in depression and suggest microbiome and epigenome as a possible target for diagnosis, prevention, and treatment of depression.
Collapse
Affiliation(s)
- Nusrat Begum
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aniket Mandhare
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Kamatham Pushpa Tryphena
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,*Correspondence: Saurabh Srivastava,
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia,Mohd Farooq Shaikh,
| | - Shashi Bala Singh
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,Dharmendra Kumar Khatri,
| |
Collapse
|
59
|
Wortelboer K, Koopen AM, Herrema H, de Vos WM, Nieuwdorp M, Kemper EM. From fecal microbiota transplantation toward next-generation beneficial microbes: The case of Anaerobutyricum soehngenii. Front Med (Lausanne) 2022; 9:1077275. [PMID: 36544495 PMCID: PMC9760881 DOI: 10.3389/fmed.2022.1077275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal gut microbiota is important for human health and well-being whereas deviations of the gut microbiota have been associated with a multitude of diseases. Restoration of a balanced and diverse microbiota by fecal microbiota transplantation (FMT) has emerged as a potential treatment strategy and promising tool to study causality of the microbiota in disease pathogenesis. However, FMT comes with logistical challenges and potential safety risks, such as the transfer of pathogenic microorganisms, undesired phenotypes or an increased risk of developing disease later in life. Therefore, a more controlled, personalized mixture of cultured beneficial microbes might prove a better alternative. Most of these beneficial microbes will be endogenous commensals to the host without a long history of safe and beneficial use and are therefore commonly referred to as next-generation probiotics (NGP) or live biotherapeutic products (LBP). Following a previous FMT study within our group, the commensal butyrate producer Anaerobutyricum spp. (previously named Eubacterium hallii) was found to be associated with improved insulin-sensitivity in subjects with the metabolic syndrome. After the preclinical testing with Anaerobutyricum soehngenii in mice models was completed, the strain was produced under controlled conditions and several clinical studies evaluating its safety and efficacy in humans were performed. Here, we describe and reflect on the development of A. soehngenii for clinical use, providing practical guidance for the development and testing of NGPs and reflecting on the current regulatory framework.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annefleur M. Koopen
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
| | - Willem M. de Vos
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marleen Kemper
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
60
|
Lee CC, Liao YC, Lee MC, Cheng YC, Chiou SY, Lin JS, Huang CC, Watanabe K. Different Impacts of Heat-Killed and Viable Lactiplantibacillus plantarum TWK10 on Exercise Performance, Fatigue, Body Composition, and Gut Microbiota in Humans. Microorganisms 2022; 10:2181. [PMID: 36363775 PMCID: PMC9692508 DOI: 10.3390/microorganisms10112181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 03/21/2024] Open
Abstract
Lactiplantibacillus plantarum TWK10, a probiotic strain, has been demonstrated to improve exercise performance, regulate body composition, and ameliorate age-related declines. Here, we performed a comparative analysis of viable and heat-killed TWK10 in the regulation of exercise performance, body composition, and gut microbiota in humans. Healthy adults (n = 53) were randomly divided into three groups: Control, TWK10 (viable TWK10, 3 × 1011 colony forming units/day), and TWK10-hk (heat-killed TWK10, 3 × 1011 cells/day) groups. After six-week administration, both the TWK10 and TWK10-hk groups had significantly improved exercise performance and fatigue-associated features and reduced exercise-induced inflammation, compared with controls. Viable TWK10 significantly promoted improved body composition, by increasing muscle mass proportion and reducing fat mass. Gut microbiota analysis demonstrated significantly increasing trends in the relative abundances of Akkermansiaceae and Prevotellaceae in subjects receiving viable TWK10. Predictive metagenomic profiling revealed that heat-killed TWK10 administration significantly enhanced the signaling pathways involved in amino acid metabolisms, while glutathione metabolism, and ubiquinone and other terpenoid-quinone biosynthesis pathways were enriched by viable TWK10. In conclusion, viable and heat-killed TWK10 had similar effects in improving exercise performance and attenuating exercise-induced inflammatory responses as probiotics and postbiotics, respectively. Viable TWK10 was also highly effective in regulating body composition. The differences in efficacy between viable and heat-killed TWK10 may be due to differential impacts in shaping gut microbiota.
Collapse
Affiliation(s)
- Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Yi-Chen Cheng
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Shiou-Yun Chiou
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Koichi Watanabe
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan
| |
Collapse
|
61
|
Mancin L, Amatori S, Caprio M, Sattin E, Bertoldi L, Cenci L, Sisti D, Bianco A, Paoli A. Effect of 30 days of ketogenic Mediterranean diet with phytoextracts on athletes' gut microbiome composition. Front Nutr 2022; 9:979651. [PMID: 36386948 PMCID: PMC9642348 DOI: 10.3389/fnut.2022.979651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Recent research suggest that gut microbiome may play a fundamental role in athlete's health and performance. Interestingly, nutrition can affect athletic performance by influencing the gut microbiome composition. Among different dietary patterns, ketogenic diet represents an efficient nutritional approach to get adequate body composition in athletes, however, some concerns have been raised about its potential detrimental effect on gut microbiome. To the best of our knowledge, only one study investigated the effect of ketogenic diet on the gut microbiome in athletes (elite race walkers), whilst no studies are available in a model of mixed endurance/power sport such as soccer. This study aimed to investigate the influence of a ketogenic Mediterranean diet with phytoextracts (KEMEPHY) diet on gut microbiome composition in a cohort of semi-professional soccer players. METHODS 16 male soccer players were randomly assigned to KEMEPHY diet (KDP n = 8) or western diet (WD n = 8). Body composition, performance measurements and gut microbiome composition were measured before and after 30 days of intervention by 16S rRNA amplicon sequencing. Alpha-diversity measures and PERMANOVA was used to investigate pre-post differences in the relative abundance of all taxonomic levels (from phylum to genus) and Spearman's correlations was used to investigate associations between microbial composition and macronutrient intake. Linear discriminant analysis was also performed at the different taxonomic levels on the post-intervention data. RESULTS No differences were found between pre and post- dietary intervention for microbial community diversity: no significant effects of time (p = 0.056, ES = 0.486 and p = 0.129, ES = 0.388, respectively for OTUs number and Shannon's ENS), group (p = 0.317, ES = 0.180 and p = 0.809, ES = 0.047) or time × group (p = 0.999, ES = 0.01 and p = 0.230, ES = 0.315). Post-hoc paired Wilcoxon test showed a significant time × group effect for Actinobacteriota (p = 0.021, ES = 0.578), which increased in the WD group (median pre: 1.7%; median post: 2.3%) and decreased in the KEMEPHY group (median pre: 4.3%; median post: 1.7%). At genus level, the linear discriminant analysis in the post intervention differentiated the two groups for Bifidobacterium genus (pertaining to the Actinobacteria phylum), Butyricicoccus and Acidaminococcus genera, all more abundant in the WD group, and for Clostridia UCG-014 (order, family, and genus), Butyricimonas, Odoribacterter genera (pertaining to the Marinifilaceae family), and Ruminococcus genus, all more abundant in the KEMEPHY group. CONCLUSIONS Our results demonstrate that 30 days of KEMEPHY intervention, in contrast with previous research on ketogenic diet and gut microbiome, do not modify the overall composition of gut microbiome in a cohort of athletes. KEMEPHY dietary pattern may represent an alternative and safety tool for maintaining and/or regulating the composition of gut microbiome in athletes practicing regular exercise. Due to the fact that not all ketogenic diets are equal, we hypothesized that each version of ketogenic diet, with different kind of nutrients or macronutrients partitioning, may differently affect the human gut microbiome.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center, University of Padua, Padua, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | - Lorenzo Cenci
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center, University of Padua, Padua, Italy
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center, University of Padua, Padua, Italy
- Research Center for High Performance Sport, UCAM, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
62
|
Hu X, Guo J, Wang J, Liu W, Xiang X, Chen S, Li X, Tang J, Zhang W, Chen H, Shu R, Wu Q, Wang Q. Study on the Relationship Between Diet, Physical Health and Gut Microflora of Chinese College Students. Curr Microbiol 2022; 79:370. [PMID: 36253614 DOI: 10.1007/s00284-022-03055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
Many elements of a modern lifestyle influence the gut microbiota but few studies have explored the effect of physical health level. This study was aimed to explore the relationship between diet, physical health and gut microbiota in Chinese college students. A total of 69 college students were recruited, including 27 college athletes (AS group) and 42 healthy controls (HC group). Fecal samples were collected for 16S rRNA sequencing. According to National Standards for Students' Physical Health (2014 revision), physical fitness measurements, dietary intake and health-related data were collected via questionnaires. ①According to the physical fitness scores, the physical fitness level of AS group was significantly higher than that of HC group (P < 0.05), there were no significant differences between the two groups in the frequency of intake of food. The frequency and duration of physical activity in the AS group were higher than those in the HC group (P < 0.05); ②The proportion and relative abundances of microorganism composition is varying at two groups: on the phylum level, AS group had mainly increased Firmicutes, Actinobacteria and reduced Bacteroidetes, Proteobacteria; on the genus level, AS group had mainly increased Faecalibacterium, Bifidobacterium and reduced Bacteroides; ③The associations with the 10 most abundant bacterial genera and physical fitness, dietary factors were investigated. Changes in the gut microbiota abundance can be sometimes reflective of a physical health status. Loss of the balance of gut microbial populations will lead to flora disorders and diseases. Therefore, further studies are needed to reveal the mechanisms behind the gut microbiota in its potential role.
Collapse
Affiliation(s)
- Xiafen Hu
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jiaqi Guo
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jiadun Wang
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wanxin Liu
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Siyang Chen
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinhan Tang
- College of Physical Education, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wei Zhang
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hui Chen
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Rong Shu
- The Third People's Hospital of Hubei Province, Zhongshan Hospital of Hubei Province, Wuhan, 430030, Hubei, People's Republic of China.
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironent, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
63
|
Erickson ML, Allen JM, Beavers DP, Collins LM, Davidson KW, Erickson KI, Esser KA, Hesselink MKC, Moreau KL, Laber EB, Peterson CA, Peterson CM, Reusch JE, Thyfault JP, Youngstedt SD, Zierath JR, Goodpaster BH, LeBrasseur NK, Buford TW, Sparks LM. Understanding heterogeneity of responses to, and optimizing clinical efficacy of, exercise training in older adults: NIH NIA Workshop summary. GeroScience 2022; 45:569-589. [PMID: 36242693 PMCID: PMC9886780 DOI: 10.1007/s11357-022-00668-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/03/2023] Open
Abstract
Exercise is a cornerstone of preventive medicine and a promising strategy to intervene on the biology of aging. Variation in the response to exercise is a widely accepted concept that dates back to the 1980s with classic genetic studies identifying sequence variations as modifiers of the VO2max response to training. Since that time, the literature of exercise response variance has been populated with retrospective analyses of existing datasets that are limited by a lack of statistical power from technical error of the measurements and small sample sizes, as well as diffuse outcomes, very few of which have included older adults. Prospective studies that are appropriately designed to interrogate exercise response variation in key outcomes identified a priori and inclusive of individuals over the age of 70 are long overdue. Understanding the underlying intrinsic (e.g., genetics and epigenetics) and extrinsic (e.g., medication use, diet, chronic disease) factors that determine robust versus poor responses to various exercise factors will be used to improve exercise prescription to target the pillars of aging and optimize the clinical efficacy of exercise training in older adults. This review summarizes the proceedings of the NIA-sponsored workshop entitled, "Understanding Heterogeneity of Responses to, and Optimizing Clinical Efficacy of, Exercise Training in Older Adults" and highlights the importance and current state of exercise response variation research, particularly in older adults, prevailing challenges, and future directions.
Collapse
Affiliation(s)
- Melissa L Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Daniel P Beavers
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Linda M Collins
- Department of Social and Behavioral Sciences, New York University, New York, NY, USA
| | - Karina W Davidson
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, New York, NY, USA
| | - Kirk I Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric B Laber
- Department of Statistical Sciences, Duke University, Durham, NC, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Courtney M Peterson
- Department of Nutritional Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane E Reusch
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KN, USA
| | - Shawn D Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, 1313 13th St. S., Birmingham, AL, 35244, USA.
- Birmingham/Atlanta VA GRECC, Birmingham VA Medical Center, Birmingham, AL, USA.
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA.
| |
Collapse
|
64
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
65
|
Luk AWS, Mitchell L, Koay YC, O’Sullivan JF, O’Connor H, Hackett DA, Holmes A. Intersection of Diet and Exercise with the Gut Microbiome and Circulating Metabolites in Male Bodybuilders: A Pilot Study. Metabolites 2022; 12:metabo12100911. [PMID: 36295813 PMCID: PMC9608465 DOI: 10.3390/metabo12100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Diet, exercise and the gut microbiome are all factors recognised to be significant contributors to cardiometabolic health. However, diet and exercise interventions to modify the gut microbiota to improve health are limited by poor understanding of the interactions between them. In this pilot study, we explored diet–exercise–microbiome dynamics in bodybuilders as they represent a distinctive group that typically employ well-defined dietary strategies and exercise regimes to alter their body composition. We performed longitudinal characterisation of diet, exercise, the faecal microbial community composition and serum metabolites in five bodybuilders during competition preparation and post-competition. All participants reduced fat mass while conserving lean mass during competition preparation, corresponding with dietary energy intake and exercise load, respectively. There was individual variability in food choices that aligned to individualised gut microbial community compositions throughout the study. However, there was a common shift from a high protein, low carbohydrate diet during pre-competition to a more macronutrient-balanced diet post-competition, which was associated with similar changes in the gut microbial diversity across participants. The circulating metabolite profiles also reflected individuality, but a subset of metabolites relating to lipid metabolism distinguished between pre- and post-competition. Changes in the gut microbiome and circulating metabolome were distinct for each individual, but showed common patterns. We conclude that further longitudinal studies will have greater potential than cross-sectional studies in informing personalisation of diet and exercise regimes to enhance exercise outcomes and improve health.
Collapse
Affiliation(s)
- Alison W. S. Luk
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lachlan Mitchell
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - John F. O’Sullivan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Helen O’Connor
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Daniel A. Hackett
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: ; Tel.: +61-2-93512530
| |
Collapse
|
66
|
Zhu H, Qiang J, Li Q, Nie Z, Gao J, Sun Y, Xu G. Multi-kingdom microbiota and functions changes associated with culture mode in genetically improved farmed tilapia ( Oreochromis niloticus). Front Physiol 2022; 13:974398. [PMID: 36171968 PMCID: PMC9510917 DOI: 10.3389/fphys.2022.974398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) are intensively farmed in China, where most of the yield derives from the pond culture system (PCS). The in-pond raceway system (IPRS) is a new type of highly efficient aquaculture mode, and has been recommended as a novel system for GIFT farming. To determine the effects of these culture modes on the gut microbiome of GIFT, we conducted a 90-days experiment in IPRS and PCS units. A 16S rRNA gene profile analysis showed that the composition of gut microbiota in GIFT under IPRS and PCS conditions gradually separated as rearing progressed, with divergent responses by the midgut and hindgut bacteria. The α-diversity in hindgut decreased significantly by day 90, as compared with on day 7 (p < 0.05), with a significantly greater decrease in PCS-reared fish than in IPRS fish (p < 0.05). The α-diversity of microbiota in midgut remained stable (p > 0.05). The overall dominant gut bacteria were Bacteroidetes, Proteobacteria, and Firmicutes. Rearing mode affected the taxonomic profile of the gut bacteria; in midgut, IPRS samples had more Firmicutes and Fusobacteria compared with PCS samples, but less Proteobacteria, Verrucomicrobia, and Actinobacteria. Firmicutes was enriched in IPRS hindgut, and Fusobacteria was enriched in PCS hindgut. Using random-forest models and LEfSe, we also screened core taxa that could discriminate between the gut microbial communities under IPRS and PCS conditions. The genus Cetobacterium (of family Fusobacteriaceae) was significantly enriched in midgut in IPRS fish, and enriched in hindgut in PCS fish. The genus Clostridium sensu stricto (of family Clostridiaceae 1) was significantly enriched in both IPRS midgut and hindgut. Analysis with PICRUSt2 software revealed that the culture modes were similar in their effects on the gut microbial metabolic functions. The predicted pathways were significantly enriched in the metabolism class (level 1). Further, the relative abundance of functions related to amino acid metabolic, carbohydrate metabolic, energy metabolic, and metabolic of cofactors and vitamins were high at hierarchy level 2, as the metabolic activity of intestinal bacteria is especially active. Overall, this study enhances our understanding of the characteristics of gut microbiota in GIFT under IPRS and PCS culture modes. Moreover, our findings provide insights into the microecological balance in IPRS units, and a theoretical reference for further development of this culture system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
67
|
Probiotic Lactiplantibacillus plantarum Tana Isolated from an International Weightlifter Enhances Exercise Performance and Promotes Antifatigue Effects in Mice. Nutrients 2022; 14:nu14163308. [PMID: 36014816 PMCID: PMC9416726 DOI: 10.3390/nu14163308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022] Open
Abstract
Exercise causes changes in the gut microbiota, and in turn, the composition of the gut microbiota affects exercise performance. In addition, the supplementation of probiotics is one of the most direct ways to change the gut microbiota. In recent years, the development and application of human-origin probiotics has gradually attracted attention. Therefore, we obtained intestinal Lactiplantibacillus plantarum “Tana” from a gold-medal-winning weightlifter, who has taken part in various international competitions such as the World Championships and the Olympic Games, to investigate the benefits of Tana supplementation for improving exercise performance and promoting antifatigue effects in mice. A total of 40 male Institute of Cancer Research (ICR) mice were divided into four groups (10 mice/group): (1) vehicle (0 CFU/mice/day), (2) Tana-1× (6.15 × 107 CFU/mice/day), (3) Tana-2× (1.23 × 108 CFU /mice/day), and (4) Tana-5× (3.09 × 108 CFU/mice/day). After four weeks of Tana supplementation, we found that the grip strength, endurance exercise performance, and glycogen storage in the liver and muscle were significantly improved compared to those in the vehicle group (p < 0.05). In addition, supplementation with Tana had significant effects on fatigue-related biochemical markers; lactate, ammonia, and blood urea nitrogen (BUN) levels and creatine kinase (CK) activity were significantly lowered (p < 0.05). We also found that the improved exercise performance and antifatigue benefits were significantly dose-dependent on increasing doses of Tana supplementation (p < 0.05), which increased the abundance and ratio of beneficial bacteria in the gut. Taken together, Tana supplementation for four weeks was effective in improving the gut microbiota, thereby enhancing exercise performance, and had antifatigue effects. Furthermore, supplementation did not cause any physiological or histopathological damage.
Collapse
|
68
|
The Effects of Physical Activity on the Gut Microbiota and the Gut–Brain Axis in Preclinical and Human Models: A Narrative Review. Nutrients 2022; 14:nu14163293. [PMID: 36014798 PMCID: PMC9413457 DOI: 10.3390/nu14163293] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence supports the importance of the gut microbiota (GM) in regulating multiple functions related to host physical health and, more recently, through the gut–brain axis (GBA), mental health. Similarly, the literature on the impact of physical activity (PA), including exercise, on GM and GBA is growing. Therefore, this narrative review summarizes and critically appraises the existing literature that delves into the benefits or adverse effects produced by PA on physical and mental health status through modifications of the GM, highlighting differences and similarities between preclinical and human studies. The same exercise in animal models, whether performed voluntarily or forced, has different effects on the GM, just as, in humans, intense endurance exercise can have a negative influence. In humans and animals, only aerobic PA seems able to modify the composition of the GM, whereas cardiovascular fitness appears related to specific microbial taxa or metabolites that promote a state of physical health. The PA favors bacterial strains that can promote physical performance and that can induce beneficial changes in the brain. Currently, it seems useful to prioritize aerobic activities at a moderate and not prolonged intensity. There may be greater benefits if PA is undertaken from a young age and the effects on the GM seem to gradually disappear when the activity is stopped. The PA produces modifications in the GM that can mediate and induce mental health benefits.
Collapse
|
69
|
Bongiovanni T, Lacome M, Fanos V, Martera G, Cione E, Cannataro R. Metabolomics in Team-Sport Athletes: Current Knowledge, Challenges, and Future Perspectives. Proteomes 2022; 10:27. [PMID: 35997439 PMCID: PMC9396992 DOI: 10.3390/proteomes10030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics is a promising tool for studying exercise physiology and exercise-associated metabolism. It has recently been defined with the term "sportomics" due to metabolomics' capability to characterize several metabolites in several biological samples simultaneously. This narrative review on exercise metabolomics provides an initial and brief overview of the different metabolomics technologies, sample collection, and further processing steps employed for sport. It also discusses the data analysis and its biological interpretation. Thus, we do not cover sample collection, preparation, and analysis paragraphs in detail here but outline a general outlook to help the reader to understand the metabolomics studies conducted in team-sports athletes, alongside endeavoring to recognize existing or emergent trends and deal with upcoming directions in the field of exercise metabolomics in a team-sports setting.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Performance and Analytics Department, Parma Calcio 1913, 43122 Parma, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20129 Milano, Italy
| | - Mathieu Lacome
- Performance and Analytics Department, Parma Calcio 1913, 43122 Parma, Italy
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), 75012 Paris, France
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, AOU Cagliari Department of Surgery, University of Cagliari, 09124 Cagliari, Italy
| | - Giulia Martera
- Department of Nutrition, Spezia Calcio, 19136 La Spezia, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
- GalaScreen Laboratories, Department of Pharmacy Health and Nutritional Sciences, 87036 Rende (CS), Italy
| | - Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
- GalaScreen Laboratories, Department of Pharmacy Health and Nutritional Sciences, 87036 Rende (CS), Italy
| |
Collapse
|
70
|
Bonomini-Gnutzmann R, Plaza-Díaz J, Jorquera-Aguilera C, Rodríguez-Rodríguez A, Rodríguez-Rodríguez F. Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9518. [PMID: 35954878 PMCID: PMC9368618 DOI: 10.3390/ijerph19159518] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
(1) Background: The gut microbiota might play a part in affecting athletic performance and is of considerable importance to athletes. The aim of this study was to search the recent knowledge of the protagonist played by high-intensity and high-duration aerobic exercise on gut microbiota composition in athletes and how these effects could provide disadvantages in sports performance. (2) Methods: This systematic review follows the PRISMA guidelines. An exhaustive bibliographic search in Web of Science, PubMed, and Scopus was conducted considering the articles published in the last 5 years. The selected articles were categorized according to the type of study. The risk of bias was assessed using the Joanna Briggs Institute's Critical Appraisal Tool for Systematic Reviews. (3) Results: Thirteen studies had negative effects of aerobic exercise on intestinal microbiota such as an upsurge in I-FABP, intestinal distress, and changes in the gut microbiota, such as an increase in Prevotella, intestinal permeability and zonulin. In contrast, seven studies observed positive effects of endurance exercise, including an increase in the level of bacteria such as increased microbial diversity and increased intestinal metabolites. (4) Conclusions: A large part of the studies found reported adverse effects on the intestinal microbiota when performing endurance exercises. In studies carried out on athletes, more negative effects on the microbiota were found than in those carried out on non-athletic subjects.
Collapse
Affiliation(s)
| | - Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Carlos Jorquera-Aguilera
- Escuela de Nutrición y Dietética, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
| | - Andrés Rodríguez-Rodríguez
- Gastric Cancer Research Group—Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile;
| |
Collapse
|
71
|
Puce L, Hampton-Marcell J, Trabelsi K, Ammar A, Chtourou H, Boulares A, Marinelli L, Mori L, Cotellessa F, Currà A, Trompetto C, Bragazzi NL. Swimming and the human microbiome at the intersection of sports, clinical, and environmental sciences: A scoping review of the literature. Front Microbiol 2022; 13:984867. [PMID: 35992695 PMCID: PMC9382026 DOI: 10.3389/fmicb.2022.984867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
The human microbiota is comprised of more than 10-100 trillion microbial taxa and symbiotic cells. Two major human sites that are host to microbial communities are the gut and the skin. Physical exercise has favorable effects on the structure of human microbiota and metabolite production in sedentary subjects. Recently, the concept of "athletic microbiome" has been introduced. To the best of our knowledge, there exists no review specifically addressing the potential role of microbiomics for swimmers, since each sports discipline requires a specific set of techniques, training protocols, and interactions with the athletic infrastructure/facility. Therefore, to fill in this gap, the present scoping review was undertaken. Four studies were included, three focusing on the gut microbiome, and one addressing the skin microbiome. It was found that several exercise-related variables, such as training volume/intensity, impact the athlete's microbiome, and specifically the non-core/peripheral microbiome, in terms of its architecture/composition, richness, and diversity. Swimming-related power-/sprint- and endurance-oriented activities, acute bouts and chronic exercise, anaerobic/aerobic energy systems have a differential impact on the athlete's microbiome. Therefore, their microbiome can be utilized for different purposes, including talent identification, monitoring the effects of training methodologies, and devising ad hoc conditioning protocols, including dietary supplementation. Microbiomics can be exploited also for clinical purposes, assessing the effects of exposure to swimming pools and developing potential pharmacological strategies to counteract the insurgence of skin infections/inflammation, including acne. In conclusion, microbiomics appears to be a promising tool, even though current research is still limited, warranting, as such, further studies.
Collapse
Affiliation(s)
- Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Khaled Trabelsi
- Institut Supérieur du Sport et de l’Éducation Physique de Sfax, Université de Sfax, Sfax, Tunisia
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, Sfax University, Sfax, Tunisia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Sport Science, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), Université Paris Lumières, Paris Nanterre University, Nanterre, France
| | - Hamdi Chtourou
- Institut Supérieur du Sport et de l’Éducation Physique de Sfax, Université de Sfax, Sfax, Tunisia
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisia
| | - Ayoub Boulares
- Higher Institute of Sports and Physical Education of Ksar-Said, University of Manouba, Tunis, Tunisia
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Filippo Cotellessa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Currà
- Department of Medical-Surgical Sciences and Biotechnologies, A. Fiorini Hospital, Sapienza University of Rome, Latina, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| |
Collapse
|
72
|
Li J, Qu Z, Liu F, Jing H, Pan Y, Guo S, Ho CL. Diet‐Based Microbiome Modulation: You are What You Eat. PRINCIPLES IN MICROBIOME ENGINEERING 2022:1-46. [DOI: 10.1002/9783527825462.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
73
|
Mańkowska K, Marchelek-Myśliwiec M, Kochan P, Kosik-Bogacka D, Konopka T, Grygorcewicz B, Roszkowska P, Cecerska-Heryć E, Siennicka A, Konopka J, Dołęgowska B. Microbiota in sports. Arch Microbiol 2022; 204:485. [PMID: 35834007 PMCID: PMC9283338 DOI: 10.1007/s00203-022-03111-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
The influence of microbiota on the human body is currently the subject of many studies. The composition of bacteria colonizing the gastrointestinal tract varies depending on genetic make-up, lifestyle, use of antibiotics or the presence of diseases. The diet is also important in the species diversity of the microbiota. This study is an analysis of the relationships between physical activity, diet, and the microbiota of the gastrointestinal tract in athletes. This review shows the differences in the microbial composition in various sports disciplines, the influence of probiotics on the microbiome, the consequence of which may be achieved even better sports results. Physical activity increases the number of bacteria, mainly of the Clostridiales order and the genus: Lactobacillus, Prevotella, Bacteroides, and Veillonella, and their number varies depending on the sports discipline. These bacteria are present in athletes in sports that require a high VO2 max. The players’ diet also influences the composition of the microbiota. A diet rich in dietary fiber increases the amount of Lactobacillus or Bifidobacterium bacteria, probiotic microorganisms, which indicates the need to supplement the diet with probiotic preparations. It is impossible to suggest an unambiguous answer to how the microbiota of the gastrointestinal tract changes in athletes and requires further analyzes.
Collapse
Affiliation(s)
- Katarzyna Mańkowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland.
| | | | - Piotr Kochan
- Department of Bacteriology, Microbial Ecology and Parasitology, Chair of Microbiology, Jagiellonian University Medical College, Cracow, Poland
| | - Danuta Kosik-Bogacka
- Independent of Pharmaceutical Botany, Department of Medical Biology and Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Konopka
- Department of Orthopedics, Traumatology and Oncology of the Musculoskeletal System, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland
| | - Paulina Roszkowska
- Department of Immunological Diagnostics, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland
| | - Aldona Siennicka
- Department of Laboratory Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Justyna Konopka
- Department of Orthodontics, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland
| |
Collapse
|
74
|
Wang W, Xu Y, Wang X, Chu Y, Zhang H, Zhou L, Zhu H, Li J, Kuai R, Zhou F, Yang D, Peng H. Swimming Impedes Intestinal Microbiota and Lipid Metabolites of Tumorigenesis in Colitis-Associated Cancer. Front Oncol 2022; 12:929092. [PMID: 35847876 PMCID: PMC9285133 DOI: 10.3389/fonc.2022.929092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 12/09/2022] Open
Abstract
Background Accumulating data support that regular physical activity potentially inhibits chronic colitis, a risk factor for colitis-associated cancer (CAC). However, possible effects of physical activity on CAC and the underlying mechanisms remain poorly understood. Methods A pretreatment of swimming on azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CAC mice was implemented to determine its protective effect. Inflammation and tumorigenesis were assessed using colorectums from C57BL/6 mice. In order to determine how swimming alters colonic lipid metabolism and gene expression, a comparative analysis was conducted. Meanwhile, alterations in intestinal microbiota and short-chain fatty acids (SCFAs) were detected and analyzed. Finally, an integration analysis of colonic lipid metabolism with gene expression and intestinal microbiota was performed respectively. Result Swimming pretreatment relieved bowel inflammation and minimized tumor formation. We demonstrated that prostaglandin E2 (PGE2)/PGE2 receptor 2 subtype (EP2) signaling as a potential regulatory target for swimming induces colonic lipid metabolites. Swimming-induced genera, Erysipelatoclostridium, Parabacteroides, Bacteroides, and Rikenellaceae_RC9_gut_group, induced intestinal SCFAs and affected the function of colonic lipid metabolites enriched in glycerophospholipid metabolism and choline metabolism in cancer. Conclusion According to our experiments, swimming pretreatment can protect mice from CAC by intervention in the possible link between colonic lipid metabolites and PGE2/EP2 signaling. Further, swimming-induced genera and probiotics promoted glycerophospholipid metabolism and choline metabolism in cancer, the major constituents of colonic lipid metabolites, and increased SCFAs, which were also important mechanisms for the anti-inflammatory and anti-tumorigenic effects of swimming.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Daming Yang
- *Correspondence: Haixia Peng, ; Daming Yang,
| | - Haixia Peng
- *Correspondence: Haixia Peng, ; Daming Yang,
| |
Collapse
|
75
|
Kang K, Zhou N, Peng W, Peng F, Ma M, Li L, Fu F, Xiang S, Zhang H, He X, Song Z. Multi-Omics Analysis of the Microbiome and Metabolome Reveals the Relationship Between the Gut Microbiota and Wooden Breast Myopathy in Broilers. Front Vet Sci 2022; 9:922516. [PMID: 35812872 PMCID: PMC9260154 DOI: 10.3389/fvets.2022.922516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Wooden breast (WB) is a widely prevalent myopathy in broiler chickens. However, the role of the gut microbiota in this myopathy remains largely unknown, in particular the regulatory effect of gut microbiota in the modulation of muscle metabolism. Totally, 300 1-day-old Arbor Acres broilers were raised until 49 days and euthanized, and the breast filets were classified as normal (NORM), mild (MILD), or severe wooden breast (SEV). Birds with WB comprised 27.02% of the individuals. Severe WB filets had a greater L* value, a* value, and dripping loss but a lower pH (P < 0.05). WB filets had abundant myofiber fragmentation, with a lower average myofiber caliber and more fibers with a diameter of <20 μm (P < 0.05). The diversity of the intestinal microflora was decreased in birds with severe WB, with decreases in Chao 1, and observed species indices. At the phylum level, birds with severe WB had a lower Firmicutes/Bacteroidetes ratio (P = 0.098) and a decreased abundance of Verrucomicrobia (P < 0.05). At the species level, gut microbiota were positively correlated with 131 digesta metabolites in pathways of glutamine and glutamate metabolism and arginine biosynthesis but were negatively correlated with 30 metabolites in the pathway of tyrosine metabolism. In plasma, WB induced five differentially expressed metabolites (DEMs), including anserine and choline, which were related to the severity of the WB lesion. The microbial-derived metabolites, including guanidoacetic acid, antiarol, and (2E)-decenoyl-ACP, which entered into plasma were related to meat quality traits and myofiber traits. In summary, WB filets differed in gut microbiota, digesta, and plasma metabolites. Gut microbiota respond to the wooden breast myopathy by driving dynamic changes in digesta metabolites that eventually enter the plasma.
Collapse
Affiliation(s)
- Kelang Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Nanxuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Weishi Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Fang Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Mengmeng Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Liwei Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Fuyi Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Shuhan Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
76
|
Karolkiewicz J, Nieman DC, Cisoń T, Szurkowska J, Gałęcka M, Sitkowski D, Szygula Z. No effects of a 4-week post-exercise sauna bathing on targeted gut microbiota and intestinal barrier function, and hsCRP in healthy men: a pilot randomized controlled trial. BMC Sports Sci Med Rehabil 2022; 14:107. [PMID: 35710395 PMCID: PMC9202095 DOI: 10.1186/s13102-022-00497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022]
Abstract
Background Body temperature fluctuations induced by acute exercise bouts may influence the intestinal barrier with related effects on epithelial permeability, immune responses, and release of metabolites produced by the gut microbiota. This study evaluated the effects of post-exercise sauna bathing in young men undergoing endurance training on gut bacteria inflammation and intestinal barrier function. Methods Fifteen (15) untrained males aged 22 ± 1.5 years were randomly assigned to exercise training (ET) with or without post-exercise sauna treatments (S). Participants in the group ET + S (n = 8) exercised 60 min, 3 times per week, on a bicycle ergometer followed by a 30-min dry Finish sauna treatment. The control group (ET, n = 7) engaged in the same exercise training program without the sauna treatments. Blood and stool samples were collected before and after the 4-week training program. Blood samples were analysed for the concentration of high-sensitivity C-reactive protein (hsCRP) and complete blood counts. Stool samples were analysed for pH, quantitative and qualitative measures of targeted bacteria, zonulin, and secretory immunoglobulin A. Results Interaction effects revealed no differences in the pattern of change over time between groups for the abundance of selected gut microbiome bacteria and stool pH, zonulin, sIgA, and hsCRP. Pre- and post-study fecal concentrations of Bifidobacterium spp., Faecalibacterium prausnitzii, and Akkermansia muciniphila were below reference values for these bacteria in both groups. Conclusions The combination of 4-weeks exercise followed by passive heat exposure did not have a measurable influence on targeted gut microbiota, intestinal barrier function, and hsCRP levels in young males. Trial registration The study was retrospectively registered in the clinical trials registry (Clinicaltrials.gov) under the trial registration number: NCT05277597. Release Date: March 11, 2022.
Collapse
Affiliation(s)
- Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Poland.
| | - David C Nieman
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Tomasz Cisoń
- Department of Physiotherapy, Institute of Physical Education, State University of Applied Sciences in Nowy Sącz, Nowy Sącz, Poland
| | - Joanna Szurkowska
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Poland
| | | | - Dariusz Sitkowski
- Department of Physiology, Institute of Sport - National Research Institute PL, Warsaw, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, University of Physical Education, Kraków, Poland
| |
Collapse
|
77
|
Stockdale SR, Harrington RS, Shkoporov AN, Khokhlova EV, Daly KM, McDonnell SA, O'Reagan O, Nolan JA, Sheehan D, Lavelle A, Draper LA, Shanahan F, Ross RP, Hill C. Metagenomic assembled plasmids of the human microbiome vary across disease cohorts. Sci Rep 2022; 12:9212. [PMID: 35654877 PMCID: PMC9163076 DOI: 10.1038/s41598-022-13313-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
We compiled a human metagenome assembled plasmid (MAP) database and interrogated differences across multiple studies that were originally designed to investigate the composition of the human microbiome across various lifestyles, life stages and events. This was performed as plasmids enable bacteria to rapidly expand their functional capacity through mobilisation, yet their contribution to human health and disease is poorly understood. We observed that inter-sample β-diversity differences of plasmid content (plasmidome) could distinguish cohorts across a multitude of conditions. We also show that reduced intra-sample plasmidome α-diversity is consistent amongst patients with inflammatory bowel disease (IBD) and Clostridioides difficile infections. We also show that faecal microbiota transplants can restore plasmidome diversity. Overall plasmidome diversity, specific plasmids, and plasmid-encoded functions can all potentially act as biomarkers of IBD or its severity. The human plasmidome is an overlooked facet of the microbiome and should be integrated into investigations regarding the role of the microbiome in promoting health or disease. Including MAP databases in analyses will enable a greater understanding of the roles of plasmid-encoded functions within the gut microbiome and will inform future human metagenome analyses.
Collapse
Affiliation(s)
- S R Stockdale
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland.
| | - R S Harrington
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - A N Shkoporov
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - E V Khokhlova
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - K M Daly
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - S A McDonnell
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - O O'Reagan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - J A Nolan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - D Sheehan
- Department of Medicine, University College Cork, Co. Cork, Ireland
| | - A Lavelle
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department of Medicine, University College Cork, Co. Cork, Ireland
| | - L A Draper
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - F Shanahan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department of Medicine, University College Cork, Co. Cork, Ireland
| | - R P Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - C Hill
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland.
- School of Microbiology, University College Cork, Co. Cork, Ireland.
| |
Collapse
|
78
|
Wegierska AE, Charitos IA, Topi S, Potenza MA, Montagnani M, Santacroce L. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med 2022; 52:2355-2369. [PMID: 35596883 PMCID: PMC9474385 DOI: 10.1007/s40279-022-01696-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2022] [Indexed: 12/16/2022]
Abstract
Gut microbiota refers to those microorganisms in the human digestive tract that display activities fundamental in human life. With at least 4 million different bacterial types, the gut microbiota is composed of bacteria that are present at levels sixfold greater than the total number of cells in the entire human body. Among its multiple functions, the microbiota helps promote the bioavailability of some nutrients and the metabolization of food, and protects the intestinal mucosa from the aggression of pathogenic microorganisms. Moreover, by stimulating the production of intestinal mediators able to reach the central nervous system (gut/brain axis), the gut microbiota participates in the modulation of human moods and behaviors. Several endogenous and exogenous factors can cause dysbiosis with important consequences on the composition and functions of the microbiota. Recent research underlines the importance of appropriate physical activity (such as sports), nutrition, and a healthy lifestyle to ensure the presence of a functional physiological microbiota working to maintain the health of the whole human organism. Indeed, in addition to bowel disturbances, variations in the qualitative and quantitative microbial composition of the gastrointestinal tract might have systemic negative effects. Here, we review recent studies on the effects of physical activity on gut microbiota with the aim of identifying potential mechanisms by which exercise could affect gut microbiota composition and function. Whether physical exercise of variable work intensity might reflect changes in intestinal health is analyzed.
Collapse
Affiliation(s)
- Angelika Elzbieta Wegierska
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy.,Italian Athletics Federation (FIDAL), Rome, Italy
| | - Ioannis Alexandros Charitos
- Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, Foggia, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan "A. Xhuvani", Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Biomedical Sciences and Human Oncology-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
79
|
Viciani E, Barone M, Bongiovanni T, Quercia S, Di Gesu R, Pasta G, Manetti P, Iaia FM, Trecroci A, Rampelli S, Candela M, Biagi E, Castagnetti A. Fecal microbiota monitoring in elite soccer players along the 2019-2020 competitive season. Int J Sports Med 2022; 43:1137-1147. [PMID: 35595508 DOI: 10.1055/a-1858-1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Physical exercise affects the human gut microbiota that, in turn, influences athletes' performance. The current understanding of how the microbiota of professional athletes changes along with different phases of training is sparse. We aim to characterize the fecal microbiota in elite soccer players along with different phases of a competitive season using 16S rRNA gene sequencing. Fecal samples were collected after the summer off-season period, the pre-season retreat, the first half of the competitive season, and the 8 weeks COVID-19 lockdown that interrupted the season 2019-2020. According to our results, the gut microbiota of professional athletes changes along with the phases of the season, characterized by different training, diet, nutritional surveillance, and environment sharing. Pre-season retreat, during which nutritional surveillance and exercise intensity were at their peak, caused a decrease in bacterial groups related to unhealthy lifestyle and an increase in health-promoting symbionts. The competitive season and forced interruption affected other features of the athletes' microbiota, i.e. bacterial groups that respond to dietary fibers load and stress levels. Our longitudinal study, focusing on one of the most followed sports worldwide, provides baseline data for future comparisons and microbiome-targeting interventions aimed at developing personalized training and nutrition plans for performances maximization.
Collapse
Affiliation(s)
| | - Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Tindaro Bongiovanni
- Department of Health, Nutrition and Exercise Physiology, Parma Calcio 1913, Parma, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | | | | | - Giulio Pasta
- Medical Department, Parma Calcio 1913, Parma, Italy
| | | | - F Marcello Iaia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Athos Trecroci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, BOLOGNA, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | |
Collapse
|
80
|
Gao S, Khan MI, Kalsoom F, Liu Z, Chen Y, Chen Z. Role of gene regulation and inter species interaction as a key factor in gut microbiota adaptation. Arch Microbiol 2022; 204:342. [PMID: 35595857 DOI: 10.1007/s00203-022-02935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Gut microbiota is a class of microbial flora present in various eukaryotic multicellular complex animals such as human beings. Their community's growth and survival are greatly influenced by various factors such as host-pathogen, pathogen-environment and genetic regulation. Modern technologies like metagenomics have particularly extended our capacity to uncover the microbial treasures in challenging conditions like communities surviving at high altitude. Molecular characterizations by newly developed sequencing tools have shown that this complex interaction greatly influences microbial adaptation to the environment. Literature shows that gut microbiota alters the genetic expression and switches to an alternative pathway under the influence of unfavorable conditions. The remarkable adaptability of microbial genetic regulatory networks enables them to survive and expand in tough and energy-limited conditions. Variable prevalence of species in various regions has strengthened this initial evidence. In view of the interconnection of the world in the form of a global village, this phenomenon must be explored more clearly. In this regard, recently there has been significant addition of knowledge to the field of microbial adaptation. This review summarizes and shed some light on mechanisms of microbial adaptation via gene regulation and species interaction in gut microbiota.
Collapse
Affiliation(s)
- Shuang Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China
| | - Muhammad Imran Khan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China. .,Department of Pathology, District Headquarters Hospital, Jhang, 35200, Punjab, Islamic Republic of Pakistan.
| | - Fadia Kalsoom
- Department of Microbiology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yanxin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
81
|
Forteza F, Bourdeau-Julien I, Nguyen GQ, Guevara Agudelo FA, Rochefort G, Parent L, Rakotoarivelo V, Feutry P, Martin C, Perron J, Lamarche B, Flamand N, Veilleux A, Billaut F, Di Marzo V, Raymond F. Influence of diet on acute endocannabinoidome mediator levels post exercise in active women, a crossover randomized study. Sci Rep 2022; 12:8568. [PMID: 35595747 PMCID: PMC9122896 DOI: 10.1038/s41598-022-10757-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
The extended endocannabinoid system, also termed endocannabinoidome, participates in multiple metabolic functions in health and disease. Physical activity can both have an acute and chronic impact on endocannabinoid mediators, as does diet. In this crossover randomized controlled study, we investigated the influence of diet on the peripheral response to acute maximal aerobic exercise in a sample of active adult women (n = 7) with no underlying metabolic conditions. We compared the impact of 7-day standardized Mediterranean diet (MedDiet) and control diet inspired by Canadian macronutrient intake (CanDiet) on endocannabinoidome and short-chain fatty acid metabolites post maximal aerobic exercise. Overall, plasmatic endocannabinoids, their congeners and some polyunsaturated fatty acids increased significantly post maximal aerobic exercise upon cessation of exercise and recovered their initial values within 1 h after exercise. Most N-acylethanolamines and polyunsaturated fatty acids increased directly after exercise when the participants had consumed the MedDiet, but not when they had consumed the CanDiet. This impact was different for monoacylglycerol endocannabinoid congeners, which in most cases reacted similarly to acute exercise while on the MedDiet or the CanDiet. Fecal microbiota was only minimally affected by the diet in this cohort. This study demonstrates that endocannabinoidome mediators respond to acute maximal aerobic exercise in a way that is dependent on the diet consumed in the week prior to exercise.
Collapse
Affiliation(s)
- Fabiola Forteza
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Isabelle Bourdeau-Julien
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Guillaume Q Nguyen
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Fredy Alexander Guevara Agudelo
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Gabrielle Rochefort
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Lydiane Parent
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Volatiana Rakotoarivelo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Perrine Feutry
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Julie Perron
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Benoît Lamarche
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Quebec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec, Canada.,Département de médecine, Faculté de Médecine, Université Laval, Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Alain Veilleux
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - François Billaut
- Département de kinésiologie, Faculté de médecine, Université Laval, Quebec, Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec, Canada.,École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Quebec, Canada.,Département de médecine, Faculté de Médecine, Université Laval, Quebec, Canada.,Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec, Canada.,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada
| | - Frédéric Raymond
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Quebec, Canada. .,École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Quebec, Canada. .,Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, Canada.
| |
Collapse
|
82
|
Gut Microbial Stability is Associated with Greater Endurance Performance in Athletes Undertaking Dietary Periodization. mSystems 2022; 7:e0012922. [PMID: 35579384 PMCID: PMC9238380 DOI: 10.1128/msystems.00129-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dietary manipulation with high-protein or high-carbohydrate content are frequently employed during elite athletic training, aiming to enhance athletic performance. Such interventions are likely to impact upon gut microbial content. This study explored the impact of acute high-protein or high-carbohydrate diets on measured endurance performance and associated gut microbial community changes. In a cohort of well-matched, highly trained endurance runners, we measured performance outcomes, as well as gut bacterial, viral (FVP), and bacteriophage (IV) communities in a double-blind, repeated-measures design randomized control trial (RCT) to explore the impact of dietary intervention with either high-protein or high-carbohydrate content. High-dietary carbohydrate improved time-trial performance by +6.5% (P < 0.03) and was associated with expansion of Ruminococcus and Collinsella bacterial spp. Conversely, high dietary protein led to a reduction in performance by −23.3% (P = 0.001). This impact was accompanied by significantly reduced diversity (IV: P = 0.04) and altered composition (IV and FVP: P = 0.02) of the gut phageome as well as enrichment of both free and inducible Sk1virus and Leuconostoc bacterial populations. Greatest performance during dietary modification was observed in participants with less substantial shifts in community composition. Gut microbial stability during acute dietary periodization was associated with greater athletic performance in this highly trained, well-matched cohort. Athletes, and those supporting them, should be mindful of the potential consequences of dietary manipulation on gut flora and implications for performance, and periodize appropriately. IMPORTANCE Dietary periodization is employed to improve endurance exercise performance but may impact on gut microbial communities. Bacteriophage are implicated in bacterial cell homeostasis and have been identified as biomarkers of disequilibrium in the gut ecosystem possibly brought about through dietary periodization. We find high-carbohydrate and high-protein diets to have opposing impacts on endurance performance in highly trained athlete populations. Reduced performance is linked with disturbance of microbial stasis in the gut. We demonstrate bacteriophage communities are the most sensitive component of the gut microbiota to increased gut stress following dietary manipulation. Athletes undertaking dietary periodization should be aware of potential negative impacts of drastic changes to dietary composition on gut microbial stasis and, in turn, endurance performance.
Collapse
|
83
|
Yeh WL, Hsu YJ, Ho CS, Ho HH, Kuo YW, Tsai SY, Huang CC, Lee MC. Lactobacillus plantarum PL-02 Supplementation Combined With Resistance Training Improved Muscle Mass, Force, and Exercise Performance in Mice. Front Nutr 2022; 9:896503. [PMID: 35571912 PMCID: PMC9094439 DOI: 10.3389/fnut.2022.896503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing numbers of researchers are investigating the benefits of probiotics in enhancing exercise performance and verifying the role of the gut–muscle axis. In our previous study, Lactobacillus plantarum PL-02 improved exercise performance and muscle mass. Therefore, the purpose of this study was to investigate whether supplementation with PL-02 combined with resistance training has a synergistic effect on exercise performance and muscle mass. All the animals were assigned into four groups (n = 8/group): a sedentary control with normal distilled water group (vehicle, n = 8); PL-02 supplementation group (PL-02, 2.05 × 109 CFU, n = 8); resistance training group (RT, n = 8); PL-02 supplementation combined with resistance training group (PL-02 + RT, 2.05 × 109 CFU, n = 8). Supplementation with PL-02 for four consecutive weeks combined with resistance exercise training significantly improved the grip strength and the maximum number of crawls; increased the time of exhaustive exercise; significantly reduced the time required for a single climb; and reduced the lactate, blood ammonia, creatine kinase, and blood urea nitrogen produced after exercise (p < 0.05). In addition, it produced substantial benefits for increasing muscle mass without causing any physical damage. In summary, our findings confirmed that PL-02 or RT supplementation alone is effective in improving muscle mass and exercise performance and in reducing exercise fatigue, but the combination of the two can achieve increased benefits.
Collapse
Affiliation(s)
- Wen-Ling Yeh
- Department of Orthopedic Surgery, Lotung Poh-Ai Hospital, Luodong, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chin-Shen Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| |
Collapse
|
84
|
Vilchez-Vargas R, Skieceviciene J, Lehr K, Varkalaite G, Thon C, Urba M, Morkūnas E, Kucinskas L, Bauraite K, Schanze D, Zenker M, Malfertheiner P, Kupcinskas J, Link A. Gut microbial similarity in twins is driven by shared environment and aging. EBioMedicine 2022; 79:104011. [PMID: 35490553 PMCID: PMC9062754 DOI: 10.1016/j.ebiom.2022.104011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human gut microbiome composition is influenced by genetics, diet and environmental factors. We investigated the microbial composition in several gastrointestinal (GI) compartments to evaluate the impact of genetics, delivery mode, diet, household sharing and aging on microbial similarity in monozygotic and dizygotic twins. METHODS Fecal, biopsy and saliva samples were obtained from total 108 twins. DNA and/or RNA was extracted and the region V1-V2 of the 16S rRNA gene was amplified and sequenced. Bray-Curtis similarity was used for further microbiome comparisons, Mann-Whitney test was applied to evaluate the significant differences between groups and Spearman test was applied to reveal potential correlations between data. FINDINGS The global bacterial profiles were grouped into two clusters separating the upper and lower GI. The upper GI microbiome composition was strictly dependent on the Helicobacter pylori status. With a positivity rate of 55%, H. pylori completely colonized the stomach and separated infected twins from non-infected twins irrespective of zygosity status. Lower GI microbiome similarity between the twins was defined mainly by household-sharing and aging; whereas delivery mode and host genetics had no influence. There was a progredient decrease in the bacterial similarity with aging. Shared vs. non-shared phylotypes analysis showed that in both siblings the shared phylotypes progressively diminished with aging, while the non-shared phylotypes increased. INTERPRETATION Our findings strongly highlight the aging and shared household as they key determinants in gut microbial similarity and drift in twins irrespective of their zygotic state. FUNDING This work was supported by the grant of the Research Council of Lithuania (Project no. APP-2/2016) and also partially supported by the funds of European Commission through the "European funds for regional development" (EFRE) as well as by the regional Ministry of Economy, Science and Digitalization as part of the "LiLife" Project as part of the "Autonomy in old Age" research group (Project ID: ZS/2018/11/95324).
Collapse
Affiliation(s)
- Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120, Germany
| | - Jurgita Skieceviciene
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania; Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120, Germany
| | - Greta Varkalaite
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120, Germany
| | - Mindaugas Urba
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania; Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Egidijus Morkūnas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania; Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Laimutis Kucinskas
- Institute of Biology Systems and Genetic Research, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Karolina Bauraite
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Denny Schanze
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania; Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania.
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120, Germany.
| |
Collapse
|
85
|
Glisic M, Flueck JL, Ruettimann B, Hertig-Godeschalk A, Valido E, Bertolo A, Stucki G, Stoyanov J. The feasibility of a crossover, randomized controlled trial design to assess the effect of probiotics and prebiotics on health of elite Swiss para-athletes: a study protocol. Pilot Feasibility Stud 2022; 8:94. [PMID: 35477496 PMCID: PMC9044645 DOI: 10.1186/s40814-022-01048-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) may cause an autonomic imbalance in the gastrointestinal tract, leading to deficits in colonic motility, mucosal secretions, vascular tone, and an increase of intestinal barrier permeability. Autonomic denervation and factors such as age, physical activity, antibiotic use and stress may cause intestinal bacterial translocation, decreased microbiota diversity, known as gut dysbiosis and thus increase susceptibility to experiencing gastrointestinal discomfort. Probiotic treatment in individuals with SCI may normalize the gut microbiota and improve overall health. We aim to assess the feasibility of probiotic and prebiotic intervention in athletes with SCI and collect information necessary for sample size calculation of a definite trial on improving health outcomes in para-athletes. METHODS AND ANALYSIS Elite Swiss para-athletes (aged> 18 years), being shortlisted for the Paralympic Games 2021 in Tokyo or a member of a national team (n = 43), will be invited to participate in this single-center randomized crossover trial. Athletes suffering from chronic inflammatory bowel diseases, those currently taking antibiotics or other medication to alleviate gastro-intestinal complaints will not be eligible to be included in the study. Athletes will be randomized (1:1) to receive for 4 weeks a daily dose of either 3 g of probiotic preparation or 5 g of prebiotic (organic oat bran) supplementation in addition to usual diet, followed by a 4-week washout period or vice versa. The primary outcome is the feasibility of the study, measured by recruitment and dropout rates, feasibility of the measurements, acceptability and adherence to the intervention. Secondary outcomes include gastrointestinal health assessment, diet and training information, handgrip strength, blood diagnostic parameters, and intestinal microbiome characterization. The changes in clinically relevant secondary outcome values will be used to make a power calculation for definite trial. DISCUSSION This pilot trial will address two common challenges in SCI research: the difficulty to recruit enough participants for a sufficiently powered study and the ability to collect data within the limits of a realistic budget and time frame. Upon demonstrated feasibility of the intervention and study procedures, the intervention will be evaluated in a definitive controlled trial comprising a larger sample of para-athletes (elite, engaged, or recreationally active) individuals with a SCI. TRIAL REGISTRATION NCT04659408.
Collapse
Affiliation(s)
- Marija Glisic
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland.,Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, CH-3012, Bern, Switzerland
| | - Joelle L Flueck
- Sports Medicine, Swiss Paraplegic Centre, CH-6207, Nottwil, Switzerland
| | | | | | - Ezra Valido
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland
| | - Alessandro Bertolo
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland
| | - Gerold Stucki
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland. .,Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, CH-3012, Bern, Switzerland.
| |
Collapse
|
86
|
Wu G, Tawfeeq HR, Lackey AI, Zhou Y, Sifnakis Z, Zacharisen SM, Xu H, Doran JM, Sampath H, Zhao L, Lam YY, Storch J. Gut Microbiota and Phenotypic Changes Induced by Ablation of Liver- and Intestinal-Type Fatty Acid-Binding Proteins. Nutrients 2022; 14:1762. [PMID: 35565729 PMCID: PMC9099671 DOI: 10.3390/nu14091762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal fatty acid-binding protein (IFABP; FABP2) and liver fatty acid-binding protein (LFABP; FABP1) are small intracellular lipid-binding proteins. Deficiency of either of these proteins in mice leads to differential changes in intestinal lipid transport and metabolism, and to markedly divergent changes in whole-body energy homeostasis. The gut microbiota has been reported to play a pivotal role in metabolic process in the host and can be affected by host genetic factors. Here, we examined the phenotypes of wild-type (WT), LFABP-/-, and IFABP-/- mice before and after high-fat diet (HFD) feeding and applied 16S rRNA gene V4 sequencing to explore guild-level changes in the gut microbiota and their associations with the phenotypes. The results show that, compared with WT and IFABP-/- mice, LFABP-/- mice gained more weight, had longer intestinal transit time, less fecal output, and more guilds containing bacteria associated with obesity, such as members in family Desulfovibrionaceae. By contrast, IFABP-/- mice gained the least weight, had the shortest intestinal transit time, the most fecal output, and the highest abundance of potentially beneficial guilds such as those including members from Akkermansia, Lactobacillus, and Bifidobacterium. Twelve out of the eighteen genotype-related bacterial guilds were associated with body weight. Interestingly, compared with WT mice, the levels of short-chain fatty acids in feces were significantly higher in LFABP-/- and IFABP-/- mice under both diets. Collectively, these studies show that the ablation of LFABP or IFABP induced marked changes in the gut microbiota, and these were associated with HFD-induced phenotypic changes in these mice.
Collapse
Affiliation(s)
- Guojun Wu
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hiba R. Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Atreju I. Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yinxiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Zoe Sifnakis
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Sophia M. Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Heli Xu
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Justine M. Doran
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Harini Sampath
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liping Zhao
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yan Y. Lam
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
- Gut Microbiota and Metabolism Group, Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
87
|
Shi Y, Wang P, Zhou D, Huang L, Zhang L, Gao X, Maitiabula G, Wang S, Wang X. Multi-Omics Analyses Characterize the Gut Microbiome and Metabolome Signatures of Soldiers Under Sustained Military Training. Front Microbiol 2022; 13:827071. [PMID: 35401452 PMCID: PMC8990768 DOI: 10.3389/fmicb.2022.827071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Exercise can directly alter the gut microbiome at the compositional and functional metabolic levels, which in turn may beneficially influence physical performance. However, data how the gut microbiome and fecal metabolome change, and how they interact in soldiers who commonly undergo sustained military training are limited. To address this issue, we first performed 16S rRNA sequencing to assess the gut microbial community patterns in a cohort of 80 soldiers separated into elite soldiers (ES, n = 40) and non-elite soldiers (N-ES, n = 40). We observed that the α-diversities of the ES group were higher than those of the N-ES group. As for both taxonomical structure and phenotypic compositions, elite soldiers were mainly characterized by an increased abundance of bacteria producing short-chain fatty acids (SCFAs), including Ruminococcaceae_UCG-005, Prevotella_9, and Veillonella, as well as a higher proportion of oxidative stress tolerant microbiota. The taxonomical signatures of the gut microbiome were significantly correlated with soldier performance. To further investigate the metabolic activities of the gut microbiome, using an untargeted metabolomic method, we found that the ES and N-ES groups displayed significantly different metabolic profiles and differential metabolites were primarily involved in the metabolic network of carbohydrates, energy, and amino acids, which might contribute to an enhanced exercise phenotype. Furthermore, these differences in metabolites were strongly correlated with the altered abundance of specific microbes. Finally, by integrating multi-omics data, we identified a shortlist of bacteria-metabolites associated with physical performance, following which a random forest classifier was established based on the combinatorial biomarkers capable of distinguishing between elite and non-elite soldiers with high accuracy. Our findings suggest possible future modalities for improving physical performance through targeting specific bacteria associated with more energetically efficient metabolic patterns.
Collapse
Affiliation(s)
- Yifan Shi
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Peng Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Da Zhou
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Longchang Huang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Zhang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuejin Gao
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gulisudumu Maitiabula
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Siwen Wang
- Department of General Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Xinying Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
88
|
Ruiz-Iglesias P, Massot-Cladera M, Rodríguez-Lagunas MJ, Franch À, Camps-Bossacoma M, Castell M, Pérez-Cano FJ. A Cocoa Diet Can Partially Attenuate the Alterations in Microbiota and Mucosal Immunity Induced by a Single Session of Intensive Exercise in Rats. Front Nutr 2022; 9:861533. [PMID: 35479747 PMCID: PMC9036086 DOI: 10.3389/fnut.2022.861533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Following intensive sports events, a higher rate of upper respiratory tract infections and the appearance of gastrointestinal symptomatology have been reported. We aimed to evaluate the effect of a cocoa-enriched diet on the cecal microbiota and mucosal immune system of rats submitted to high-intensity acute exercise, as well as to elucidate the involvement of cocoa fiber in such effects. Methods Wistar rats were fed either a standard diet, a diet containing 10% cocoa providing 5% fiber and a diet containing only 5% cocoa fiber. After 25 days, half of the rats of each diet performed an exhaustion running test. Sixteen hours later, samples were obtained to assess, among others, the cecal microbiota and short chain fatty acids (SCFAs) composition, mesenteric lymph nodes (MLNs) and Peyer’s patches (PPs) lymphocyte composition, and immunoglobulin (Ig) content in salivary glands. Results The intake of cocoa, partially due to its fiber content, improved the SCFA production, prevented some changes in PPs and in MLNs lymphocyte composition and also decreased the production of proinflammatory cytokines. Cocoa diet, contrary to cocoa fiber, did not prevent the lower salivary IgM induced by exercise. Conclusion A cocoa dietary intake can partially attenuate the alterations in microbiota and mucosal immunity induced by a single session of intensive exercise.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Margarida Castell,
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| |
Collapse
|
89
|
Hintikka JE, Munukka E, Valtonen M, Luoto R, Ihalainen JK, Kallonen T, Waris M, Heinonen OJ, Ruuskanen O, Pekkala S. Gut Microbiota and Serum Metabolome in Elite Cross-Country Skiers: A Controlled Study. Metabolites 2022; 12:metabo12040335. [PMID: 35448522 PMCID: PMC9028832 DOI: 10.3390/metabo12040335] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Exercise has been shown to affect gut the microbiome and metabolic health, with athletes typically displaying a higher microbial diversity. However, research on the gut microbiota and systemic metabolism in elite athletes remains scarce. In this study, we compared the gut microbiota profiles and serum metabolome of national team cross-country skiers at the end of an exhausting training and competitive season to those of normally physically-active controls. The gut microbiota were analyzed using 16S rRNA amplicon sequencing. Serum metabolites were analyzed using nuclear magnetic resonance. Phylogenetic diversity and the abundance of several mucin-degrading gut microbial taxa, including Akkermansia, were lower in the athletes. The athletes had a healthier serum lipid profile than the controls, which was only partly explained by body mass index. Butyricicoccus associated positively with HDL cholesterol, HDL2 cholesterol and HDL particle size. The Ruminococcus torques group was less abundant in the athlete group and positively associated with total cholesterol and VLDL and LDL particles. We found the healthier lipid profile of elite athletes to co-occur with known health-beneficial gut microbes. Further studies should elucidate these links and whether athletes are prone to mucin depletion related microbial changes during the competitive season.
Collapse
Affiliation(s)
- Jukka E. Hintikka
- Faculty of Sport and Health Sciences, University of Jyvaskyla, 40014 Jyväskylä, Finland; (J.K.I.); (S.P.)
- Correspondence:
| | - Eveliina Munukka
- Turku Microbiome Biobank, Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| | - Maarit Valtonen
- Research Institute for Olympic Sports, 40700 Jyväskylä, Finland;
| | - Raakel Luoto
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Johanna K. Ihalainen
- Faculty of Sport and Health Sciences, University of Jyvaskyla, 40014 Jyväskylä, Finland; (J.K.I.); (S.P.)
| | - Teemu Kallonen
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland;
| | - Matti Waris
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| | - Olli J. Heinonen
- Paavo Nurmi Centre, Department of Health and Physical Activity, University of Turku, 20540 Turku, Finland;
| | - Olli Ruuskanen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyvaskyla, 40014 Jyväskylä, Finland; (J.K.I.); (S.P.)
| |
Collapse
|
90
|
Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D’Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci 2022; 23:4027. [PMID: 35409389 PMCID: PMC8999966 DOI: 10.3390/ijms23074027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Resveratrol is a polyphenol that has been shown to possess many applications in different fields of medicine. This systematic review has drawn attention to the axis between resveratrol and human microbiota, which plays a key role in maintaining an adequate immune response that can lead to different diseases when compromised. Resveratrol can also be an asset in new technologies, such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January 2022, with English-language restriction using the following Boolean keywords: ("resveratrol" AND "microbio*"). Eighteen studies were included as relevant papers matching the purpose of our investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy, and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host's genetic expression and the gastrointestinal microbial community with its administration. The possibility of identifying individual microbial families may allow to tailor therapeutic plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and metabolic syndrome.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Maria Grazia Garibaldi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Zamira Kruti
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonella Tarullo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Kongresi Elbasanit, Aqif Pasha, Rruga, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Megan Jones
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Maspero
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Kenan Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Arberesha Bexheti Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| |
Collapse
|
91
|
Burtscher J, Ticinesi A, Millet GP, Burtscher M, Strasser B. Exercise-microbiota interactions in aging-related sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:775-780. [PMID: 35142446 PMCID: PMC8978000 DOI: 10.1002/jcsm.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub (MRH), University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Parma University-Hospital, Parma, Italy
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
- JPI-HDHL Knowledge Platform on Food, Diet, Intestinal Microbiomics and Human Health, The Netherlands Organisation for Health Research and Development, Amsterdam, The Netherlands
| |
Collapse
|
92
|
Rodriguez J, Neyrinck AM, Van Kerckhoven M, Gianfrancesco MA, Renguet E, Bertrand L, Cani PD, Lanthier N, Cnop M, Paquot N, Thissen JP, Bindels LB, Delzenne NM. Physical activity enhances the improvement of body mass index and metabolism by inulin: a multicenter randomized placebo-controlled trial performed in obese individuals. BMC Med 2022; 20:110. [PMID: 35351144 PMCID: PMC8966292 DOI: 10.1186/s12916-022-02299-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Dietary interventions targeting the gut microbiota have been proposed as innovative strategies to improve obesity-associated metabolic disorders. Increasing physical activity (PA) is considered as a key behavioral change for improving health. We have tested the hypothesis that changing the PA status during a nutritional intervention based on prebiotic supplementation can alter or even change the metabolic response to the prebiotic. We confirm in obese subjects and in high-fat diet fed mice that performing PA in parallel to a prebiotic supplementation is necessary to observe metabolic improvements upon inulin. METHODS A randomized, single-blinded, multicentric, placebo-controlled trial was conducted in obese participants who received 16 g/day native inulin versus maltodextrin, coupled to dietary advice to consume inulin-rich versus -poor vegetables for 3 months, respectively, in addition to dietary caloric restriction. Primary outcomes concern the changes on the gut microbiota composition, and secondary outcomes are related to the measures of anthropometric and metabolic parameters, as well as the evaluation of PA. Among the 106 patients who completed the study, 61 patients filled a questionnaire for PA before and after intervention (placebo: n = 31, prebiotic: n = 30). Except the dietitian (who provided dietary advices and recipes book), all participants and research staff were blinded to the treatments and no advices related to PA were given to participants in order to change their habits. In parallel, a preclinical study was designed combining both inulin supplementation and voluntary exercise in a model of diet-induced obesity in mice. RESULTS Obese subjects who increased PA during a 3 months intervention with inulin-enriched diet exhibited several clinical improvements such as reduced BMI (- 1.6 kg/m2), decreased liver enzymes and plasma cholesterol, and improved glucose tolerance. Interestingly, the regulations of Bifidobacterium, Dialister, and Catenibacterium genera by inulin were only significant when participants exercised more. In obese mice, we highlighted a greater gut fermentation of inulin and improved glucose homeostasis when PA is combined with prebiotics. CONCLUSION We conclude that PA level is an important determinant of the success of a dietary intervention targeting the gut microbiota. TRIAL REGISTRATION ClinicalTrials.gov, NCT03852069 (February 22, 2019 retrospectively registered).
Collapse
Affiliation(s)
- Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Van Kerckhoven
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Marco A Gianfrancesco
- Laboratory of Diabetology, Nutrition and Metabolic Disease, Université de Liège, Liège, Belgium
| | - Edith Renguet
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Lanthier
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Brussels, Belgium
| | - Nicolas Paquot
- Laboratory of Diabetology, Nutrition and Metabolic Disease, Université de Liège, Liège, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
93
|
Zhang P, Kong L, Huang H, Pan Y, Zhang D, Jiang J, Shen Y, Xi C, Lai J, Ng CH, Hu S. Gut Microbiota – A Potential Contributor in the Pathogenesis of Bipolar Disorder. Front Neurosci 2022; 16:830748. [PMID: 35401095 PMCID: PMC8984199 DOI: 10.3389/fnins.2022.830748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric disorders that is characterized by recurrent episodes of depression and mania (or hypomania), leading to seriously adverse outcomes with unclear pathogenesis. There is an underlying relationship between bacterial communities residing in the gut and brain function, which together form the gut-brain axis (GBA). Recent studies have shown that changes in the gut microbiota have been observed in a large number of BD patients, so the axis may play a role in the pathogenesis of BD. This review summarizes briefly the relationship between the GBA and brain function, the composition and changes of gut microbiota in patients with BD, and further explores the potential role of GBA-related pathway in the pathogenesis of BD as well as the limitations in this field at present in order to provide new ideas for the future etiology research and drug development.
Collapse
Affiliation(s)
- Peifen Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Lingzhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Huang
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Yanmeng Pan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Shen
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Caixi Xi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
| | - Chee H. Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent’s Hospital, University of Melbourne, Richmond, VIC, Australia
- *Correspondence: Chee H. Ng,
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Shaohua Hu,
| |
Collapse
|
94
|
Cataldi S, Bonavolontà V, Poli L, Clemente FM, De Candia M, Carvutto R, Silva AF, Badicu G, Greco G, Fischetti F. The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. BIOLOGY 2022; 11:479. [PMID: 35336852 PMCID: PMC8945171 DOI: 10.3390/biology11030479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023]
Abstract
Several studies have been conducted to find at least an association between physical activity (PA)/ physical exercise (PE) and the possibility to modulate the gut microbiome (GM). However, the specific effects produced on the human GM by different types of PA/PE, different training modalities, and their age-related effects are not yet fully understood. Therefore, this systematic review aims to evaluate and summarize the current scientific evidence investigating the bi-directional relationship between PA/PE and the human GM, with a specific focus on the different types/variables of PA/PE and age-related effects, in healthy and unhealthy people. A systematic search was conducted across four databases (Web of Science, Medline (PubMed), Google Scholar, and Cochrane Library). Information was extracted using the populations, exposure, intervention, comparison, outcomes (PICOS) format. The Oxford Quality Scoring System Scale, the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool, and the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies were used as a qualitative measure of the review. The protocol was registered in PROSPERO (code: CRD42022302725). The following data items were extracted: author, year of publication, study design, number and age of participants, type of PA/PE carried out, protocol/workload and diet assessment, duration of intervention, measurement tools used, and main outcomes. Two team authors reviewed 694 abstracts for inclusion and at the end of the screening process, only 76 full texts were analyzed. Lastly, only 25 research articles met the eligibility criteria. The synthesis of these findings suggests that GM diversity is associated with aerobic exercise contrary to resistance training; abundance of Prevotella genus seems to be correlated with training duration; no significant change in GM richness and diversity are detected when exercising according to the minimum dose recommended by the World Health Organizations; intense and prolonged PE can induce a higher abundance of pro-inflammatory bacteria; PA does not lead to significant GM α/β-diversity in elderly people (60+ years). The heterogeneity of the training parameters used in the studies, diet control, and different sequencing methods are the main confounders. Thus, this systematic review can provide an in-depth overview of the relationship between PA/PE and the human intestinal microbiota and, at the same time, provide indications from the athletic and health perspective.
Collapse
Affiliation(s)
- Stefania Cataldi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Valerio Bonavolontà
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Luca Poli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - Michele De Candia
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Roberto Carvutto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068 Brasov, Romania;
| | - Gianpiero Greco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Francesco Fischetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| |
Collapse
|
95
|
Soriano S, Curry K, Sadrameli SS, Wang Q, Nute M, Reeves E, Kabir R, Wiese J, Criswell A, Schodrof S, Britz GW, Gadhia R, Podell K, Treangen T, Villapol S. Alterations to the gut microbiome after sport-related concussion in a collegiate football players cohort: A pilot study. Brain Behav Immun Health 2022; 21:100438. [PMID: 35284846 PMCID: PMC8914332 DOI: 10.1016/j.bbih.2022.100438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023] Open
Abstract
Concussions, both single and repetitive, cause brain and body alterations in athletes during contact sports. The role of the brain-gut connection and changes in the microbiota have not been well established after sports-related concussions or repetitive subconcussive impacts. We recruited 33 Division I Collegiate football players and collected blood, stool, and saliva samples at three time points throughout the athletic season: mid-season, following the last competitive game (post-season), and after a resting period in the off-season. Additional samples were collected from four athletes that suffered from a concussion. 16S rRNA sequencing of the gut microbiome revealed a decrease in abundance for two bacterial species, Eubacterium rectale, and Anaerostipes hadrus, after a diagnosed concussion. No significant differences were found regarding the salivary microbiome. Serum biomarker analysis shows an increase in GFAP blood levels in athletes during the competitive season. Additionally, S100β and SAA blood levels were positively correlated with the abundance of Eubacterium rectale species among the group of athletes that did not suffer a diagnosed concussion during the sports season. These findings provide initial evidence that detecting changes in the gut microbiome may help to improve concussion diagnosis following head injury. A longitudinal study following college football athletes across a sports season. Nanopore 16S rRNA sequencing of gut microbiome reveals changes after head injury. Serum biomarker GFAP increased during the competitive period of the season. S100β and SAA blood levels were positively correlated with Eubacterium rectale. Gut microbiota is suggested as a future biomarker for diagnosis following head injury.
Collapse
Affiliation(s)
- Sirena Soriano
- Department of Neurosurgery, Houston, TX, USA.,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Kristen Curry
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Qi Wang
- Department of Computer Science, Rice University, Houston, TX, USA.,Systems, Synthetic and Physical Biology Program, Rice University, TX, USA
| | - Michael Nute
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Elizabeth Reeves
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Rasadul Kabir
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Jonathan Wiese
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Amber Criswell
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Sarah Schodrof
- Department of Athletics, Rice University, Houston, TX, USA
| | - Gavin W Britz
- Department of Neurosurgery, Houston, TX, USA.,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Rajan Gadhia
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Kenneth Podell
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Todd Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Sonia Villapol
- Department of Neurosurgery, Houston, TX, USA.,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.,Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, NY, USA
| |
Collapse
|
96
|
Mohr AE, Pugh J, O'Sullivan O, Black K, Townsend JR, Pyne DB, Wardenaar FC, West NP, Whisner CM, McFarland LV. Best Practices for Probiotic Research in Athletic and Physically Active Populations: Guidance for Future Randomized Controlled Trials. Front Nutr 2022; 9:809983. [PMID: 35350412 PMCID: PMC8957944 DOI: 10.3389/fnut.2022.809983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotic supplementation, traditionally used for the prevention or treatment of a variety of disease indications, is now recognized in a variety of population groups including athletes and those physically active for improving general health and performance. However, experimental and clinical trials with probiotics commonly suffer from design flaws and different outcome measures, making comparison and synthesis of conclusions difficult. Here we review current randomized controlled trials (RCTs) using probiotics for performance improvement, prevention of common illnesses, or general health, in a specific target population (athletes and those physically active). Future RCTs should address the key elements of (1) properly defining and characterizing a probiotic intervention, (2) study design factors, (3) study population characteristics, and (4) outcome measures, that will allow valid conclusions to be drawn. Careful evaluation and implementation of these elements should yield improved trials, which will better facilitate the generation of evidence-based probiotic supplementation recommendations for athletes and physically active individuals.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- *Correspondence: Alex E. Mohr
| | - Jamie Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, United States
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Floris C. Wardenaar
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, QLD, Australia
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Lynne V. McFarland
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
97
|
Anhê FF, Zlitni S, Barra NG, Foley KP, Nilsson MI, Nederveen JP, Koch LG, Britton SL, Tarnopolsky MA, Schertzer JD. Life-long exercise training and inherited aerobic endurance capacity produce converging gut microbiome signatures in rodents. Physiol Rep 2022; 10:e15215. [PMID: 35246957 PMCID: PMC8897742 DOI: 10.14814/phy2.15215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023] Open
Abstract
High aerobic endurance capacity can be acquired by training and/or inherited. Aerobic exercise training (AET) and aging are linked to altered gut microbiome composition, but it is unknown if the environmental stress of exercise and host genetics that predispose for higher exercise capacity have similar effects on the gut microbiome during aging. We hypothesized that exercise training and host genetics would have conserved effects on the gut microbiome across different rodents. We studied young sedentary (Y-SED, 2-month-old) mice, old sedentary (O-SED, 26-month-old) mice, old mice with life-long AET (O-AET, 26-month-old), and aged rats selectively bred for high (HCR [High Capacity Runner], 21-month-old) and low (LCR [Low Capacity Runner], 21-month-old) aerobic capacity. Our results showed that O-SED mice had lower running capacity than Y-SED mice. The fecal microbiota of O-SED mice had a higher relative abundance of Lachnospiraceae, Ruminococcaceae, Turicibacteriaceae, and Allobaculum, but lower Bacteroidales, Alistipes, Akkermansia, and Anaeroplasma. O-AET mice had a higher running capacity than O-SED mice. O-AET mice had lower fecal levels of Lachnospiraceae, Turicibacteriaceae, and Allobaculum and higher Anaeroplasma than O-SED mice. Similar to O-AET mice, but despite no exercise training regime, aged HCR rats had lower Lachnospiraceae and Ruminococcaceae and expansion of certain Bacteroidales in the fecal microbiome compared to LCR rats. Our data show that environmental and genetic modifiers of high aerobic endurance capacity produce convergent gut microbiome signatures across different rodent species during aging. Therefore, we conclude that host genetics and life-long exercise influence the composition of the gut microbiome and can mitigate gut dysbiosis and functional decline during aging.
Collapse
Affiliation(s)
- Fernando F. Anhê
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonOntarioCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Soumaya Zlitni
- Departments of Genetics and MedicineStanford UniversityStanfordCaliforniaUSA
| | - Nicole G. Barra
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonOntarioCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Kevin P. Foley
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonOntarioCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Mats I. Nilsson
- Department of PediatricsMcMaster UniversityHamiltonOntarioCanada
| | | | - Lauren G. Koch
- Department of Physiology and PharmacologyThe University of ToledoCollege of Medicine and Life SciencesToledoOhioUSA
| | - Steven L. Britton
- Department of AnesthesiologyUniversity of MichiganAnn ArborMichiganUnited States
| | - Mark A. Tarnopolsky
- Department of PediatricsMcMaster UniversityHamiltonOntarioCanada
- Department of MedicineMcMaster UniversityHamiltonOntarioCanada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
- Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonOntarioCanada
- Centre for Metabolism, Obesity and Diabetes ResearchMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
98
|
Shaw S, Berry S, Thomson J, Murray GI, El-Omar E, Hold GL. Gut Mucosal Microbiome Signatures of Colorectal Cancer Differ According to BMI Status. Front Med (Lausanne) 2022; 8:800566. [PMID: 35211486 PMCID: PMC8861504 DOI: 10.3389/fmed.2021.800566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023] Open
Abstract
Background Carrying excess body weight is a strong risk factor for colorectal cancer (CRC) development with ~11% of CRC cases in Europe linked to being overweight. The mechanisms through which excess body weight influences CRC development are not well understood but studies suggest the involvement of the presence of chronic low-grade inflammation and changes in the gut microbiota are involved. Aim To compare the mucosal associated microbiota of patients with CRC to understand whether carrying excess body weight was associated with a unique CRC microbial signature. Methods Microbiota signatures from colonic mucosal biopsies of CRC lesions and adjacent normal mucosal samples from 20 patients with overt CRC were compared with 11 healthy controls to see if having a BMI of >25 kg/m2 influenced colonic microbial composition. Results Colonic mucosa samples from patients with CRC confirmed previously reported over-abundance of Fusobacteria associated with CRC but also an increase in Fusobacteria and Prevotella were associated with a BMI of >25 kg/m2. Correlation analysis of bacterial taxa indicated co-exclusive relationships were more common in CRC patients with a BMI >25 kg/m2 with an increase in transphylum relationships also seen in this patient group. Conclusions The findings suggest that gut microbiota composition in patients with CRC is influenced by BMI status. Further understanding/defining these differences will provide valuable information in terms of developing novel pre-onset screening and providing post-manifestation therapeutic intervention.
Collapse
Affiliation(s)
- Sophie Shaw
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Susan Berry
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - John Thomson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Graeme I Murray
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Emad El-Omar
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Georgina L Hold
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
99
|
Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front Neurosci 2022; 16:833202. [PMID: 35273477 PMCID: PMC8902155 DOI: 10.3389/fnins.2022.833202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer's disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Carol L. Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David C. Nieman
- Human Performance Lab, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
100
|
Increased physical activity improves gut microbiota composition and reduces short-chain fatty acid concentrations in older adults with insomnia. Sci Rep 2022; 12:2265. [PMID: 35145140 PMCID: PMC8831598 DOI: 10.1038/s41598-022-05099-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Physical activity (PA) can improve functional abilities, well-being, and independence in older adults with insomnia. Studies have shown that PA may be linked to changes in the gut microbiota composition and its metabolites' concentrations. This association among older adults with insomnia, however, is yet to be determined. We explored the relationships between physical activity (PA) levels, gut microbiota composition, and short-chain fatty acid (SCFA) levels in this population. Forty-nine community-dwelling adults with insomnia symptoms, aged 65 and older, participated in this study. Their average daily step-count and sleep continuity measures over a two-week period were calculated based on Actigraphic recordings. Each participant provided fecal samples for the microbiome and SCFA analyses, anthropometric measures, and information via questionnaires on medical history and food consumption. The gut microbiota composition and SCFA concentrations were determined by next-generation sequencing and Gas chromatography-mass spectrometry, respectively. Participants were divided into two groups (more and less active) according to their median step/day count. We compared the microbiota abundance and SCFA concentrations between groups and performed correlation analysis between gut microbiota abundances and study variables. Different microbiota taxa in each PA group and increased SCFAs in feces of less active individuals were found. Changes in step counts were positively or negatively associated with the relative abundance of 19 ASVs, 3 microorganisms at the family level, and 11 microorganisms at the genus level. Furthermore, significant associations were discovered among physical activity, gut microbiota, SCFAs, and sleep parameters. Our findings provide new insights on the relationship between PA, gut microbiota composition, and primary metabolites in older adults with insomnia.
Collapse
|