51
|
Damen MPF, van Rheenen J, Scheele CLGJ. Targeting dormant tumor cells to prevent cancer recurrence. FEBS J 2020; 288:6286-6303. [PMID: 33190412 DOI: 10.1111/febs.15626] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Over the years, developments in oncology led to significantly improved clinical outcome for cancer patients. However, cancer recurrence after initial treatment response still poses a major challenge, as it often involves more aggressive, metastatic disease. The presence of dormant cancer cells is associated with recurrence, metastasis, and poor clinical outcome, suggesting that these cells may play a crucial role in the process of disease relapse. Cancer cell dormancy typically presents as growth arrest while retaining proliferative capacity and can be induced or reversed by a wide array of cell-intrinsic and cell-extrinsic factors. Conventional therapies preferentially target fast-dividing cells, leaving dormant cancer cells largely insensitive to these treatments. In this review, we discuss the role of dormant cancer cells in cancer recurrence and highlight how novel therapy strategies based on cell-cycle modulation, modifications of existing drugs, or enhanced drug-delivery vehicles may be used to specifically target this subpopulation of tumor cells, and thereby have the potential to prevent disease recurrence.
Collapse
Affiliation(s)
- Maartje P F Damen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
52
|
Huang X, Zhang G. Split Cyclin-Dependent Kinase 4/6-Retinoblastoma 1 Axis in Pancreatic Cancer. Front Cell Dev Biol 2020; 8:602352. [PMID: 33282875 PMCID: PMC7688921 DOI: 10.3389/fcell.2020.602352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Drugs targeting the cyclin-dependent kinase 4/6 (CDK4/6)-retinoblastoma 1 (RB1) axis have shown efficacy against multiple solid cancers, but their therapeutic potential in pancreatic cancer remains poorly defined. A recent report proposed that a "tailored" combination of first-line and second-line CDK4-targeting drugs would hold promise for pancreatic cancer treatment. Indeed, this therapeutic strategy exhibited significantly suppressive effects on pancreatic cancer patient-derived cell lines and tumor tissue in vitro. However, the study neglected immune involvement and the influence of CDK6 and RB1 in CDK4 inhibition-based treatment. Herein, we reveal multiple new facets of the CDK4/6-RB1 axis in pancreatic cancer, highlighting the complexity of this signaling axis for future prognostic and therapeutic targeting.
Collapse
Affiliation(s)
- Xing Huang
- *Correspondence: Xing Huang, ; 0000-0002-8886-2777
| | | |
Collapse
|
53
|
Xu T, Xu X, Liu PC, Mao H, Ju S. Transcriptomic Analyses and Potential Therapeutic Targets of Pancreatic Cancer With Concomitant Diabetes. Front Oncol 2020; 10:563527. [PMID: 33251135 PMCID: PMC7672183 DOI: 10.3389/fonc.2020.563527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) known as non-insulin-dependent diabetes mellitus, which is increasingly acknowledged as being associated with an increased risk for a series of cancers. Pancreatic cancer is currently the fourth most common cause of cancer-related mortality, which has been proved to be worsened by internal diabetic condition. However, the underlying molecular mechanisms are less addressed. Furthermore, current knowledge revealed that therapeutic strategy by anti-diabetes for pancreatic cancer under diabetes condition have no satisfactory efficacy, and nor by chemotherapy in our study. METHODS To clarify these mysteries and widen our knowledge, both obesity-associated and non-obese-associated T2DM mouse models were generated by chemical induction with streptozotocin (STZ) and leptin receptor knockout (db/db) in mice. Then, the process of tumor progression was researched, and the gene expression profiling of pancreatic cancer in mice was performed using RNA-seq. RESULTS Our results showed that pancreatic cancer malignancy was increased with notable proliferation and metastatic potential in two diabetic mice model. Totally, 136 and 64 significantly differentially expressed genes (DEGs) were identified in STZ and db/db mice by transcriptomic analysis. The results also suggested that different carcinogenesis-related genes and potential molecular mechanisms contribute to the malignancy of pancreatic cancer in obesity-associated and non-obesity-associated T2DM. In obesity-associated db/db mice, the GO subcategories associated with most of the genes with downregulated expression are involved in the immune response. However, in non-obesity-associated STZ mice, in addition to the immune response category, the enriched subcategories also included angiogenesis and the extracellular matrix. While, two genes respectively encoding MMP-2 and MMP-9 were simultaneously abnormal up-regulated in pancreatic cancer tissue from diabetic mice of both STZ and db/db, that could act as potential therapeutic targets for significantly suppressing the malignant progression. Furthermore, an optimizing therapeutic strategy was further proposed that combining MMP-2/9 inhibitor with gemcitabine significantly enhanced anti-tumor effects on pancreatic cancer under diabetic condition, providing a theoretical basis for clinical applications. CONCLUSIONS Generally, this study provides a comprehensive insight into diabetes as a risk factor for pancreatic cancer and has the potential to guide the development of enhanced treatment strategies.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Peng-Cheng Liu
- The College of Life Science, Anhui Normal University, Wuhu, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
54
|
Margarido AS, Bornes L, Vennin C, van Rheenen J. Cellular Plasticity during Metastasis: New Insights Provided by Intravital Microscopy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037267. [PMID: 31615867 DOI: 10.1101/cshperspect.a037267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis is a highly dynamic process during which cancer and microenvironmental cells undergo a cascade of events required for efficient dissemination throughout the body. During the metastatic cascade, tumor cells can change their state and behavior, a phenomenon commonly defined as cellular plasticity. To monitor cellular plasticity during metastasis, high-resolution intravital microscopy (IVM) techniques have been developed and allow us to visualize individual cells by repeated imaging in animal models. In this review, we summarize the latest technological advancements in the field of IVM and how they have been applied to monitor metastatic events. In particular, we highlight how longitudinal imaging in native tissues can provide new insights into the plastic physiological and developmental processes that are hijacked by cancer cells during metastasis.
Collapse
Affiliation(s)
- Andreia S Margarido
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Laura Bornes
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Claire Vennin
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
55
|
Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Endo I, Katz MHG, Takabe K. High G2M Pathway Score Pancreatic Cancer is Associated with Worse Survival, Particularly after Margin-Positive (R1 or R2) Resection. Cancers (Basel) 2020; 12:E2871. [PMID: 33036243 PMCID: PMC7599494 DOI: 10.3390/cancers12102871] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is highly mortal due to uncontrolled cell proliferation. The G2M checkpoint pathway is an essential part of the cell cycle. We hypothesized that a high G2M pathway score is associated with cell proliferation and worse survival in pancreatic cancer patients. Gene set variation analysis using the Hallmark G2M checkpoint gene set was used as a score to analyze a total of 390 human pancreatic cancer patients from 3 cohorts (TCGA, GSE62452, GSE57495). High G2M score tumors enriched other cell proliferation genes sets as well as MKI67 expression, pathological grade, and proliferation score. Independent of other prognostic factors, G2M score was predictive of disease-specific survival in pancreatic cancer. High G2M tumor was associated with high mutation rate of KRAS and TP53 and significantly enriched these pathway gene sets, as well as high infiltration of Th2 cells. High G2M score consistently associated with worse overall survival in 3 cohorts, particularly in R1/2 resection, but not in R0. High G2M tumor in R1/2 highly enriched metabolic and cellular components' gene sets compared to R0. To our knowledge, this is the first study to use gene set variation analysis as a score to examine the clinical relevancy of the G2M pathway in pancreatic cancer.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.O.); (R.M.); (I.E.)
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.); (Y.T.)
| | - Stephanie Newman
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.); (Y.T.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.O.); (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.O.); (R.M.); (I.E.)
| | - Matthew H. G. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kazuaki Takabe
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.O.); (R.M.); (I.E.)
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.); (Y.T.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
56
|
Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, Cheng H, Jin K, Ni Q, Yu X, Liu C. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol 2020; 13:130. [PMID: 33008426 PMCID: PMC7532113 DOI: 10.1186/s13045-020-00958-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy characterized by a poor prognosis and high mortality rate. Genetic mutations and altered molecular pathways serve as targets in precise therapy. Using next-generation sequencing (NGS), these aberrant alterations can be identified and used to develop strategies that will selectively kill cancerous cells in patients with PDAC. The realization of targeted therapies in patients with PDAC may be summarized by three approaches. First, because oncogenes play a pivotal role in tumorigenesis, inhibition of dysregulated oncogenes is a promising method (Table 3). Numerous researchers are developing strategies to target oncogenes, such as KRAS, NRG1, and NTRK and related molecules, although most of the results are unsatisfactory. Accordingly, emerging strategies are being developed to target these oncogenes, including simultaneously inhibiting multiple molecules or pathways, modification of mutant residues by small molecules, and RNA interference. Second, researchers have attempted to reactivate inactivated tumour suppressors or modulate related molecules. TP53, CDKN2A and SMAD4 are three major tumour suppressors involved in PDAC. Advances have been achieved in clinical and preclinical trials of therapies targeting these three genes, and further investigations are warranted. The TGF-β-SMAD4 signalling pathway plays a dual role in PDAC tumorigenesis and participates in mediating tumour-stroma crosstalk and modulating the tumour microenvironment (TME); thus, molecular subtyping of pancreatic cancer according to the SMAD4 mutation status may be a promising precision oncology technique. Finally, genes such as KDM6A and BRCA have vital roles in maintaining the structural stability and physiological functions of normal chromosomes and are deficient in some patients with PDAC, thus serving as potential targets for correcting these deficiencies and precisely killing these aberrant tumour cells. Recent clinical trials, such as the POLO (Pancreas Cancer Olaparib Ongoing) trial, have reported encouraging outcomes. In addition to genetic event-guided treatment, immunotherapies such as chimeric antigen receptor T cells (CAR-T), antibody-drug conjugates, and immune checkpoint inhibitors also exhibit the potential to target tumours precisely, although the clinical value of immunotherapies as treatments for PDAC is still limited. In this review, we focus on recent preclinical and clinical advances in therapies targeting aberrant genes and pathways and predict the future trend of precision oncology for PDAC.
Collapse
Affiliation(s)
- Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
57
|
CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene, and Pathophysiological Conditions. Int J Mol Sci 2020; 21:ijms21176350. [PMID: 32883002 PMCID: PMC7504705 DOI: 10.3390/ijms21176350] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Palbociclib, ribociclib, and abemaciclib belong to the third generation of cyclin-dependent kinases inhibitors (CDKis), an established therapeutic class for advanced and metastatic breast cancer. Interindividual variability in the therapeutic response of CDKis has been reported and some individuals may experience increased and unexpected toxicity. This narrative review aims at identifying the factors potentially concurring at this variability for driving the most appropriate and tailored use of CDKis in the clinic. Specifically, concomitant medications, pharmacogenetic profile, and pathophysiological conditions could influence absorption, distribution, metabolism, and elimination pharmacokinetics. A personalized therapeutic approach taking into consideration all factors potentially contributing to an altered pharmacokinetic/pharmacodynamic profile could better drive safe and effective clinical use.
Collapse
|
58
|
Ji Y, Liu X, Li J, Xie X, Huang M, Jiang J, Liao YP, Donahue T, Meng H. Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nat Commun 2020; 11:4249. [PMID: 32843618 PMCID: PMC7447818 DOI: 10.1038/s41467-020-17996-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant cell cycle machinery and loss of the CDKN2A tumor suppressor locus make CDK4/6 a potential target in pancreatic ductal adenocarcinoma (PDAC). However, a vast majority of PDAC cases do not harbor a durable response to monotherapy of CDK4/6 inhibitor. Utilizing remote loading to co-encapsulate CDK4/6 inhibitor palbociclib (PAL) and an autophagy inhibitor hydroxychloroquine (HCQ), we demonstrate a ratiometrically designed mesoporous silica nanoformulation with synergistic efficacy in subcutaneous and orthotopic PDAC mouse models. The synergism is attributed to the effective intratumoral buildup of PAL/HCQ, which otherwise exhibit distinctly different circulatory and biodistribution profile. PAL/HCQ co-delivery nanoparticles lead to the most effective shrinkage of PDAC compared to various controls, including free drug mixture. Immunohistochemistry reveals that PAL/HCQ co-delivery nanoparticles trigger anti-apoptotic pathway after repetitive intravenous administrations in mice. When combined with a Bcl inhibitor, the performance of co-delivery nanoparticles is further improved, leading to a long-lasting anti-PDAC effect in vivo. Aberrant cell cycle machinery and loss of the CDKN2A tumor suppressor locus make CDK4/6 a potential target in pancreatic ductal adenocarcinoma (PDAC). Here, the authors use ratiometrically designed nanoparticles to codeliver the CDK4/6 inhibitor palbociclib and the autophagy inhibitor hydroxychloroquine, and show their synergistic therapeutic effects in mouse model of PDAC.
Collapse
Affiliation(s)
- Ying Ji
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Juan Li
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,Key Laboratory of Biomedical Effects of Nanomaterial & Nanosafety, Chinese Academy of Science, 100049, Beijing, China
| | - Xiaodong Xie
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Max Huang
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jinhong Jiang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Timothy Donahue
- Department of Surgery, University of California, Los Angeles, CA, 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
59
|
Roberts PJ, Kumarasamy V, Witkiewicz AK, Knudsen ES. Chemotherapy and CDK4/6 Inhibitors: Unexpected Bedfellows. Mol Cancer Ther 2020; 19:1575-1588. [PMID: 32546660 PMCID: PMC7473501 DOI: 10.1158/1535-7163.mct-18-1161] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) have emerged as important therapeutic targets. Pharmacologic inhibitors of these kinases function to inhibit cell-cycle progression and exert other important effects on the tumor and host environment. Because of their impact on the cell cycle, CDK4/6 inhibitors (CDK4/6i) have been hypothesized to antagonize the antitumor effects of cytotoxic chemotherapy in tumors that are CDK4/6 dependent. However, there are multiple preclinical studies that illustrate potent cooperation between CDK4/6i and chemotherapy. Furthermore, the combination of CDK4/6i and chemotherapy is being tested in clinical trials to both enhance antitumor efficacy and limit toxicity. Exploitation of the noncanonical effects of CDK4/6i could also provide an impetus for future studies in combination with chemotherapy. Thus, while seemingly mutually exclusive mechanisms are at play, the combination of CDK4/6 inhibition and chemotherapy could exemplify rational medicine.
Collapse
Affiliation(s)
| | - Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York.
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
60
|
Nobis M, Herrmann D, Warren SC, Strathdee D, Cox TR, Anderson KI, Timpson P. Shedding new light on RhoA signalling as a drug target in vivo using a novel RhoA-FRET biosensor mouse. Small GTPases 2020; 11:240-247. [PMID: 29457531 PMCID: PMC7549666 DOI: 10.1080/21541248.2018.1438024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/02/2018] [Indexed: 12/26/2022] Open
Abstract
The small GTPase RhoA is a master regulator of signalling in cell-extracellular matrix interactions. RhoA signalling is critical to many cellular processes including migration, mechanotransduction, and is often disrupted in carcinogenesis. Investigating RhoA activity in a native tissue environment is challenging using conventional biochemical methods; we therefore developed a RhoA-FRET biosensor mouse, employing the adaptable nature of intravital imaging to a variety of settings. Mechanotransduction was explored in the context of osteocyte processes embedded in the calvaria responding in a directional manner to compression stress. Further, the migration of neutrophils was examined during in vivo "chemotaxis" in wound response. RhoA activity was tightly regulated during tissue remodelling in mammary gestation, as well as during mammary and pancreatic carcinogenesis. Finally, pharmacological inhibition of RhoA was temporally resolved by the use of optical imaging windows in fully developed pancreatic and mammary tumours in vivo. The RhoA-FRET mouse therefore constitutes a powerful tool to facilitate development of new inhibitors targeting the RhoA signalling axis.
Collapse
Affiliation(s)
- Max Nobis
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, 2010NSW, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, 2010NSW, Australia
| | - Sean C. Warren
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, 2010NSW, Australia
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, GlasgowG611BD, UK
| | - Thomas R. Cox
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, 2010NSW, Australia
| | | | - Paul Timpson
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, 2010NSW, Australia
| |
Collapse
|
61
|
Cipponi A, Goode DL, Bedo J, McCabe MJ, Pajic M, Croucher DR, Rajal AG, Junankar SR, Saunders DN, Lobachevsky P, Papenfuss AT, Nessem D, Nobis M, Warren SC, Timpson P, Cowley M, Vargas AC, Qiu MR, Generali DG, Keerthikumar S, Nguyen U, Corcoran NM, Long GV, Blay JY, Thomas DM. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science 2020; 368:1127-1131. [PMID: 32499442 DOI: 10.1126/science.aau8768] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2019] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
In microorganisms, evolutionarily conserved mechanisms facilitate adaptation to harsh conditions through stress-induced mutagenesis (SIM). Analogous processes may underpin progression and therapeutic failure in human cancer. We describe SIM in multiple in vitro and in vivo models of human cancers under nongenotoxic drug selection, paradoxically enhancing adaptation at a competing intrinsic fitness cost. A genome-wide approach identified the mechanistic target of rapamycin (MTOR) as a stress-sensing rheostat mediating SIM across multiple cancer types and conditions. These observations are consistent with a two-phase model for drug resistance, in which an initially rapid expansion of genetic diversity is counterbalanced by an intrinsic fitness penalty, subsequently normalizing to complete adaptation under the new conditions. This model suggests synthetic lethal strategies to minimize resistance to anticancer therapy.
Collapse
Affiliation(s)
- Arcadi Cipponi
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Justin Bedo
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Computing and Information Systems, the University of Melbourne, Parkville, VIC, Australia.,Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Mark J McCabe
- St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Alvaro Gonzalez Rajal
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Simon R Junankar
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Darren N Saunders
- School of Medical Sciences, University of New South Wales, NSW, Australia
| | | | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Computing and Information Systems, the University of Melbourne, Parkville, VIC, Australia.,Peter MacCallum Cancer Centre, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Danielle Nessem
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Max Nobis
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Sean C Warren
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mark Cowley
- St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ana C Vargas
- Douglass Hanly Moir Pathology, Turramurra, NSW, Australia
| | - Min R Qiu
- St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.,Anatomical and Molecular Oncology Pathology, SYDPATH, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Daniele G Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
| | - Shivakumar Keerthikumar
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Uyen Nguyen
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Niall M Corcoran
- Division of Urology, Royal Melbourne Hospital, Parkville, VIC, Australia.,Department of Urology, Peninsula Health, Frankston, VIC, Australia.,Department of Surgery, University of Melbourne, VIC, Australia
| | - Georgina V Long
- Melanoma Institute Australia, Wollstonecraft, NSW, Australia.,The University of Sydney, Sydney, NSW, Australia.,Royal North Shore Hospital and Mater Hospital, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre Westmead Hospital, Sydney, NSW, Australia
| | - Jean-Yves Blay
- Centre Leon Berard and Université Claude Bernard Lyon, Lyon, France.,UNICANCER, Paris, France
| | - David M Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
62
|
Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101662] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Zhang C, Mi J, Deng Y, Deng Z, Long D, Liu Z. DNMT1 Enhances the Radiosensitivity of HPV-Positive Head and Neck Squamous Cell Carcinomas via Downregulating SMG1. Onco Targets Ther 2020; 13:4201-4211. [PMID: 32523356 PMCID: PMC7237113 DOI: 10.2147/ott.s227395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/18/2020] [Indexed: 01/21/2023] Open
Abstract
Introduction Head and neck squamous cell carcinoma (HNSCC), which rank the 7th malignant tumors worldwide, is closely related to methylation and HPV infection. Ionizing radiation therapy is the main strategy for HNSCC patients in advanced stage. Previously, HPV-positive HNSCC predict better prognosis than HPV-negative HNSCCs under radiotherapy, however its molecular mechanism is unresolved. SMG1 serves as a potential tumor suppressor in various cancers, including HNSCC. Methods The mRNAs and proteins expression of HPV E6/E7, p16, p53, DNMT1, SMG1 were detected after different treatments by qPCR and Western blot. The clone formation ability was measured in radiation dose after different treatments. Results In our study, the expression of HPV16 E6, DNA Methyltransferase 1(DNMT1) and SMG1 in head and neck carcinomas cell lines was detected by RT-qPCR and Western blot. Forced E6 level in HPV-negative cells by overexpression plasmid promoted the expression of DNMT1, which resulted in decreased SMG1 expression. Silenced SMG1 in HPV-negative HNSCC cells elicited increased radiation sensitivity, suggesting that SMG1 may be an effective switch to regulate the effect of radiotherapy in HNSCC. Conclusion Our study indicated that DNMT1 enhances the radiosensitivity of HPV-positive head and neck squamous cell carcinomas via downregulating SMG1.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiaoping Mi
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sun University, Zunyi, People's Republic of China
| | - Yuan Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dan Long
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China.,The Graduate School of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zhaohui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
64
|
Brunton H, Caligiuri G, Cunningham R, Upstill-Goddard R, Bailey UM, Garner IM, Nourse C, Dreyer S, Jones M, Moran-Jones K, Wright DW, Paulus-Hock V, Nixon C, Thomson G, Jamieson NB, McGregor GA, Evers L, McKay CJ, Gulati A, Brough R, Bajrami I, Pettitt SJ, Dziubinski ML, Barry ST, Grützmann R, Brown R, Curry E, Pajic M, Musgrove EA, Petersen GM, Shanks E, Ashworth A, Crawford HC, Simeone DM, Froeling FEM, Lord CJ, Mukhopadhyay D, Pilarsky C, Grimmond SE, Morton JP, Sansom OJ, Chang DK, Bailey PJ, Biankin AV. HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Rep 2020; 31:107625. [PMID: 32402285 PMCID: PMC9511995 DOI: 10.1016/j.celrep.2020.107625] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/05/2019] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC.
Collapse
Affiliation(s)
- Holly Brunton
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Giuseppina Caligiuri
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland
| | - Richard Cunningham
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland
| | - Rosie Upstill-Goddard
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland
| | - Ulla-Maja Bailey
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Ian M Garner
- Epigenetics Unit, Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Craig Nourse
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Stephan Dreyer
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Marc Jones
- Stratified Medicine Scotland Innovation Centre, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Kim Moran-Jones
- Stratified Medicine Scotland Innovation Centre, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Derek W Wright
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland
| | - Viola Paulus-Hock
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Gemma Thomson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Nigel B Jamieson
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Grant A McGregor
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Lisa Evers
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland
| | - Colin J McKay
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Aditi Gulati
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Rachel Brough
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Ilirjana Bajrami
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Stephen J Pettitt
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Michele L Dziubinski
- Department of Molecular and Integrative Physiology, University of Michigan, 4304 Rogel Cancer Center Drive, Ann Arbor, MI 48109, USA
| | - Simon T Barry
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Robert Brown
- Epigenetics Unit, Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Edward Curry
- Epigenetics Unit, Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Marina Pajic
- The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst and Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Elizabeth A Musgrove
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland
| | | | - Emma Shanks
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Alan Ashworth
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK; UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, 4304 Rogel Cancer Center Drive, Ann Arbor, MI 48109, USA
| | - Diane M Simeone
- Pancreatic Cancer Center, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Fieke E M Froeling
- Epigenetics Unit, Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Christopher J Lord
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | | | - Sean E Grimmond
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne 3010, VIC, Australia
| | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David K Chang
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Peter J Bailey
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Department of General Surgery, University of Heidelberg, Heidelberg 69120, Germany.
| | - Andrew V Biankin
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, Scotland; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
65
|
Knudsen ES, Shapiro GI, Keyomarsi K. Selective CDK4/6 Inhibitors: Biologic Outcomes, Determinants of Sensitivity, Mechanisms of Resistance, Combinatorial Approaches, and Pharmacodynamic Biomarkers. Am Soc Clin Oncol Educ Book 2020; 40:115-126. [PMID: 32421454 PMCID: PMC7306922 DOI: 10.1200/edbk_281085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CDK4/6 inhibitors are now part of the standard armamentarium for hormone receptor-positive breast cancer. In this article, we review the biologic outcomes imposed by these drugs on cancer cells, determinants of response, mechanisms of intrinsic and acquired resistance, as well as combinatorial approaches emanating from mechanistic studies that may allow use of these agents to extend beyond breast cancer. In addition, we will address tumor-, imaging-, and blood-based pharmacodynamic biomarkers that can inform rationally designed trials as clinical development continues.
Collapse
Affiliation(s)
- Erik S. Knudsen
- Center for Personalized Medicine and Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY
| | - Geoffrey I. Shapiro
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
66
|
Wu C, Yang P, Liu B, Tang Y. Is there a CDKN2A-centric network in pancreatic ductal adenocarcinoma? Onco Targets Ther 2020; 13:2551-2562. [PMID: 32273725 PMCID: PMC7108878 DOI: 10.2147/ott.s232464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer has a high mortality rate and its incidence has risen rapidly in recent years. Meanwhile, the diagnosis and treatment of this cancer remain challenging. Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, but, currently, no sufficiently effective modalities for its treatment exist. The early diagnosis rate of pancreatic cancer is low and most patients have reached an advanced stage at the time of diagnosis. PDAC evolves from precancerous lesions and is highly aggressive and metastatic. It is essential to understand how the disease progresses and metastasizes. CDKN2A mutations are very common in PDAC. Therefore, here, we have performed a literature review and discuss the role of CDKN2A and some related genes in the development of PDAC, as well as the basis of gene targeting with a correlation coefficient of CDKN2A above 0.9 on the STRING website. It is noteworthy that the interaction of CDKN2A with each gene has been reported in the literature. The role of these genes and CDKN2A in PDAC may provide new directions that will advance the current knowledge base and treatment options since cancer progression is realized through interactions among cells. Our findings provide new insights into the treatment of PADC that can, to some extent, improve the diagnosis rate and quality of life of patients.
Collapse
Affiliation(s)
- Chu Wu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Ping Yang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Bingxue Liu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yunlian Tang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
67
|
Salvador-Barbero B, Álvarez-Fernández M, Zapatero-Solana E, El Bakkali A, Menéndez MDC, López-Casas PP, Di Domenico T, Xie T, VanArsdale T, Shields DJ, Hidalgo M, Malumbres M. CDK4/6 Inhibitors Impair Recovery from Cytotoxic Chemotherapy in Pancreatic Adenocarcinoma. Cancer Cell 2020; 37:340-353.e6. [PMID: 32109375 DOI: 10.1016/j.ccell.2020.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 01/06/2023]
Abstract
Inhibition of the cell-cycle kinases CDK4 and CDK6 is now part of the standard treatment in advanced breast cancer. CDK4/6 inhibitors, however, are not expected to cooperate with DNA-damaging or antimitotic chemotherapies as the former prevent cell-cycle entry, thus interfering with S-phase- or mitosis-targeting agents. Here, we report that sequential administration of CDK4/6 inhibitors after taxanes cooperates to prevent cellular proliferation in pancreatic ductal adenocarcinoma (PDAC) cells, patient-derived xenografts, and genetically engineered mice with Kras G12V and Cdkn2a-null mutations frequently observed in PDAC. This effect correlates with the repressive activity of CDK4/6 inhibitors on homologous recombination proteins required for the recovery from chromosomal damage. CDK4/6 inhibitors also prevent recovery from multiple DNA-damaging agents, suggesting broad applicability for their sequential administration after available chemotherapeutic agents.
Collapse
Affiliation(s)
- Beatriz Salvador-Barbero
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain; Gastrointestinal Unit, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Mónica Álvarez-Fernández
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Elisabet Zapatero-Solana
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Aicha El Bakkali
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | | | - Pedro P López-Casas
- Gastrointestinal Unit, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Tomas Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Tao Xie
- Oncology R&D, Pfizer Inc, 10646 Science Center Dr, San Diego, CA 92121, USA
| | - Todd VanArsdale
- Oncology R&D, Pfizer Inc, 10646 Science Center Dr, San Diego, CA 92121, USA
| | - David J Shields
- Oncology R&D, Pfizer Inc, 10646 Science Center Dr, San Diego, CA 92121, USA.
| | - Manuel Hidalgo
- Gastrointestinal Unit, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain; Division of Hematology and Medical Oncology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain.
| |
Collapse
|
68
|
Kryza T, Khan T, Puttick S, Li C, Sokolowski KA, Tse BWC, Cuda T, Lyons N, Gough M, Yin J, Parkin A, Deryugina EI, Quigley JP, Law RHP, Whisstock JC, Riddell AD, Barbour AP, Wyld DK, Thomas PA, Rose S, Snell CE, Pajic M, He Y, Hooper JD. Effective targeting of intact and proteolysed CDCP1 for imaging and treatment of pancreatic ductal adenocarcinoma. Theranostics 2020; 10:4116-4133. [PMID: 32226543 PMCID: PMC7086361 DOI: 10.7150/thno.43589] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background: CUB domain-containing protein 1 (CDCP1) is a cell surface receptor regulating key signalling pathways in malignant cells. CDCP1 has been proposed as a molecular target to abrogate oncogenic signalling pathways and specifically deliver anti-cancer agents to tumors. However, the development of CDCP1-targeting agents has been questioned by its frequent proteolytic processing which was thought to result in shedding of the CDCP1 extracellular domain limiting its targetability. In this study, we investigated the relevance of targeting CDCP1 in the context of pancreatic ductal adenocarcinoma (PDAC) and assess the impact of CDCP1 proteolysis on the effectiveness of CDCP1 targeting agents. Methods: The involvement of CDCP1 in PDAC progression was assessed by association analysis in several PDAC cohorts and the proteolytic processing of CDCP1 was evaluated in PDAC cell lines and patient-derived cells. The consequences of CDCP1 proteolysis on its targetability in PDAC cells was assessed using immunoprecipitation, immunostaining and biochemical assays. The involvement of CDCP1 in PDAC progression was examined by loss-of-function in vitro and in vivo experiments employing PDAC cells expressing intact or cleaved CDCP1. Finally, we generated antibody-based imaging and therapeutic agents targeting CDCP1 to demonstrate the feasibility of targeting this receptor for detection and treatment of PDAC tumors. Results: High CDCP1 expression in PDAC is significantly associated with poorer patient survival. In PDAC cells proteolysis of CDCP1 does not always result in the shedding of CDCP1-extracellular domain which can interact with membrane-bound CDCP1 allowing signal transduction between the different CDCP1-fragments. Targeting CDCP1 impairs PDAC cell functions and PDAC tumor growth independently of CDCP1 cleavage status. A CDCP1-targeting antibody is highly effective at delivering imaging radionuclides and cytotoxins to PDAC cells allowing specific detection of tumors by PET/CT imaging and superior anti-tumor effects compared to gemcitabine in in vivo models. Conclusion: Independent of its cleavage status, CDCP1 exerts oncogenic functions in PDAC and has significant potential to be targeted for improved radiological staging and treatment of this cancer. Its elevated expression by most PDAC tumors and lack of expression by normal pancreas and other major organs, suggest that targeting CDCP1 could benefit a significant proportion of PDAC patients. These data support the further development of CDCP1-targeting agents as personalizable tools for effective imaging and treatment of PDAC.
Collapse
|
69
|
Kamatham S, Shahjehan F, Kasi PM. Circulating Tumor DNA-Based Detection of Microsatellite Instability and Response to Immunotherapy in Pancreatic Cancer. Front Pharmacol 2020; 11:23. [PMID: 32116700 PMCID: PMC7025641 DOI: 10.3389/fphar.2020.00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is an aggressive malignancy with poor survival. Research has indicated the association of few genetic aberrations with pancreatic cancer. The data regarding the prevalence of microsatellite instability in pancreatic cancer is diverse and controversial. However, it could be an actionable target in pancreatic cancer especially due to availability of immune checkpoint inhibitors which has demonstrated promising results in different types of cancers. We present a case of pancreatic cancer whose microsatellite instability status was identified on liquid biopsy (circulating tumor DNA testing). Our patient showed a dramatic ongoing durable response to immunotherapy. We were able to do serial monitoring with liquid biopsy that showed clinical utility and validity.
Collapse
Affiliation(s)
- Saivaishnavi Kamatham
- Department of Cancer Biology/Pathology, Wayne State University, Detroit, MI, United States
| | - Faisal Shahjehan
- Department of Internal Medicine, Conemaugh Memorial Medical Center, Johnstown, PA, United States
| | | |
Collapse
|
70
|
Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nat Rev Clin Oncol 2020; 17:108-123. [PMID: 31705130 DOI: 10.1038/s41571-019-0281-6] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
Improvements in the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have lagged behind advances made in the treatment of many other malignancies over the past few decades. For most patients with PDAC, cytotoxic chemotherapy remains the mainstay of treatment. For patients with resectable disease, modified 5-fluorouracil, leucovorin, irinotecan and oxaliplatin (mFOLFIRINOX) is the standard-of-care adjuvant therapy, although data from several randomized trials have shown improved outcomes with neoadjuvant treatment strategies. For patients with advanced-stage or metastatic disease, comprehensive genomic profiling has revealed several potentially actionable alterations in small subsets of patients and the feasibility of implementing such strategies is beginning to be confirmed. Novel therapies targeting certain aberrations, most notably BRCA1/2 mutations, mismatch repair (MMR) deficiencies or NTRK1-3 fusions, have shown considerable activity in clinical trials, and larotrectinib, entrectinib and pembrolizumab have received FDA approval for the treatment of patients with tumours harbouring NTRK fusions and MMR deficiencies, respectively, regardless of primary tumour histology. In this Review, we describe the available data on the activity of these and other agents in patients with PDAC. Our discussion is structured according to the acronym 'PRIME' to organize the various treatment strategies currently undergoing evaluation in clinical trials: Pathway inhibition, alteration of DNA Repair pathways, Immunotherapy, cancer Metabolism and targeting the Extracellular tumour microenvironment.
Collapse
Affiliation(s)
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ignacio Garrido-Laguna
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
71
|
Castillo L, Young AIJ, Mawson A, Schafranek P, Steinmann AM, Nessem D, Parkin A, Johns A, Chou A, Law AMK, Lucas MC, Murphy KJ, Deng N, Gallego-Ortega D, Caldon CE, Timpson P, Pajic M, Ormandy CJ, Oakes SR. MCL-1 antagonism enhances the anti-invasive effects of dasatinib in pancreatic adenocarcinoma. Oncogene 2020; 39:1821-1829. [PMID: 31735913 PMCID: PMC7033042 DOI: 10.1038/s41388-019-1091-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies. It is phenotypically heterogeneous with a highly unstable genome and provides few common therapeutic targets. We found that MCL1, Cofilin1 (CFL1) and SRC mRNA were highly expressed by a wide range of these cancers, suggesting that a strategy of dual MCL-1 and SRC inhibition might be efficacious for many patients. Immunohistochemistry revealed that MCL-1 protein was present at high levels in 94.7% of patients in a cohort of PDACs from Australian Pancreatic Genome Initiative (APGI). High MCL1 and Cofilin1 mRNA expression was also strongly predictive of poor outcome in the TCGA dataset and in the APGI cohort. In culture, MCL-1 antagonism reduced the level of the cytoskeletal remodeling protein Cofilin1 and phosphorylated SRC on the active Y416 residue, suggestive of reduced invasive capacity. The MCL-1 antagonist S63845 synergized with the SRC kinase inhibitor dasatinib to reduce cell viability and invasiveness through 3D-organotypic matrices. In preclinical murine models, this combination reduced primary tumor growth and liver metastasis of pancreatic cancer xenografts. These data suggest that MCL-1 antagonism, while reducing cell viability, may have an additional benefit in increasing the antimetastatic efficacy of dasatinib for the treatment of PDAC.
Collapse
Affiliation(s)
- Lesley Castillo
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Adelaide I J Young
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Amanda Mawson
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Pia Schafranek
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Angela M Steinmann
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Danielle Nessem
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Ashleigh Parkin
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Amber Johns
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Angela Chou
- University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrew M K Law
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Morghan C Lucas
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Kendelle J Murphy
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Niantao Deng
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - David Gallego-Ortega
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Catherine E Caldon
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Paul Timpson
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Marina Pajic
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Christopher J Ormandy
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Samantha R Oakes
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia.
| |
Collapse
|
72
|
Chitty JL, Skhinas JN, Filipe EC, Wang S, Cupello CR, Grant RD, Yam M, Papanicolaou M, Major G, Zaratzian A, Da Silva AM, Tayao M, Vennin C, Timpson P, Madsen CD, Cox TR. The Mini-Organo: A rapid high-throughput 3D coculture organotypic assay for oncology screening and drug development. Cancer Rep (Hoboken) 2020; 3:e1209. [PMID: 32671954 PMCID: PMC7941459 DOI: 10.1002/cnr2.1209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. AIM The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development. METHODS AND RESULTS Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. CONCLUSIONS The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.
Collapse
Affiliation(s)
- Jessica L. Chitty
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Joanna N. Skhinas
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Elysse C. Filipe
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Shan Wang
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Carmen Rodriguez Cupello
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Rhiannon D. Grant
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michelle Yam
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- School of Life SciencesUniversity of Technology SydneySydneyAustralia
| | - Gretel Major
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Andrew M. Da Silva
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michael Tayao
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Claire Vennin
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- Molecular PathologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Paul Timpson
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Chris D. Madsen
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Thomas R. Cox
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| |
Collapse
|
73
|
Inhibition of PAK1 suppresses pancreatic cancer by stimulation of anti-tumour immunity through down-regulation of PD-L1. Cancer Lett 2019; 472:8-18. [PMID: 31857154 DOI: 10.1016/j.canlet.2019.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Immunotherapies have not yielded significant clinical benefits for pancreatic ductal adenocarcinoma (PDA) because of the existence of an immunosuppressive tumour microenvironment (TME) characterized by a desmoplastic stroma containing infiltrated immune cells and activated pancreatic stellate cells (PSCs). This study aims to investigate the involvement of PAK1 in anti-tumour immunity. In PDA patients, low PAK1 expression, low activation of PSC and high CD8+ T cell/PAK1 ratios correlated with longer overall survival. In a murine PDA model, PAK1 knockout increased intra-tumoral CD4+ and CD8+ T cells, inhibited PSCs activation and extended survival. Inhibition of PAK1 reduced PSC-stimulated PDA cell proliferation and migration, blocked PSC-mediated protection of PDA cells from killing by cytotoxic lymphocytes and decreased intrinsic and PSC-stimulated PD-L1 expression in PDA cells, which further sensitized PDA cells to cytotoxic lymphocytes. Inhibition of PAK1 stimulates anti-tumour immunity by increasing intra-tumoral CD4+ and CD8+ T cells, and by sensitizing PDA cells to killing by cytotoxic lymphocytes via down-regulation of intrinsic and PSC-stimulated PD-L1 expression. PAK1 inhibitors, especially in combination with immune checkpoint inhibitors may result in improved efficacy of immunotherapy of PDA.
Collapse
|
74
|
Ianevski A, Giri AK, Gautam P, Kononov A, Potdar S, Saarela J, Wennerberg K, Aittokallio T. Prediction of drug combination effects with a minimal set of experiments. NAT MACH INTELL 2019; 1:568-577. [PMID: 32368721 DOI: 10.1038/s42256-019-0122-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High-throughput drug combination screening provides a systematic strategy to discover unexpected combinatorial synergies in pre-clinical cell models. However, phenotypic combinatorial screening with multi-dose matrix assays is experimentally expensive, especially when the aim is to identify selective combination synergies across a large panel of cell lines or patient samples. Here we implemented DECREASE, an efficient machine learning model that requires only a limited set of pairwise dose-response measurements for accurate prediction of drug combination synergy and antagonism. Using a compendium of 23,595 drug combination matrices tested in various cancer cell lines, and malaria and Ebola infection models, we demonstrate how cost-effective experimental designs with DECREASE capture almost the same degree of information for synergy and antagonism detection as the fully-measured dose-response matrices. Measuring only the diagonal of the matrix provides an accurate and practical option for combinatorial screening. The open-source web-implementation enables applications of DECREASE to both pre-clinical and translational studies.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, FI-02150 Espoo, Finland
| | - Anil K Giri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Alexander Kononov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland.,Biotech Research & Innovation Centre (BRIC) and the Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, FI-02150 Espoo, Finland.,Department of Mathematics and Statistics, University of Turku, Quantum, FI-20014 Turku, Finland
| |
Collapse
|
75
|
Kumarasamy V, Ruiz A, Nambiar R, Witkiewicz AK, Knudsen ES. Chemotherapy impacts on the cellular response to CDK4/6 inhibition: distinct mechanisms of interaction and efficacy in models of pancreatic cancer. Oncogene 2019; 39:1831-1845. [PMID: 31745297 PMCID: PMC7047578 DOI: 10.1038/s41388-019-1102-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease characterized by the aberrations in multiple genes that drive pathogenesis and limit therapeutic response. While CDK4/6 represents a downstream target of both KRAS mutation and loss of the CDKN2A tumor suppressor in PDAC, clinical and preclinical studies indicate that pharmacological CDK4/6 inhibitors are only modestly effective. Since chemotherapy represents the established backbone of PDAC treatment we evaluated the interaction of CDK4/6 inhibitors with gemcitabine and taxanes that are employed in the treatment of PDAC. Herein, we demonstrate that the difference in mechanisms of actions of chemotherapeutic agents elicit distinct effects on the cellular response to CDK4/6 inhibition. Gemcitabine largely ablates the function of CDK4/6 inhibition in S-phase arrested cells when administered contemporaneously; although, when cells recover from S-phase block they exhibit sensitivity to CDK4/6 inhibition. In contrast, pharmacological inhibition of CDK4/6 yields a cooperative cytostatic effect in combination with docetaxel and prevents adaptation and cell cycle re-entry, which is a common basis for resistance to such agents. Importantly, using organoid and PDX models we could confirm the cooperative effects between chemotherapy and CDK4/6 inhibition. These data indicate that the combination of cytotoxic and cytostatic agents could represent an important modality in those tumor types that are relatively resistant to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amanda Ruiz
- Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ram Nambiar
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
76
|
Bijou I, Wang J. Evolving trends in pancreatic cancer therapeutic development. ANNALS OF PANCREATIC CANCER 2019; 2:17. [PMID: 33089149 PMCID: PMC7575122 DOI: 10.21037/apc.2019.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite advances in translational research, the overall 5-year survival for pancreatic cancer remains dismal and with rising incidence pancreatic cancer is predicted to be the second leading cause of cancer death for many developed countries. Surgical intervention followed by cytotoxic chemotherapy are currently the best options for treatment, but disease recurrence is very common. Efforts to develop new therapeutic agents and delivery systems are necessary to achieve better clinical efficacy with less toxicity. Promising prospects are arising with new preclinical and clinical therapeutic strategies using small molecule targeted therapies, RNAi, stromal therapies, and immunotherapies. With a better understanding of the biology to aid target selection and discovery of biomarkers to aid precision medicine, better opportunities will evolve to shape the therapeutic landscape, enhance patient quality of life and increase overall survival.
Collapse
Affiliation(s)
- Imani Bijou
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| |
Collapse
|
77
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
78
|
Vennin C, Mélénec P, Rouet R, Nobis M, Cazet AS, Murphy KJ, Herrmann D, Reed DA, Lucas MC, Warren SC, Elgundi Z, Pinese M, Kalna G, Roden D, Samuel M, Zaratzian A, Grey ST, Da Silva A, Leung W, Mathivanan S, Wang Y, Braithwaite AW, Christ D, Benda A, Parkin A, Phillips PA, Whitelock JM, Gill AJ, Sansom OJ, Croucher DR, Parker BL, Pajic M, Morton JP, Cox TR, Timpson P. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat Commun 2019; 10:3637. [PMID: 31406163 PMCID: PMC6691013 DOI: 10.1038/s41467-019-10968-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous subtypes of cancer-associated fibroblasts (CAFs) coexist within pancreatic cancer tissues and can both promote and restrain disease progression. Here, we interrogate how cancer cells harboring distinct alterations in p53 manipulate CAFs. We reveal the existence of a p53-driven hierarchy, where cancer cells with a gain-of-function (GOF) mutant p53 educate a dominant population of CAFs that establish a pro-metastatic environment for GOF and null p53 cancer cells alike. We also demonstrate that CAFs educated by null p53 cancer cells may be reprogrammed by either GOF mutant p53 cells or their CAFs. We identify perlecan as a key component of this pro-metastatic environment. Using intravital imaging, we observe that these dominant CAFs delay cancer cell response to chemotherapy. Lastly, we reveal that depleting perlecan in the stroma combined with chemotherapy prolongs mouse survival, supporting it as a potential target for anti-stromal therapies in pancreatic cancer.
Collapse
Affiliation(s)
- Claire Vennin
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
- Molecular Pathology department, the Netherlands Cancer Institute, Amsterdam, 1066CX, the Netherlands
| | - Pauline Mélénec
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Romain Rouet
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Max Nobis
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Aurélie S Cazet
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Zehra Elgundi
- Graduate school of Biomedical Engineering, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Mark Pinese
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Gabriella Kalna
- Cancer Research UK Beatson Institute, Glasgow Scotland, G61 BD, UK
| | - Daniel Roden
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Monisha Samuel
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Shane T Grey
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Andrew Da Silva
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Wilfred Leung
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Suresh Mathivanan
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, 92121, USA
| | - Anthony W Braithwaite
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Daniel Christ
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Ales Benda
- Biomedical imaging facility, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ashleigh Parkin
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John M Whitelock
- Graduate school of Biomedical Engineering, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW, 2065, Australia
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow Scotland, G61 BD, UK
| | - David R Croucher
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Benjamin L Parker
- Schools of Life and Environmental Sciences, the Charles Perkin Centre, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | | | - Thomas R Cox
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
79
|
Dhir T, Schultz CW, Jain A, Brown SZ, Haber A, Goetz A, Xi C, Su GH, Xu L, Posey J, Jiang W, Yeo CJ, Golan T, Pishvaian MJ, Brody JR. Abemaciclib Is Effective Against Pancreatic Cancer Cells and Synergizes with HuR and YAP1 Inhibition. Mol Cancer Res 2019; 17:2029-2041. [PMID: 31383722 DOI: 10.1158/1541-7786.mcr-19-0589] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Mutation or promoter hypermethylation of CDKN2A is found in over 90% of pancreatic ductal adenocarcinomas (PDAC) and leads to loss of function of cell-cycle inhibitors p16 (INK4A) and p14 (ARF) resulting in unchecked proliferation. The CDK4/6 inhibitor, abemaciclib, has nanomolar IC50s in PDAC cell lines and decreases growth through inhibition of phospho-Rb (pRb), G1 cell-cycle arrest, apoptosis, and the senescent phenotype detected with β-galactosidase staining and relevant mRNA elevations. Daily abemaciclib treatments in mouse PDAC xenograft studies were safe and demonstrated a 3.2-fold decrease in tumor volume compared with no treatment (P < 0.0001) accompanying a decrease in both pRb and Ki67. We determined that inhibitors of HuR (ELAVL1), a prosurvival mRNA stability factor that regulates cyclin D1, and an inhibitor of Yes-Associated Protein 1 (YAP1), a pro-oncogenic, transcriptional coactivator important for CDK6 and cyclin D1, were both synergistic with abemaciclib. Accordingly, siRNA oligonucleotides targeted against HuR, YAP1, and their common target cyclin D1, validated the synergy studies. In addition, we have seen increased sensitivity to abemaciclib in a PDAC cell line that harbors a loss of the ELAVL1 gene via CRISP-Cas9 technology. As an in vitro model for resistance, we investigated the effects of long-term abemaciclib exposure. PDAC cells chronically cultured with abemaciclib displayed a reduction in cellular growth rates (GR) and coresistance to gemcitabine and 5-fluorouracil (5-FU), but not to HuR or YAP1 inhibitors as compared with no treatment controls. We believe that our data provide compelling preclinical evidence for an abemaciclib combination-based clinical trial in patients with PDAC. IMPLICATIONS: Our data suggest that abemaciclib may be therapeutically relevant for the treatment in PDAC, especially as part of a combination regimen inhibiting YAP1 or HuR.
Collapse
Affiliation(s)
- Teena Dhir
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher W Schultz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Aditi Jain
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samantha Z Brown
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alex Haber
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Austin Goetz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Chunhua Xi
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Gloria H Su
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - James Posey
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Wei Jiang
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles J Yeo
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Talia Golan
- Oncology institute, Chaim Sheba Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Jonathan R Brody
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
80
|
Rencuzogulları O, Yerlikaya PO, Gürkan AÇ, Arısan ED, Telci D. Palbociclib, a selective CDK4/6 inhibitor, restricts cell survival and epithelial-mesenchymal transition in Panc-1 and MiaPaCa-2 pancreatic cancer cells. J Cell Biochem 2019; 121:508-523. [PMID: 31264276 DOI: 10.1002/jcb.29249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
The mortality rate of pancreatic cancer has close parallels to its incidence rate because of limited therapeutics and lack of effective prognosis. Despite various novel chemotherapeutics combinations, the 5-year survival rate is still under 5%. In the current study, we aimed to modulate the aberrantly activated PI3K/AKT pathway and epithelial-mesenchymal transition (EMT) signaling with the treatment of CDK4/6 inhibitor PD-0332991 (palbociclib) in Panc-1 and MiaPaCa-2 pancreatic cancer cells. It was found that PD-0332991 effectively reduced cell viability and proliferation dose-dependently within 24 hours. In addition, PD-0332991 induced cell cycle arrest at the G1 phase by downregulation of aberrant expression of CDK4/6 through the dephosphorylation of Rb in each cell lines. Although PD-0332991 treatment increased epithelial markers and decreased mesenchymal markers, the nuclear translocation of β-catenin was not prevented by PD-0332991 treatment, especially in MiaPaCa-2 cells. Effects of PD-0332991 on the regulation of PI3K/AKT signaling and its downstream targets such as GSK-3 were cell type-dependent. Although the activity of AKT was inhibited in both cell lines, the phosphorylation of GSK-3β at Ser9 increased only in Panc-1. In conclusion, PD-0332991 induced cell cycle arrest and reduced the cell viability of Panc-1 and MiaPaCa-2 cells. However, PD-0332991 differentially affects the regulation of the PI3K/AKT pathway and EMT process in cells due to its distinct influence on Rb and GSK-3/β-catenin signaling. Understanding the effect of PD-0332991 on the aberrantly activated signaling axis may put forward a new therapeutic strategy to reduce the cell viability and metastatic process of pancreatic cancer.
Collapse
Affiliation(s)
- Ozge Rencuzogulları
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Istanbul, Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Pınar Obakan Yerlikaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Istanbul, Turkey
| | - Ajda Çoker Gürkan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Istanbul, Turkey
| | - Elif Damla Arısan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Istanbul, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
81
|
Wang K, Huynh N, Wang X, Pajic M, Parkin A, Man J, Baldwin GS, Nikfarjam M, He H. PAK inhibition by PF-3758309 enhanced the sensitivity of multiple chemotherapeutic reagents in patient-derived pancreatic cancer cell lines. Am J Transl Res 2019; 11:3353-3364. [PMID: 31312349 PMCID: PMC6614655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND/OBJECTIVE Pancreatic ductal adenocarcinoma (PDA) remains the most lethal malignancy due to lack of an effective treatment. P21-activated kinases (PAKs) play a key role not only in cell proliferation and migration, but also in mediating chemo-resistance in PDA. The aim of this study was to investigate the combined effect of a PAK inhibitor PF-3758309 with multiple chemotherapeutic reagents on a panel of patient-derived PDA cell lines, and potential mechanisms involved. METHODS Cells were treated with PF-3758309 plus or minus gemcitabine, 5-fluorouracil (5-FU) or abraxane, and cell growth was determined using a cell proliferation assay kit. Protein expression profiles were measured by Western blot. PDA cells were subcutaneously injected into the flanks of SCID mice which were then treated with saline, gemcitabine, PF-3758309, gemcitabine plus PF-3758309 or abraxane. Tumour growth was measured by volume and weight. RESULTS PAK1 was correlated with CK19 expression, and PAK4 with α-SMA and palladin expression. Combination of PF-3758309 with 5-FU, gemcitabine or abraxane further suppressed cell growth of patient-derived PDA cell lines in vitro. The combination of PF-3758309 with gemcitabine maximally inhibited tumour growth in vivo by suppressing cell proliferation. PF-3758309 inhibited the expression of HIF-1α, palladin and α-SMA both in vitro and in vivo. CONCLUSIONS PAK inhibitor PF-3758309 can enhance anti-tumour effects of multiple chemotherapeutic reagents on a panel of patient-derived PDA cell lines. Combination of PF-3758309 with gemcitabine achieves comparable efficacy to combination of gemcitabine with abraxane, and thus provides a potential targeted therapy in the management of PDA.
Collapse
Affiliation(s)
- Kai Wang
- Department of Surgery, University of Melbourne, Austin HealthStudley Road, Heidelberg, Victoria 3084, Australia
| | - Nhi Huynh
- Department of Surgery, University of Melbourne, Austin HealthStudley Road, Heidelberg, Victoria 3084, Australia
| | - Xiao Wang
- Department of Surgery, University of Melbourne, Austin HealthStudley Road, Heidelberg, Victoria 3084, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of NSWAustralia
| | - Ashleigh Parkin
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Jennifer Man
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Austin HealthStudley Road, Heidelberg, Victoria 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin HealthStudley Road, Heidelberg, Victoria 3084, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin HealthStudley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
82
|
Conway JRW, Herrmann D, Evans TRJ, Morton JP, Timpson P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut 2019; 68:742-758. [PMID: 30396902 PMCID: PMC6580874 DOI: 10.1136/gutjnl-2018-316822] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly solid tumours. This is due to a generally late-stage diagnosis of a primarily treatment-refractory disease. Several large-scale sequencing and mass spectrometry approaches have identified key drivers of this disease and in doing so highlighted the vast heterogeneity of lower frequency mutations that make clinical trials of targeted agents in unselected patients increasingly futile. There is a clear need for improved biomarkers to guide effective targeted therapies, with biomarker-driven clinical trials for personalised medicine becoming increasingly common in several cancers. Interestingly, many of the aberrant signalling pathways in PDAC rely on downstream signal transduction through the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways, which has led to the development of several approaches to target these key regulators, primarily as combination therapies. The following review discusses the trend of PDAC therapy towards molecular subtyping for biomarker-driven personalised therapies, highlighting the key pathways under investigation and their relationship to the PI3K pathway.
Collapse
Affiliation(s)
- James RW Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - TR Jeffry Evans
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P Morton
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
83
|
Knudsen ES, Kumarasamy V, Ruiz A, Sivinski J, Chung S, Grant A, Vail P, Chauhan SS, Jie T, Riall TS, Witkiewicz AK. Cell cycle plasticity driven by MTOR signaling: integral resistance to CDK4/6 inhibition in patient-derived models of pancreatic cancer. Oncogene 2019; 38:3355-3370. [PMID: 30696953 PMCID: PMC6499706 DOI: 10.1038/s41388-018-0650-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), like many KRAS-driven tumors, preferentially loses CDKN2A that encodes an endogenous CDK4/6 inhibitor to bypass the RB-mediated cell cycle suppression. Analysis of a panel of patient-derived cell lines and matched xenografts indicated that many pancreatic cancers have intrinsic resistance to CDK4/6 inhibition that is not due to any established mechanism or published biomarker. Rather, there is a KRAS-dependent rapid adaptive response that leads to the upregulation of cyclin proteins, which participate in functional complexes to mediate resistance. In vivo, the degree of response is associated with the suppression of a gene-expression signature that is strongly prognostic in pancreatic cancer. Resistance is associated with an adaptive gene expression signature which is common to multiple kinase inhibitors, but is attenuated with MTOR inhibitors. Combination treatment with MTOR and CDK4/6 inhibitors had potent activity across a large number of patient derived models of PDAC underscoring the potential clinical efficacy.
Collapse
Affiliation(s)
- Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amanda Ruiz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jared Sivinski
- Department of Pharmacology, Universtiy of Arizona, Tucson, AZ, USA
| | - Sejin Chung
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Adam Grant
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Paris Vail
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Tun Jie
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Taylor S Riall
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
84
|
Recasens A, Munoz L. Targeting Cancer Cell Dormancy. Trends Pharmacol Sci 2019; 40:128-141. [PMID: 30612715 DOI: 10.1016/j.tips.2018.12.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Cancer cell dormancy is a process whereby cells enter reversible cell cycle arrest, termed quiescence. Quiescence is essential for cancer cells to acquire additional mutations, to survive in a new environment and initiate metastasis, to become resistant to cancer therapy, and to evade immune destruction. Thus, dormant cancer cells are considered to be responsible for cancer progression. As we start to understand the mechanisms that enable quiescence, we can begin to develop pharmacological strategies to target dormant cancer cells. Herein, we summarize the major molecular mechanisms underlying the dormancy of disseminated tumor cells and drug-tolerant persister cells. We then analyze the current pharmacological strategies aimed (i) to keep cancer cells in the harmless dormant state, (ii) to reactivate dormant cells to increase their susceptibility to anti-proliferative drugs, and (iii) to eradicate dormant cancer cells.
Collapse
Affiliation(s)
- Ariadna Recasens
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
85
|
Schettini F, De Santo I, Rea CG, De Placido P, Formisano L, Giuliano M, Arpino G, De Laurentiis M, Puglisi F, De Placido S, Del Mastro L. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front Oncol 2018; 8:608. [PMID: 30631751 PMCID: PMC6315195 DOI: 10.3389/fonc.2018.00608] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDK) 4/6 inhibitors, namely abemaciclib, palbociclib, and ribociclib, interfere with cell cycle progression, induce cell senescence and might promote cancer cell disruption by a cytotoxic T cells-mediated effect. Phase III randomized clinical trials have proven that CDK4/6 inhibitors (CDK4/6i) in combination with several endocrine agents improve treatment efficacy over endocrine agents alone for hormone receptor positive (HR+) HER2 negative (HER2-) metastatic breast cancer (MBC). Based on such results, these combinations have been approved for clinical use. Preclinical studies in cell cultures and mouse models proved that CDK4/6i are active against a broad spectrum of solid tumors other than breast cancer, including liposarcoma, rhabdomyosarcoma, non-small cell lung cancer, glioblastoma multiforme, esophageal cancer, and melanoma. The role of CDK4/6i in monotherapy in several solid tumors is currently under evaluation in phase I, II, and III trials. Nowadays, abemaciclib is the only of the three inhibitors that has received approval as single agent therapy for pretreated HR+ HER2- MBC. Here we review biological, preclinical and clinical data on the role of CDK4/6 inhibitors as single agents in advanced solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Mario Giuliano
- University of Naples Federico II, Naples, Italy
- Baylor College of Medicine, Houston, TX, United States
| | | | | | - Fabio Puglisi
- Department of Medicine, University of Udine, Udine, Italy
- IRCCS Centro di Riferimento Oncologico Aviano, Aviano, Italy
| | | | - Lucia Del Mastro
- Policlinico San Martino-IST, Genova, Italy
- University of Genova, Genova, Italy
| |
Collapse
|
86
|
Parkin A, Man J, Chou A, Nagrial AM, Samra J, Gill AJ, Timpson P, Pajic M. The Evolving Understanding of the Molecular and Therapeutic Landscape of Pancreatic Ductal Adenocarcinoma. Diseases 2018; 6:diseases6040103. [PMID: 30428574 PMCID: PMC6313363 DOI: 10.3390/diseases6040103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths, characterised by poor survival, marked molecular heterogeneity and high intrinsic and acquired chemoresistance. Only 10⁻20% of pancreatic cancer patients present with surgically resectable disease and even then, 80% die within 5 years. Our increasing understanding of the genomic heterogeneity of cancer suggests that the failure of definitive clinical trials to demonstrate efficacy in the majority of cases is likely due to the low proportion of responsive molecular subtypes. As a consequence, novel treatment strategies to approach this disease are urgently needed. Significant developments in the field of precision oncology have led to increasing molecular stratification of cancers into subtypes, where individual cancers are selected for optimal therapy depending on their molecular or genomic fingerprint. This review provides an overview of the current status of clinically used and emerging treatment strategies, and discusses the advances in and the potential for the implementation of precision medicine in this highly lethal malignancy, for which there are currently no curative systemic therapies.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Jennifer Man
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Angela Chou
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- University of Sydney, Sydney, NSW 2006, Australia.
| | - Adnan M Nagrial
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia.
| | - Jaswinder Samra
- Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia.
| | - Anthony J Gill
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- University of Sydney, Sydney, NSW 2006, Australia.
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia.
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia.
| | - Paul Timpson
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| | - Marina Pajic
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| |
Collapse
|
87
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
88
|
Lim E, Beith J, Boyle F, de Boer R, Hui R, McCarthy N, Redfern A, Wade T, Woodward N. Emerging data and future directions for CDK4/6 inhibitor treatment of patients with hormone receptor positive HER2-non-amplified metastatic breast cancer. Asia Pac J Clin Oncol 2018; 14 Suppl 4:12-21. [PMID: 30288929 DOI: 10.1111/ajco.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclin-dependent kinase (CDK4/6) inhibitors in combination with endocrine therapy are currently the optimal first line treatment for hormone receptor (HR) positive, human epidermal growth factor receptor 2 (HER2) non-amplified metastatic breast cancer (MBC). However, not all patients benefit from this treatment and all patients will inevitably progress. Identifying therapeutic strategies in this setting is therefore of immediate clinical importance. We present an overview of the mechanisms of resistance to CDK4/6 inhibitors and review potential biomarkers that may guide therapy selection. We also discuss the use of CDK4/6 inhibitors in the context of non-HR-positive/HER2-non-amplified breast cancer and in combination with therapies other than endocrine therapy.
Collapse
Affiliation(s)
- Elgene Lim
- St.Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia.,Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Jane Beith
- University of Sydney, Camperdown, NSW, 2006, Australia.,Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - Frances Boyle
- University of Sydney, Camperdown, NSW, 2006, Australia.,Mater Hospital, North Sydney, NSW, 2060, Australia
| | - Richard de Boer
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Rina Hui
- University of Sydney, Camperdown, NSW, 2006, Australia.,Westmead Hospital, Hawkesbury Road and Darcy Road, Westmead, NSW, 2145, Australia
| | - Nicole McCarthy
- ICON Cancer Care Wesley, Auchenflower, QLD, 4066.,University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Theresa Wade
- WriteSource Medical Pty Ltd, Lane Cove, NSW, 1595, Australia
| | - Natasha Woodward
- University of Queensland, St Lucia, QLD, 4072, Australia.,Mater Misericordiae Ltd and Mater Research Institute Raymond Terrace, South Brisbane, QLD, 4101, Australia
| |
Collapse
|
89
|
Zhan W, Shelton CA, Greer PJ, Brand RE, Whitcomb DC. Germline Variants and Risk for Pancreatic Cancer: A Systematic Review and Emerging Concepts. Pancreas 2018; 47:924-936. [PMID: 30113427 PMCID: PMC6097243 DOI: 10.1097/mpa.0000000000001136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer requires many genetic mutations. Combinations of underlying germline variants and environmental factors may increase the risk of cancer and accelerate the oncogenic process. We systematically reviewed, annotated, and classified previously reported pancreatic cancer-associated germline variants in established risk genes. Variants were scored using multiple criteria and binned by evidence for pathogenicity, then annotated with published functional studies and associated biological systems/pathways. Twenty-two previously identified pancreatic cancer risk genes and 337 germline variants were identified from 97 informative studies that met our inclusion criteria. Fifteen of these genes contained 66 variants predicted to be pathogenic (APC, ATM, BRCA1, BRCA2, CDKN2A, CFTR, CHEK2, MLH1, MSH2, NBN, PALB2, PALLD, PRSS1, SPINK1, TP53). Pancreatic cancer risk genes were organized into key biological mechanisms that promote pancreatic oncogenesis within an oncogenic model. Development of precision medicine approaches requires updated variant information within the framework of an oncogenic progression model. Complex risk modeling may improve interpretation of early biomarkers and guide pathway-specific treatment for pancreatic cancer in the future. Precision medicine is within reach.
Collapse
Affiliation(s)
- Wei Zhan
- School of Medicine, Tsinghua University, Beijing, China
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Celeste A. Shelton
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Phil J. Greer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - David C. Whitcomb
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
90
|
Chitty JL, Filipe EC, Lucas MC, Herrmann D, Cox TR, Timpson P. Recent advances in understanding the complexities of metastasis. F1000Res 2018; 7. [PMID: 30135716 DOI: 10.12688/f1000research.15064.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Tumour metastasis is a dynamic and systemic process. It is no longer seen as a tumour cell-autonomous program but as a multifaceted and complex series of events, which is influenced by the intrinsic cellular mutational burden of cancer cells and the numerous bidirectional interactions between malignant and non-malignant cells and fine-tuned by the various extrinsic cues of the extracellular matrix. In cancer biology, metastasis as a process is one of the most technically challenging aspects of cancer biology to study. As a result, new platforms and technologies are continually being developed to better understand this process. In this review, we discuss some of the recent advances in metastasis and how the information gleaned is re-shaping our understanding of metastatic dissemination.
Collapse
Affiliation(s)
- Jessica L Chitty
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Elysse C Filipe
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| |
Collapse
|
91
|
Chitty JL, Filipe EC, Lucas MC, Herrmann D, Cox TR, Timpson P. Recent advances in understanding the complexities of metastasis. F1000Res 2018; 7. [PMID: 30135716 PMCID: PMC6073095 DOI: 10.12688/f1000research.15064.2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tumour metastasis is a dynamic and systemic process. It is no longer seen as a tumour cell-autonomous program but as a multifaceted and complex series of events, which is influenced by the intrinsic cellular mutational burden of cancer cells and the numerous bidirectional interactions between malignant and non-malignant cells and fine-tuned by the various extrinsic cues of the extracellular matrix. In cancer biology, metastasis as a process is one of the most technically challenging aspects of cancer biology to study. As a result, new platforms and technologies are continually being developed to better understand this process. In this review, we discuss some of the recent advances in metastasis and how the information gleaned is re-shaping our understanding of metastatic dissemination.
Collapse
Affiliation(s)
- Jessica L Chitty
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Elysse C Filipe
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| |
Collapse
|
92
|
Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M, Timpson P. Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology 2018; 154:820-838. [PMID: 29287624 DOI: 10.1053/j.gastro.2017.11.280] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is accompanied by a fibrotic reaction that alters interactions between tumor cells and the stroma to promote tumor progression. Consequently, strategies to target the tumor stroma might be used to treat patients with pancreatic cancer. We review recently developed approaches for reshaping the pancreatic tumor stroma and discuss how these might improve patient outcomes. We also describe relationships between the pancreatic tumor extracellular matrix, the vasculature, the immune system, and metabolism, and discuss the implications for the development of stromal compartment-specific therapies.
Collapse
Affiliation(s)
- Claire Vennin
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer P Morton
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Thomas R Cox
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Paul Timpson
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
93
|
Pihlak R, Weaver JMJ, Valle JW, McNamara MG. Advances in Molecular Profiling and Categorisation of Pancreatic Adenocarcinoma and the Implications for Therapy. Cancers (Basel) 2018; 10:E17. [PMID: 29329208 PMCID: PMC5789367 DOI: 10.3390/cancers10010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to be a disease with poor outcomes and short-lived treatment responses. New information is emerging from genome sequencing identifying potential subgroups based on somatic and germline mutations. A variety of different mutations and mutational signatures have been identified; the driver mutation in around 93% of PDAC is KRAS, with other recorded alterations being SMAD4 and CDKN2A. Mutations in the deoxyribonucleic acid (DNA) damage repair pathway have also been investigated in PDAC and multiple clinical trials are ongoing with DNA-damaging agents. Rare mutations in BRAF and microsatellite instability (MSI) have been reported in about 1-3% of patients with PDAC, and agents used in other cancers to target these have also shown some promise. Immunotherapy is a developing field, but has failed to demonstrate benefits in PDAC to date. While many trials have failed to improve outcomes in this deadly disease, there is optimism that by developing a better understanding of the translational aspects of this cancer, future informed therapeutic strategies may prove more successful.
Collapse
Affiliation(s)
- Rille Pihlak
- Division of Cancer Sciences, University of Manchester, Manchester M13 9NT, UK.
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK.
| | - Jamie M J Weaver
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK.
| | - Juan W Valle
- Division of Cancer Sciences, University of Manchester, Manchester M13 9NT, UK.
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK.
| | - Mairéad G McNamara
- Division of Cancer Sciences, University of Manchester, Manchester M13 9NT, UK.
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK.
| |
Collapse
|
94
|
|