51
|
Li K, Qin Y, Ye L. Response to 'Hyperbaric oxygen facilitates teniposide-induced cGAS-STING activation to enhance the antitumor efficacy of PD-1 antibody in HCC' by Yang et al. J Immunother Cancer 2023; 11:jitc-2022-006648. [PMID: 36882227 PMCID: PMC10008227 DOI: 10.1136/jitc-2022-006648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Affiliation(s)
- Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yunfei Qin
- Department of Biotherapy Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
52
|
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1133308. [PMID: 36845131 PMCID: PMC9950271 DOI: 10.3389/fimmu.2023.1133308] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the third leading cause of tumor-related mortality worldwide. In recent years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the management of HCC. Especially, the combination of atezolizumab (anti-PD1) and bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment for advanced HCC. Despite great breakthrough in systemic therapy, HCC continues to portend a poor prognosis owing to drug resistance and frequent recurrence. The tumor microenvironment (TME) of HCC is a complex and structured mixture characterized by abnormal angiogenesis, chronic inflammation, and dysregulated extracellular matrix (ECM) remodeling, collectively contributing to the immunosuppressive milieu that in turn prompts HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists and interacts with various immune cells to maintain the development of HCC. It is widely accepted that a dysfunctional tumor-immune ecosystem can lead to the failure of immune surveillance. The immunosuppressive TME is an external cause for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically hostile tumor microenvironment; 5) the gut microbiota that affects the immune microenvironment. Importantly, the effectiveness of immunotherapy largely depends on the tumor immune microenvironment (TIME). Also, the gut microbiota and metabolism profoundly affect the immune microenvironment. Understanding how TME affects HCC development and progression will contribute to better preventing HCC-specific immune evasion and overcoming resistance to already developed therapies. In this review, we mainly introduce immune evasion of HCC underlying the role of immune microenvironment, describe the dynamic interaction of immune microenvironment with dysfunctional metabolism and the gut microbiome, and propose therapeutic strategies to manipulate the TME in favor of more effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
53
|
Iglesias-Escudero M, Arias-González N, Martínez-Cáceres E. Regulatory cells and the effect of cancer immunotherapy. Mol Cancer 2023; 22:26. [PMID: 36739406 PMCID: PMC9898962 DOI: 10.1186/s12943-023-01714-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 02/06/2023] Open
Abstract
Several mechanisms and cell types are involved in the regulation of the immune response. These include mostly regulatory T cells (Tregs), regulatory macrophages (Mregs), myeloid suppressor cells (MDSCs) and other regulatory cell types such as tolerogenic dendritic cells (tolDCs), regulatory B cells (Bregs), and mesenchymal stem cells (MSCs). These regulatory cells, known for their ability to suppress immune responses, can also suppress the anti-tumor immune response. The infiltration of many regulatory cells into tumor tissues is therefore associated with a poor prognosis. There is growing evidence that elimination of Tregs enhances anti-tumor immune responses. However, the systemic depletion of Treg cells can simultaneously cause deleterious autoimmunity. Furthermore, since regulatory cells are characterized by their high level of expression of immune checkpoints, it is also expected that immune checkpoint inhibitors perform part of their function by blocking these molecules and enhancing the immune response. This indicates that immunotherapy does not only act by activating specific effector T cells but can also directly or indirectly attenuate the suppressive activity of regulatory cells in tumor tissues. This review aims to draw together our current knowledge about the effect of immunotherapy on the various types of regulatory cells, and how these effects may be beneficial in the response to immunotherapy.
Collapse
Affiliation(s)
- María Iglesias-Escudero
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Noelia Arias-González
- grid.411438.b0000 0004 1767 6330Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
54
|
Liu X, Zhou J, Wu H, Chen S, Zhang L, Tang W, Duan L, Wang Y, McCabe E, Hu M, Yu Z, Liu H, Choi CHJ, Sung JJY, Huang L, Liu R, Cheng ASL. Fibrotic immune microenvironment remodeling mediates superior anti-tumor efficacy of a nano-PD-L1 trap in hepatocellular carcinoma. Mol Ther 2023; 31:119-133. [PMID: 36146933 PMCID: PMC9840184 DOI: 10.1016/j.ymthe.2022.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/20/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023] Open
Abstract
The local microenvironment where tumors develop can shape cancer progression and therapeutic outcome. Emerging evidence demonstrate that the efficacy of immune-checkpoint blockade (ICB) is undermined by fibrotic tumor microenvironment (TME). The majority of hepatocellular carcinoma (HCC) develops in liver fibrosis, in which the stromal and immune components may form a barricade against immunotherapy. Here, we report that nanodelivery of a programmed death-ligand 1 (PD-L1) trap gene exerts superior efficacy in treating fibrosis-associated HCC when compared with the conventional monoclonal antibody (mAb). In two fibrosis-associated HCC models induced by carbon tetrachloride and a high-fat, high-carbohydrate diet, the PD-L1 trap induced significantly larger tumor regression than mAb with no evidence of toxicity. Mechanistic studies revealed that PD-L1 trap, but not mAb, consistently reduced the M2 macrophage proportion in the fibrotic liver microenvironment and promoted cytotoxic interferon gamma (IFNγ)+tumor necrosis factor α (TNF-α)+CD8+T cell infiltration to the tumor. Moreover, PD-L1 trap treatment was associated with decreased tumor-infiltrating polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) accumulation, resulting in an inflamed TME with a high cytotoxic CD8+T cell/PMN-MDSC ratio conductive to anti-tumor immune response. Single-cell RNA sequencing analysis of two clinical cohorts demonstrated preferential PD-L1 expression in M2 macrophages in the fibrotic liver, thus supporting the translational potential of nano-PD-L1 trap for fibrotic HCC treatment.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Haoran Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shufen Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lingyun Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Ying Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eleanor McCabe
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital, affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hanzhuang Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
55
|
Osman HA, Nafady-Hego H, Nasif KA, Ahmed HA, Mahmoud EAR, Abass NM, Rayan A, Mahmoud MA, Nafady A. Peripheral Mononuclear Cells Surface Markers Evaluation in Different Stages of Hepatocellular Carcinoma; in a Trial for Early and Accurate Diagnosis in Patients with Post-Hepatitis Liver Cirrhosis and Unremarkable Raised AFP. Int J Gen Med 2023; 16:1047-1058. [PMID: 36987406 PMCID: PMC10040161 DOI: 10.2147/ijgm.s404914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction HCC is frequently diagnosed late, when only palliative treatment is available. So, we try to use different immunological markers to identify early HCC in patients with unremarkable raised AFP. Methods This study was conducted on 112 participants divided into two equal groups: Group I, 56 patients with liver cirrhosis and different stages of HCC; Group II, 56 patients with liver cirrhosis. The diagnosis of HCC was based on AASLD guidelines. TNM and BCLC classification systems are used for staging of HCC. Results A significant reduction in the median percentage of lymphocyte subset (CD3+, CD4+, CD8+, CD19+) and NK cell percentage (CD56+) has been detected in HCC patients (all P < 0.001). In the HCC group the median monocyte subpopulations CD14+ CD16- Classical, CD14++ CD16+ Intermediate, and CD14-+ CD16++ Non-Classical were 11.7, 4.0, and 3.5, respectively, with marked reduction compared with liver cirrhosis group (all P < 0.001). Patients with advanced stages (BCLC C and D) were more likely to have significantly higher median CD33+ than patients with early stages (BCLC A and B) (P = 0.05); also, the median levels of HLA DR+ lymphocytes % in the HCC case group were 21.8 in patients with advanced disease (BCLC C and D) and 13.1 in patients with early stages of the disease (P = 0.04). Patients with late stage (TNM III) were more likely to have significantly higher median CD14+ CD16- Classical monocyte subset, CD36+ HLA DR+, and CD36+ CD16- than patients with early stages (TNM I and II). Conclusion Patients with HCC with unremarkable raised AFP showed marked reduction in lymphocytes, natural killer cells, and all monocyte subpopulations. In addition, patients with advanced HCC showed increased CD33+ and HLA DR+ lymphocytes %, CD14+ CD16- Classical monocyte subset, CD36+ HLA DR+, and CD36+ CD16- compared with patients with early stages of HCC.
Collapse
Affiliation(s)
- Heba Ahmed Osman
- Department of Tropical Medicine and Gastroenterology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
- Correspondence: Heba Ahmed Osman, Tropical Medicine and Gastroenterology, Qena Faculty of Medicine, South Valley University, Qena, Egypt, Email ;
| | - Hanaa Nafady-Hego
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khalid Ali Nasif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba A Ahmed
- Department of Clinical and Chemical Pathology Sohag Faculty of Medicine Sohag University, Sohag, Egypt
| | | | - Noher Mohamad Abass
- Department of Internal Medicine, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Amal Rayan
- Department of Clinical Oncology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa Ahmed Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Asmaa Nafady
- Department of Clinical and Chemical Pathology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
56
|
Tang Y, Zhou C, Li Q, Cheng X, Huang T, Li F, He L, Zhang B, Tu S. Targeting depletion of myeloid-derived suppressor cells potentiates PD-L1 blockade efficacy in gastric and colon cancers. Oncoimmunology 2022; 11:2131084. [PMID: 36268178 PMCID: PMC9578486 DOI: 10.1080/2162402x.2022.2131084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been demonstrated to suppress antitumor immunity and induce resistance to PD-1/PD-L1 blockade immunotherapy in gastric and colon cancer patients. Herein, we found that MDSCs accumulate in mice bearing syngeneic gastric cancer and colon cancer. Death receptor 5 (DR5), a receptor of TNF-related apoptosis-inducing ligand (TRAIL), was highly expressed on MDSCs and cancer cells; targeting DR5 using agonistic anti-DR5 antibody (MD5-1) specifically depleted MDSCs and induced enrichment of CD8+ T lymphocytes in tumors and exhibited stronger tumor inhibition efficacy in immune-competent mice than in T-cell-deficient nude mice. Importantly, the combination of MD5-1 and anti-PD-L1 antibody showed synergistic antitumor effects in gastric and colon tumor-bearing mice, resulting in significantly suppressed tumor growth and extended mice survival, whereas single-agent treatment had limited effect. Moreover, the combination therapy induced sustained memory immunity in mice that exhibited complete tumor regression. The enhanced antitumor effect was associated with increased intratumoral CD8+ T-cell infiltration and activation, and a more vigorous tumor-inhibiting microenvironment. In summary, our findings highlight the therapeutic potential of combining PD-L1 blockade therapy with agonistic anti-DR5 antibody that targets MDSCs in gastric and colon cancers.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Cong Zhou
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qingli Li
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaojiao Cheng
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Tinglei Huang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fuli Li
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lina He
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Baiweng Zhang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shuiping Tu
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
57
|
Cheng ASL. Meltdown of the cold tumour microenvironment: a new 'translational' approach to augment immunotherapy efficacy. Gut 2022; 72:gutjnl-2022-328861. [PMID: 36591616 DOI: 10.1136/gutjnl-2022-328861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
58
|
Qiao DR, Shan GY, Wang S, Cheng JY, Yan WQ, Li HJ. The mononuclear phagocyte system in hepatocellular carcinoma. World J Gastroenterol 2022; 28:6345-6355. [PMID: 36533105 PMCID: PMC9753057 DOI: 10.3748/wjg.v28.i45.6345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
The mononuclear phagocyte system (MPS) consists of monocytes, dendritic cells and macrophages, which play vital roles in innate immune defense against cancer. Hepatocellular carcinoma (HCC) is a complex disease that is affected or initiated by many factors, including chronic hepatitis B virus infection, hepatitis C virus infection, metabolic disorders or alcohol consumption. Liver function, tumor stage and the performance status of patients affect HCC clinical outcomes. Studies have shown that targeted treatment of tumor microenvironment disorders may improve the efficacy of HCC treatments. Cytokines derived from the innate immune response can regulate T-cell differentiation, thereby shaping adaptive immunity, which is associated with the prognosis of HCC. Therefore, it is important to elucidate the function of the MPS in the progression of HCC. In this review, we outline the impact of HCC on the MPS. We illustrate how HCC reshapes MPS cell phenotype remodeling and the production of associated cytokines and characterize the function and impairment of the MPS in HCC.
Collapse
Affiliation(s)
- Duan-Rui Qiao
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Shuai Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Department of Students Affairs, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wei-Qun Yan
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
| | - Hai-Jun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
59
|
Zhao J, Dong Y, Zhang Y, Wang J, Wang Z. Biophysical heterogeneity of myeloid-derived microenvironment to regulate resistance to cancer immunotherapy. Adv Drug Deliv Rev 2022; 191:114585. [PMID: 36273512 DOI: 10.1016/j.addr.2022.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
Despite the advances in immunotherapy for cancer treatment, patients still obtain limited benefits, mostly owing to unrestrained tumour self-expansion and immune evasion that exploits immunoregulatory mechanisms. Traditionally, myeloid cells have a dominantly immunosuppressive role. However, the complicated populations of the myeloid cells and their multilateral interactions with tumour/stromal/lymphoid cells and physical abnormalities in the tumour microenvironment (TME) determine their heterogeneous functions in tumour development and immune response. Tumour-associated myeloid cells (TAMCs) include monocytes, tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and granulocytes. Single-cell profiling revealed heterogeneous TAMCs composition, sub-types, and transcriptomic signatures across 15 human cancer types. We systematically reviewed the biophysical heterogeneity of TAMC composition and pro/anti-tumoral and immuno-suppressive/stimulating properties of myeloid-derived microenvironments. We also summarised comprehensive clinical strategies to overcome resistance to immunotherapy from three dimensions: targeting TAMCs, reversing physical abnormalities, utilising nanomedicines, and finally, put forward futuristic perspectives for scientific and clinical research.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yundi Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
60
|
Abstract
Significance: Hepatocellular carcinoma (HCC) is a liver malignancy with high mortality rate, limited treatment options, and poor prognosis. Sorafenib has been the only systemic treatment option for patients with advanced HCC for more than a decade. HCC is a typical inflammation-related tumor with a distinct immunosuppressive microenvironment especially the upregulation of immune checkpoints. Recent Advances: Immunotherapy has shown persistent and powerful efficacy in HCC treatment. Several preclinical and clinical studies have prompted the application of immunotherapy in first-line, second-line, and postline treatment of HCC, which has profoundly shifted the paradigm for advanced HCC treatment in the past few years. Critical Issues and Future Directions: Major unaddressed challenges in HCC immunotherapy include the discovery and validation of biological markers that predict the efficacy, the application of immunotherapy in patients with impaired liver function and nonalcoholic steatohepatitis-associated HCC, and the exploration of immunotherapy combinations with better effectiveness. This review provides the latest advances in the research of immune microenvironment and immunotherapy in HCC. Antioxid. Redox Signal. 37, 1325-1338.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Oncology; Guangzhou, China
| | - Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming Kuang
- Center of Hepato-Pancreatico-Biliary Surgery; The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
61
|
Aghamajidi A, Farhangnia P, Pashangzadeh S, Damavandi AR, Jafari R. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell Int 2022; 22:327. [PMID: 36303138 PMCID: PMC9608890 DOI: 10.1186/s12935-022-02727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Collapse
Affiliation(s)
- Azin Aghamajidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- grid.411705.60000 0001 0166 0922Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- grid.411705.60000 0001 0166 0922Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- grid.412763.50000 0004 0442 8645Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
62
|
Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne) 2022; 13:972312. [PMID: 36171897 PMCID: PMC9510633 DOI: 10.3389/fendo.2022.972312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Protein acetylation is a reversible post-translational modification, and is involved in many biological processes in cells, such as transcriptional regulation, DNA damage repair, and energy metabolism, which is an important molecular event and is associated with a wide range of diseases such as cancers. Protein acetylation is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis. The abnormal acetylation level might lead to the occurrence and deterioration of a cancer, and is closely related to various pathophysiological characteristics of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt to tumor microenvironment. Therapeutic modalities targeting protein acetylation are a potential therapeutic strategy. This article discussed the roles of protein acetylation in tumor pathology and therapeutic drugs targeting protein acetylation, which offers the contributions of protein acetylation in clarification of carcinogenesis, and discovery of therapeutic drugs for cancers, and lays the foundation for precision medicine in oncology.
Collapse
Affiliation(s)
- Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
63
|
Guizhen Z, Guanchang J, Liwen L, Huifen W, Zhigang R, Ranran S, Zujiang Y. The tumor microenvironment of hepatocellular carcinoma and its targeting strategy by CAR-T cell immunotherapy. Front Endocrinol (Lausanne) 2022; 13:918869. [PMID: 36093115 PMCID: PMC9452721 DOI: 10.3389/fendo.2022.918869] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, which ranks sixth in cancer incidence and third in mortality. Although great strides have been made in novel therapy for HCC, such as immunotherapy, the prognosis remains less than satisfactory. Increasing evidence demonstrates that the tumor immune microenvironment (TME) exerts a significant role in the evolution of HCC and has a non-negligible impact on the efficacy of HCC treatment. In the past two decades, the success in hematological malignancies made by chimeric antigen receptor-modified T (CAR-T) cell therapy leveraging it holds great promise for cancer treatment. However, in the face of a hostile TME in solid tumors like HCC, the efficacy of CAR-T cells will be greatly compromised. Here, we provide an overview of TME features in HCC, discuss recent advances and challenges of CAR-T immunotherapy in HCC.
Collapse
Affiliation(s)
- Zhang Guizhen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji Guanchang
- Department of Urology People’s Hospital of Puyang, Puyang, China
| | - Liu Liwen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wang Huifen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ren Zhigang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sun Ranran
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zujiang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
64
|
Floudas A, Smith CM, Tynan O, Neto N, Krishna V, Wade SM, Hanlon M, Cunningham C, Marzaioli V, Canavan M, Fletcher JM, Mullan RH, Cole S, Hao LY, Monaghan MG, Nagpal S, Veale DJ, Fearon U. Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis. Ann Rheum Dis 2022; 81:1224-1242. [PMID: 35701153 DOI: 10.1136/annrheumdis-2021-221761] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Immune and stromal cell communication is central in the pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), however, the nature of these interactions in the synovial pathology of the two pathotypes can differ. Identifying immune-stromal cell crosstalk at the site of inflammation in RA and PsA is challenging. This study creates the first global transcriptomic analysis of the RA and PsA inflamed joint and investigates immune-stromal cell interactions in the pathogenesis of synovial inflammation. METHODS Single cell transcriptomic profiling of 178 000 synovial tissue cells from five patients with PsA and four patients with RA, importantly, without prior sorting of immune and stromal cells. This approach enabled the transcriptomic analysis of the intact synovial tissue and identification of immune and stromal cell interactions. State of the art data integration and annotation techniques identified and characterised 18 stromal and 14 immune cell clusters. RESULTS Global transcriptomic analysis of synovial cell subsets identifies actively proliferating synovial T cells and indicates that due to differential λ and κ immunoglobulin light chain usage, synovial plasma cells are potentially not derived from the local memory B cell pool. Importantly, we report distinct fibroblast and endothelial cell transcriptomes indicating abundant subpopulations in RA and PsA characterised by differential transcription factor usage. Using receptor-ligand interactions and downstream target characterisation, we identify RA-specific synovial T cell-derived transforming growth factor (TGF)-β and macrophage interleukin (IL)-1β synergy in driving the transcriptional profile of FAPα+THY1+ invasive synovial fibroblasts, expanded in RA compared with PsA. In vitro characterisation of patient with RA synovial fibroblasts showed metabolic switch to glycolysis, increased adhesion intercellular adhesion molecules 1 expression and IL-6 secretion in response to combined TGF-β and IL-1β treatment. Disrupting specific immune and stromal cell interactions offers novel opportunities for targeted therapeutic intervention in RA and PsA.
Collapse
Affiliation(s)
- Achilleas Floudas
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Conor M Smith
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Tynan
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Nuno Neto
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Vinod Krishna
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Sarah M Wade
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Megan Hanlon
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Clare Cunningham
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Viviana Marzaioli
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ronan H Mullan
- Department of Rheumatology, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Suzanne Cole
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Ling-Yang Hao
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Sunil Nagpal
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Douglas J Veale
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| |
Collapse
|
65
|
Xiao Q, Xiao Y, Li LY, Chen MK, Wu M. Multifaceted regulation of enhancers in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194839. [PMID: 35750313 DOI: 10.1016/j.bbagrm.2022.194839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Enhancer is one kind of cis-elements regulating gene transcription, whose activity is tightly controlled by epigenetic enzymes and histone modifications. Active enhancers are classified into typical enhancers, super-enhancers and over-active enhancers, according to the enrichment and location of histone modifications. Epigenetic factors control the level of histone modifications on enhancers to determine their activity, such as histone methyltransferases and acetylases. Transcription factors, cofactors and mediators co-operate together and are required for enhancer functions. In turn, abnormalities in these trans-acting factors affect enhancer activity. Recent studies have revealed enhancer dysregulation as one of the important features for cancer. Variations in enhancer regions and mutations of enhancer regulatory genes are frequently observed in cancer cells, and altering the activity of onco-enhancers is able to repress oncogene expression, and suppress tumorigenesis and metastasis. Here we summarize the recent discoveries about enhancer regulation in cancer and discuss their potential application in diagnosis and treatment.
Collapse
Affiliation(s)
- Qiong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Yong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Ming-Kai Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
66
|
Combining radiation with immune checkpoint inhibitors therapy for HCC: From the alteration of the immune microenvironment by radiotherapy. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
67
|
Liu Z, Diao Y, Li X. Body mass index and serum markers associated with progression-free survival in lung cancer patients treated with immune checkpoint inhibitors. BMC Cancer 2022; 22:824. [PMID: 35902908 PMCID: PMC9336031 DOI: 10.1186/s12885-022-09744-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND ICIs have remarkably affected the treatment strategies for numerous malignancies, including lung cancer. However, only a fraction of patients experience durable responses to ICIs; thus, there is an urgent need to identify the parameters related to ICI therapeutic effects. In this study, we investigated nutritional status surrogates and several serum markers to estimate the efficacy of ICIs. MATERIALS AND METHODS The records of 66 patients with stage III/IV lung cancer who received ICIs were retrospectively analyzed. Features of patients' clinical pathology, including age, sex, histology, line of treatment, BMI, serum albumin, serum creatinine, and serum inflammatory markers such as LMR and PLR, were examined. Progression-free survival was the primary endpoint. Relationships among categorical variables were assessed by the chi-squared test. Survival analysis was performed using the Kaplan-Meier method followed by the log-rank test. Cox multivariate analysis was performed to analyze the association between each variable and the survival time of patients. RESULTS The patients with BMI ≥ 25 (kg/m2), serum ALB≥37 (g/dL), serum creatinine ≥61.8 (μmol/L), LMR ≥ 2.12 had a significantly prolonged PFS in comparison with BMI<25 (kg/m2), ALB<37 (g/dL), creatinine<61.8 (μmol/L), LMR<2.12 (p < 0.05). No statistically significant difference was detected between patients with PLR < 135 and PLR ≥ 135 (p = 0.612). Multivariate analysis revealed that ALB≥37 (g/dL) and creatinine ≥ 61.8 (μmol/L) were associated with prolonged PFS, while statistical significance was not achieved in the BMI groups. CONCLUSIONS The current results indicated that high BMI is related to longer PFS in lung cancer patients treated with ICIs, which may be correlated with high levels of serum albumin and creatinine.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, P. R. China
| | - Yuzhu Diao
- Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, P. R. China
| | - Xiaoling Li
- Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, P. R. China.
| |
Collapse
|
68
|
Bioinformatics Analysis for Constructing a Six-Immune-Related Long Noncoding RNA Signature as a Prognostic Model of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2093437. [PMID: 35845962 PMCID: PMC9283041 DOI: 10.1155/2022/2093437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
The present study was aimed at identifying the potential prognostic biomarkers of the immune-related long noncoding RNA (IRL) signature for patients with hepatocellular carcinoma (HCC). RNA-sequencing data and clinical information about HCC were obtained from The Cancer Genome Atlas. The IRLs were determined with regard to the coexpression of immune-related genes and differentially expressed lncRNAs. The survival IRLs were obtained using the univariate Cox analysis. Subsequently, the prognosis model was constructed via the multivariate Cox analysis. Subsequently, functional annotation was conducted using Gene Set Enrichment Analysis (GSEA) and principal component analysis (PCA). In total, 341 IRLs were identified, and 6 IRLs were found to have a highly significant association with the prognosis of patients with HCC. The immune prognosis model was constructed with these 6 IRLs (AC099850.4, negative regulator of antiviral response, AL031985.3, PRRT3-antisense RNA1, AL365203.2, and long intergenic nonprotein coding RNA 1224) using the multivariate Cox regression analysis. In addition, immune-related prognosis signatures were confirmed as an independent prognostic factor. The association between prognostic signatures and immune infiltration indicated that the 6 lncRNAs could reflect the immune status of the tumor. Collectively, the present study demonstrates that six-lncRNA signatures may be potential biomarkers to predict the prognosis of patients with HCC.
Collapse
|
69
|
Tang H, Yang Q, Tang Q, Li X, Ding W, Chen W. Integrated transcriptomics unravels implications of glycosylation-regulating signature in diagnosis, prognosis and therapeutic benefits of hepatocellular carcinoma. Comput Biol Med 2022; 148:105886. [DOI: 10.1016/j.compbiomed.2022.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 07/16/2022] [Indexed: 11/27/2022]
|
70
|
Zhang M, Wang L, Liu W, Wang T, De Sanctis F, Zhu L, Zhang G, Cheng J, Cao Q, Zhou J, Tagliabue A, Bronte V, Yan D, Wan X, Yu G. Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors. J Immunol Res 2022; 2022:2253436. [PMID: 35785030 PMCID: PMC9247850 DOI: 10.1155/2022/2253436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 01/20/2023] Open
Abstract
Despite the remarkable success and efficacy of immune checkpoint blockade (ICB) therapy such as anti-PD-L1 antibody in treating cancers, myeloid-derived suppressor cells (MDSCs) that lead to the formation of the protumor immunosuppressive microenvironment are one of the major contributors to ICB resistance. Therefore, inhibition of MDSC accumulation and function is critical for further enhancing the therapeutic efficacy of anti-PD-L1 antibody in a majority of cancer patients. Artemisinin (ART), the most effective antimalarial drug with tumoricidal and immunoregulatory activities, is a potential option for cancer treatment. Although ART is reported to reduce MDSC levels in 4T1 breast tumor model and improve the therapeutic efficacy of anti-PD-L1 antibody in T cell lymphoma-bearing mice, how ART influences MDSC accumulation, function, and molecular pathways as well as MDSC-mediated anti-PD-L1 resistance in melanoma or liver tumors remains unknown. Here, we reported that ART blocks the accumulation and function of MDSCs by polarizing M2-like tumor-promoting phenotype towards M1-like antitumor one. This switch is regulated via PI3K/AKT, mTOR, and MAPK signaling pathways. Targeting MDSCs by ART could significantly reduce tumor growth in various mouse models. More importantly, the ART therapy remarkably enhanced the efficacy of anti-PD-L1 immunotherapy in tumor-bearing mice through promoting antitumor T cell infiltration and proliferation. These findings indicate that ART controls the functional polarization of MDSCs and targeting MDSCs by ART provides a novel therapeutic strategy to enhance anti-PD-L1 cancer immunotherapy.
Collapse
Affiliation(s)
- Mengqi Zhang
- School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121000, China
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lulu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Wan Liu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian Wang
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | | | - Lifang Zhu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jian Cheng
- School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121000, China
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Aldo Tagliabue
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Vincenzo Bronte
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Xianchun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Shenzhen BinDeBioTech Co., Ltd., Shenzhen 518055, China
| | - Guang Yu
- School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
71
|
Myeloid-derived suppressor cells promote tumor growth and sorafenib resistance by inducing FGF1 upregulation and fibrosis. Neoplasia 2022; 28:100788. [PMID: 35378464 PMCID: PMC8980488 DOI: 10.1016/j.neo.2022.100788] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
Abstract
Background Methods Results Conclusions
Collapse
|
72
|
Sheng J, Zhang J, Wang L, Tano V, Tang J, Wang X, Wu J, Song J, Zhao Y, Rong J, Cheng F, Wang J, Shen Y, Wen L, He J, Zhang H, Li T, Zhang Q, Bai X, Lu Z, Liang T. Topological analysis of hepatocellular carcinoma tumour microenvironment based on imaging mass cytometry reveals cellular neighbourhood regulated reversely by macrophages with different ontogeny. Gut 2022; 71:1176-1191. [PMID: 34253573 DOI: 10.1136/gutjnl-2021-324339] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) tumour microenvironment (TME) is highly complex with diverse cellular components organising into various functional units, cellular neighbourhoods (CNs). And we wanted to define CN of HCC while preserving the TME architecture, based on which, potential targets for novel immunotherapy could be identified. DESIGN A highly multiplexed imaging mass cytometry (IMC) panel was designed to simultaneously quantify 36 biomarkers of tissues from 134 patients with HCC and 7 healthy donors to generate 562 highly multiplexed histology images at single-cell resolution. Different function units were defined by topological analysis of TME. CN relevant to the patients' prognosis was identified as specific target for HCC therapy. Transgenic mouse models were used to validate the novel immunotherapy target for HCC. RESULTS Three major types of intratumour areas with distinct distribution patterns of tumorous, stromal and immune cells were identified. 22 cellular metaclusters and 16 CN were defined. CN composed of various types of cells formed regional function units and the regional immunity was regulated reversely by resident Kupffer cells and infiltrating macrophages with protumour and antitumour function, respectively. Depletion of Kupffer cells in mouse liver largely enhances the T cell response, reduces liver tumour growth and sensitises the tumour response to antiprogrammed cell death protein-1 treatment. CONCLUSION Our findings reveal for the first time the various topological function units of HCC TME, which also presents the largest depository of pathological landscape for HCC. This work highlights the potential of Kupffer cell-specific targeting rather than overall myeloid cell blocking as a novel immunotherapy for HCC treatment.
Collapse
Affiliation(s)
- Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Lin Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jiangchao Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yaxing Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jingxia Rong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Fei Cheng
- Pathology Department, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jianfeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Liang Wen
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Junjun He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Hui Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Taohong Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhimin Lu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China.,Institue of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
73
|
PI3K/AKT/mTOR Pathway-Associated Genes Reveal a Putative Prognostic Signature Correlated with Immune Infiltration in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:7545666. [PMID: 35592706 PMCID: PMC9112180 DOI: 10.1155/2022/7545666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Abstract
Background The dysregulated PI3K/AKT/mTOR pathway acts as the main regulator of tumorigenesis in hepatocellular carcinoma (HCC). Aim Here, we identify the prognostic significance of PI3K/AKT/mTOR pathway-associated genes (PAGs) as well as their putative signature based on PAGs in an HCC patient's cohort. Methods The transcriptomic data and clinical feature sets were queried to extract the putative prognostic signature. Results We identified nine PAGs with different expressions. GO and KEGG indicated that these differentially expressed genes were associated with various carcinogenic pathways. Based on the signature-computed median risk score, we categorized the patients into groups of low risk and high risk. The survival time for the low-risk group is longer than that of the high-risk group in Kaplan-Meier (KM) curves. The prognostic value of risk score (ROC = 0.736) of receiver operating characteristic (ROC) curves performed better in comparison to that of other clinicopathological features. In both the GEO database and ICGC database, these outcomes were verified. The predictions of the overall survival rates in HCC patients of 1 year, 3 years, and 5 years can be obtained separately from the nomogram. The risk score was associated with the immune infiltrations of CD8 T cells, activated CD4 memory T cells, and follicular helper T cells, and the expression of immune checkpoints (PD-1, TIGIT, TIM-3, BTLA, LAG-3, and CTLA4) was positively relevant to the risk score. The sensitivity to several chemotherapeutic drugs can also be revealed by the signature. CDK1, PITX2, PRKAA2, and SFN were all upregulated in the tumor tissue of clinical samples. Conclusion A putative and differential dataset-validated prognostic signature on the basis of integrated bioinformatic analysis was established in our study, providing the immunotherapeutic targets as well as the personalized treatment in HCC with neoteric insight.
Collapse
|
74
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
75
|
Dang Y, Yu J, Zhao S, Cao X, Wang Q. HOXA7 promotes the metastasis of KRAS mutant colorectal cancer by regulating myeloid-derived suppressor cells. Cancer Cell Int 2022; 22:88. [PMID: 35183163 PMCID: PMC8858502 DOI: 10.1186/s12935-022-02519-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
KRAS mutation accounts for 30–50% of human colorectal cancer (CRC) cases. Due to the scarcity of effective treatment options, KRAS mutant CRC is difficult to treat in the clinic. Metastasis is still the major cause of the high mortality associated with KRAS mutant CRC, but the exact mechanism remains unclear. Here, we report a unique function of Homeobox 7 (HOXA7) in driving KRAS mutant CRC metastasis and explore therapeutic strategies for subpopulations of patients with this disease.
Methods
The expression of HOXA7 in a human CRC cohort was measured by immunohistochemistry. The function of HOXA7 in KRAS mutant CRC metastasis was analyzed with the cecum orthotopic model.
Results
Elevated HOXA7 expression was positively correlated with lymph node metastasis, distant metastasis, poor tumor differentiation, high TNM stage, and poor prognosis in CRC patients. Furthermore, HOXA7 was an independent prognostic marker in KRAS mutant CRC patients (P < 0.001) but not in KRAS wild-type CRC patients (P = 0.575). Overexpression of HOXA7 improved the ability of KRAS mutant CT26 cells to metastasize and simultaneously promoted the infiltration of myeloid-derived suppressor cells (MDSCs). When MDSC infiltration was blocked by a CXCR2 inhibitor, the metastasis rate of CT26 cells was markedly suppressed. The combination of the CXCR2 inhibitor SB265610 and programmed death-ligand 1 antibody (anti-PD-L1) could largely inhibit the metastasis of KRAS mutant CRC.
Conclusions
HOXA7 overexpression upregulated CXCL1 expression, which promoted MDSC infiltration. Interruption of this loop might provide a promising treatment strategy for HOXA7-mediated KRAS mutant CRC metastasis.
Collapse
|
76
|
McVey JC, Green BL, Ruf B, McCallen JD, Wabitsch S, Subramanyam V, Diggs LP, Heinrich B, Greten TF, Ma C. NAFLD indirectly impairs antigen-specific CD8 + T cell immunity against liver cancer in mice. iScience 2022; 25:103847. [PMID: 35198900 PMCID: PMC8844694 DOI: 10.1016/j.isci.2022.103847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 12/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become an important etiology leading to liver cancer. NAFLD alters adaptive T cell immunity and has a profound influence on liver cancer development. However, it is unclear how NAFLD affects tumor antigen-specific T cell response. In this study, we generated a doxycycline-inducible MHC-I and -II antigen-expressing HCC cell line which allowed us to investigate tumor antigen-specific T cell response in two NAFLD mouse models. The system proved to be an effective and efficient way to study tumor antigen-specific T cells. Using this model, it was found that NAFLD impairs antigen-specific CD8+ T cell immunity against HCC. The effect was not due to reduced generation or intrinsic functional changes of tumor antigen-specific CD8+ T cells but caused by accumulated macrophages in the liver environment. The findings suggest that targeting macrophages in NAFLD-driven HCC may improve therapeutic outcomes. The creation of a novel doxycycline-inducible antigen presenting HCC mouse model Diet and genetic NAFLD mice have impaired TAS CD8 T cell response to HCC NAFLD does not change the intrinsic function of TAS CD8 T cells Depletion of macrophages reverses the immunosuppressive environment in NAFLD mice
Collapse
Affiliation(s)
- John C McVey
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA.,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin L Green
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA.,Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA
| | - Justin D McCallen
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA.,Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Simon Wabitsch
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA
| | - Varun Subramanyam
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA
| | - Laurence P Diggs
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA.,Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bernd Heinrich
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA.,Department of Medicine, Hannover Medical School, Hannover, Germany
| | - Tim F Greten
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA.,NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal and Thoracic Malignancy Section, National Cancer Institute, National Institutes of Health, TGMB NIH/NCI/CCR Building 10 Rm 3B44 9000 Rockville Pike, Bethesda, MD, USA
| |
Collapse
|
77
|
Zheng Y, Zhang W, Xu L, Zhou H, Yuan M, Xu H. Recent Progress in Understanding the Action of Natural Compounds at Novel Therapeutic Drug Targets for the Treatment of Liver Cancer. Front Oncol 2022; 11:795548. [PMID: 35155196 PMCID: PMC8825370 DOI: 10.3389/fonc.2021.795548] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the third most common cause of cancer-related death following lung and stomach cancers. As a highly lethal disease, liver cancer is diagnosed frequently in less developed countries. Natural compounds extracted from herbs, animals and natural materials have been adopted by traditional Chinese medicine (TCM) practices and reported to be effective in the development of new medications for the treatment of diseases. It is important to focus on the mechanisms of action of natural compounds against hepatocellular carcinoma (HCC), particularly in terms of cell cycle regulation, apoptosis induction, autophagy mediation and cell migration and invasion. In this review, we characterize novel representative natural compounds according to their pharmacologic effects based on recently published studies. The aim of this review is to summarize and explore novel therapeutic drug targets of natural compounds, which could accelerate the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Yannan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Lin Xu
- Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
78
|
Maestri M, Pallozzi M, Santopaolo F, Cerrito L, Pompili M, Gasbarrini A, Ponziani FR. Durvalumab: an investigational agent for unresectable hepatocellular carcinoma. Expert Opin Investig Drugs 2022; 31:347-360. [PMID: 35072571 DOI: 10.1080/13543784.2022.2033208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marta Maestri
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
| | - Maria Pallozzi
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
| | - Lucia Cerrito
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
| | | |
Collapse
|
79
|
Sun HY, Du ST, Li YY, Deng GT, Zeng FR. Bromodomain and extra-terminal inhibitors emerge as potential therapeutic avenues for gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:75-89. [PMID: 35116104 PMCID: PMC8790409 DOI: 10.4251/wjgo.v14.i1.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/11/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers, including colorectal cancer, pancreatic cancer, liver cancer and gastric cancer, are severe social burdens due to high incidence and mortality rates. Bromodomain and extra-terminal (BET) proteins are epigenetic readers consisting of four conserved members (BRD2, BRD3, BRD4 and BRDT). BET family perform pivotal roles in tumorigenesis through transcriptional regulation, thereby emerging as potential therapeutic targets. BET inhibitors, disrupting the interaction between BET proteins and acetylated lysines, have been reported to suppress tumor initiation and progression in most of GI cancers. In this review, we will demonstrate how BET proteins participate in the GI cancers progression and highlight the therapeutic potential of targeting BET proteins for GI cancers treatment.
Collapse
Affiliation(s)
- Hui-Yan Sun
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Song-Tao Du
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Colorectal Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Ya-Yun Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guang-Tong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Rong Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
80
|
Xing R, Gao J, Cui Q, Wang Q. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma. Front Immunol 2021; 12:783236. [PMID: 34899747 PMCID: PMC8660685 DOI: 10.3389/fimmu.2021.783236] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most fatal malignancies in the world, is usually diagnosed in advanced stages due to late symptom manifestation with very limited therapeutic options, which leads to ineffective intervention and dismal prognosis. For a decade, tyrosine kinase inhibitors (TKIs) have offered an overall survival (OS) benefit when used in a first-line (sorafenib and lenvatinib) and second-line setting (regorafenib and cabozantinib) in advanced HCC, while long-term response remains unsatisfactory due to the onset of primary or acquired resistance. Recently, immunotherapy has emerged as a promising therapy in the treatment of several solid tumors, such as melanoma and non-small cell lung cancer. Moreover, as the occurrence of HCC is associated with immune tolerance and immunosurveillance escape, there is a potent rationale for employing immunotherapy in HCC. However, immunotherapy monotherapy, mainly including immune checkpoint inhibitors (ICIs) that target checkpoints programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and the cytotoxic T lymphocyte antigen-4 (CTLA-4), has a relatively low response rate. Thus, the multi-ICIs or the combination of immunotherapy with other therapies, like antiangiogenic drugs and locoregional therapies, has become a novel strategy to treat HCC. Combining different ICIs may have a synergistical effect attributed to the complementary effects of the two immune checkpoint pathways (CTLA-4 and PD-1/PD-L1 pathways). The incorporation of antiangiogenic drugs in ICIs can enhance antitumor immune responses via synergistically regulating the vasculature and the immune microenvironment of tumor. In addition, locoregional treatments can improve antitumor immunity by releasing the neoplasm antigens from killed tumor cells; in turn, this antitumor immune response can be intensified by immunotherapy. Therefore, the combination of locoregional treatments and immunotherapy may achieve greater efficacy through further synergistic effects for advanced HCC. This review aims to summarize the currently reported results and ongoing trials of the ICIs-based combination therapies for HCC to explore the rational combination strategies and further improve the survival of patients with HCC.
Collapse
Affiliation(s)
- Rui Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinping Gao
- Department of Oncology, North War Zone General Hospital, Shenyang, China
| | - Qi Cui
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qian Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
81
|
Hao X, Sun G, Zhang Y, Kong X, Rong D, Song J, Tang W, Wang X. Targeting Immune Cells in the Tumor Microenvironment of HCC: New Opportunities and Challenges. Front Cell Dev Biol 2021; 9:775462. [PMID: 34869376 PMCID: PMC8633569 DOI: 10.3389/fcell.2021.775462] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Immune associated cells in the microenvironment have a significant impact on the development and progression of hepatocellular carcinoma (HCC) and have received more and more attention. Different types of immune-associated cells play different roles, including promoting/inhibiting HCC and several different types that are controversial. It is well known that immune escape of HCC has become a difficult problem in tumor therapy. Therefore, in recent years, a large number of studies have focused on the immune microenvironment of HCC, explored many mechanisms worth identifying tumor immunosuppression, and developed a variety of immunotherapy methods as targets, laying the foundation for the final victory in the fight against HCC. This paper reviews recent studies on the immune microenvironment of HCC that are more reliable and important, and provides a more comprehensive view of the investigation of the immune microenvironment of HCC and the development of more immunotherapeutic approaches based on the relevant summaries of different immune cells.
Collapse
Affiliation(s)
- Xiaopei Hao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
82
|
Kong D, Jiang Y, Miao X, Wu Z, Liu H, Gong W. Tadalafil enhances the therapeutic efficacy of BET inhibitors in hepatocellular carcinoma through activating Hippo pathway. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166267. [PMID: 34508829 DOI: 10.1016/j.bbadis.2021.166267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Bromodomain and extraterminal (BET) proteins are promising therapeutic targets for hematological and solid tumors. However, BET inhibitor monotherapy did not show a significant therapeutic benefit for hepatocellular carcinoma (HCC) in preclinical trials. Here, we identified YAP/TAZ genes, as determinants for sensitivity to BET inhibitors. YAP/TAZ expression, especially TAZ, promote resistance to BET inhibitor. In addition, we analyzed that the mRNA level of PDE5 was positively correlated with YAP/TAZ based on TCGA database and demonstrated tadalafil, a PDE5 inhibitor, could block YAP/TAZ protein expression by activating Hippo pathway. Cotreatment with tadalafil and JQ-1 synergistically reduced YAP/TAZ protein expression, suppressed proliferation and induced G0-G1 arrest of cultured HCC cells. JQ-1 alone does not show significant benefits in a mouse model of HCC induced by c-Myc/N-Ras plasmids. In contrast, the combination, tadalafil and JQ-1, successfully suppressed tumor progression, enhanced antitumor immunity by improving the ratio of activated CD8 and extended the survival time of mice. Our data define the key role of YAP/TAZ in mediating resistance to BET inhibitor, described the PDE5/PKG/Hippo/YAP/TAZ axis and identified a common clinical drug that can be developed as an effective combined strategy to overcome BET inhibitor resistance in MYC/Ras-driven HCC.
Collapse
Affiliation(s)
- Deqiang Kong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Yuancong Jiang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Han Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China; Cancer Center of Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
83
|
Xuan W, Khan F, James CD, Heimberger AB, Lesniak MS, Chen P. Circadian regulation of cancer cell and tumor microenvironment crosstalk. Trends Cell Biol 2021; 31:940-950. [PMID: 34272133 PMCID: PMC8526375 DOI: 10.1016/j.tcb.2021.06.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
Circadian rhythms regulate a remarkable variety of physiologic functions in living organisms. Circadian disruption is associated with tumorigenesis and tumor progression through effects on cancer cell biological properties, including proliferation, DNA repair, apoptosis, metabolism, and stemness. Emerging evidence indicates that circadian clocks also play an influential role in the tumor microenvironment (TME). This review outlines recent discoveries on how cancer cell clock components (including circadian clock and clock genes/proteins) regulate TME biology and, reciprocally, how TME clock components affect tumor growth, metastasis, and therapeutic response. An improved understanding of how clock components regulate the symbiosis between cancer cells and the TME will inform the development of novel clock-oriented therapeutic strategies, including immunotherapy.
Collapse
Affiliation(s)
- Wenjing Xuan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Charles David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
84
|
Wu F, Xu L, Tu Y, Cheung OK, Szeto LL, Mok MT, Yang W, Kang W, Cao Q, Lai PB, Chan SL, Tan P, Sung JJ, Yip KY, Cheng AS, To KF. Sirtuin 7 super-enhancer drives epigenomic reprogramming in hepatocarcinogenesis. Cancer Lett 2021; 525:115-130. [PMID: 34736960 DOI: 10.1016/j.canlet.2021.10.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major cancer burden worldwide with increasing incidence in many developed countries. Super-enhancers (SEs) drive gene expressions required for cell type-specificity and tumor cell identity. However, their roles in HCC remain unclear because of data scarcity from primary tumors. Herein, chromatin profiling of non-alcoholic fatty liver disease (NAFLD)-associated HCCs and matched liver tissues uncovered an average of ∼500 somatically-acquired SEs per patient. The identified SE-target genes were functionally enriched for aberrant metabolism and cancer phenotypes, especially chromatin regulators including deacetylases and Polycomb repressive complexes. Notably, all examined tumors exhibited SE activation of Sirtuin 7 (SIRT7), genome-wide promoter H3K18 deacetylation and concurrent H3K27me3, as well as tumor-suppressor gene silencing. Depletion of SIRT7 SE in hepatoma cells induced global H3K18 acetylation and reactivated key metabolic and immune regulators, leading to marked suppression of tumorigenicity in vitro and in vivo. In concordance, SIRT7 physically interacted with the methyltransferase EZH2, and they were co-expressed in primary HCCs. In summary, our integrative analysis establishes a compendium of SEs in NAFLD-associated HCCs and uncovers SIRT7-driven chromatin regulatory network as potential druggable vulnerability of this increasingly prevalent cancer.
Collapse
Affiliation(s)
- Feng Wu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangliang Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yalin Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Otto Kw Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lemuel Lm Szeto
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Myth Ts Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Bs Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen L Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Joseph Jy Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Alfred Sl Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ka F To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
85
|
Liu HT, Jiang MJ, Deng ZJ, Li L, Huang JL, Liu ZX, Li LQ, Zhong JH. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: Current Progresses and Challenges. Front Oncol 2021; 11:737497. [PMID: 34745958 PMCID: PMC8570111 DOI: 10.3389/fonc.2021.737497] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/08/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumor in the world and its incidence is increasing in many countries. In recent years, with the deepening understanding of the immune and pathological mechanisms of HCC, immunotherapy based on the regulation of tumor immune microenvironment has become a new treatment choice for patients with HCC. Immune checkpoint inhibitors (ICIs) targeting programmed death protein-1, programmed death protein-ligand-1, or cytotoxic T-lymphocyte-associated antigen 4 are the most widely used. Instead of general immune-enhancing therapies, ICIs can reactivate anti-tumor immune responses by disrupting co-inhibitory T cell signaling. In this review, the research progress and existing problems of ICIs in the treatment of HCC in recent years are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
86
|
Liu S, Zhao W, Li X, Zhang L, Gao Y, Peng Q, Du C, Jiang N. AGTRAP Is a Prognostic Biomarker Correlated With Immune Infiltration in Hepatocellular Carcinoma. Front Oncol 2021; 11:713017. [PMID: 34595113 PMCID: PMC8477650 DOI: 10.3389/fonc.2021.713017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background Recently, it has been reported that angiotensin II receptor-associated protein (AGTRAP) plays a substantial role in tumor progression. Nevertheless, the possible role of AGTRAP in hepatocellular carcinoma (HCC) remains unrecognized. Methods The metabolic gene rapid visualizer, Cancer Cell Line Encyclopedia, Human Protein Atlas, and Hepatocellular Carcinoma Database were used to analyze the expression of AGTRAP in HCC tissues and normal liver tissues or adjacent tissues. Kaplan-Meier plotter and UALCAN analysis were used to assess the prognostic and diagnostic value of AGTRAP. LinkedOmics and cBioPortal were used to explore the genes co-expressed with AGTRAP in HCC. To further understand the potential mechanism of AGTRAP in HCC, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment pathway analyses were performed using R software, the protein-protein interaction (PPI) network was established using the STRING database, and the immune infiltration and T-cell exhaustion related to AGTRAP were explored via Timer and GEPIA. In addition, immunohistochemistry was used to detect the expression of AGTRAP protein in HCC tissues and paired adjacent tissues from clinical specimens. Results This study found that the mRNA and protein levels of AGTRAP in HCC tissues were higher than those in normal liver tissues and adjacent tissues, and higher mRNA levels of AGTRAP were associated with higher histological grade and a poor overall survival in HCC patients. The area under the receiver operating characteristic curve (AUC) of AGTRAP was 0.856, suggesting that it could be a diagnostic marker for HCC. Moreover, the alteration rate of AGTRAP in HCC was 8%, and AGTRAP was involved in HCC probably through the NF-κB and MAPK signaling pathways. Furthermore, AGTRAP was positively correlated with the infiltration of CD8+ T cells, CD4+ T cells, B cells, macrophages, dendritic cells, and neutrophils, and the levels of AGTRAP were significantly correlated with T-cell exhaustion biomarkers. The immunohistochemistry results confirmed that the protein levels of AGTRAP were consistently higher in HCC tissues than in paired adjacent tissues. Conclusion The clinical value of AGTRAP and its correlation with immune infiltration in HCC was effectively identified in clinical data from multiple recognized databases. These findings indicate that AGTRAP could serve as a potential biomarker in the treatment of HCC, thereby informing its prognosis, diagnosis, and even immunotherapy.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
87
|
Sanceau J, Gougelet A. Epigenetic mechanisms of liver tumor resistance to immunotherapy. World J Hepatol 2021; 13:979-1002. [PMID: 34630870 PMCID: PMC8473495 DOI: 10.4254/wjh.v13.i9.979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor, which stands fourth in rank of cancer-related deaths worldwide. The incidence of HCC is constantly increasing in correlation with the epidemic in diabetes and obesity, arguing for an urgent need for new treatments for this lethal cancer refractory to conventional treatments. HCC is the paradigm of inflammation-associated cancer, since more than 80% of HCC emerge consecutively to cirrhosis associated with a vast remodeling of liver microenvironment. In the recent decade, immunomodulatory drugs have been developed and have given impressive results in melanoma and later in several other cancers. In the present review, we will discuss the recent advancements concerning the use of immunotherapies in HCC, in particular those targeting immune checkpoints, used alone or in combination with other anti-cancers agents. We will address why these drugs demonstrate unsatisfactory results in a high proportion of liver cancers and the mechanisms of resistance developed by HCC to evade immune response with a focus on the epigenetic-related mechanisms.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France.
| |
Collapse
|
88
|
Borgia M, Dal Bo M, Toffoli G. Role of Virus-Related Chronic Inflammation and Mechanisms of Cancer Immune-Suppression in Pathogenesis and Progression of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13174387. [PMID: 34503196 PMCID: PMC8431318 DOI: 10.3390/cancers13174387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma pathogenesis is dependent on a chronic inflammation caused by several factors, including hepatotropic viruses, such as HCV and HBV. This chronic inflammation is established in the context of the immunotolerogenic environment peculiar of the liver, in which the immune system can be stimulated by HCV and HBV viral antigens. This complex interaction can be influenced by direct-acting antiviral drug treatments, capable of (almost totally) rapidly eradicating HCV infection. The influence of anti-viral treatments on HCC pathogenesis and progression remains to be fully clarified. Abstract Hepatocellular carcinoma (HCC) can be classified as a prototypical inflammation-driven cancer that generally arises from a background of liver cirrhosis, but that in the presence of nonalcoholic steatohepatitis (NASH), could develop in the absence of fibrosis or cirrhosis. Tumor-promoting inflammation characterizes HCC pathogenesis, with an epidemiology of the chronic liver disease frequently encompassing hepatitis virus B (HBV) or C (HCV). HCC tumor onset and progression is a serial and heterogeneous process in which intrinsic factors, such as genetic mutations and chromosomal instability, are closely associated with an immunosuppressive tumor microenvironment (TME), which may have features associated with the etiopathogenesis and expression of the viral antigens, which favor the evasion of tumor neoantigens to immune surveillance. With the introduction of direct-acting antiviral (DAA) therapies for HCV infection, sustained virological response (SVR) has become very high, although occurrence of HCC and reactivation of HBV in patients with co-infection, who achieved SVR in short term, have been observed in a significant proportion of treated cases. In this review, we discuss the main molecular and TME features that are responsible for HCC pathogenesis and progression. Peculiar functional aspects that could be related to the presence and treatment of HCV/HBV viral infections are also dealt with.
Collapse
|
89
|
Xu Q, Xu H, Deng R, Li N, Mu R, Qi Z, Shen Y, Wang Z, Wen J, Zhao J, Weng D, Huang W. Landscape of Prognostic m6A RNA Methylation Regulators in Hepatocellular Carcinoma to Aid Immunotherapy. Front Cell Dev Biol 2021; 9:669145. [PMID: 34422799 PMCID: PMC8375309 DOI: 10.3389/fcell.2021.669145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the sixth most common malignancy with a high mortality worldwide. N6-methyladenosine (m6A) may participate extensively in tumor progression. Methods: To reveal the landscape of tumor immune microenvironment (TIME), ESTIMATE analysis, ssGSEA algorithm, and the CIBERSORT method were used. Taking advantage of consensus clustering, two different HCC categories were screened. We analyzed the correlation of clustering results with TIME and immunotherapy. Then, we yielded a risk signature by systematical bioinformatics analyses. Immunophenoscore (IPS) was implemented to estimate the immunotherapeutic significance of risk signature. Results: The m6A-based clusters were significantly correlated with overall survival (OS), immune score, immunological signature, immune infiltrating, and ICB-associated genes. Risk signature possessed robust prognostic validity and significantly correlated with TIME context. IPS was employed as a surrogate of immunotherapeutic outcome, and patients with low-risk scores showed significantly higher immunophenoscores. Conclusion: Collectively, m6A-based clustering subtype and signature was a robust prognostic indicator and correlated with TIME and immunotherapy, providing novel insight into antitumor management and prognostic prediction in HCC.
Collapse
Affiliation(s)
- Qianhui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Rongshan Deng
- Zhejiang University School of Medicine, Hangzhou, China
| | - Nanjun Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Mu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhixuan Qi
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yunuo Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zijie Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jingchao Wen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxin Zhao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Di Weng
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
90
|
Zheng Y, Li Y, Feng J, Li J, Ji J, Wu L, Yu Q, Dai W, Wu J, Zhou Y, Guo C. Cellular based immunotherapy for primary liver cancer. J Exp Clin Cancer Res 2021; 40:250. [PMID: 34372912 PMCID: PMC8351445 DOI: 10.1186/s13046-021-02030-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer (PLC) is a common malignancy with high morbidity and mortality. Poor prognosis and easy recurrence on PLC patients calls for optimizations of the current conventional treatments and the exploration of novel therapeutic strategies. For most malignancies, including PLC, immune cells play crucial roles in regulating tumor microenvironments and specifically recognizing tumor cells. Therefore, cellular based immunotherapy has its instinctive advantages in PLC therapy as a novel therapeutic strategy. From the active and passive immune perspectives, we introduced the cellular based immunotherapies for PLC in this review, covering both the lymphoid and myeloid cells. Then we briefly review the combined cellular immunotherapeutic approaches and the existing obstacles for PLC treatment.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China.
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
91
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
92
|
Yang W, Feng Y, Zhou J, Cheung OKW, Cao J, Wang J, Tang W, Tu Y, Xu L, Wu F, Tan Z, Sun H, Tian Y, Wong J, Lai PBS, Chan SL, Chan AWH, Tan PBO, Chen Z, Sung JJY, Yip KYL, To KF, Cheng ASL. A selective HDAC8 inhibitor potentiates antitumor immunity and efficacy of immune checkpoint blockade in hepatocellular carcinoma. Sci Transl Med 2021; 13:13/588/eaaz6804. [PMID: 33827976 DOI: 10.1126/scitranslmed.aaz6804] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 09/26/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
Insufficient T cell infiltration into noninflamed tumors, such as hepatocellular carcinoma (HCC), restricts the effectiveness of immune-checkpoint blockade (ICB) for a subset of patients. Epigenetic therapy provides further opportunities to rewire cancer-associated transcriptional programs, but whether and how selective epigenetic inhibition counteracts the immune-excluded phenotype remain incompletely defined. Here, we showed that pharmacological inhibition of histone deacetylase 8 (HDAC8), a histone H3 lysine 27 (H3K27)-specific isozyme overexpressed in a variety of human cancers, thwarts HCC tumorigenicity in a T cell-dependent manner. The tumor-suppressive effect of selective HDAC8 inhibition was abrogated by CD8+ T cell depletion or regulatory T cell adoptive transfer. Chromatin profiling of human HDAC8-expressing HCCs revealed genome-wide H3K27 deacetylation in 1251 silenced enhancer-target gene pairs that are enriched in metabolic and immune regulators. Mechanistically, down-regulation of HDAC8 increased global and enhancer acetylation of H3K27 to reactivate production of T cell-trafficking chemokines by HCC cells, thus relieving T cell exclusion in both immunodeficient and humanized mouse models. In an HCC preclinical model, selective HDAC8 inhibition increased tumor-infiltrating CD8+ T cells and potentiated eradication of established hepatomas by anti-PD-L1 therapy without evidence of toxicity. Mice treated with HDAC8 and PD-L1 coblockade were protected against subsequent tumor rechallenge as a result of the induction of memory T cells and remained tumor-free for greater than 15 months. Collectively, our study demonstrates that selective HDAC8 inhibition elicits effective and durable responses to ICB by co-opting adaptive immunity through enhancer reprogramming.
Collapse
Affiliation(s)
- Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Otto Ka-Wing Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianquan Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yalin Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Liangliang Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Wu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhiwu Tan
- AIDS Institute, The University of Hong Kong, Hong Kong SAR 999077, China.,Department of Microbiology and Research Center for Infection and Immunity, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hanyong Sun
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518061, China
| | - John Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Patrick Boon-Ooi Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 169857, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore 119228, Singapore
| | - Zhiwei Chen
- AIDS Institute, The University of Hong Kong, Hong Kong SAR 999077, China.,Department of Microbiology and Research Center for Infection and Immunity, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Kevin Yuk-Lap Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
93
|
Wirtz TH, Saal A, Bergmann I, Fischer P, Heinrichs D, Brandt EF, Koenen MT, Djudjaj S, Schneider KM, Boor P, Bucala R, Weiskirchen R, Bernhagen J, Trautwein C, Berres ML. Macrophage migration inhibitory factor exerts pro-proliferative and anti-apoptotic effects via CD74 in murine hepatocellular carcinoma. Br J Pharmacol 2021; 178:4452-4467. [PMID: 34250589 DOI: 10.1111/bph.15622] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Macrophage migration inhibitory factor (MIF) is an inflammatory and chemokine-like protein expressed in different inflammatory diseases as well as solid tumours. CD74-as the cognate MIF receptor-was identified as an important target of MIF. We here analysed the role of MIF and CD74 in the progression of hepatocellular carcinoma (HCC) in vitro and in vivo. EXPERIMENTAL APPROACH Multilocular HCC was induced using the diethylnitrosamine/carbon tetrachloride (DEN/CCl4 ) model in hepatocyte-specific Mif knockout (Mif Δhep ), Cd74-deficient, and control mice. Tumour burden was compared between the genotypes. MIF, CD74 and Ki67 expression were investigated in tumour and surrounding tissue. In vitro, the effects of the MIF/CD74 axis on the proliferative and apoptotic behaviour of hepatoma cells and respective signalling pathways were assessed after treatment with MIF and anti-CD74 antibodies. KEY RESULTS DEN/CCl4 treatment of Mif Δhep mice resulted in reduced tumour burden and diminished proliferation capacity within tumour tissue. In vitro, MIF stimulated proliferation of Hepa 1-6 and HepG2 cells, inhibited therapy-induced cell death and induced ERK activation. The investigated effects could be reversed using a neutralizing anti-CD74 antibody, and Cd74-/- mice developed fewer tumours associated with decreased proliferation rates. CONCLUSION AND IMPLICATIONS We identified a pro-tumorigenic role of MIF during proliferation and therapy-induced apoptosis of HCC cells. These effects were mediated via the MIF cognate receptor CD74. Thus, inhibition of the MIF/CD74 axis could represent a promising target with regard to new pharmacological therapies aimed at HCC.
Collapse
Affiliation(s)
- Theresa H Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Alena Saal
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Irina Bergmann
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Petra Fischer
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniel Heinrichs
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Elisa F Brandt
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Maria T Koenen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Kai M Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University, Aachen, Germany.,Department of Nephrology and Immunology, RWTH Aachen University, Aachen, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig Maximilian-University (LMU) and LMU University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (EXC 2145 SyNergy), Munich, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
94
|
Ni H, Xue J, Wang F, Sun X, Niu M. Nanomedicine Approach to Immunotherapy of Hepatocellular Carcinoma. J Biomed Nanotechnol 2021; 17:771-792. [PMID: 34082866 DOI: 10.1166/jbn.2021.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the growing studies focused on the immunotherapy of hepatocellular carcinoma and proved the preclinical and clinical promises of host antitumor immune response. However, there were still various obstacles in meeting satisfactory clinic need, such as low response rate, primary resistance and secondary resistance to immunotherapy. Tackling these barriers required a deeper understanding of immune underpinnings and a broader understanding of advanced technology. This review described immune microenvironment of liver and HCC which naturally decided the complexity of immunotherapy, and summarized recent immunotherapy focusing on different points. The ever-growing clues indicated that the instant killing of tumor cell and the subsequent relive of immunosuppressive microenvironment were both indis- pensables. The nanotechnology applied in immunotherapy and the combination with intervention technology was also discussed.
Collapse
Affiliation(s)
- Hongbo Ni
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Jian Xue
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Fan Wang
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xiaohan Sun
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
95
|
Tumor Immune Microenvironment and Immunosuppressive Therapy in Hepatocellular Carcinoma: A Review. Int J Mol Sci 2021; 22:ijms22115801. [PMID: 34071550 PMCID: PMC8198390 DOI: 10.3390/ijms22115801] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Liver cancer has the fourth highest mortality rate of all cancers worldwide, with hepatocellular carcinoma (HCC) being the most prevalent subtype. Despite great advances in systemic therapy, such as molecular-targeted agents, HCC has one of the worst prognoses due to drug resistance and frequent recurrence and metastasis. Recently, new therapeutic strategies such as cancer immunosuppressive therapy have prolonged patients' lives, and the combination of an immune checkpoint inhibitor (ICI) and VEGF inhibitor is now positioned as the first-line therapy for advanced HCC. Since the efficacy of ICIs depends on the tumor immune microenvironment, it is necessary to elucidate the immune environment of HCC to select appropriate ICIs. In this review, we summarize the findings on the immune microenvironment and immunosuppressive approaches focused on monoclonal antibodies against cytotoxic T lymphocyte-associated protein 4 and programmed cell death protein 1 for HCC. We also describe ongoing treatment modalities, including adoptive cell transfer-based therapies and future areas of exploration based on recent literature. The results of pre-clinical studies using immunological classification and animal models will contribute to the development of biomarkers that predict the efficacy of immunosuppressive therapy and aid in the selection of appropriate strategies for HCC treatment.
Collapse
|
96
|
Xu Q, Hu Y, Chen S, Zhu Y, Li S, Shen F, Guo Y, Sun T, Chen X, Jiang J, Huang W. Immunological Significance of Prognostic DNA Methylation Sites in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:683240. [PMID: 34124163 PMCID: PMC8187884 DOI: 10.3389/fmolb.2021.683240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a tumor with high morbidity and high mortality worldwide. DNA methylation, one of the most common epigenetic changes, might serve a vital regulatory role in cancer. Methods: To identify categories based on DNA methylation data, consensus clustering was employed. The risk signature was yielded by systematic bioinformatics analyses based on the remarkably methylated CpG sites of cluster 1. Kaplan–Meier analysis, variable regression analysis, and ROC curve analysis were further conducted to validate the prognosis predictive ability of risk signature. Gene set enrichment analysis (GSEA) was performed for functional annotation. To uncover the context of tumor immune microenvironment (TIME) of HCC, we employed the ssGSEA algorithm and CIBERSORT method and performed TIMER database exploration and single-cell RNA sequencing analysis. Additionally, quantitative real-time polymerase chain reaction was employed to determine the LRRC41 expression and preliminarily explore the latent role of LRRC41 in prognostic prediction. Finally, mutation data were analyzed by employing the “maftools” package to delineate the tumor mutation burden (TMB). Results: HCC samples were assigned into seven subtypes with different overall survival and methylation levels based on 5′-cytosine-phosphate-guanine-3′ (CpG) sites. The risk prognostic signature including two candidate genes (LRRC41 and KIAA1429) exhibited robust prognostic predictive accuracy, which was validated in the external testing cohort. Then, the risk score was significantly correlated with the TIME and immune checkpoint blockade (ICB)–related genes. Besides, a prognostic nomogram based on the risk score and clinical stage presented powerful prognostic ability. Additionally, LRRC41 with prognostic value was corroborated to be closely associated with TIME characterization in both expression and methylation levels. Subsequently, the correlation regulatory network uncovered the potential targets of LRRC41 and KIAA1429. Finally, the methylation level of KIAA1429 was correlated with gene mutation status. Conclusion: In summary, this is the first to identify HCC samples into distinct clusters according to DNA methylation and yield the CpG-based prognostic signature and quantitative nomogram to precisely predict prognosis. And the pivotal player of DNA methylation of genes in the TIME and TMB status was explored, contributing to clinical decision-making and personalized prognosis monitoring of HCC.
Collapse
Affiliation(s)
- Qianhui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaohuai Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yulun Zhu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Siwei Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Guo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jinpeng Jiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
97
|
Liu ZL, Liu JH, Staiculescu D, Chen J. Combination of molecularly targeted therapies and immune checkpoint inhibitors in the new era of unresectable hepatocellular carcinoma treatment. Ther Adv Med Oncol 2021; 13:17588359211018026. [PMID: 34104226 PMCID: PMC8150670 DOI: 10.1177/17588359211018026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Multikinase inhibitors (MKIs) have been the only first-line treatment for advanced hepatocellular carcinoma (HCC) for more than a decade, until the approval of immune checkpoint inhibitors (ICIs). Moreover, the combination regimen of atezolizumab (anti-programmed cell death protein ligand 1 antibody) plus bevacizumab (anti-vascular endothelial growth factor monoclonal antibody) has recently been demonstrated to have superior efficacy when compared with sorafenib monotherapy. The remarkable efficacy has made this combination therapy the new standard treatment for advanced HCC. In addition to MKIs, many other molecularly targeted therapies are under investigation, some of which have shown promising results. Therefore, in the era of immuno-oncology, there is a significant rationale for testing the combinations of molecularly targeted therapies and ICIs. Indeed, numerous preclinical and clinical studies have shown the synergic antitumor efficacy of such combinations. In this review, we aim to summarize the current knowledge on the combination of molecularly targeted therapies and immune checkpoint therapies for HCC from both preclinical and clinical perspectives.
Collapse
Affiliation(s)
- Ze-Long Liu
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing-Hua Liu
- Department of Hepatobiliary Surgery and Professor Cai’s Laboratory, Linyi People’s Hospital, Linyi, Shandong Province, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, Zhejiang Province, 310016, China
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
98
|
Zeng X, Ward SE, Zhou J, Cheng ASL. Liver Immune Microenvironment and Metastasis from Colorectal Cancer-Pathogenesis and Therapeutic Perspectives. Cancers (Basel) 2021; 13:2418. [PMID: 34067719 PMCID: PMC8156220 DOI: 10.3390/cancers13102418] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
A drastic difference exists between the 5-year survival rates of colorectal cancer patients with localized cancer and distal organ metastasis. The liver is the most favorable organ for cancer metastases from the colorectum. Beyond the liver-colon anatomic relationship, emerging evidence highlights the impact of liver immune microenvironment on colorectal liver metastasis. Prior to cancer cell dissemination, hepatocytes secrete multiple factors to recruit or activate immune cells and stromal cells in the liver to form a favorable premetastatic niche. The liver-resident cells including Kupffer cells, hepatic stellate cells, and liver-sinusoidal endothelial cells are co-opted by the recruited cells, such as myeloid-derived suppressor cells and tumor-associated macrophages, to establish an immunosuppressive liver microenvironment suitable for tumor cell colonization and outgrowth. Current treatments including radical surgery, systemic therapy, and localized therapy have only achieved good clinical outcomes in a minority of colorectal cancer patients with liver metastasis, which is further hampered by high recurrence rate. Better understanding of the mechanisms governing the metastasis-prone liver immune microenvironment should open new immuno-oncology avenues for liver metastasis intervention.
Collapse
Affiliation(s)
- Xuezhen Zeng
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
99
|
Bai Y, Lin H, Chen J, Wu Y, Yu S. Identification of Prognostic Glycolysis-Related lncRNA Signature in Tumor Immune Microenvironment of Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:645084. [PMID: 33968985 PMCID: PMC8100457 DOI: 10.3389/fmolb.2021.645084] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose: The purpose of this study was to construct a novel risk scoring model with prognostic value that could elucidate tumor immune microenvironment of hepatocellular carcinoma (HCC). Samples and methods: Data were obtained through The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox analysis were carried out to screen for glycolysis-related long noncoding RNAs (lncRNAs) that could provide prognostic value. Finally, we established a risk score model to describe the characteristics of the model and verify its prediction accuracy. The receiver operating characteristic (ROC) curves of 1, 3, and 5 years of overall survival (OS) were depicted with risk score and some clinical features. ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and CIBERSORT analysis were employed to reveal the characteristics of tumor immune microenvironment in HCC. The nomogram was drawn by screening indicators with high prognostic accuracy. The correlation of risk signature with immune infiltration and immune checkpoint blockade (ICB) therapy was analyzed. After enrichment of related genes, active behaviors and pathways in high-risk groups were identified and lncRNAs related to poor prognosis were validated in vitro. Finally, the impact of MIR4435-2HG upon ICB treatment was uncovered. Results: After screening through multiple steps, four glycolysis-related lncRNAs were obtained. The risk score constructed with the four lncRNAs was found to significantly correlate with prognosis of samples. From the ROC curve of samples with 1, 3, and 5 years of OS, two indicators were identified with high prognostic accuracy and were used to draw a nomogram. Besides, the risk score significantly correlated with immune score, immune-related signature, infiltrating immune cells (i.e. B cells, etc.), and ICB key molecules (i.e. CTLA4,etc.). Gene enrichment analysis indicated that multiple biological behaviors and pathways were active in the high-risk group. In vitro validation results showed that MIR4435-2HG was highly expressed in the two cell lines, which had a significant impact on the OS of samples. Finally, we corroborated that MIR4435-2HG had intimate relationship with ICB therapy in hepatocellular carcinoma. Conclusion: We elucidated the crucial role of risk signature in immune cell infiltration and immunotherapy, which might contribute to clinical strategies and clinical outcome prediction of HCC.
Collapse
Affiliation(s)
- Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.,Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Lin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiaqi Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Yulian Wu
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi'an Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
100
|
Role of Myeloid Cells in Oncolytic Reovirus-Based Cancer Therapy. Viruses 2021; 13:v13040654. [PMID: 33920168 PMCID: PMC8070345 DOI: 10.3390/v13040654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Oncolytic reovirus preferentially targets and kills cancer cells via the process of oncolysis, and additionally drives clinically favorable antitumor T cell responses that form protective immunological memory against cancer relapse. This two-prong attack by reovirus on cancers constitutes the foundation of its use as an anticancer oncolytic agent. Unfortunately, the efficacy of these reovirus-driven antitumor effects is influenced by the highly suppressive tumor microenvironment (TME). In particular, the myeloid cell populations (e.g., myeloid-derived suppressive cells and tumor-associated macrophages) of highly immunosuppressive capacities within the TME not only affect oncolysis but also actively impair the functioning of reovirus-driven antitumor T cell immunity. Thus, myeloid cells within the TME play a critical role during the virotherapy, which, if properly understood, can identify novel therapeutic combination strategies potentiating the therapeutic efficacy of reovirus-based cancer therapy.
Collapse
|