51
|
Zeb F, Naqeeb H, Osaili T, Faris ME, Ismail LC, Obaid RS, Naja F, Radwan H, Hasan H, Hashim M, AlBlooshi S, Alam I. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr Res 2024; 124:21-42. [PMID: 38364552 DOI: 10.1016/j.nutres.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
A growing body of evidence suggests that cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. In recent years, the molecular crosstalk between polyphenols and gut microbiota has emerged as a promising pathway for cancer prevention. Polyphenols, abundant in many plant-based foods, possess diverse bioactive properties, including antioxidant, anti-inflammatory, and anticancer activities. The gut microbiota, a complex microbial community residing in the gastrointestinal tract, plays a crucial role in a host's health and disease risks. This review highlights cancer suppressive and oncogenic mechanisms of gut microbiota, the intricate interplay between gut microbiota modulation and polyphenol biotransformation, and the potential therapeutic implications of this interplay in cancer prevention. Furthermore, this review explores the molecular mechanisms underpinning the synergistic effects of polyphenols and the gut microbiota, such as modulation of signaling pathways and immune response and epigenetic modifications in animal and human studies. The current review also summarizes the challenges and future directions in this field, including the development of personalized approaches that consider interindividual variations in gut microbiota composition and function. Understanding the molecular crosstalk could offer new perspectives for the development of personalized cancer therapies targeting the polyphenol-gut axis. Future clinical trials are needed to validate the potential role of polyphenols and gut microbiota as innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanam Cancer Hospital and Research Center Peshawar, Pakistan; Department of Human Nutrition and Dietetics, Women University Mardan, Pakistan
| | - Tareq Osaili
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - MoezAllslam Ezzat Faris
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Women's and Reproductive Health, University of Oxford, Nuffield, Oxford, United Kingdom
| | - Reyad Shakir Obaid
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Farah Naja
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Hadia Radwan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Hayder Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Mona Hashim
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Sharifa AlBlooshi
- College of Natural and Health Sciences, Zayed University, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Pakistan
| |
Collapse
|
52
|
Gutiérrez Salmeán G, Delgadillo González M, Rueda Escalona AA, Leyva Islas JA, Castro-Eguiluz D. Effects of prebiotics, probiotics, and synbiotics on the prevention and treatment of cervical cancer: Mexican consensus and recommendations. Front Oncol 2024; 14:1383258. [PMID: 38606098 PMCID: PMC11007160 DOI: 10.3389/fonc.2024.1383258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Gut microbiota plays a crucial role in modulating immune responses, including effector response to infection and surveillance of tumors. This article summarizes the current scientific evidence on the effects of supplementation with prebiotics, probiotics, and synbiotics on high-risk human papillomavirus (HPV) infections, precancerous lesions, and various stages of cervical cancer development and treatment while also examining the underlying molecular pathways involved. Our findings indicate that a higher dietary fiber intake is associated with a reduced risk of HPV infection, while certain probiotics have shown promising results in clearing HPV-related lesions. Additionally, certain strains of probiotics, prebiotics such as inulin and fructo-oligosaccharides, and synbiotics decrease the frequency of gastrointestinal adverse effects in cervical cancer patients. These agents attain their results by modulating crucial metabolic pathways, including the reduction of inflammation and oxidative stress, promoting apoptosis, inhibiting cell proliferation, and suppressing the activity of oncogenes, thus attenuating tumorigenesis. We conclude that although further human studies are necessary, robust evidence in preclinical models demonstrates that prebiotics, probiotics, and synbiotics play an essential role in cervical cancer, from infection to carcinogenesis and its medical treatment. Consequently, we strongly recommend conducting high-quality clinical trials using these agents as adjuvants since they have proven safe.
Collapse
Affiliation(s)
- Gabriela Gutiérrez Salmeán
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Mexico, Huixquilucan, Estado de Mexico, Mexico
- Servicio de Nutrición, Centro de Especialidades del Riñón (CER), Naucalpan de Juarez, Estado de Mexico, Mexico
| | - Merari Delgadillo González
- Modelo Integral para la atención del Cáncer Cervicouterino Localmente Avanzado y Avanzado (MICAELA) Program, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - José Antonio Leyva Islas
- Nutritional and Metabolic Support, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE) Hospital Regional Lic. Adolfo López Mateos, Mexico City, Mexico
| | - Denisse Castro-Eguiluz
- Investigador por México, Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCyT)—Department of Clinical Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
53
|
Rayan M, Sayed TS, Hussein OJ, Therachiyil L, Maayah ZH, Maccalli C, Uddin S, Prehn JHM, Korashy HM. Unlocking the secrets: exploring the influence of the aryl hydrocarbon receptor and microbiome on cancer development. Cell Mol Biol Lett 2024; 29:33. [PMID: 38448800 PMCID: PMC10918910 DOI: 10.1186/s11658-024-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.
Collapse
Affiliation(s)
- Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tahseen S Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
| |
Collapse
|
54
|
Tan J, Fu B, Zhao X, Ye L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur J Drug Metab Pharmacokinet 2024; 49:131-147. [PMID: 38123834 DOI: 10.1007/s13318-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.
Collapse
Affiliation(s)
- Jianling Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
55
|
Yang Z, Chen K, Liu Y, Wang X, Wang S, Hao B. Regulation and analysis of Simiao Yong'an Decoction fermentation by Bacillus subtilis on the diversity of intestinal microbiota in Sprague-Dawley rats. Vet World 2024; 17:712-719. [PMID: 38680148 PMCID: PMC11045531 DOI: 10.14202/vetworld.2024.712-719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Simiao Yong'an decoction (SYD) is a classic traditional Chinese medicine (TCM) prescription that has the effects of clearing heat, detoxifying, promoting blood circulation, and relieving pain. In this study, we investigated the effect of SYD on the diversity of intestinal microbiota after fermentation by Bacillus subtilis. Materials and Methods SYD was fermented using B. subtilis. Female Sprague-Dawley rats were randomly divided into the following four groups with six rats in each group: Negative sample group (NS), water exaction non-fermentation group (WE), B. subtilis group (BS), and fermentation liquid group (FL). All rats were orally administered for 14 days. High-throughput Illumina sequencing was used to analyze 16S rRNA expression in rat fecal samples. Results A total of 2782 operational taxonomical units (OTUs) were identified in this study, and 634 OTUs were shared among all samples. Bacteroidetes (28.17%-53.20%) and Firmicutes (48.35%-67.83%) were the most abundant phyla identified among the four groups. The abundance of Escherichia and Alistipes was lower in the FL group than in the NS group, whereas the abundance of Bifidobacteria and Lactobacillus was increased in the FL group (p < 0.05). The abundance of Bifidobacterium was significantly upregulated in the FL group compared with the WE and BS groups (p < 0.05). Conclusion After fermentation, SYD had a significantly better effect than SYD or B. subtilis. SYD significantly promoted the growth of intestinal probiotics, inhibited the growth of pathogenic bacteria, and maintained the balance of intestinal microbiota in SD rats. This study provides new insights into the development and use of SYD.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Keyuan Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Xuehong Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| |
Collapse
|
56
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
57
|
Najjary S, Kros JM, Stricker BH, Ruiter R, Shuai Y, Kraaij R, Van Steen K, van der Spek P, Van Eijck CHJ, Ikram MA, Ahmad S. Association of blood cell-based inflammatory markers with gut microbiota and cancer incidence in the Rotterdam study. Cancer Med 2024; 13:e6860. [PMID: 38366800 PMCID: PMC10904974 DOI: 10.1002/cam4.6860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024] Open
Abstract
The immune response-gut microbiota interaction is implicated in various human diseases, including cancer. Identifying the link between the gut microbiota and systemic inflammatory markers and their association with cancer will be important for our understanding of cancer etiology. The current study was performed on 8090 participants from the population-based Rotterdam study. We found a significant association (false discovery rate [FDR] ≤0.05) between lymphocytes and three gut microbial taxa, namely the family Streptococcaceae, genus Streptococcus, and order Lactobacillales. In addition, we identified 95 gut microbial taxa that were associated with inflammatory markers (p < 0.05). Analyzing the cancer data, we observed a significant association between higher systemic immune-inflammation index (SII) levels at baseline (hazard ratio (HR): 1.65 [95% confidence interval (CI); 1.10-2.46, p ≤ 0.05]) and a higher count of lymphocytes (HR: 1.38 [95% CI: 1.15-1.65, p ≤ 0.05]) and granulocytes (HR: 1.69 [95% CI: 1.40-2.03, p ≤ 0.05]) with increased risk of lung cancer after adjusting for age, sex, body mass index (BMI), and study cohort. This association was lost for SII and lymphocytes after additional adjustment for smoking (SII = HR:1.46 [95% CI: 0.96-2.22, p = 0.07] and lymphocytes = HR: 1.19 [95% CI: 0.97-1.46, p = 0.08]). In the stratified analysis, higher count of lymphocyte and granulocytes at baseline were associated with an increased risk of lung cancer in smokers after adjusting for age, sex, BMI, and study cohort (HR: 1.33 [95% CI: 1.09-1.62, p ≤0.05] and HR: 1.57 [95% CI: 1.28-1.92, p ≤0.05], respectively). Our study revealed a positive association between gut microbiota, higher SII levels, and higher lymphocyte and granulocyte counts, with an increased risk of developing lung cancer.
Collapse
Affiliation(s)
- Shiva Najjary
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno‐Pathology LaboratoryErasmus University Medical CenterRotterdamthe Netherlands
| | - Johan M. Kros
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno‐Pathology LaboratoryErasmus University Medical CenterRotterdamthe Netherlands
| | - Bruno H. Stricker
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Rikje Ruiter
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Yu Shuai
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Robert Kraaij
- Department of Internal MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Kristel Van Steen
- Department of Human Genetics, Laboratory for Systems MedicineCenter for Human Genetics, KU LeuvenLeuvenBelgium
| | - Peter van der Spek
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno‐Pathology LaboratoryErasmus University Medical CenterRotterdamthe Netherlands
| | | | - M. Arfan Ikram
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Shahzad Ahmad
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
58
|
Qu Z, Tian J, Sun J, Shi Y, Yu J, Zhang W, Zhuang C. Diallyl trisulfide inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer via modulating gut microbiota and the PPARγ/NF-κB pathway. Food Funct 2024; 15:158-171. [PMID: 38086660 DOI: 10.1039/d3fo03914e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Smoking is the primary risk factor for developing lung cancer. Chemoprevention could be a promising strategy to reduce the incidence and mortality rates of lung cancer. Recently, we reported that A/J mice exposed to tobacco smoke carcinogens displayed the reshaping of gut microbiota. Additionally, garlic oil was found to effectively inhibit the carcinogenic effects of tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in lung tumorigenesis. Diallyl trisulfide (DATS), which is the predominant compound in garlic oil, exhibits various biological activities. To further explore the chemopreventive action and potential mechanism of DATS on lung tumorigenesis, we established a lung adenocarcinoma model in A/J mice stimulated by NNK. Subsequently, we employed multi-omics combined molecular biology technologies to clarify the mechanism. The results indicated that DATS significantly decreased the number of lung tumors in NNK induced A/J mice. Interestingly, we discovered that DATS could modulate gut microbiota, particularly increasing the abundance of F. rodentium, which has inhibitory effects on tumor growth. Mechanistically, DATS could activate the PPARγ pathway, leading to the negative regulation of the NF-κB signaling pathway and subsequent suppression of NF-κB-mediated inflammatory factors. Collectively, these findings provide support for DATS as a potential novel chemopreventive agent for tobacco carcinogen-induced lung cancer.
Collapse
Affiliation(s)
- Zhuo Qu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jiahui Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin 300134, China
| | - Ying Shi
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Wannian Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunlin Zhuang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
59
|
Boopathy LK, Roy A, Gopal T, Kandy RRK, Arumugam MK. Potential molecular mechanisms of myrtenal against colon cancer: A systematic review. J Biochem Mol Toxicol 2024; 38:e23525. [PMID: 37665681 DOI: 10.1002/jbt.23525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Colon cancer is a serious health problem across the globe with various dietary lifestyle modifications. It arises as an inflammation mediated crypts in the colon epithelial cells and undergoes uncontrolled cell division and proliferation. Bacterial enzymes contribute to a major outbreak in colon cancer development upon the release of toxic metabolites from the gut microflora. Pathogen associated molecular patterns and damage associated molecular patterns triggers the NLPR3 inflammasome pathways that releases pro-inflammatory cytokines to induce cancer of the colon. Contributing to this, specific chemokines and receptor complexes attribute to cellular proliferation and metastasis. Bacterial enzymes synergistically attack the colon mucosa and degenerate the cellular integrity causing lysosomal discharge. These factors further instigate the Tol like receptors (TLRs) and Nod like receptors (NLRs) to promote angiogenesis and supply nutrients for the cancer cells. Myrtenal, a monoterpene, is gaining more importance in recent times and it is being widely utilized against many diseases such as cancers, neurodegenerative diseases and diabetes. Based on the research data's, the reviews focus on the anticancer property of myrtenal by emphasizing its therapeutic properties which downregulate the inflammasome pathways and other signalling pathways. Combination therapy is gaining more importance as they can target every variant in the cellular stress condition. Clinical studies with compounds like myrtenal of the monoterpenes family is provided with positive results which might open an effective anticancer drug therapy. This review highlights myrtenal and its biological potency as a cost effective drug for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rakhee Rathnam Kalari Kandy
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
60
|
He Z, Xie H, Xu H, Wu J, Zeng W, He Q, Jobin C, Jin S, Lan P. Chemotherapy-induced microbiota exacerbates the toxicity of chemotherapy through the suppression of interleukin-10 from macrophages. Gut Microbes 2024; 16:2319511. [PMID: 38400752 PMCID: PMC10896127 DOI: 10.1080/19490976.2024.2319511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
The gut microbiota has been shown to influence the efficacy and toxicity of chemotherapy, thereby affecting treatment outcomes. Understanding the mechanism by which microbiota affects chemotherapeutic toxicity would have a profound impact on cancer management. In this study, we report that fecal microbiota transplantation from oxaliplatin-exposed mice promotes toxicity in recipient mice. Splenic RNA sequencing and macrophage depletion experiment showed that the microbiota-induced toxicity of oxaliplatin in mice was dependent on macrophages. Furthermore, oxaliplatin-mediated toxicity was exacerbated in Il10-/- mice, but not attenuated in Rag1-/- mice. Adoptive transfer of macrophage into Il10-/- mice confirmed the role of macrophage-derived IL-10 in the improvement of oxaliplatin-induced toxicity. Depletion of fecal Lactobacillus and Bifidobacterium was associated with the exacerbation of oxaliplatin-mediated toxicity, whereas supplementation with these probiotics alleviated chemotherapy-induced toxicity. Importantly, IL-10 administration and probiotics supplementation did not attenuate the antitumor efficacy of chemotherapy. Clinically, patients with colorectal cancer exposed to oxaliplatin exhibited downregulation of peripheral CD45+IL-10+ cells. Collectively, our findings indicate that microbiota-mediated IL-10 production influences tolerance to chemotherapy, and thus represents a potential clinical target.
Collapse
Affiliation(s)
- Zhen He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hongyu Xie
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Haoyang Xu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinjie Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Wanyi Zeng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangzhou, China
| | - Qilang He
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangzhou, China
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida, Florida, USA
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Sanqing Jin
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| |
Collapse
|
61
|
Lu Y, Cui A, Zhang X. Commensal microbiota-derived metabolite agmatine triggers inflammation to promote colorectal tumorigenesis. Gut Microbes 2024; 16:2348441. [PMID: 38706224 PMCID: PMC11086030 DOI: 10.1080/19490976.2024.2348441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Colorectal cancer (CRC), a malignant tumor worldwide, is associated with gut microbiota. The influence of gut microbe-derived metabolites on CRC has attracted a lot of attention. However, the role of immunity mediated by commensal microbiota-derived metabolites in tumorigenesis of CRC is not intensively explored. Here we monitored the gut microbial dysbiosis in CRC mouse model (ApcMin/+ model) without dietary and pharmacological intervention, followed by characterized of metabolites enriched in CRC model mice. Profound changes of gut microbiome (bacteriome) were observed during intestinal disorders. Metabolomic profiling indicated that agmatine, derived from the gut bacteria i.e. Blautia, Odoribacter, Alistipes and Paraprevotella, could interact with Rnf128 to suppress the Rnf128-mediated ubiquitination of β-catenin to further upregulate the downstream targets of β-catenin including Cyclin D1, Lgr5, CD44 and C-myc, thus activating Wnt signaling. The activated Wnt signaling pathway promoted dysplasia of intestinal cells and inflammatory infiltration of lymphocytes via inducing the upregulation of pro-inflammatory cytokines (IL-6 and TNF-α) and downregulation of anti-inflammatory cytokine (IL-10), thereby contributing to colorectal carcinogenesis. Therefore, our study presented novel insights into the roles and mechanisms of gut microbiota in pathogenesis of CRC.
Collapse
Affiliation(s)
- Yu Lu
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, People’s Republic of China
| | - Aoxi Cui
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
62
|
Balasubramanian S, Haneen MA, Sharma G, Perumal E. Acute copper oxide nanoparticles exposure alters zebrafish larval microbiome. Life Sci 2024; 336:122313. [PMID: 38035991 DOI: 10.1016/j.lfs.2023.122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are being used in healthcare industries due to its antimicrobial properties. The increased consumption of NPs could lead to the rise of these NPs in the environment affecting the biological systems. Altered microbiome has been correlated to disease pathology in humans as well as xenobiotic toxicity in experimental animal models. However, CuO NPs-induced microbiome alterations in vertebrates have not been reported so far. In this study, for the first time, zebrafish larvae at 96 hpf (hours post fertilization) were exposed to CuO NPs for 24 h at 10, 20, and 40 ppm. After exposure, the control and treated larvae were subjected to 16S rRNA amplicon sequencing followed by relative taxa abundance, alpha and beta diversity analysis, single factor analysis, LEfSe, Deseq2, and functional profiling. No significant alteration was detected in the microbial richness and diversity, however, specific taxa constituting the core microbiome such as phylum Proteobacteria were significantly increased and Bacterioidetes and Firmicutes were decreased in the treated groups, indicating a core microbiota dysbiosis. Further, the family Lachnospiraceae, and genus Syntrophomonas involved in butyrate production and the metabolism of lipids and glucose were significantly altered. In addition, the opportunistic pathogens belonging to order Flavobacteriales were increased in CuO NPs treated groups. Moreover, the taxa involved in host immune response (Shewanella, Delftia, and Bosea) were found to be enriched in CuO NPs exposed larvae. These results indicate that CuO NPs exposure causes alteration in the core microbiota, which could cause colitis or inflammatory bowel disease.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Mariam Azeezuddin Haneen
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Gaurav Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
63
|
Roy S, Ray D, Laha I, Choudhury L. Human Mycobiota and Its Role in Cancer Progression, Diagnostics and Therapeutics: A Link Lesser-Known. Cancer Invest 2024; 42:44-62. [PMID: 38186047 DOI: 10.1080/07357907.2024.2301733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Although not as well studied as the bacterial component of the human microbiota, the commensal fungi or mycobiota play important roles in maintaining our health by augmenting our immune system. This mycobiota is also associated with various fatal diseases like opportunistic mycoses, and even cancer, with different cancers having respective type-specific mycobiota. The different fungal species which comprise these different intratumoral mycobiota play important roles in cancer progression. The aim of this review paper is to decipher the association between mycobiota and cancer, and shed light on new avenues in cancer diagnosis, and the development of new anti-cancer therapeutics.
Collapse
Affiliation(s)
- Souvik Roy
- Post-Graduate & Research Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| | - Dhrisaj Ray
- 5th Year Integrated M. Sc. (5 year integrated) students, Post-Graduate & Research Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| | - Ishani Laha
- 5th Year Integrated M. Sc. (5 year integrated) students, Post-Graduate & Research Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| | - Lopamudra Choudhury
- State-Aided College Teacher, Department of Microbiology, Sarsuna College (Affiliated to Calcutta University), Kolkata, India
| |
Collapse
|
64
|
Bouges E, Segers C, Leys N, Lebeer S, Zhang J, Mastroleo F. Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotoxicity and Assessing Radioprotective Agents. Cancers (Basel) 2023; 15:5859. [PMID: 38136404 PMCID: PMC10741417 DOI: 10.3390/cancers15245859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.
Collapse
Affiliation(s)
- Eloïse Bouges
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Charlotte Segers
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Natalie Leys
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Jianbo Zhang
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, 1105 BK Amsterdam, The Netherlands
| | - Felice Mastroleo
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| |
Collapse
|
65
|
Souza VGP, Forder A, Pewarchuk ME, Telkar N, de Araujo RP, Stewart GL, Vieira J, Reis PP, Lam WL. The Complex Role of the Microbiome in Non-Small Cell Lung Cancer Development and Progression. Cells 2023; 12:2801. [PMID: 38132121 PMCID: PMC10741843 DOI: 10.3390/cells12242801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araujo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Juliana Vieira
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
66
|
Li L, Liu H, Yu J, Sun Z, Jiang M, Yu H, Wang C. Intestinal Microbiota and Metabolomics Reveal the Role of Auricularia delicate in Regulating Colitis-Associated Colorectal Cancer. Nutrients 2023; 15:5011. [PMID: 38068869 PMCID: PMC10708550 DOI: 10.3390/nu15235011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The edible fungus Auricularia delicate (ADe) is commonly employed in traditional medicine for intestinal disorders; however, its inhibitory effect on colitis-associated colorectal cancer (CAC) and the underlying mechanisms remain unexplored. (2) Methods: The inhibitory effect of ADe on CAC was investigated using a mouse model induced by azoxymethane/dextran sulfate sodium. RESULTS ADe effectively suppressed the growth and number of intestinal tumors in mice. Intestinal microbiota analyses revealed that ADe treatment increased Akkermansia and Parabacteroides while it decreased Clostridium, Turicibacter, Oscillospira, and Desulfovibrio. ADe regulated the levels of 2'-deoxyridine, creatinine, 1-palmitoyl lysophosphatidylcholine, and choline in serum. Furthermore, the levels of these metabolites were associated with the abundance of Oscillospira and Paraacteroides. ADe up-regulated the free fatty acid receptor 2 and β-Arrestin 2, inhibited the nuclear factor kappa B (NF-κB) pathway, and significantly attenuated the levels of inflammatory cytokines, thereby mitigating the inflammatory in CAC mice. CONCLUSIONS The protective effect of ADe in CAC mice is associated with the regulation of intestinal microbiota, which leads to the inhibition of NF-kB pathway and regulation of inflammation.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jinqi Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
67
|
Gong X, Shen L, Xie J, Liu D, Xie Y, Liu D. Helicobacter pylori infection reduces the efficacy of cancer immunotherapy: A systematic review and meta-analysis. Helicobacter 2023; 28:e13011. [PMID: 37661590 DOI: 10.1111/hel.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Cancer immunotherapy has shown promising results in several tumors, but its efficacy is influenced by the immune state of the body. Helicobacter pylori (H. pylori) infection can modulate the immune function of the body through various pathways, ultimately affecting the effectiveness of cancer immunotherapy. AIM In this meta-analysis, we aimed to explore the association between H. pylori infection and the efficacy of cancer immunotherapy. METHODS We conducted a comprehensive search of PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials to identify relevant articles. We extracted and pooled the hazard ratio (HR) of the overall survival (OS) and progression-free survival (PFS) by Review Manager 5.4. RESULTS Our analysis included four studies with a total of 263 participants. Compared to the control group, patients receiving cancer immunotherapy with H. pylori infection had a shorter OS (HR = 2.68, 95% CI: 2.00-4.11, p < 0.00001) and PFS (HR = 2.25, 95% CI: 1.66-3.60, p < 0.00001). CONCLUSION Our meta-analysis suggested that H. pylori infection has a detrimental effect on cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaomin Gong
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Liting Shen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Dongsheng Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| |
Collapse
|
68
|
Zhu Q, Wu K, Yang Q, Meng B, Niu Y, Zhao F. Advances in psoriasis and gut microorganisms with co-metabolites. Front Microbiol 2023; 14:1192543. [PMID: 38033573 PMCID: PMC10687559 DOI: 10.3389/fmicb.2023.1192543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
This review summarizes the potential role of gut microbes and their metabolites as novel mediators of psoriasis, including their composition and function in disease pathogenesis, progression, and management. Gut microbiota network analysis, colony construction, and in vivo large-scale interaction experiments showed that different degrees of damage and repair in psoriasis, both in animals and humans, involve cross-border homeostasis of the microbial community. Which gut microbiota interactions are present in psoriasis and how they collaborate with immune cells and influence psoriasis development via the gut-skin axis remain incompletely elucidated. In this article, we review the latest information on the unique patterns of gut microbiota and co-metabolites involved in the pathogenesis of psoriasis and attempt to explore microbial-based therapeutic targets derived from mono-and polymicrobial probiotics, fecal microbiota transplantation, pharmacomicrobiomics, and dietary interventions as diagnostic or therapeutic approaches promising to provide new options and long-term management for psoriasis.
Collapse
Affiliation(s)
- Qiushuang Zhu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Kai Wu
- Department of Dermatology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Qiuhong Yang
- Department of Chinese Medicine and Dermatology, People's Hospital of Nan Gang District, Harbin, China
| | - Bo Meng
- Department of Dermatology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Fenglian Zhao
- Department of Dermatology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| |
Collapse
|
69
|
Huang Z, Wang C, Huang Q, Yan Z, Yin Z. Hungatella hathewayi impairs the sensitivity of colorectal cancer cells to 5-FU through decreasing CDX2 expression. Hum Cell 2023; 36:2055-2065. [PMID: 37477870 DOI: 10.1007/s13577-023-00938-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
Hungatella hathewayi (H. hathewayi), also known as Clostridium hathewayi, has been reported to be accumulated in the colorectal cancer (CRC) samples. In addition, evidence has demonstrated that inoculation with H. hathewayi promotes the proliferation of colonic epithelial cells in mice. Herein, we explored H. hathewayi role in regulating the 5-fluorouracil (5-FU) resistance in CRC cells, and investigated the underlying mechanisms. H. hathewayi abundance in CRC tissues and the corresponding adjacent normal tissues was tested using qRT-PCR. Both parental and 5-FU resistance CRC cell lines were used to assess H. hathewayi role in regulating the 5-FU resistance of CRC cells using CCK-8, flow cytometry and animal experiments. H. hathewayi abundance was significantly increased in CRC tissues, and the high level of H. hathewayi was linked to lower overall survival rate. H. hathewayi treatment significantly weakened 5-FU effects on inhibiting cell growth and inducing cell apoptosis in CRC HCT116 and HT29 cells. In addition, H. hathewayi enhanced the 5-FU resistance of HCT116/5-FU and HT29/5-FU cells (the 5-FU resistance cell lines). In mechanism, H. hathewayi decreased the expression of CDX2, and increased the expression of nuclear accumulation of β-catenin. Overexpression of CDX2 abolished H. hathewayi-mediated enhancement in cell growth and inhibition in cell apoptosis in HCT116/5-FU and HT29/5-FU cells, as well as inhibited the expression and nuclear accumulation of β-catenin. In conclusion, H. hathewayi abundance was increased in CRC tissues, and the high level of H. hathewayi was linked to lower overall survival rate. In mechanisam, H. hathewayi treatment enhanced the 5-FU resistance of CRC cells through modulating CDX2/β-catenin signaling.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, People's Republic of China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, 550002, People's Republic of China
| | - Chuanlin Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qiujin Huang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhiqiang Yan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, People's Republic of China.
| | - Zhaohui Yin
- Department of Anus and Intestine Surgery, The Guizhou Maotai Hospital, Zunyi, 5190100, People's Republic of China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
70
|
Han X, Sun Q, Xu M, Zhu G, Gao R, Ni B, Li J. Unraveling the Complexities of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Semin Liver Dis 2023; 43:383-401. [PMID: 37931901 DOI: 10.1055/s-0043-1776127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as effective therapeutics for multiple cancers. Nevertheless, as immunotherapeutic approaches are being extensively utilized, substantial hurdles have arisen for clinicians. These include countering ICIs resistance and ensuring precise efficacy assessments of these drugs, especially in the context of hepatocellular carcinoma (HCC). This review attempts to offer a holistic overview of the latest insights into the ICIs resistance mechanisms in HCC, the molecular underpinnings, and immune response. The intent is to inspire the development of efficacious combination strategies. This review also examines the unconventional response patterns, namely pseudoprogression (PsP) and hyperprogression (HPD). The prompt and rigorous evaluation of these treatment efficacies has emerged as a crucial imperative. Multiple clinical, radiological, and biomarker tests have been advanced to meticulously assess tumor response. Despite progress, precise mechanisms of action and predictive biomarkers remain elusive. This necessitates further investigation through prospective cohort studies in the impending future.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qianhui Sun
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Guanghui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruike Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
71
|
Zhu Z, Yi B, Tang Z, Chen X, Li M, Xu T, Zhao Z, Tang C. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis. BMC Cancer 2023; 23:1044. [PMID: 37904102 PMCID: PMC10614400 DOI: 10.1186/s12885-023-11557-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a highly lethal disease with no effective treatments. Lactobacillus casei (L. casei) and Lactobacillus reuteri (L. reuteri) exhibited therapeutic effects on several cancers, but their roles in pancreatic cancer are unknown. This study aims to explore how L. casei & L. reuteri influence pancreatic cancer and the underlying mechanisms. METHODS Pancreatic cancer cells were treated with L. casei & L. reuteri and co-cultured with macrophages in a transwell system in vitro. Pancreatic cancer xenograft model was established and L. casei & L. reuteri was used to treat mice in vivo. MTT, CCK-8 assay or immunohistochemical staining were used to determine the proliferation of pancreatic cancer cells or tumor tissues. Transwell assay was applied to test the migration and invasion of pancreatic cells. RT-qPCR was utilized to assess TLR4 and MyD88 expressions in pancreatic cells or tumor tissues. WB, immunofluorescence staining, or flow cytometry was used to evaluate the M1/M2 polarization of macrophages. Besides, the composition of gut microbiota of tumor-bearing mice was determined by 16 S rRNA sequencing, and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) untargeted metabolomics was used to evaluate the metabolic profiles of feces. RESULTS L. casei & L. reuteri inhibited the proliferation, migration, invasion of pancreatic cancer cells and pancreatic cancer cell-induced M2 polarization of macrophages by suppressing TLR4. Meanwhile, L. casei & L. reuteri repressed pancreatic cancer growth and promoted M1 macrophage polarization. Besides, L. casei & L. reuteri reduced fecal Alloprevotella and increased fecal azelate and glutamate in nude mice, while TLR4 inhibitor TAK-242 increased Clostridia UCG-014, azelate, uridine, methionine sulfoxide, oxypurinol, and decreased glyceryl monoester in the feces of pancreatic tumor-bearing mice. Fecal oxypurinol and glyceryl monoester levels were positively or negatively associated with gut Clostridia UCG-014 abundance, respectively. CONCLUSION L. casei & L. reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis.
Collapse
Affiliation(s)
- Zemin Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Bo Yi
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zikai Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Xun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Ming Li
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Tao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zhijian Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
| | - Caixi Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China.
| |
Collapse
|
72
|
Martinelli S, Lamminpää I, Dübüş EN, Sarıkaya D, Niccolai E. Synergistic Strategies for Gastrointestinal Cancer Care: Unveiling the Benefits of Immunonutrition and Microbiota Modulation. Nutrients 2023; 15:4408. [PMID: 37892482 PMCID: PMC10610426 DOI: 10.3390/nu15204408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are a group of highly prevalent malignant tumors affecting the gastrointestinal tract. Globally, one in four cancer cases and one in three cancer deaths are estimated to be GI cancers. They can alter digestive and absorption functions, leading to severe malnutrition which may worsen the prognosis of the patients. Therefore, nutritional intervention and monitoring play a fundamental role in managing metabolic alterations and cancer symptoms, as well as minimizing side effects and increasing the effectiveness of chemotherapy. In this scenario, the use of immunonutrients that are able to modulate the immune system and the modification/regulation of the gut microbiota composition have gained attention as a possible strategy to improve the conditions of these patients. The complex interaction between nutrients and microbiota might contribute to maintaining the homeostasis of each individual's immune system; therefore, concurrent use of specific nutrients in combination with traditional cancer treatments may synergistically improve the overall care of GI cancer patients. This work aims to review and discuss the role of immunonutrition and microbiota modulation in improving nutritional status, postoperative recovery, and response to therapies in patients with GI cancer.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Eda Nur Dübüş
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Dilara Sarıkaya
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| |
Collapse
|
73
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C, Wu J. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci 2023; 13:188. [PMID: 37828613 PMCID: PMC10571290 DOI: 10.1186/s13578-023-01135-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.
Collapse
Affiliation(s)
- Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| |
Collapse
|
74
|
Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther 2023; 8:386. [PMID: 37806986 PMCID: PMC10560686 DOI: 10.1038/s41392-023-01619-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Individual variability in drug response (IVDR) can be a major cause of adverse drug reactions (ADRs) and prolonged therapy, resulting in a substantial health and economic burden. Despite extensive research in pharmacogenomics regarding the impact of individual genetic background on pharmacokinetics (PK) and pharmacodynamics (PD), genetic diversity explains only a limited proportion of IVDR. The role of gut microbiota, also known as the second genome, and its metabolites in modulating therapeutic outcomes in human diseases have been highlighted by recent studies. Consequently, the burgeoning field of pharmacomicrobiomics aims to explore the correlation between microbiota variation and IVDR or ADRs. This review presents an up-to-date overview of the intricate interactions between gut microbiota and classical therapeutic agents for human systemic diseases, including cancer, cardiovascular diseases (CVDs), endocrine diseases, and others. We summarise how microbiota, directly and indirectly, modify the absorption, distribution, metabolism, and excretion (ADME) of drugs. Conversely, drugs can also modulate the composition and function of gut microbiota, leading to changes in microbial metabolism and immune response. We also discuss the practical challenges, strategies, and opportunities in this field, emphasizing the critical need to develop an innovative approach to multi-omics, integrate various data types, including human and microbiota genomic data, as well as translate lab data into clinical practice. To sum up, pharmacomicrobiomics represents a promising avenue to address IVDR and improve patient outcomes, and further research in this field is imperative to unlock its full potential for precision medicine.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China.
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, PR China.
- Central Laboratory of Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, 410013, PR China.
| |
Collapse
|
75
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
76
|
Ye L, Hou Y, Hu W, Wang H, Yang R, Zhang Q, Feng Q, Zheng X, Yao G, Hao H. Repressed Blautia-acetate immunological axis underlies breast cancer progression promoted by chronic stress. Nat Commun 2023; 14:6160. [PMID: 37789028 PMCID: PMC10547687 DOI: 10.1038/s41467-023-41817-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Chronic stress is a known risk factor for breast cancer, yet the underlying mechanisms are unclear. This study explores the potential involvement of microbial and metabolic signals in chronic stress-promoted breast cancer progression, revealing that reduced abundances of Blautia and its metabolite acetate may contribute to this process. Treatment with Blautia and acetate increases antitumor responses of CD8+ T cells and reverses stress-promoted breast cancer progression in female mice. Patients with depression exhibit lower abundances of Blautia and acetate, and breast cancer female patients with depression display lower abundances of acetate, decreased numbers of tumor-infiltrating CD8+ T cells, and an increased risk of metastasis. These results suggest that Blautia-derived acetate plays a crucial role in modulating the immune response to breast cancer, and its reduction may contribute to chronic stress-promoted cancer progression. Our findings advance the understanding of microbial and metabolic signals implicated in cancer in patients with depression and may provide therapeutic options for female patients with breast cancer and depression.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, 518000, China
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongmei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruopeng Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qihan Zhang
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiaoli Feng
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
77
|
Furci F, Cicero N, Allegra A, Gangemi S. Microbiota, Diet and Acute Leukaemia: Tips and Tricks on Their Possible Connections. Nutrients 2023; 15:4253. [PMID: 37836537 PMCID: PMC10574113 DOI: 10.3390/nu15194253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Acute leukaemia is probably one of the most recurrent cancers in children and younger adults, with an incidence of acute lymphoblastic leukaemia in 80% of cases and an incidence of acute myeloid leukaemia in 15% of cases. Yet, while incidence is common in children and adolescents, acute leukaemia is a rare disease whose aetiology still requires further analysis. Many studies have investigated the aetiology of acute leukaemia, reporting that the formation of gut microbiota may be modified by the start and development of many diseases. Considering that in patients affected by acute lymphoblastic leukaemia, there is an inherent disequilibrium in the gut microbiota before treatment compared with healthy patients, increasing evidence shows how dysbiosis of the gut microbiota provokes an inflammatory immune response, contributing to the development of cancer. Our analysis suggeststhe key role of gut microbiota in the modulation of the efficacy of leukaemia treatment as well as in the progress of many cancers, such as acute leukaemia. Therefore, in this paper, we present an examination of information found in literature regarding the role of dietary factors and gut microbiota alterations in the development of leukaemia and suggest possible future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
78
|
Magahis PT, Maron SB, Cowzer D, King S, Schattner M, Janjigian Y, Faleck D, Laszkowska M. Impact of Helicobacter pylori infection status on outcomes among patients with advanced gastric cancer treated with immune checkpoint inhibitors. J Immunother Cancer 2023; 11:e007699. [PMID: 37899129 PMCID: PMC10619027 DOI: 10.1136/jitc-2023-007699] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Gut microbiota composition can influence cancer immunotherapy response. Recent evidence suggests Helicobacter pylori infection may reduce immune checkpoint inhibitor (ICI) efficacy in lung cancer and melanoma, but thorough characterization of this association in patients with gastric cancer is lacking. We aimed to determine the impact of H. pylori on survival in this population. METHODS This single-center, retrospective study included all ICI-treated individuals with metastatic gastric cancer and documented H. pylori status at Memorial Sloan Kettering between July 2013 and October 2021. H. pylori-positive status was defined as history of infection obtained via breath test, stool antigen test, histopathology, and/or chart documentation. Negative status was defined as explicitly negative testing, histopathology, and/or chart documentation. Primary outcomes were progression-free survival (PFS) and overall survival (OS). RESULTS Of 215 included patients, 49 had documented history of H. pylori infection. Compared with H. pylori-negative patients, positive individuals tended to be younger, non-white, and Hispanic with non-cardia and intestinal-type gastric cancer. H. pylori-positive patients had significantly shorter median PFS (3.2 vs 6.8 months, HR 1.96, p<0.01) and OS (9.8 vs 17.9 months, HR 1.54, p=0.02). Multivariable analysis confirmed H. pylori infection as an independent predictor of PFS (HR 3.04, p<0.01) and OS (HR 2.24, p=0.01). CONCLUSIONS In this largest study of its kind, H. pylori infection was associated with inferior survival in ICI-treated patients with gastric cancer. This suggests H. pylori status may be a prognostic marker of immune responsiveness. Future studies are needed to elucidate immunoregulatory mechanisms and whether treatment of active infections would improve immunotherapy outcomes.
Collapse
Affiliation(s)
| | - Steven B Maron
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Darren Cowzer
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stephanie King
- Gastroenterology, Hepatology, and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark Schattner
- Gastroenterology, Hepatology, and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yelena Janjigian
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David Faleck
- Gastroenterology, Hepatology, and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Monika Laszkowska
- Gastroenterology, Hepatology, and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
79
|
Rocco D, Della Gravara L, Ragone A, Sapio L, Naviglio S, Gridelli C. Prognostic Factors in Advanced Non-Small Cell Lung Cancer Patients Treated with Immunotherapy. Cancers (Basel) 2023; 15:4684. [PMID: 37835378 PMCID: PMC10571734 DOI: 10.3390/cancers15194684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Taking into account the huge epidemiologic impact of lung cancer (in 2020, lung cancer accounted for 2,206,771 of the cases and for 1,796,144 of the cancer-related deaths, representing the second most common cancer in female patients, the most common cancer in male patients, and the second most common cancer in male and female patients) and the current lack of recommendations in terms of prognostic factors for patients selection and management, this article aims to provide an overview of the current landscape in terms of currently available immunotherapy treatments and the most promising assessed prognostic biomarkers, highlighting the current state-of-the-art and hinting at future challenges.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, 80131 Naples, Italy;
| | - Luigi Della Gravara
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.G.); (L.S.); (S.N.)
| | - Angela Ragone
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
| | - Luigi Sapio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.G.); (L.S.); (S.N.)
| | - Silvio Naviglio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.G.); (L.S.); (S.N.)
| | - Cesare Gridelli
- Division of Medical Oncology, “S.G. Moscati” Hospital, Contrada Amoretta, 83100 Avellino, Italy
| |
Collapse
|
80
|
Ren P, Yu X, Yue H, Tang Q, Wang Y, Xue C. Dietary supplementation with astaxanthin enhances anti-tumor immune response and aids the enhancement of molecularly targeted therapy for hepatocellular carcinoma. Food Funct 2023; 14:8309-8320. [PMID: 37602817 DOI: 10.1039/d3fo02986g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Astaxanthin is a naturally occurring compound that possesses immunomodulatory properties. The results of our previous investigation indicated that astaxanthin has the potential to augment the anticancer effectiveness of the targeted medication sorafenib. However, the precise molecular mechanism underlying this phenomenon remains unclear. H22 tumor-bearing mice were treated with sorafenib at 30 mg kg-1 per day and their diet was supplemented with 60 mg kg-1 day-1 astaxanthin orally for a period of 18 days. The study revealed that the addition of astaxanthin to the diet facilitated the transition of tumor-associated macrophages from the M2 phenotype to the M1 phenotype. The application of astaxanthin resulted in an augmentation of CD8+ T cell infiltration within the tumor microenvironment through the activation of the CXCL9/CXCR3 signaling axis. Astaxanthin was found to enhance the production of cytokines that possess antitumor properties, including Granzyme B. Furthermore, the administration of astaxanthin resulted in alterations to the intestinal microbiota in H22-bearing mice, leading to the growth of bacteria that possess anti-tumor immune properties, such as Akkermansia. The findings of these studies indicate that astaxanthin has the potential to augment the immune response against tumors when used in conjunction with sorafenib. These studies offer a novel framework for the advancement of astaxanthin as an immunomodulatory agent and a dietary supplement for individuals with tumors.
Collapse
Affiliation(s)
- Pengfei Ren
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Xinyue Yu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Han Yue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Yuming Wang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| |
Collapse
|
81
|
Munem F, Thianhlun PCK, Anderson PH, Stringer AM. Vitamin D is a potential treatment for the management of gastrointestinal mucositis. Curr Opin Support Palliat Care 2023; 17:247-252. [PMID: 37276064 DOI: 10.1097/spc.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE OF THE REVIEW Gastrointestinal mucositis (GM) is a severe side effect of cancer treatments, negatively impacting the patient's quality of life, and has limited treatment. GM consists of complex biological processes involving apoptosis and inflammation, leading to damage and ulceration of the gastrointestinal system. Recently, vitamin D has been shown to have multiple roles in the gut, including immunomodulation, epithelial barrier regulation and microbiome regulation. Hence, this review aims to put forth vitamin D as a potential therapeutic due to its protective role in the intestine. RECENT FINDINGS Recent studies have shown that vitamin D can reduce intestinal inflammation by reducing NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation. Vitamin D also targets and maintains the intestinal epithelial barrier via the tight junction protein expression and the inhibition of microbiome translocation. Significant evidence also suggests that vitamin D exerts multiple therapeutic effects through binding to vitamin D receptors (VDRs), and the downregulation of VDR has been associated with the severity of the disease. Additionally, vitamin D deficiency is reported in cancer patients. SUMMARY There is a dire need for effective treatment for GM, and recent animal and human studies show that vitamin D may be a potential therapy to prevent or treat GM.
Collapse
Affiliation(s)
- Fizza Munem
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
82
|
Maddern AS, Coller JK, Bowen JM, Gibson RJ. The Association between the Gut Microbiome and Development and Progression of Cancer Treatment Adverse Effects. Cancers (Basel) 2023; 15:4301. [PMID: 37686576 PMCID: PMC10487104 DOI: 10.3390/cancers15174301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Adverse effects are a common consequence of cytotoxic cancer treatments. Over the last two decades there have been significant advances in exploring the relationship between the gut microbiome and these adverse effects. Changes in the gut microbiome were shown in multiple clinical studies to be associated with the development of acute gastrointestinal adverse effects, including diarrhoea and mucositis. However, more recent studies showed that changes in the gut microbiome may also be associated with the long-term development of psychoneurological changes, cancer cachexia, and fatigue. Therefore, the aim of this review was to examine the literature to identify potential contributions and associations of the gut microbiome with the wide range of adverse effects from cytotoxic cancer treatments.
Collapse
Affiliation(s)
- Amanda S. Maddern
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Janet K. Coller
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Joanne M. Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Rachel J. Gibson
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
83
|
Bai L, Yan X, Lv J, Qi P, Song X, Zhang L. Intestinal Flora in Chemotherapy Resistance of Biliary Pancreatic Cancer. BIOLOGY 2023; 12:1151. [PMID: 37627035 PMCID: PMC10452461 DOI: 10.3390/biology12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Biliary pancreatic malignancy has an occultic onset, a high degree of malignancy, and a poor prognosis. Most clinical patients miss the opportunity for surgical resection of the tumor. Systemic chemotherapy is still one of the important methods for the treatment of biliary pancreatic malignancies. Many chemotherapy regimens are available, but their efficacy is not satisfactory, and the occurrence of chemotherapy resistance is a major reason leading to poor prognosis. With the advancement of studies on intestinal flora, it has been found that intestinal flora is correlated with and plays an important role in chemotherapy resistance. The application of probiotics and other ways to regulate intestinal flora can improve this problem. This paper aims to review and analyze the research progress of intestinal flora in the chemotherapy resistance of biliary pancreatic malignancies to provide new ideas for treatment.
Collapse
Affiliation(s)
- Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
84
|
Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, Wang L, Yang X, Yang M, Liu G. Applications of multi-omics analysis in human diseases. MedComm (Beijing) 2023; 4:e315. [PMID: 37533767 PMCID: PMC10390758 DOI: 10.1002/mco2.315] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 08/04/2023] Open
Abstract
Multi-omics usually refers to the crossover application of multiple high-throughput screening technologies represented by genomics, transcriptomics, single-cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi-omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi-omics. This review outlines the existing technical categories of multi-omics, cautions for experimental design, focuses on the integrated analysis methods of multi-omics, especially the approach of machine learning and deep learning in multi-omics data integration and the corresponding tools, and the application of multi-omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open-source analysis tools and databases, and finally, discusses the challenges and future directions of multi-omics integration and application in precision medicine. With the development of high-throughput technologies and data integration algorithms, as important directions of multi-omics for future disease research, single-cell multi-omics and spatial multi-omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi-omics medical research.
Collapse
Affiliation(s)
- Chongyang Chen
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
- Co‐innovation Center of NeurodegenerationNantong UniversityNantongChina
| | - Jing Wang
- Shenzhen Key Laboratory of Modern ToxicologyShenzhen Medical Key Discipline of Health Toxicology (2020–2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Donghui Pan
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xinyu Wang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Yuping Xu
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Junjie Yan
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Lizhen Wang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern ToxicologyShenzhen Medical Key Discipline of Health Toxicology (2020–2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Min Yang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Gong‐Ping Liu
- Co‐innovation Center of NeurodegenerationNantong UniversityNantongChina
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
85
|
Kan LLY, Chan BCL, Leung PC, Wong CK. Natural-Product-Derived Adjunctive Treatments to Conventional Therapy and Their Immunoregulatory Activities in Triple-Negative Breast Cancer. Molecules 2023; 28:5804. [PMID: 37570775 PMCID: PMC10421415 DOI: 10.3390/molecules28155804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an invasive and persistent subtype of breast cancer that is likely to be resistant to conventional treatments. The rise in immunotherapy has created new modalities to treat cancer, but due to high costs and unreliable efficacy, adjunctive and complementary treatments have sparked interest in enhancing the efficacy of currently available treatments. Natural products, which are bioactive compounds derived from natural sources, have historically been used to treat or ameliorate inflammatory diseases and symptoms. As TNBC patients have shown little to no response to immunotherapy, the potential of natural products as candidates for adjuvant immunotherapy is being explored, as well as their immunomodulatory effects on cancer. Due to the complexity of TNBC and the ever-changing tumor microenvironment, there are challenges in determining the feasibility of using natural products to enhance the efficacy or counteract the toxicity of conventional treatments. In view of technological advances in molecular docking, pharmaceutical networking, and new drug delivery systems, natural products show promise as potential candidates in adjunctive therapy. In this article, we summarize the mechanisms of action of selected natural-product-based bioactive compounds and analyze their roles and applications in combination treatments and immune regulation.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
86
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
87
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
88
|
Procaccianti G, Roggiani S, Conti G, Brigidi P, Turroni S, D’Amico F. Bifidobacterium in anticancer immunochemotherapy: friend or foe? MICROBIOME RESEARCH REPORTS 2023; 2:24. [PMID: 38046824 PMCID: PMC10688788 DOI: 10.20517/mrr.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 12/05/2023]
Abstract
The gut microbiome has received a crescendo of attention in recent years due to myriad influences on human pathophysiology, including cancer. Anticancer therapy research is constantly looking for new hints to improve response to therapy while reducing the risk of relapse. In this scenario, Bifidobacterium, which inhabits the gut microbial ecosystem (especially that of children) and is considered a health-associated microbe, has emerged as a key target to assist anticancer treatments for a better prognosis. However, some researchers have recently hypothesized an unfavorable role of Bifidobacterium spp. in anticancer immunochemotherapy, leading to some confusion in the field. This narrative review summarizes the current knowledge on the role of Bifidobacterium spp. in relation to anticancer treatments, discussing the pros and cons of its presence in the gut microbiome of cancer patients. The current intervention strategies based on the administration of probiotic strains of Bifidobacterium are then discussed. Finally, the need to conduct further studies, especially functional ones, is underlined to provide robust experimental evidence, especially on the underlying molecular mechanisms, and thus resolve the controversies on this microbe for the long-term success of immunochemotherapy.
Collapse
Affiliation(s)
- Giorgia Procaccianti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Sara Roggiani
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Federica D’Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
89
|
Xie N, Wang Z, Shu Q, Liang X, Wang J, Wu K, Nie Y, Shi Y, Fan D, Wu J. Association between Gut Microbiota and Digestive System Cancers: A Bidirectional Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:2937. [PMID: 37447263 DOI: 10.3390/nu15132937] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that gut microbiota closely correlates with the tumorigenesis of digestive system cancers (DSCs). However, whether the causality between gut microbiota and DSCs exists is unknown. Genome-wide association study (GWAS) summary statistics for gut microbiota and DSCs and the bidirectional two-sample Mendelian randomization (MR) analysis were utilized to assess the causality between gut microbiota and DSCs. Sensitivity analyses were performed to evaluate the robustness of our results. We found that the genus Eggerthella (OR = 0.464, 95%CI: 0.27 to 0.796, p = 0.005) was negatively associated with the risk of gastric cancer. The genetically predicted genus Lachnospiraceae FCS020 group (OR = 0.607, 95%CI: 0.439 to 0.84, p = 0.003) correlated with a lower risk of colorectal cancer, and genus Turicibacter (OR = 0.271, 95%CI: 0.109 to 0.676, p = 0.005) was a protective factor for liver cancer. In the reverse MR, DSCs regulated the relative abundance of specific strains of gut microbiota. We comprehensively screened the association between gut microbiota and DSCs using a bidirectional two-sample MR analysis and identified the causality between several microbial taxa and DSCs. Our discoveries are beneficial for the development of novel microbial markers and microbiota-modifying therapeutics for DSC patients.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiru Liang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaichun Wu
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| | - Yongzhan Nie
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| | - Yongquan Shi
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| | - Daiming Fan
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| | - Jian Wu
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
90
|
Elechi JOG, Sirianni R, Conforti FL, Cione E, Pellegrino M. Food System Transformation and Gut Microbiota Transition: Evidence on Advancing Obesity, Cardiovascular Diseases, and Cancers-A Narrative Review. Foods 2023; 12:2286. [PMID: 37372497 PMCID: PMC10297670 DOI: 10.3390/foods12122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Food, a vital component of our daily life, is fundamental to our health and well-being, and the knowledge and practices relating to food have been passed down from countless generations of ancestors. Systems may be used to describe this extremely extensive and varied body of agricultural and gastronomic knowledge that has been gathered via evolutionary processes. The gut microbiota also underwent changes as the food system did, and these alterations had a variety of effects on human health. In recent decades, the gut microbiome has gained attention due to its health benefits as well as its pathological effects on human health. Many studies have shown that a person's gut microbiota partially determines the nutritional value of food and that diet, in turn, shapes both the microbiota and the microbiome. The current narrative review aims to explain how changes in the food system over time affect the makeup and evolution of the gut microbiota, advancing obesity, cardiovascular disease (CVD), and cancer. After a brief discussion of the food system's variety and the gut microbiota's functions, we concentrate on the relationship between the evolution of food system transformation and gut microbiota system transition linked to the increase of non-communicable diseases (NCDs). Finally, we also describe sustainable food system transformation strategies to ensure healthy microbiota composition recovery and maintain the host gut barrier and immune functions to reverse advancing NCDs.
Collapse
Affiliation(s)
- Jasper Okoro Godwin Elechi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (R.S.); (F.L.C.); (E.C.); (M.P.)
| | | | | | | | | |
Collapse
|
91
|
Tian T, Zhou Y, Xu Y, Xu Y. Intestinal microbial 16S sequencing and LC-MS metabonomic analysis revealed differences between young and old cats. Heliyon 2023; 9:e16417. [PMID: 37251444 PMCID: PMC10220381 DOI: 10.1016/j.heliyon.2023.e16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
With the progress of society, the health problems of pets have attracted more and more attention. Recent studies have shown that intestinal microflora and related fecal metabolites play a crucial role in the healthy growth of cats. However, the potential role and related metabolic characteristics of gut microbiota in different age groups of pet cats need to be further clarified. 16S rRNA gene sequencing was used to analyze the intestinal microbial composition of young and old cats. LC-MS metabonomic analysis is used to characterize the changes in the metabolic spectrum in feces. The potential relationship between intestinal microorganisms and metabolites, as well as the differences in different age groups, were studied. The species composition of intestinal microflora in the young group and old group is significantly different, T-test algorithm shows 36 different ASVs and 8 different genuses, while the Wilcoxon algorithm shows 81 different ASVs and 17 different genuses. The metabolomics analysis identified 537 kinds of fecal metabolites, which are rich in differences between young and old cats, and may be potential biomarkers indicating the health of cats. 16S rRNA analysis showed significant differences in fructose and mannose metabolism, while metabonomics KEGG analysis showed significant difference in choline metabolism in cancer. Our study compared the differences between the intestinal microbiome and fecal metabolites in young and old cats. This difference provides a new direction for further exploring the relationship between the composition and metabolism of intestinal microbiota in cats of different age groups. It also provides a reference for cat health research.
Collapse
Affiliation(s)
- Tongguan Tian
- Nourse Centre for Pet Nutrition, Wuhu, 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai, 201103, China
| | - Yuefan Zhou
- Nourse Centre for Pet Nutrition, Wuhu, 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai, 201103, China
| | - Yixin Xu
- Nourse Centre for Pet Nutrition, Wuhu, 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai, 201103, China
| | - Yanping Xu
- Nourse Centre for Pet Nutrition, Wuhu, 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai, 201103, China
| |
Collapse
|
92
|
Lau HCH, Zhang X, Yu J. Gut microbiota and immune alteration in cancer development: implication for immunotherapy. EGASTROENTEROLOGY 2023; 1:e100007. [PMID: 39944250 PMCID: PMC11770436 DOI: 10.1136/egastro-2023-100007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/19/2023] [Indexed: 03/19/2025]
Abstract
Human gastrointestinal tract harbours trillions of microbes to form the gut microbiota. Through interacting with host cells, gut microbes play critical roles in host physiology and function. On the other hand, an altered or dysbiotic microbiota is now well acknowledged for contributing to cancer development and progression. Since the last decade, immunotherapy has risen as a promising and novel means to fight against cancer. Meanwhile, accumulating studies have clearly revealed the close association of gut microbiota with immunotherapy efficacy, suggesting the feasibility of modulating microbiota to improve treatment responsiveness. In this review, we present the current evidence elucidating the interplay between gut microbiota and immune system in the development of several cancers including colorectal cancer, hepatocellular carcinoma and melanoma. We also discuss how the gut microbiota impacts immune checkpoint inhibitors, one of the most common approaches of immunotherapy, and explore approaches that aim to harness the gut microbiota to improve treatment efficacy. Overall, investigations on the relationship between microbiota and cancer immunotherapy can have important clinical significance, potentially leading to the development of more potent and effective cancer therapeutics in the near future.
Collapse
Affiliation(s)
- Harry Cheuk Hay Lau
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
93
|
Wu X, Sun L, Xu F. NF-κB in Cell Deaths, Therapeutic Resistance and Nanotherapy of Tumors: Recent Advances. Pharmaceuticals (Basel) 2023; 16:783. [PMID: 37375731 DOI: 10.3390/ph16060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) plays a complicated role in multiple tumors. Mounting evidence demonstrates that NF-κB activation supports tumorigenesis and development by enhancing cell proliferation, invasion, and metastasis, preventing cell death, facilitating angiogenesis, regulating tumor immune microenvironment and metabolism, and inducing therapeutic resistance. Notably, NF-κB functions as a double-edged sword exerting positive or negative influences on cancers. In this review, we summarize and discuss recent research on the regulation of NF-κB in cancer cell deaths, therapy resistance, and NF-κB-based nano delivery systems.
Collapse
Affiliation(s)
- Xuesong Wu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liang Sun
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Fangying Xu
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Department of Pathology and Pathophysiology, and Department of Hepatobiliary and Pancreatic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310005, China
| |
Collapse
|
94
|
Wardill HR, Da Silva Ferreira AR, Kumar H, Bateman EH, Cross CB, Bowen JM, Havinga R, Harmsen HJM, Knol J, Dorresteijn B, van Dijk M, van Bergenhenegouwen J, Tissing WJE. Whey-based diet containing medium chain triglycerides modulates the gut microbiota and protects the intestinal mucosa from chemotherapy while maintaining therapy efficacy. Cell Death Dis 2023; 14:338. [PMID: 37221162 DOI: 10.1038/s41419-023-05850-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Cytotoxicity (i.e. cell death) is the core mechanism by which chemotherapy induces its anti-cancer effects. Unfortunately, this same mechanism underpins the collateral damage it causes to healthy tissues. The gastrointestinal tract is highly susceptible to chemotherapy's cytotoxicity, resulting in ulcerative lesions (termed gastrointestinal mucositis, GI-M) that impair the functional capacity of the gut leading to diarrhea, anorexia, malnutrition and weight loss, which negatively impact physical/psychological wellbeing and treatment adherence. Preventing these side effects has proven challenging given the overlapping mechanisms that dictate chemotherapy efficacy and toxicity. Here, we report on a novel dietary intervention that, due to its localized gastrointestinal effects, is able to protect the intestinal mucosal from unwanted toxicity without impairing the anti-tumor effects of chemotherapy. The test diet (containing extensively hydrolyzed whey protein and medium chain triglycerides (MCTs)), was investigated in both tumor-naïve and tumor-bearing models to evaluate its effect on GI-M and chemo-efficacy, respectively. In both models, methotrexate was used as the representative chemotherapeutic agent and the diet was provided ad libitum for 14 days prior to treatment. GI-M was measured using the validated biomarker plasma citrulline, and chemo-efficacy defined by tumor burden (cm3/g body weight). The test diet significantly attenuated GI-M (P = 0.03), with associated reductions in diarrhea (P < 0.0001), weight loss (P < 0.05), daily activity (P < 0.02) and maintenance of body composition (P < 0.02). Moreover, the test diet showed significant impact on gut microbiota by increasing diversity and resilience, whilst also altering microbial composition and function (indicated by cecal short and brained chain fatty acids). The test diet did not impair the efficacy of methotrexate against mammary adenocarcinoma (tumor) cells. In line with the first model, the test diet minimized intestinal injury (P = 0.001) and diarrhea (P < 0.0001). These data support translational initiatives to determine the clinical feasibility, utility and efficacy of this diet to improve chemotherapy treatment outcomes.
Collapse
Affiliation(s)
- Hannah R Wardill
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- Supportive Oncology Research Group, Precision Cancer Medicine, The South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Ana Rita Da Silva Ferreira
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Emma H Bateman
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Courtney B Cross
- Supportive Oncology Research Group, Precision Cancer Medicine, The South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Joanne M Bowen
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Rick Havinga
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Knol
- Danone Nutricia Research, Utrecht, the Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | - Wim J E Tissing
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
95
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
96
|
Wang AJ, Song D, Hong YM, Liu NN. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the "microworld" age. Mol Omics 2023; 19:283-296. [PMID: 36916422 DOI: 10.1039/d2mo00288d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial heterogeneous disease largely due to both genetic predisposition and environmental factors including the gut microbiota, a dynamic microbial ecosystem inhabiting the gastrointestinal tract. Elucidation of the molecular mechanisms by which the gut microbiota interacts with the host may contribute to the pathogenesis, diagnosis, and promotion of CRC. However, deciphering the influence of genetic variants and interactions with the gut microbial ecosystem is rather challenging. Despite recent advancements in single omics analysis, the application of multi-omics approaches to integrate multiple layers of information in the microbiome and host to introduce effective prevention, diagnosis, and treatment strategies is still in its infancy. Here, we integrate host- and microbe-based multi-omics studies, respectively, to provide a strategy to explore potential causal relationships between gut microbiota and colorectal cancer. Specifically, we summarize the recent multi-omics studies such as metagenomics combined with metabolomics and metagenomics combined with genomics. Meanwhile, the sample size and sample types commonly used in multi-omics research, as well as the methods of data analysis, were also generalized. We highlight multiple layers of information from multi-omics that need to be verified by different types of models. Together, this review provides new insights into the clinical diagnosis and treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- An-Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Yue-Mei Hong
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
97
|
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P, Ahn B. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond) 2023; 43:525-561. [PMID: 37005490 PMCID: PMC10174093 DOI: 10.1002/cac2.12416] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
Tumor development and metastasis are facilitated by the complex interactions between cancer cells and their microenvironment, which comprises stromal cells and extracellular matrix (ECM) components, among other factors. Stromal cells can adopt new phenotypes to promote tumor cell invasion. A deep understanding of the signaling pathways involved in cell-to-cell and cell-to-ECM interactions is needed to design effective intervention strategies that might interrupt these interactions. In this review, we describe the tumor microenvironment (TME) components and associated therapeutics. We discuss the clinical advances in the prevalent and newly discovered signaling pathways in the TME, the immune checkpoints and immunosuppressive chemokines, and currently used inhibitors targeting these pathways. These include both intrinsic and non-autonomous tumor cell signaling pathways in the TME: protein kinase C (PKC) signaling, Notch, and transforming growth factor (TGF-β) signaling, Endoplasmic Reticulum (ER) stress response, lactate signaling, Metabolic reprogramming, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and Siglec signaling pathways. We also discuss the recent advances in Programmed Cell Death Protein 1 (PD-1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte Activating Gene 3 (LAG3) immune checkpoint inhibitors along with the C-C chemokine receptor 4 (CCR4)- C-C class chemokines 22 (CCL22)/ and 17 (CCL17), C-C chemokine receptor type 2 (CCR2)- chemokine (C-C motif) ligand 2 (CCL2), C-C chemokine receptor type 5 (CCR5)- chemokine (C-C motif) ligand 3 (CCL3) chemokine signaling axis in the TME. In addition, this review provides a holistic understanding of the TME as we discuss the three-dimensional and microfluidic models of the TME, which are believed to recapitulate the original characteristics of the patient tumor and hence may be used as a platform to study new mechanisms and screen for various anti-cancer therapies. We further discuss the systemic influences of gut microbiota in TME reprogramming and treatment response. Overall, this review provides a comprehensive analysis of the diverse and most critical signaling pathways in the TME, highlighting the associated newest and critical preclinical and clinical studies along with their underlying biology. We highlight the importance of the most recent technologies of microfluidics and lab-on-chip models for TME research and also present an overview of extrinsic factors, such as the inhabitant human microbiome, which have the potential to modulate TME biology and drug responses.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of NeurologyThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicago, 60611ILUSA
| | - Fatima Khan
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Bhupender Verma
- Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and Ear InfirmaryHarvard Medical SchoolBoston, 02114MAUSA
| | - Priyanka Sinha
- Department of NeurologyMassGeneral Institute for Neurodegenerative DiseaseMassachusetts General Hospital, Harvard Medical SchoolCharlestown, 02129MAUSA
| | - Crismita C. Dmello
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan Francisco, 94143CAUSA
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| | - Byeong‐Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| |
Collapse
|
98
|
Homolak J. Targeting the microbiota-mitochondria crosstalk in neurodegeneration with senotherapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:339-383. [PMID: 37437983 DOI: 10.1016/bs.apcsb.2023.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are a group of age-related disorders characterized by a chronic and progressive loss of function and/or structure of synapses, neurons, and glial cells. The etiopathogenesis of neurodegenerative diseases is characterized by a complex network of intricately intertwined pathophysiological processes that are still not fully understood. Safe and effective disease-modifying treatments are urgently needed, but still not available. Accumulating evidence suggests that gastrointestinal dyshomeostasis and microbial dysbiosis might play an important role in neurodegeneration by acting as either primary or secondary pathophysiological factors. The research on the role of microbiota in neurodegeneration is in its early phase; however, accumulating evidence suggests that dysbiosis might promote neurodegenerative diseases by disrupting mitochondrial function and inducing mitochondrial dysfunction-associated senescence (MiDAS), possibly due to bidirectional crosstalk based on the common evolutionary origin of mitochondria and bacteria. Cellular senescence is an onco-supressive homeostatic mechanism that results in an irreversible cell cycle arrest upon exposure to noxious stimuli. Senescent cells resist apoptosis via senescent cell anti-apoptotic pathways (SCAPs) and transition into a state known as senescence-associated secretory phenotype (SASP) that generates a cytotoxic proinflammatory microenvironment. Cellular senescence results in the adoption of a detrimental vicious cycle driven by dysbiosis, mitochondrial dysfunction, inflammation, and oxidative stress - a pathophysiological positive feedback loop that results in neuroinflammation and neurodegeneration. Detrimental effects of MiDAS might be prevented and abolished by mitochondria-targeted senotherapeutics, a group of drugs specifically designed to alleviate senescence by inhibiting SCAPs (senolytics), or inhibiting SASP (senomorphics).
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
99
|
Malcomson FC, Mathers JC. Translation of nutrigenomic research for personalised and precision nutrition for cancer prevention and for cancer survivors. Redox Biol 2023; 62:102710. [PMID: 37105011 PMCID: PMC10165138 DOI: 10.1016/j.redox.2023.102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Personalised and precision nutrition uses information on individual characteristics and responses to nutrients, foods and dietary patterns to develop targeted nutritional advice that is more effective in improving the diet and health of each individual. Moving away from the conventional 'one size fits all', such targeted intervention approaches may pave the way to better population health, including lower burden of non-communicable diseases. To date, most personalised and precision nutrition approaches have been focussed on tackling obesity and cardiometabolic diseases with limited efforts directed to cancer prevention and for cancer survivors. Advances in understanding the biological basis of cancer and of the role played by diet in cancer prevention and in survival after cancer diagnosis, mean that it is timely to test and to apply such personalised and precision nutrition approaches in the cancer area. This endeavour can take advantage of the enhanced understanding of interactions between dietary factors, individual genotype and the gut microbiome that impact on risk of, and survival after, cancer diagnosis. Translation of these basic research into public health action should include real-time acquisition of nutrigenomic and related data and use of AI-based data integration methods in systems approaches that can be scaled up using mobile devices.
Collapse
Affiliation(s)
- F C Malcomson
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - J C Mathers
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
100
|
Hou X, Du H, Deng Y, Wang H, Liu J, Qiao J, Liu W, Shu X, Sun B, Liu Y. Gut microbiota mediated the individualized efficacy of Temozolomide via immunomodulation in glioma. J Transl Med 2023; 21:198. [PMID: 36927689 PMCID: PMC10018922 DOI: 10.1186/s12967-023-04042-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the preferred chemotherapy strategy for glioma therapy. As a second-generation alkylating agent, TMZ provides superior oral bio-availability. However, limited response rate (less than 50%) and high incidence of drug resistance seriously restricts TMZ's application, there still lack of strategies to increase the chemotherapy sensitivity. METHODS Luci-GL261 glioma orthotopic xenograft model combined bioluminescence imaging was utilized to evaluate the anti-tumor effect of TMZ and differentiate TMZ sensitive (S)/non-sensitive (NS) individuals. Integrated microbiomics and metabolomics analysis was applied to disentangle the involvement of gut bacteria in TMZ sensitivity. Spearman's correlation analysis was applied to test the association between fecal bacteria levels and pharmacodynamics indices. Antibiotics treatment combined TMZ treatment was used to confirm the involvement of gut microbiota in TMZ response. Flow cytometry analysis, ELISA and histopathology were used to explore the potential role of immunoregulation in gut microbiota mediated TMZ response. RESULTS Firstly, gut bacteria composition was significantly altered during glioma development and TMZ treatment. Meanwhile, in vivo anti-cancer evaluation suggested a remarkable difference in chemotherapy efficacy after TMZ administration. Moreover, 16s rRNA gene sequencing and non-targeted metabolomics analysis revealed distinct different gut microbiota and immune infiltrating state between TMZ sensitive and non-sensitive mice, while abundance of differential gut bacteria and related metabolites was significantly correlated with TMZ pharmacodynamics indices. Further verification suggested that gut microbiota deletion by antibiotics treatment could accelerate glioma development, attenuate TMZ efficacy and inhibit immune cells (macrophage and CD8α+ T cell) recruitment. CONCLUSIONS The current study confirmed the involvement of gut microbiota in glioma development and individualized TMZ efficacy via immunomodulation, hence gut bacteria may serve as a predictive biomarker as well as a therapeutic target for clinical TMZ application.
Collapse
Affiliation(s)
- Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Jinmi Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China. .,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China. .,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|