51
|
Shi W, Wang L, Yao L, Hao W, Han C, Fan M, Wang W, Bai MY. Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis. Nat Commun 2022; 13:5040. [PMID: 36028510 PMCID: PMC9418256 DOI: 10.1038/s41467-022-32770-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
Stomatal pores allow gas exchange between plant and atmosphere. Stomatal development is regulated by multiple intrinsic developmental and environmental signals. Here, we show that spatially patterned hydrogen peroxide (H2O2) plays an essential role in stomatal development. H2O2 is remarkably enriched in meristemoids, which is established by spatial expression patterns of H2O2-scavenging enzyme CAT2 and APX1. SPEECHLESS (SPCH), a master regulator of stomatal development, directly binds to the promoters of CAT2 and APX1 to repress their expression in meristemoid cells. Mutations in CAT2 or APX1 result in an increased stomatal index. Ectopic expression of CAT2 driven by SPCH promoter significantly inhibits the stomatal development. Furthermore, H2O2 activates the energy sensor SnRK1 by inducing the nuclear localization of the catalytic α-subunit KIN10, which stabilizes SPCH to promote stomatal development. Overall, these results demonstrate that the spatial pattern of H2O2 in epidermal leaves is critical for the optimal stomatal development in Arabidopsis. Stomatal development is regulated by multiple intrinsic developmental and environmental signals. Here, the authors show that spatially patterned hydrogen peroxide activates the energy sensor SnRK1 to stabilize the SPCH transcription factor and optimize stomatal development in Arabidopsis.
Collapse
Affiliation(s)
- Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wei Hao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenfei Wang
- College of Horticulture, College of Life Sciences, Hai xia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
52
|
Li S, Yu S, Zhang Y, Zhu D, Li F, Chen B, Mei F, Du L, Ding L, Chen L, Song J, Kang Z, Mao H. Genome-wide association study revealed TaHXK3-2A as a candidate gene controlling stomatal index in wheat seedlings. PLANT, CELL & ENVIRONMENT 2022; 45:2306-2323. [PMID: 35545896 DOI: 10.1111/pce.14342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/15/2023]
Abstract
Stomata are important channels for the control of gas exchange between plants and the atmosphere. To examine the genetic architecture of wheat stomatal index, we performed a genome-wide association study (GWAS) using a panel of 539 wheat accessions and 450 678 polymorphic single nucleotide polymorphisms (SNPs) that were detected using wheat-specific 660K SNP array. A total of 130 SNPs were detected to be significantly associated with stomatal index in both leaf surfaces of wheat seedlings. These significant SNPs were distributed across 16 chromosomes and involved 2625 candidate genes which participate in stress response, metabolism and cell/organ development. Subsequent bulk segregant analysis (BSA), combined with GWAS identified one major haplotype on chromosome 2A, that is responsible for stomatal index on the abaxial leaf surface. Candidate gene association analysis revealed that genetic variation in the promoter region of the hexokinase gene TaHXK3-2A was significantly associated with the stomatal index. Moreover, transgenic analysis confirmed that TaHXK3-2A overexpression in wheat decreased the size of leaf pavement cells but increased stomatal density through the glucose metabolic pathway, resulting in drought sensitivity among TaHXK3-2A transgenic lines due to an increased transpiration rate. Taken together, these results provide valuable insights into the genetic control of the stomatal index in wheat seedlings.
Collapse
Affiliation(s)
- Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yifang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dehe Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- School of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Jiancheng Song
- School of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
53
|
Pérez-Bueno ML, Illescas-Miranda J, Martín-Forero AF, de Marcos A, Barón M, Fenoll C, Mena M. An extremely low stomatal density mutant overcomes cooling limitations at supra-optimal temperature by adjusting stomatal size and leaf thickness. FRONTIERS IN PLANT SCIENCE 2022; 13:919299. [PMID: 35937324 PMCID: PMC9355609 DOI: 10.3389/fpls.2022.919299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 05/25/2023]
Abstract
The impact of global warming on transpiration and photosynthesis would compromise plant fitness, impacting on crop yields and ecosystem functioning. In this frame, we explored the performance of a set of Arabidopsis mutants carrying partial or total loss-of-function alleles of stomatal development genes and displaying distinct stomatal abundances. Using microscopy and non-invasive imaging techniques on this genotype collection, we examined anatomical leaf and stomatal traits, plant growth and development, and physiological performance at optimal (22°C) and supra-optimal (30°C) temperatures. All genotypes showed thermomorphogenetic responses but no signs of heat stress. Data analysis singled out an extremely low stomatal abundance mutant, spch-5. At 22°C, spch-5 had lower transpiration and warmer leaves than the wild type. However, at 30°C, this mutant developed larger stomata and thinner leaves, paralleled by a notable cooling capacity, similar to that of the wild type. Despite their low stomatal density (SD), spch-5 plants grown at 30°C showed no photosynthesis or growth penalties. The behavior of spch-5 at supra-optimal temperature exemplifies how the effect of very low stomatal numbers can be counteracted by a combination of larger stomata and thinner leaves. Furthermore, it provides a novel strategy for coping with high growth temperatures.
Collapse
Affiliation(s)
- María Luisa Pérez-Bueno
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- Departamento de Fisiología Vegetal, Universidad de Granada, Granada, Spain
| | | | - Amanda F. Martín-Forero
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alberto de Marcos
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Matilde Barón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Montaña Mena
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
54
|
Sathee L, Jain V. Interaction of elevated CO 2 and form of nitrogen nutrition alters leaf abaxial and adaxial epidermal and stomatal anatomy of wheat seedlings. PROTOPLASMA 2022; 259:703-716. [PMID: 34374877 DOI: 10.1007/s00709-021-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plant's stomatal physiology and anatomical features are highly plastic and are influenced by diverse environmental signals including the concentration of atmospheric CO2 and nutrient availability. Recent reports suggest that the form of nitrogen (N) is a determinant of plant growth and nutrient nitrogen use efficiency (NUE) under elevated CO2 (EC). Previously, we found that high nitrate availability resulted in early senescence, enhanced reactive oxygen species (ROS), and reactive nitrogen species (RNS) production and also that mixed nutrition of nitrate and ammonium ions were beneficial than sole nitrate nutrition in wheat. In this study, the interactive effects of different N forms (nitrate, ammonium, mixed nutrition of nitrate, and ammonium) and EC on epidermal and stomatal morphology were analyzed. Wheat seedlings were grown at two different CO2 levels and supplied with media devoid of N (N0) or with nitrate-N (NN), mixed nutrition of ammonium and nitrate (MN), or only ammonium-N (AN). The stoma length increased significantly in nitrate nutrition with a consistent reduction in stoma width. Guard cell length was higher in EC treatment as compared to AC. The guard cell width was maximum in AN-grown plants at EC. Epidermal cell density and stomatal density were lower at EC. Nitrate nutrition increased the stomatal area at EC while the reverse was true for MN and AN. Wheat plants fertilized with AN showed a higher accumulation of superoxide radical (SOR) at EC, while in NN treatment, the accumulation of hydrogen peroxide (H2O2) was higher at EC. Reactive oxygen species, particularly H2O2, can trigger mitogen-activated protein kinase (MAPK) mediated signaling and its crosstalk with abscisic acid (ABA) signaling to regulate stomatal anatomy in nitrate-fed plants. The SOR accumulation in ammonium- and ammonium nitrate-fed plants and H2O2 in NN-fed plants might finely regulate the sensitivity of stomata to alter water/nutrient use efficiency and productivity under EC. The data reveals that the variation in anatomical attributes viz. cell length, number of cells, etc. affected the leaf growth responses to EC and forms of N nutrition. These attributes are fine targets for effective manipulation of growth responses to EC.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Vanita Jain
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
- Agricultural Education Division, ICAR, KAB-II, New Delhi, India.
| |
Collapse
|
55
|
Lee JS, Jahani M, Huang K, Mandel JR, Marek LF, Burke JM, Langlade NB, Owens GL, Rieseberg LH. Expression complementation of gene presence/absence polymorphisms in hybrids contributes importantly to heterosis in sunflower. J Adv Res 2022; 42:83-98. [PMID: 36513422 PMCID: PMC9788961 DOI: 10.1016/j.jare.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/16/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Numerous crops have transitioned to hybrid seed production to increase yields and yield stability through heterosis. However, the molecular mechanisms underlying heterosis and its stability across environments are not yet fully understood. OBJECTIVES This study aimed to (1) elucidate the genetic and molecular mechanisms underlying heterosis in sunflower, and (2) determine how heterosis is maintained under different environments. METHODS Genome-wide association (GWA) analyses were employed to assess the effects of presence/absence variants (PAVs) and stop codons on 16 traits phenotyped in the sunflower association mapping population at three locations. To link the GWA results to transcriptomic variation, we sequenced the transcriptomes of two sunflower cultivars and their F1 hybrid (INEDI) under both control and drought conditions and analyzed patterns of gene expression and alternative splicing. RESULTS Thousands of PAVs were found to affect phenotypic variation using a relaxed significance threshold, and at most such loci the "absence" allele reduced values of heterotic traits, but not those of non-heterotic traits. This pattern was strengthened for PAVs that showed expression complementation in INEDI. Stop codons were much rarer than PAVs and less likely to reduce heterotic trait values. Hybrid expression patterns were enriched for the GO category, sensitivity to stimulus, but all genotypes responded to drought similarily - by up-regulating water stress response pathways and down-regulating metabolic pathways. Changes in alternative splicing were strongly negatively correlated with expression variation, implying that alternative splicing in this system largely acts to reinforce expression responses. CONCLUSION Our results imply that complementation of expression of PAVs in hybrids is a major contributor to heterosis in sunflower, consistent with the dominance model of heterosis. This mechanism can account for yield stability across different environments. Moreover, given the much larger numbers of PAVs in plant vs. animal genomes, it also offers an explanation for the stronger heterotic responses seen in the former.
Collapse
Affiliation(s)
- Joon Seon Lee
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mojtaba Jahani
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer R. Mandel
- Department of Biological Sciences and Center for Biodiversity, University of Memphis, Memphis, TN 38152, USA
| | - Laura F. Marek
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - John M. Burke
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens 30602, Georgia
| | | | - Gregory L. Owens
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada,Corresponding author.
| |
Collapse
|
56
|
Han C, Qiao Y, Yao L, Hao W, Liu Y, Shi W, Fan M, Bai MY. TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. THE NEW PHYTOLOGIST 2022; 234:107-121. [PMID: 35060119 DOI: 10.1111/nph.17984] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the differentiation of epidermal cells into stomata is regulated by endogenous and environmental signals. Sugar is required for plant epidermal cell proliferation and differentiation. However, it is unclear how epidermal cells maintain division and differentiation to generate proper amounts of stomata in response to different sugar availability. Here, we show that two evolutionarily conserved kinase Snf1-related protein kinase 1 (SnRK1) and Target of rapamycin (TOR) play critical roles in the regulation of stomatal development under different sugar availability. When plants are grown on a medium containing 1% sucrose, sucrose-activated TOR promotes the stomatal development by inducing the expression of SPEECHLESS (SPCH), a master regulator of stomatal development. SnRK1 promotes stomatal development through phosphorylating and stabilizing SPCH. However, under the high sucrose conditions, the highly accumulated trehalose-6-phosphate (Tre6P) represses the activity of KIN10, the catalytic α-subunit of SnRK1, by reducing the interaction between KIN10 and its upstream kinase, consequently promoting SPCH degradation and inhibiting stomatal development. Our findings revealed that TOR and SnRK1 finely regulate SPCH expression and protein stability to optimize the stomatal development in response to exogenously supplied sugar.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yan Qiao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wei Hao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yue Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
57
|
Moriwaki K, Yanagisawa S, Iba K, Negi J. Two independent cis-acting elements are required for the guard cell-specific expression of SCAP1, which is essential for late stomatal development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:440-451. [PMID: 35061307 DOI: 10.1111/tpj.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Regulating the stomatal aperture to adapt to environmental changes is critical for plants as stomatal guard cells are responsible for gas exchange between plants and the atmosphere. We previously showed that a plant-specific DNA-binding with one finger (Dof)-type transcription factor, SCAP1, functions as a key regulator in the final stages of guard cell differentiation. In the present study, we performed deletion and gain-of-function analyses with the 5' flanking region of SCAP1 to identify the regulatory region controlling the guard cell-specific expression of SCAP1. The results revealed that two cis-acting elements, 5'-CACGAGA-3' and 5'-CACATGTTTCCC-3', are crucial for the guard cell-specific expression of SCAP1. Consistently, when an 80-bp promoter region including these two cis-elements was fused to a gene promoter that is not active in guard cells, it functioned as a promoter that directed gene expression in guard cells. Furthermore, the promoter region of HT1 encoding the central regulator of stomatal CO2 signaling was also found to contain a 5'-CACGAGA-3' sequence, which was confirmed to function as a cis-element necessary for guard cell-specific expression of HT1. These findings suggest the existence of a novel transcriptional regulatory mechanism that synchronously promotes the expression of multiple genes required for the stomatal maturation and function.
Collapse
Affiliation(s)
- Kosuke Moriwaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
58
|
Cao W, Li Z, Huang S, Shi Y, Zhu Y, Lai MN, Lok PL, Wang X, Cui Y, Jiang L. Correlation of vacuole morphology with stomatal lineage development by whole-cell electron tomography. PLANT PHYSIOLOGY 2022; 188:2085-2100. [PMID: 35134219 PMCID: PMC8968265 DOI: 10.1093/plphys/kiac028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/22/2021] [Indexed: 05/26/2023]
Abstract
Stomatal movement is essential for plants to optimize transpiration and therefore photosynthesis. Rapid changes in the stomatal aperture are accompanied by adjustment of vacuole volume and morphology in guard cells (GCs). In Arabidopsis (Arabidopsis thaliana) leaf epidermis, stomatal development undergoes a cell-fate transition including four stomatal lineage cells: meristemoid, guard mother cell, young GC, and GC. Little is known about the mechanism underlying vacuole dynamics and vacuole formation during stomatal development. Here, we utilized whole-cell electron tomography (ET) analysis to elucidate vacuole morphology, formation, and development in different stages of stomatal lineage cells at nanometer resolution. The whole-cell ET models demonstrated that large vacuoles were generated from small vacuole stepwise fusion/maturation along stomatal development stages. Further ET analyses verified the existence of swollen intraluminal vesicles inside distinct vacuoles at certain developmental stages of stomatal lineage cells, implying a role of multivesicular body fusion in stomatal vacuole formation. Collectively, our findings demonstrate a mechanism mediating vacuole formation in Arabidopsis stomatal development and may shed light on the role of vacuoles in stomatal movement.
Collapse
Affiliation(s)
- Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhenping Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yuwei Shi
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Man Nga Lai
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pui Lok Lok
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | | |
Collapse
|
59
|
Wang X, Song Q, Liu Y, Brestic M, Yang X. The network centered on ICEs play roles in plant cold tolerance, growth and development. PLANTA 2022; 255:81. [PMID: 35249133 DOI: 10.1007/s00425-022-03858-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ICEs are key transcription factors in response to cold in plant, they also balance plant growth and stress tolerance. Thus, we systematize the information about ICEs published to date. Low temperature is an important factor affecting plant growth and development. Exposing to cold condition results in a suit of effects on plants including reduction of plant growth and reproduction, and decrease in crop yield and quality. Plants have evolved a series of strategies to deal with cold stress such as reprogramming of the expression of genes and transcription factors. ICEs (Inducer of CBF Expression), as transcription factors regulating CBFs (C-repeat binding factor), play key roles in balancing plant growth and stress tolerance. Studies on ICEs focused on the function of ICEs on cold tolerance, growth and development; post-translational modifications of ICEs and crosstalk between the ICEs and phytohormones. In this review, we focus on systematizing the information published to date. We summarized the main advances of the functions of ICEs on the cold tolerance, growth and development. And we also elaborated the regulation of ICEs protein stability including phosphorylation, ubiquitination and SUMOylation of ICE. Finally, we described the function of ICEs in the crosstalk among different phytohormone signaling pathway and cold stress. This review provides perspectives for ongoing research about cold tolerance, growth and development in plant.
Collapse
Affiliation(s)
- Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
60
|
Li Y, Xue S, He Q, Wang J, Zhu L, Zou J, Zhang J, Zuo C, Fan Z, Yue J, Zhang C, Yang K, Le J. Arabidopsis F-BOX STRESS INDUCED 4 is required to repress excessive divisions in stomatal development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:56-72. [PMID: 34817930 DOI: 10.1111/jipb.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
During the terminal stage of stomatal development, the R2R3-MYB transcription factors FOUR LIPS (FLP/MYB124) and MYB88 limit guard mother cell division by repressing the transcript levels of multiple cell-cycle genes. In Arabidopsis thaliana possessing the weak allele flp-1, an extra guard mother cell division results in two stomata having direct contact. Here, we identified an ethylmethane sulfonate-mutagenized mutant, flp-1 xs01c, which exhibited more severe defects than flp-1 alone, producing giant tumor-like cell clusters. XS01C, encoding F-BOX STRESS-INDUCED 4 (FBS4), is preferentially expressed in epidermal stomatal precursor cells. Overexpressing FBS4 rescued the defective stomatal phenotypes of flp-1 xs01c and flp-1 mutants. The deletion or substitution of a conserved residue (Proline166) within the F-box domain of FBS4 abolished or reduced, respectively, its interaction with Arabidopsis Skp1-Like1 (ASK1), the core subunit of the Skp1/Cullin/F-box E3 ubiquitin ligase complex. Furthermore, the FBS4 protein physically interacted with CYCA2;3 and induced its degradation through the ubiquitin-26S proteasome pathway. Thus, in addition to the known transcriptional pathway, the terminal symmetric division in stomatal development is ensured at the post-translational level, such as through the ubiquitination of target proteins recognized by the stomatal lineage F-box protein FBS4.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- The Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | - Qixiumei He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxue Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Wenbo School, Jinan, 250100, China
| | - Lingling Zhu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Fan
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junling Yue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
61
|
Dubeaux G, Hsu PK, Ceciliato PHO, Swink KJ, Rappel WJ, Schroeder JI. Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants. PLANT PHYSIOLOGY 2021; 187:2032-2042. [PMID: 35142859 PMCID: PMC8644143 DOI: 10.1093/plphys/kiab342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Recent advances are revealing mechanisms mediating CO2-regulated stomatal movements in Arabidopsis, stomatal architecture and stomatal movements in grasses, and the long-term impact of CO2 on growth.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Paulo H O Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Kelsey J Swink
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
- Author for communication:
| |
Collapse
|
62
|
Golisz A, Krzyszton M, Stepien M, Dolata J, Piotrowska J, Szweykowska-Kulinska Z, Jarmolowski A, Kufel J. Arabidopsi s Spliceosome Factor SmD3 Modulates Immunity to Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:765003. [PMID: 34925413 PMCID: PMC8678131 DOI: 10.3389/fpls.2021.765003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/11/2021] [Indexed: 06/02/2023]
Abstract
SmD3 is a core component of the small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. The role of Arabidopsis SmD3 in plant immunity was assessed by testing sensitivity of smd3a and smd3b mutants to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and its pathogenesis effectors flagellin (flg22), EF-Tu (elf18) and coronatine (COR). Both smd3 mutants exhibited enhanced susceptibility to Pst accompanied by marked changes in the expression of key pathogenesis markers. mRNA levels of major biotic stress response factors were also altered upon treatment with Pseudomonas effectors. Our genome-wide transcriptome analysis of the smd3b-1 mutant infected with Pst, verified by northern and RT-qPCR, showed that lack of SmD3-b protein deregulates defense against Pst infection at the transcriptional and posttranscriptional levels including defects in splicing and an altered pattern of alternative splicing. Importantly, we show that SmD3-b dysfunction impairs mainly stomatal immunity as a result of defects in stomatal development. We propose that it is the malfunction of the stomata that is the primary cause of an altered mutant response to the pathogen. Other changes in the smd3b-1 mutant involved enhanced elf18- and flg22-induced callose deposition, reduction of flg22-triggered production of early ROS and boost of secondary ROS caused by Pst infection. Together, our data indicate that SmD3 contributes to the plant immune response possibly via regulation of mRNA splicing of key pathogenesis factors.
Collapse
Affiliation(s)
- Anna Golisz
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Michal Krzyszton
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Monika Stepien
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Jakub Dolata
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Justyna Piotrowska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Kufel
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
63
|
Xie J, Fernandes SB, Mayfield-Jones D, Erice G, Choi M, E Lipka A, Leakey ADB. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping. PLANT PHYSIOLOGY 2021; 187:1462-1480. [PMID: 34618057 PMCID: PMC8566313 DOI: 10.1093/plphys/kiab299] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/26/2021] [Indexed: 05/03/2023]
Abstract
Stomata are adjustable pores on leaf surfaces that regulate the tradeoff of CO2 uptake with water vapor loss, thus having critical roles in controlling photosynthetic carbon gain and plant water use. The lack of easy, rapid methods for phenotyping epidermal cell traits have limited discoveries about the genetic basis of stomatal patterning. A high-throughput epidermal cell phenotyping pipeline is presented here and used for quantitative trait loci (QTL) mapping in field-grown maize (Zea mays). The locations and sizes of stomatal complexes and pavement cells on images acquired by an optical topometer from mature leaves were automatically determined. Computer estimated stomatal complex density (SCD; R2 = 0.97) and stomatal complex area (SCA; R2 = 0.71) were strongly correlated with human measurements. Leaf gas exchange traits were genetically correlated with the dimensions and proportions of stomatal complexes (rg = 0.39-0.71) but did not correlate with SCD. Heritability of epidermal traits was moderate to high (h2 = 0.42-0.82) across two field seasons. Thirty-six QTL were consistently identified for a given trait in both years. Twenty-four clusters of overlapping QTL for multiple traits were identified, with univariate versus multivariate single marker analysis providing evidence consistent with pleiotropy in multiple cases. Putative orthologs of genes known to regulate stomatal patterning in Arabidopsis (Arabidopsis thaliana) were located within some, but not all, of these regions. This study demonstrates how discovery of the genetic basis for stomatal patterning can be accelerated in maize, a C4 model species where these processes are poorly understood.
Collapse
Affiliation(s)
- Jiayang Xie
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Samuel B Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dustin Mayfield-Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gorka Erice
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Min Choi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrew D B Leakey
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication: , cor2">Present address: Agrotecnologías Naturales S.L., 43762 Tarragona, Spain
| |
Collapse
|
64
|
Siqueira JA, Oliveira de Oliveira H, Nunes-Nesi A, Araújo WL. Guard cell regulation: pulling the strings behind the scenes. TRENDS IN PLANT SCIENCE 2021; 26:1093-1095. [PMID: 34303605 DOI: 10.1016/j.tplants.2021.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The precise regulation of stomata is critical to plant growth and development, especially under drought conditions. Two recent studies (Dou et al., Xu et al.) shed new light on stomata physiology in response to dynamic environmental conditions, revealing novel key mechanisms related to microtubule dynamics and energy sensing within the guard cells.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | | | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
65
|
Cao X, Xu P, Liu Y, Yang G, Liu M, Chen L, Cheng Y, Xu P, Miao L, Mao Z, Wang W, Kou S, Guo T, Yang HQ. Arabidopsis cryptochrome 1 promotes stomatal development through repression of AGB1 inhibition of SPEECHLESS DNA-binding activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1967-1981. [PMID: 34469075 DOI: 10.1111/jipb.13168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. The heterotrimeric G-protein is known to regulate various physiological processes in plants and mammals. In Arabidopsis, cryptochrome 1 (CRY1) and the G-protein β subunit AGB1 act antagonistically to regulate stomatal development. The molecular mechanism by which CRY1 and AGB1 regulate this process remains unknown. Here, we show that Arabidopsis CRY1 acts partially through AGB1, and AGB1 acts through SPEECHLESS (SPCH), a master transcription factor that drives stomatal initiation and proliferation, to regulate stomatal development. We demonstrate that AGB1 physically interacts with SPCH to block the bHLH DNA-binding domain of SPCH and inhibit its DNA-binding activity. Moreover, we demonstrate that photoexcited CRY1 represses the interaction of AGB1 with SPCH to release AGB1 inhibition of SPCH DNA-binding activity, leading to the expression of SPCH-target genes promoting stomatal development. Taken together, our results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH mediated by CRY1 inhibition of the AGB1-SPCH interaction. We propose that the antagonistic regulation of SPCH DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize stomatal density and pattern.
Collapse
Affiliation(s)
- Xiaoli Cao
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Pengbo Xu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guangqiong Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yingyu Cheng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Peng Xu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Langxi Miao
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang Kou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
66
|
Growth Quality and Development of Olive Plants Cultured In-Vitro under Different Illumination Regimes. PLANTS 2021; 10:plants10102214. [PMID: 34686022 PMCID: PMC8541116 DOI: 10.3390/plants10102214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
Light-emitting diodes (LEDs) are useful for the in-vitro micropropagation of plants, but little information is available on woody species. This work compares the effects of light quality and intensity on the growth and development of micropropagated olive plants from two different subspecies. Illumination was provided with fluorescent and LED lamps covering different red/blue ratios (90/10, 80/20, 70/30, 60/40) or red/blue/white combinations, as well as different light intensities (30, 34, 40, 52, 56, 84, 98 and 137 µmol m−2 s−1 of photosynthetic photon fluxes, PPF). Olive plants exhibited high sensitivity to light quality and intensity. Higher red/blue ratios or lower light intensities stimulated plant growth and biomass mainly as a consequence of a higher internodal elongation rate, not affecting either the total number of nodes or shoots. In comparison to fluorescent illumination, LED lighting improved leaf area and biomass, which additionally was positively correlated with light intensity. Stomatal frequency was positively, and pigments content negatively, correlated with light intensity, while no clear correlation was observed with light quality. In comparison with fluorescent lamps, LED illumination (particularly the 70/30 red/blue ratio with 34 µmol m−2 s−1 PPF intensity) allowed optimal manipulation and improved the quality of in-vitro micropropagated olive plants.
Collapse
|
67
|
Xin Y, Pan W, Chen X, Liu Y, Zhang M, Chen X, Yang F, Li J, Wu J, Du Y, Zhang X. Transcriptome profiling reveals key genes in regulation of the tepal trichome development in Lilium pumilum D.C. PLANT CELL REPORTS 2021; 40:1889-1906. [PMID: 34259890 DOI: 10.1007/s00299-021-02753-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A number of potential genes and pathways involved in tepal trichome development were identified in a natural lily mutant by transcriptome analysis and were confirmed with trichome and trichomeless species. Trichome is a specialized structure found on the surface of the plant with an important function in survival against abiotic and biotic stress. It is also an important economic trait in crop breeding. Extensive research has investigated the foliar trichome in model plants (Arabidopsis and tomato). However, the developmental mechanism of tepal trichome remains elusive. Lilium pumilum is an edible ornamental bulb and a good breeding parent possessing cold and salt-alkali resistance. Here, we found a natural mutant of Lilium pumilum grown on a highland whose tepals are covered by trichomes. Our data indicate that trichomes of the mutant are multicellular and branchless. Notably, stomata are also developed on the tepal of the mutant as well, suggesting there may be a correlation between trichome and stomata regulation. Furthermore, we isolated 27 differentially expressed genes (DEGs) by comparing the transcriptome profiling between the natural mutant and the wild type. These 27 genes belong to 4 groups: epidermal cell cycle and division, trichome morphogenesis, stress response, and transcription factors. Quantitative real-time PCR in Lilium pumilum (natural mutant and the wild type) and other lily species (Lilium leichtlinii var. maximowiczii/trichome; Lilium davidii var. willmottiae/, trichomeless) confirmed the validation of RNA-seq data and identified several trichome-related genes.
Collapse
Affiliation(s)
- Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xi Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Liu
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mingfang Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuqing Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fengping Yang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China.
| | - Yunpeng Du
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xiuhai Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
68
|
Ye J, Wang X, Wang W, Yu H, Ai G, Li C, Sun P, Wang X, Li H, Ouyang B, Zhang J, Zhang Y, Han H, Giovannoni JJ, Fei Z, Ye Z. Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. PLANT PHYSIOLOGY 2021; 186:2078-2092. [PMID: 34618111 PMCID: PMC8331143 DOI: 10.1093/plphys/kiab230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/03/2021] [Indexed: 05/05/2023]
Abstract
Tomato (Solanum lycopersicum) is a highly valuable fruit crop, and yield is one of the most important agronomic traits. However, the genetic architecture underlying tomato yield-related traits has not been fully addressed. Based on ∼4.4 million single nucleotide polymorphisms obtained from 605 diverse accessions, we performed a comprehensive genome-wide association study for 27 agronomic traits in tomato. A total of 239 significant associations corresponding to 129 loci, harboring many previously reported and additional genes related to vegetative and reproductive development, were identified, and these loci explained an average of ∼8.8% of the phenotypic variance. A total of 51 loci associated with 25 traits have been under selection during tomato domestication and improvement. Furthermore, a candidate gene, Sl-ACTIVATED MALATE TRANSPORTER15, that encodes an aluminum-activated malate transporter was functionally characterized and shown to act as a pivotal regulator of leaf stomata formation, thereby affecting photosynthesis and drought resistance. This study provides valuable information for tomato genetic research and breeding.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Xin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Wenqian Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengya Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianyu Wang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Author for communication:
| |
Collapse
|
69
|
Chowdhury MR, Ahamed MS, Mas-ud MA, Islam H, Fatamatuzzohora M, Hossain MF, Billah M, Hossain MS, Matin MN. Stomatal development and genetic expression in Arabidopsis thaliana L. Heliyon 2021; 7:e07889. [PMID: 34485750 PMCID: PMC8408637 DOI: 10.1016/j.heliyon.2021.e07889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Stomata are turgor-driven microscopic epidermal valves of land plants. The controlled opening and closing of the valves are essential for regulating the gas exchange and minimizing the water loss and eventually regulating the internal temperatures. Stomata are also a major site of pathogen/microbe entry and plant defense system. Maintaining proper stomatal density, distribution, and development are pivotal for plant survival. Arabidopsis is a model plant to study molecular basis including signaling pathways, transcription factors, and key components for the growth and development of specific organs as well as the whole plant. It has intensively been studied and found out the driver for the development and patterning of stomata. In this review, we have explained how the MAPK signaling cascade is controlled by TOO MANY MOUTHS (TMM) receptor-like protein and the Erecta (ER) receptor-like kinase family. We have also summarized how this MAPK cascade affects primary transcriptional regulators to finally activate the main three basic Helix-Loop-Helix (bHLH) principal transcription factors, which are required for the development and patterning of stomata. Moreover, regulatory activity and cellular connections of polar proteins and environmentally mediated ligand-receptor interactions in the stomatal developmental pathways have extensively been discussed in this review.
Collapse
Affiliation(s)
- Md. Rayhan Chowdhury
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Sabbir Ahamed
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Atik Mas-ud
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hiya Islam
- Biotechnology, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Mst Fatamatuzzohora
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Firose Hossain
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mutasim Billah
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Shahadat Hossain
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohammad Nurul Matin
- Molecular Genetics Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
70
|
Torii KU. Stomatal development in the context of epidermal tissues. ANNALS OF BOTANY 2021; 128:137-148. [PMID: 33877316 PMCID: PMC8324025 DOI: 10.1093/aob/mcab052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Stomata are adjustable pores on the surface of plant shoots for efficient gas exchange and water control. The presence of stomata is essential for plant growth and survival, and the evolution of stomata is considered as a key developmental innovation of the land plants, allowing colonization on land from aquatic environments some 450 million years ago. In the past two decades, molecular genetic studies using the model plant Arabidopsis thaliana identified key genes and signalling modules that regulate stomatal development: master regulatory transcription factors that orchestrate cell state transitions and peptide-receptor signal transduction pathways, which, together, enforce proper patterning of stomata within the epidermis. Studies in diverse plant species, ranging from bryophytes to angiosperm grasses, have begun to unravel the conservation and uniqueness of the core modules in stomatal development. SCOPE Here, I review the mechanisms of stomatal development in the context of epidermal tissue patterning. First, I introduce the core regulatory mechanisms of stomatal patterning and differentiation in the model species A. thaliana. Subsequently, experimental evidence is presented supporting the idea that different cell types within the leaf epidermis, namely stomata, hydathodes pores, pavement cells and trichomes, either share developmental origins or mutually influence each other's gene regulatory circuits during development. Emphasis is placed on extrinsic and intrinsic signals regulating the balance between stomata and pavement cells, specifically by controlling the fate of stomatal-lineage ground cells (SLGCs) to remain within the stomatal cell lineage or differentiate into pavement cells. Finally, I discuss the influence of intertissue layer communication between the epidermis and underlying mesophyll/vascular tissues on stomatal differentiation. Understanding the dynamic behaviours of stomatal precursor cells and their differentiation in the broader context of tissue and organ development may help design plants tailored for optimal growth and productivity in specific agricultural applications and a changing environment.
Collapse
Affiliation(s)
- Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, AustinTX, USA
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- For correspondence: E-mail
| |
Collapse
|
71
|
The DME demethylase regulates sporophyte gene expression, cell proliferation, differentiation, and meristem resurrection. Proc Natl Acad Sci U S A 2021; 118:2026806118. [PMID: 34266952 PMCID: PMC8307533 DOI: 10.1073/pnas.2026806118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The angiosperm life cycle has alternating diploid (sporophyte) and haploid (gametophyte) generations. The sporophyte generation begins with fertilization of haploid gametes and the gametophyte generation begins after meiosis. In Arabidopsis, the DEMETER (DME) DNA demethylase is essential for reproduction and is expressed in the central cell and vegetative cell of the female and male gametophyte, respectively. Little is known about DME function in the sporophyte. We show that DME activity is required for sporophyte development—seed germination, root hair growth, and cellular proliferation and differentiation during development—and we identify sporophytic genes whose proper expression requires DME activity. Together, our study provides important clues about the genetic circuits regulated by the DME DNA demethylase that control Arabidopsis sporophyte development. The flowering plant life cycle consists of alternating haploid (gametophyte) and diploid (sporophyte) generations, where the sporophytic generation begins with fertilization of haploid gametes. In Arabidopsis, genome-wide DNA demethylation is required for normal development, catalyzed by the DEMETER (DME) DNA demethylase in the gamete companion cells of male and female gametophytes. In the sporophyte, postembryonic growth and development are largely dependent on the activity of numerous stem cell niches, or meristems. Analyzing Arabidopsis plants homozygous for a loss-of-function dme-2 allele, we show that DME influences many aspects of sporophytic growth and development. dme-2 mutants exhibited delayed seed germination, variable root hair growth, aberrant cellular proliferation and differentiation followed by enhanced de novo shoot formation, dysregulation of root quiescence and stomatal precursor cells, and inflorescence meristem (IM) resurrection. We also show that sporophytic DME activity exerts a profound effect on the transcriptome of developing Arabidopsis plants, including discrete groups of regulatory genes that are misregulated in dme-2 mutant tissues, allowing us to potentially link phenotypes to changes in specific gene expression pathways. These results show that DME plays a key role in sporophytic development and suggest that DME-mediated active DNA demethylation may be involved in the maintenance of stem cell activities during the sporophytic life cycle in Arabidopsis.
Collapse
|
72
|
Cai H, Liu L, Zhang M, Chai M, Huang Y, Chen F, Yan M, Su Z, Henderson I, Palanivelu R, Chen X, Qin Y. Spatiotemporal control of miR398 biogenesis, via chromatin remodeling and kinase signaling, ensures proper ovule development. THE PLANT CELL 2021; 33:1530-1553. [PMID: 33570655 PMCID: PMC8254498 DOI: 10.1093/plcell/koab056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/02/2021] [Indexed: 05/11/2023]
Abstract
The coordinated development of sporophytic and gametophytic tissues is essential for proper ovule patterning and fertility. However, the mechanisms regulating their integrated development remain poorly understood. Here, we report that the Swi2/Snf2-Related1 (SWR1) chromatin-remodeling complex acts with the ERECTA receptor kinase-signaling pathway to control female gametophyte and integument growth in Arabidopsis thaliana by inhibiting transcription of the microRNA gene MIR398c in early-stage megagametogenesis. Moreover, pri-miR398c is transcribed in the female gametophyte but is then translocated to and processed in the ovule sporophytic tissues. Together, SWR1 and ERECTA also activate ARGONAUTE10 (AGO10) expression in the chalaza; AGO10 sequesters miR398, thereby ensuring the expression of three AGAMOUS-LIKE (AGL) genes (AGL51, AGL52, and AGL78) in the female gametophyte. In the context of sexual organ morphogenesis, these findings suggest that the spatiotemporal control of miRNA biogenesis, resulting from coordination between chromatin remodeling and cell signaling, is essential for proper ovule development in Arabidopsis.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Liu
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Zhang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengnan Chai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangqian Chen
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maokai Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhenxia Su
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ian Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | | | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, United States
| | - Yuan Qin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Author for correspondence:
| |
Collapse
|
73
|
Cheng SQ, Liu XQ, Han ZL, Rong Y, Qin SY, Sun Y, Li H. Tailoring CO 2-Activated Ion Nanochannels Using Macrocyclic Pillararenes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27255-27261. [PMID: 34029047 DOI: 10.1021/acsami.1c03329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas-responsive nanochannels have great relevance for applications in many fields. Inspired by CO2-sensitive ion channels, herein we present an approach for designing solid-state nanochannels that allow controlled regulation of ion transport in response to alternate CO2/N2 stimuli. The pillar[5]arene (P5N) bearing diethylamine groups can convert into the water-soluble host P5C, containing cationic tertiary ammonium salt groups after absorbing CO2. Subsequently, the nanochannel walls are tailored using P5N-based host-guest chemistry. The ion transport rate of K+ in the P5N nanochannels under CO2 was 1.66 × 10-4 mol h-1 m-2, whereas that under N2 was 7.98 × 10-4 mol h-1 m-2. Notably, there was no significant change to the ion current after eight cycles, which may indicate the stability and repeatability of CO2-activated ion nanochannels. It is speculated that the difference in ion conductance resulted from the change in wettability and surface charge within the nanochannels in response to the gas stimuli. Achieving CO2-activated ion transport in solid-state nanochannels opens new avenues for biomimetic nanopore systems and advanced separation processes.
Collapse
Affiliation(s)
- Shi-Qi Cheng
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Xue-Qing Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Zhi-Liang Han
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Yu Rong
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 P.R. China
| |
Collapse
|
74
|
Arellano-Villagómez FC, Guevara-Olvera L, Zuñiga-Mayo VM, E. Cerbantez-Bueno V, Verdugo-Perales M, R. Medina H, De Folter S, Acosta-García G. Arabidopsis cysteine-rich receptor-like protein kinase CRK33 affects stomatal density and drought tolerance. PLANT SIGNALING & BEHAVIOR 2021; 16:1905335. [PMID: 33769202 PMCID: PMC8143253 DOI: 10.1080/15592324.2021.1905335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 05/19/2023]
Abstract
Cysteine-rich receptor-like protein kinases (CRKs) are transmembrane proteins containing two domains of unknown function 26 (DUF26) RLKs in their ectodomain. Despite that CRKs control important aspects of plant development, only few proteins have functionally been characterized. In this work, we analyzed the function of CRK33 by characterizing two insertional lines. The stomatal density and stomatal index were decreased in crk33-2 and crk33-3 plants in comparison to wild-type plants, correlating with a decreased transpiration in transgenic plants and a higher drought tolerance. Furthermore, photosynthesis and stomatal conductance changed. Finally, all four stomata cell fate genes were upregulated, especially the expression of TMM and SPCH in the mutant background, suggesting a role for CRK33 in stomatal spacing.
Collapse
Affiliation(s)
| | - Lorenzo Guevara-Olvera
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Víctor M. Zuñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
- Instituto de Fitosanidad, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | - Vincent E. Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
| | - Mercedes Verdugo-Perales
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Humberto R. Medina
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Stefan De Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
| | - Gerardo Acosta-García
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
- CONTACT Gerardo Acosta-García Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| |
Collapse
|
75
|
Mao J, Li W, Liu J, Li J. Versatile Physiological Functions of Plant GSK3-Like Kinases. Genes (Basel) 2021; 12:genes12050697. [PMID: 34066668 PMCID: PMC8151121 DOI: 10.3390/genes12050697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022] Open
Abstract
The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.M.); (J.L.)
| | - Wenxin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (J.M.); (J.L.)
| |
Collapse
|
76
|
Guo X, Park CH, Wang ZY, Nickels BE, Dong J. A spatiotemporal molecular switch governs plant asymmetric cell division. NATURE PLANTS 2021; 7:667-680. [PMID: 33941907 PMCID: PMC9115727 DOI: 10.1038/s41477-021-00906-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/25/2021] [Indexed: 05/18/2023]
Abstract
Asymmetric cell division (ACD) requires protein polarization in the mother cell to produce daughter cells with distinct identities (cell-fate asymmetry). Here, we define a previously undocumented mechanism for establishing cell-fate asymmetry in Arabidopsis stomatal stem cells. In particular, we show that polarization of the protein phosphatase BSL1 promotes stomatal ACD by establishing kinase-based signalling asymmetry in the two daughter cells. BSL1 polarization in the stomatal ACD mother cell is triggered at the onset of mitosis. Polarized BSL1 is inherited by the differentiating daughter cell, where it suppresses cell division and promotes cell-fate determination. Plants lacking BSL proteins exhibit stomatal overproliferation, which demonstrates that the BSL family plays an essential role in stomatal development. Our findings establish that BSL1 polarization provides a spatiotemporal molecular switch that enables cell-fate asymmetry in stomatal ACD daughter cells. We propose that BSL1 polarization is triggered by an ACD checkpoint in the mother cell that monitors the establishment of division-plane asymmetry.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Bryce E Nickels
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
77
|
Lopez-Anido CB, Vatén A, Smoot NK, Sharma N, Guo V, Gong Y, Anleu Gil MX, Weimer AK, Bergmann DC. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Dev Cell 2021; 56:1043-1055.e4. [PMID: 33823130 DOI: 10.1101/2020.09.08.288498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 05/22/2023]
Abstract
Dynamic cell identities underlie flexible developmental programs. The stomatal lineage in the Arabidopsis leaf epidermis features asynchronous and indeterminate divisions that can be modulated by environmental cues. The products of the lineage, stomatal guard cells and pavement cells, regulate plant-atmosphere exchanges, and the epidermis as a whole influences overall leaf growth. How flexibility is encoded in development of the stomatal lineage and how cell fates are coordinated in the leaf are open questions. Here, by leveraging single-cell transcriptomics and molecular genetics, we uncovered models of cell differentiation within Arabidopsis leaf tissue. Profiles across leaf tissues identified points of regulatory congruence. In the stomatal lineage, single-cell resolution resolved underlying cell heterogeneity within early stages and provided a fine-grained profile of guard cell differentiation. Through integration of genome-scale datasets and spatiotemporally precise functional manipulations, we also identified an extended role for the transcriptional regulator SPEECHLESS in reinforcing cell fate commitment.
Collapse
Affiliation(s)
- Camila B Lopez-Anido
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Anne Vatén
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Nicole K Smoot
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Nidhi Sharma
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Victoria Guo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - M Ximena Anleu Gil
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Annika K Weimer
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
78
|
Herrmann A, Torii KU. Shouting out loud: signaling modules in the regulation of stomatal development. PLANT PHYSIOLOGY 2021; 185:765-780. [PMID: 33793896 PMCID: PMC8133662 DOI: 10.1093/plphys/kiaa061] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/31/2020] [Indexed: 05/18/2023]
Abstract
Stomata are small pores on the surface of land plants that facilitate gas exchange for photosynthesis while minimizing water loss. The function of stomata is pivotal for plant growth and survival. Intensive research on the model plant Arabidopsis (Arabidopsis thaliana) has discovered key peptide signaling pathways, transcription factors, and polarity components that together drive proper stomatal development and patterning. In this review, we focus on recent findings that have revealed co-option of peptide-receptor kinase signaling modules-utilized for diverse developmental processes and immune response. We further discuss an emerging connection between extrinsic signaling and intrinsic polarity modules. These findings have further enlightened our understanding of this fascinating developmental process.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
79
|
Zhou S, Yang T, Mao Y, Liu Y, Guo S, Wang R, Fangyue G, He L, Zhao B, Bai Q, Li Y, Zhang X, Wang D, Wang C, Wu Q, Yang Y, Liu Y, Tadege M, Chen J. The F-box protein MIO1/SLB1 regulates organ size and leaf movement in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2995-3011. [PMID: 33506247 PMCID: PMC8023213 DOI: 10.1093/jxb/erab033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The size of leaf and seed organs, determined by the interplay of cell proliferation and expansion, is closely related to the final yield and quality of forage and crops. Yet the cellular and molecular mechanisms underlying organ size modulation remain poorly understood, especially in legumes. Here, MINI ORGAN1 (MIO1), which encodes an F-box protein SMALL LEAF AND BUSHY1 (SLB1) recently reported to control lateral branching in Medicago truncatula, was identified as a key regulator of organ size. We show that loss-of-function of MIO1/SLB1 severely reduced organ size. Conversely, plants overexpressing MIO1/SLB1 had enlarged organs. Cellular analysis revealed that MIO1/SLB1 controlled organ size mainly by modulating primary cell proliferation during the early stages of leaf development. Biochemical analysis revealed that MIO1/SLB1 could form part of SKP1/Cullin/F-box (SCF) E3 ubiquitin ligase complex, to target BIG SEEDS1 (BS1), a repressor of primary cell division, for degradation. Interestingly, we found that MIO1/SLB1 also played a key role in pulvinus development and leaf movement by modulating cell proliferation of the pulvinus as leaves developed. Our study not only demonstrates a conserved role of MIO1/SLB1 in the control of organ size in legumes, but also sheds light on the novel function of MIO1/SLB1 in leaf movement.
Collapse
Affiliation(s)
- Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianquan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shiqi Guo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruoruo Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Genwang Fangyue
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chaoqun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, USA
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| |
Collapse
|
80
|
Chen L, Zhao M, Wu Z, Chen S, Rojo E, Luo J, Li P, Zhao L, Chen Y, Deng J, Cheng B, He K, Gou X, Li J, Hou S. RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 230:171-189. [PMID: 33058210 DOI: 10.1111/nph.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 05/27/2023]
Abstract
RNA polymerase II (Pol II) associated proteins (RPAPs) have been ascribed diverse functions at the cellular level; however, their roles in developmental processes in yeasts, animals and plants are very poorly understood. Through screening for interactors of NRPB3, which encodes the third largest subunit of Pol II, we identified RIMA, the orthologue of mammalian RPAP2. A combination of genetic and biochemical assays revealed the role of RIMA and other RPAPs in stomatal development in Arabidopsis thaliana. We show that RIMA is involved in nuclear import of NRPB3 and other Pol II subunits, and is essential for restraining division and for establishing cell identity in the stomatal cell lineage. Moreover, plant RPAPs IYO/RPAP1 and QQT1/RPAP4, which interact with RIMA, are also crucial for stomatal development. Importantly, RIMA and QQT1 bind physically to stomatal transcription factors SPEECHLESS, MUTE, FAMA and SCREAMs. The RIMA-QQT1-IYO complex could work together with key stomatal transcription factors and Pol II to drive cell fate transitions in the stomatal cell lineage. Direct interactions with stomatal transcription factors provide a novel mechanism by which RPAP proteins may control differentiation of cell types and tissues in eukaryotes.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingfeng Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongliang Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sicheng Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Enrique Rojo
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid, E-28049, Spain
| | - Jiangwei Luo
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ping Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lulu Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianming Deng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Cheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoping Gou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
81
|
Jayakody H, Petrie P, Boer HJD, Whitty M. A generalised approach for high-throughput instance segmentation of stomata in microscope images. PLANT METHODS 2021; 17:27. [PMID: 33750422 PMCID: PMC7945362 DOI: 10.1186/s13007-021-00727-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/26/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Stomata analysis using microscope imagery provides important insight into plant physiology, health and the surrounding environmental conditions. Plant scientists are now able to conduct automated high-throughput analysis of stomata in microscope data, however, existing detection methods are sensitive to the appearance of stomata in the training images, thereby limiting general applicability. In addition, existing methods only generate bounding-boxes around detected stomata, which require users to implement additional image processing steps to study stomata morphology. In this paper, we develop a fully automated, robust stomata detection algorithm which can also identify individual stomata boundaries regardless of the plant species, sample collection method, imaging technique and magnification level. RESULTS The proposed solution consists of three stages. First, the input image is pre-processed to remove any colour space biases occurring from different sample collection and imaging techniques. Then, a Mask R-CNN is applied to estimate individual stomata boundaries. The feature pyramid network embedded in the Mask R-CNN is utilised to identify stomata at different scales. Finally, a statistical filter is implemented at the Mask R-CNN output to reduce the number of false positive generated by the network. The algorithm was tested using 16 datasets from 12 sources, containing over 60,000 stomata. For the first time in this domain, the proposed solution was tested against 7 microscope datasets never seen by the algorithm to show the generalisability of the solution. Results indicated that the proposed approach can detect stomata with a precision, recall, and F-score of 95.10%, 83.34%, and 88.61%, respectively. A separate test conducted by comparing estimated stomata boundary values with manually measured data showed that the proposed method has an IoU score of 0.70; a 7% improvement over the bounding-box approach. CONCLUSIONS The proposed method shows robust performance across multiple microscope image datasets of different quality and scale. This generalised stomata detection algorithm allows plant scientists to conduct stomata analysis whilst eliminating the need to re-label and re-train for each new dataset. The open-source code shared with this project can be directly deployed in Google Colab or any other Tensorflow environment.
Collapse
Affiliation(s)
- Hiranya Jayakody
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, Australia
| | - Paul Petrie
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, Australia
- South Australian Research and Development Institute, Urrbrae, Australia
| | - Hugo Jan de Boer
- Department of Environmental Sciences, Copernicus institute of sustainable development, Utrecht University, Utrecht, Netherlands
| | - Mark Whitty
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, Australia
| |
Collapse
|
82
|
Schneider M, Gonzalez N, Pauwels L, Inzé D, Baekelandt A. The PEAPOD Pathway and Its Potential To Improve Crop Yield. TRENDS IN PLANT SCIENCE 2021; 26:220-236. [PMID: 33309102 DOI: 10.1016/j.tplants.2020.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 05/18/2023]
Abstract
A key strategy to increase plant productivity is to improve intrinsic organ growth. Some of the regulatory networks underlying organ growth and development, as well as the interconnections between these networks, are highly conserved. An example of such a growth-regulatory module with a highly conserved role in final organ size and shape determination in eudicot species is the PEAPOD (PPD)/KINASE-INDUCIBLE DOMAIN INTERACTING (KIX)/STERILE APETALA (SAP) module. We review the proteins constituting the PPD pathway and their roles in different plant developmental processes, and explore options for future research. We also speculate on strategies to exploit knowledge about the PPD pathway for targeted yield improvement to engineer crop traits of agronomic interest, such as leaf, fruit, and seed size.
Collapse
Affiliation(s)
- Michele Schneider
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Biologie du Fruit et Pathologie (BFP), Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
83
|
Chen F, Zheng G, Qu M, Wang Y, Lyu MJA, Zhu XG. Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1836-1849. [PMID: 33258954 DOI: 10.1093/jxb/eraa566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Improving photosynthesis is a major approach to increasing crop yield potential. Here we identify a transcription factor as a negative regulator of photosynthesis, which can be manipulated to increase rice photosynthesis and plant biomass in the field. This transcription factor, named negative regulator of photosynthesis 1 (NRP1; Os07g0471900), was identified through a co-expression analysis using rice leaf RNA sequencing data. NRP1 expression showed significantly negative correlation with the expression of many genes involved in photosynthesis. Knocking out NRP1 led to greater photosynthesis and increased biomass in the field, while overexpression of NRP1 decreased photosynthesis and biomass. Transcriptomic data analysis shows that NRP1 can negatively regulate the expression of photosynthetic genes. Protein transactivation experiments show that NRP1 is a transcription activator, implying that NRP1 may indirectly regulate photosynthetic gene expression through an unknown regulator. This study shows that combination of bioinformatics analysis with transgenic testing can be used to identify new regulators to improve photosynthetic efficiency in crops.
Collapse
Affiliation(s)
- Faming Chen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyong Zheng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanjie Wang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Ju Amy Lyu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
84
|
Iida H, Takada S. A Quarter Century History of ATML1 Gene Research. PLANTS 2021; 10:plants10020290. [PMID: 33546382 PMCID: PMC7913478 DOI: 10.3390/plants10020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022]
Abstract
The cloning of the ATML1 gene, encoding an HD-ZIP class IV transcription factor, was first reported in 1996. Because ATML1 mRNA was preferentially detected in the shoot epidermis, cis-regulatory sequences of ATML1 have been used to drive gene expression in the outermost cells of the shoot apical meristem and leaves, even before the function of ATML1 was understood. Later studies revealed that ATML1 is required for developmental processes related to shoot epidermal specification and differentiation. Consistent with its central role in epidermal development, ATML1 activity has been revealed to be restricted to the outermost cells via several regulatory mechanisms. In this review, we look back on the history of ATML1 research and provide a perspective for future studies.
Collapse
Affiliation(s)
- Hiroyuki Iida
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland;
| | - Shinobu Takada
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Correspondence:
| |
Collapse
|
85
|
Chowdhury S, Ghosh S. Plant Stem Cell Biology. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
86
|
Zhou X, Chen Y, Zhao Y, Gao F, Liu H. The application of exogenous PopW increases the tolerance of Solanum lycopersicum L. to drought stress through multiple mechanisms. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2521-2535. [PMID: 33424162 PMCID: PMC7772130 DOI: 10.1007/s12298-020-00918-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 05/25/2023]
Abstract
Tomato is a major cultivated vegetable species of great economic importance throughout the world, but its fruit yield is severely impaired by drought stress. PopW, a harpin protein from Ralstonia solanacearum ZJ3721, plays vital roles in various plant defence responses and growth. In this study, we observed that the foliar application of PopW increased tomato drought tolerance. Our results showed that compared with water-treated plants, PopW-treated plants presented a significantly higher recovery rate and leaf relative water content under drought-stress conditions. PopW decreased the malondialdehyde content and relative electrical conductivity by 40.2% and 21%, respectively. Drought disrupts redox homeostasis through the excessive accumulation of reactive oxygen species (ROS). PopW-treated plants displayed an obvious reduction in ROS accumulation due to enhanced activities of the antioxidant enzyme catalase, superoxide dismutase and peroxidase. Moreover, PopW promoted early stomatal closure, thereby minimizing the water loss rate of plants under drought stress. Further investigation revealed that endogenous abscisic acid (ABA) levels and the transcript levels of drought-responsive genes involved in ABA signal transduction pathways increased in response to PopW. These results confirm that PopW increases drought tolerance through multiple mechanisms involving an enhanced water-retention capacity, balanced redox homeostasis, increased osmotic adjustment, reduced membrane damage and decreased stomatal aperture, suggesting that the application of exogenous PopW may be a potential method to enhance tomato drought tolerance.
Collapse
Affiliation(s)
- Xiaosi Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| | - Yu Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Fangyuan Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| |
Collapse
|
87
|
Feitosa-Araujo E, da Fonseca-Pereira P, Pena MM, Medeiros DB, Perez de Souza L, Yoshida T, Weber APM, Araújo WL, Fernie AR, Schwarzländer M, Nunes-Nesi A. Changes in intracellular NAD status affect stomatal development in an abscisic acid-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1149-1168. [PMID: 32996222 DOI: 10.1111/tpj.15000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/05/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) plays a central role in redox metabolism in all domains of life. Additional roles in regulating posttranslational protein modifications and cell signaling implicate NAD as a potential integrator of central metabolism and programs regulating stress responses and development. Here we found that NAD negatively impacts stomatal development in cotyledons of Arabidopsis thaliana. Plants with reduced capacity for NAD+ transport from the cytosol into the mitochondria or the peroxisomes exhibited reduced numbers of stomatal lineage cells and reduced stomatal density. Cotyledons of plants with reduced NAD+ breakdown capacity and NAD+ -treated cotyledons also presented reduced stomatal number. Expression of stomatal lineage-related genes was repressed in plants with reduced expression of NAD+ transporters as well as in plants treated with NAD+ . Impaired NAD+ transport was further associated with an induction of abscisic acid (ABA)-responsive genes. Inhibition of ABA synthesis rescued the stomatal phenotype in mutants deficient in intracellular NAD+ transport, whereas exogenous NAD+ feeding of aba-2 and ost1 seedlings, impaired in ABA synthesis and ABA signaling, respectively, did not impact stomatal number, placing NAD upstream of ABA. Additionally, in vivo measurement of ABA dynamics in seedlings of an ABA-specific optogenetic reporter - ABAleon2.1 - treated with NAD+ showed increases in ABA content suggesting that NAD+ impacts on stomatal development through ABA synthesis and signaling. Our results demonstrate that intracellular NAD+ homeostasis as set by synthesis, breakdown and transport is essential for normal stomatal development, and provide a link between central metabolism, hormone signaling and developmental plasticity.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mateus M Pena
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Takuya Yoshida
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Andreas P M Weber
- Department of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
88
|
Verhage L. Shining new light on NAD. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1147-1148. [PMID: 33253482 DOI: 10.1111/tpj.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
89
|
Automatic Stomatal Segmentation Based on Delaunay-Rayleigh Frequency Distance. PLANTS 2020; 9:plants9111613. [PMID: 33233729 PMCID: PMC7699937 DOI: 10.3390/plants9111613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
The CO2 and water vapor exchange between leaf and atmosphere are relevant for plant physiology. This process is done through the stomata. These structures are fundamental in the study of plants since their properties are linked to the evolutionary process of the plant, as well as its environmental and phytohormonal conditions. Stomatal detection is a complex task due to the noise and morphology of the microscopic images. Although in recent years segmentation algorithms have been developed that automate this process, they all use techniques that explore chromatic characteristics. This research explores a unique feature in plants, which corresponds to the stomatal spatial distribution within the leaf structure. Unlike segmentation techniques based on deep learning tools, we emphasize the search for an optimal threshold level, so that a high percentage of stomata can be detected, independent of the size and shape of the stomata. This last feature has not been reported in the literature, except for those results of geometric structure formation in the salt formation and other biological formations.
Collapse
|
90
|
He C, Wang J, Dong R, Guan H, Liu T, Liu C, Liu Q, Wang L. Overexpression of an Antisense RNA of Maize Receptor-Like Kinase Gene ZmRLK7 Enlarges the Organ and Seed Size of Transgenic Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:579120. [PMID: 33304362 PMCID: PMC7693544 DOI: 10.3389/fpls.2020.579120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 05/28/2023]
Abstract
Leucine-rich repeat (LRR)-receptor-like protein kinases (LRR-RLKs) play vital roles in plant growth, development, and responses to environmental stresses. In this study, a new LRR-RLK gene, ZmRLK7, was isolated from maize, and its function within plant development was investigated through ectopic expression in Arabidopsis. The spatial expression pattern analysis reveals that ZmRLK7 is highly expressed in embryos prior to programmed cell death (PCD) of starchy endosperm tissues, and its encoded protein has been localized to both plasm and nuclear membranes subcellularly. Overexpression of sense ZmRLK7 reduced the plant height, organ size (e.g., petals, silique, and seeds), and 1000-seed weight in transgenic lines, while the antisense transgene enlarged these traits. Cytological analysis suggested that ZmRLK7 negatively regulates petal size through restricting both cell expansion and proliferation. In addition, abnormal epidermal cell structure was observed, and the stomata number decreased obviously in sense ZmRLK7 transgenic lines with a lower stomatal index than that in the wild type. Quantitative RT-PCR analysis indicated that transcript levels of genes that are involved in the brassinosteroid and ERACTA signaling pathways were coordinately altered, which could partially explain the phenotypic variation. Moreover, overexpression of antisense ZmRLK7 substantially rescued the Arabidopsis bak1-3 mutant phenotype. All these results together suggest that ZmRLK7 can serve as an important regulator in regulating plant architecture and organ size formation. This work will provide insight into the function of ZmRLK7 in maize.
Collapse
Affiliation(s)
- Chunmei He
- *Correspondence: Liming Wang, ; Chunmei He,
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Shao Y, Yu X, Xu X, Li Y, Yuan W, Xu Y, Mao C, Zhang S, Xu J. The YDA-MKK4/MKK5-MPK3/MPK6 Cascade Functions Downstream of the RGF1-RGI Ligand-Receptor Pair in Regulating Mitotic Activity in Root Apical Meristem. MOLECULAR PLANT 2020; 13:1608-1623. [PMID: 32916336 DOI: 10.1016/j.molp.2020.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 05/26/2023]
Abstract
The mitotic activity of root apical meristem (RAM) is critical to primary root growth and development. Previous studies have identified the roles of ROOT GROWTH FACTOR 1 (RGF1), a peptide ligand, and its receptors, RGF1 INSENSITIVEs (RGIs), a clade of five leucine-rich-repeat receptor-like kinases, in promoting cell division in the RAM, which determines the primary root length. However, the downstream signaling components remain elusive. In this study, we identify a complete mitogen-activated protein kinase (MAPK or MPK) cascade, composed of YDA, MKK4/MKK5, and MPK3/MPK6, that functions downstream of the RGF1-RGI ligand-receptor pair. Similar to the rgi1/2/3/4/5 quintuple mutant, loss-of-function mutants of MPK3 and MPK6, MKK4 and MKK5, or YDA show a short-root phenotype, which is associated with reduced mitotic activity and lower expression of PLETHORA 1 (PLT1)/PLT2 in the RAM. Furthermore, MPK3/MPK6 activation in response to exogenous RGF1 treatment is impaired in the rgi1/2/3/4/5 quintuple, yda single, and mkk4 mkk5 double mutants. Epistatic analyses demonstrated that the expression of constitutively active MKK4, MKK5, or YDA driven by the RGI2 promoter can rescue the short-root phenotype of the rgi1/2/3/4/5 mutant. Taken together, these results suggest that the YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair and upstream of PLT1/PLT2 to modulate the stem cell population and primary root growth in Arabidopsis.
Collapse
Affiliation(s)
- Yiming Shao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinxing Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuwen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenxin Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
92
|
Wang Z, Gou X. Receptor-Like Protein Kinases Function Upstream of MAPKs in Regulating Plant Development. Int J Mol Sci 2020; 21:ijms21207638. [PMID: 33076465 PMCID: PMC7590044 DOI: 10.3390/ijms21207638] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of protein kinase broadly involved in various signal pathways in eukaryotes. In plants, MAPK cascades regulate growth, development, stress responses and immunity by perceiving signals from the upstream regulators and transmitting the phosphorylation signals to the downstream signaling components. To reveal the interactions between MAPK cascades and their upstream regulators is important for understanding the functional mechanisms of MAPKs in the life span of higher plants. Typical receptor-like protein kinases (RLKs) are plasma membrane-located to perceive endogenous or exogenous signal molecules in regulating plant growth, development and immunity. MAPK cascades bridge the extracellular signals and intracellular transcription factors in many RLK-mediated signaling pathways. This review focuses on the current findings that RLKs regulate plant development through MAPK cascades and discusses questions that are worth investigating in the near future.
Collapse
|
93
|
Jiao Q, Chen T, Niu G, Zhang H, Zhou C, Hong Z. N-glycosylation is involved in stomatal development by modulating the release of active abscisic acid and auxin in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5865-5879. [PMID: 32649744 DOI: 10.1093/jxb/eraa321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 05/11/2023]
Abstract
Asparagine-linked glycosylation (N-glycosylation) is one of the most important protein modifications in eukaryotes, affecting the folding, transport, and function of a wide range of proteins. However, little is known about the roles of N-glycosylation in the development of stomata in plants. In the present study, we provide evidence that the Arabidopsis stt3a-2 mutant, defective in oligosaccharyltransferase catalytic subunit STT3, has a greater transpirational water loss and weaker drought avoidance, accompanied by aberrant stomatal distribution. Through physiological, biochemical, and genetic analyses, we found that the abnormal stomatal density of stt3a-2 was partially attributed to low endogenous abscisic acid (ABA) and auxin (IAA) content. Exogenous application of ABA or IAA could partially rescue the mutant's salt-sensitive and abnormal stomatal phenotype. Further analyses revealed that the decrease of IAA or ABA in stt3a-2 seedlings was associated with the underglycosylation of β-glucosidase (AtBG1), catalysing the conversion of conjugated ABA/IAA to active hormone. Our results provide strong evidence that N-glycosylation is involved in stomatal development and participates in abiotic stress tolerance by modulating the release of active plant hormones.
Collapse
Affiliation(s)
- Qingsong Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Tianshu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Guanting Niu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Huchen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - ChangFang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
94
|
Zeng SM, Lo EKW, Hazelton BJ, Morales MF, Torii KU. Effective range of non-cell autonomous activator and inhibitor peptides specifying plant stomatal patterning. Development 2020; 147:dev192237. [PMID: 32816968 PMCID: PMC7502594 DOI: 10.1242/dev.192237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Stomata are epidermal valves that facilitate gas exchange between plants and their environment. Stomatal patterning is regulated by the EPIDERMAL PATTERING FACTOR (EPF) family of secreted peptides: EPF1 enforces stomatal spacing, whereas EPIDERMAL PATTERNING FACTOR-LIKE9 (EPFL9), also known as Stomagen, promotes stomatal development. It remains unknown, however, how far these signaling peptides act. Utilizing Cre-lox recombination-based mosaic sectors that overexpress either EPF1 or Stomagen in Arabidopsis cotyledons, we reveal a range within the epidermis and across the cell layers in which these peptides influence patterns. To determine their effective ranges quantitatively, we developed a computational pipeline, SPACE (stomata patterning autocorrelation on epidermis), that describes probabilistic two-dimensional stomatal distributions based upon spatial autocorrelation statistics used in astrophysics. The SPACE analysis shows that, whereas both peptides act locally, the inhibitor EPF1 exerts longer range effects than the activator Stomagen. Furthermore, local perturbation of stomatal development has little influence on global two-dimensional stomatal patterning. Our findings conclusively demonstrate the nature and extent of EPF peptides as non-cell autonomous local signals and provide a means for quantitative characterization of complex spatial patterns in development.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Scott M Zeng
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Emily K W Lo
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Bryna J Hazelton
- Department of Physics, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195 USA
| | - Miguel F Morales
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
95
|
Han C, Liu Y, Shi W, Qiao Y, Wang L, Tian Y, Fan M, Deng Z, Lau OS, De Jaeger G, Bai MY. KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Nat Commun 2020; 11:4214. [PMID: 32843632 PMCID: PMC7447634 DOI: 10.1038/s41467-020-18048-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/26/2020] [Indexed: 11/09/2022] Open
Abstract
Stomata are epidermal structures that modulate gas exchanges between plants and the atmosphere. The formation of stomata is regulated by multiple developmental and environmental signals, but how these signals are coordinated to control this process remains unclear. Here, we showed that the conserved energy sensor kinase SnRK1 promotes stomatal development under short-day photoperiod or in liquid culture conditions. Mutation of KIN10, the catalytic α-subunit of SnRK1, results in the decreased stomatal index; while overexpression of KIN10 significantly induces stomatal development. KIN10 displays the cell-type-specific subcellular location pattern. The nuclear-localized KIN10 proteins are highly enriched in the stomatal lineage cells to phosphorylate and stabilize SPEECHLESS, a master regulator of stomatal formation, thereby promoting stomatal development. Our work identifies a module links connecting the energy signaling and stomatal development and reveals that multiple regulatory mechanisms are in place for SnRK1 to modulate stomatal development in response to changing environments.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yue Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan Qiao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yanchen Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhiping Deng
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
96
|
Qi X, Yoshinari A, Bai P, Maes M, Zeng SM, Torii KU. The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate. eLife 2020; 9:58097. [PMID: 32795387 PMCID: PMC7470842 DOI: 10.7554/elife.58097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Receptor endocytosis is important for signal activation, transduction, and deactivation. However, how a receptor interprets conflicting signals to adjust cellular output is not clearly understood. Using genetic, cell biological, and pharmacological approaches, we report here that ERECTA-LIKE1 (ERL1), the major receptor restricting plant stomatal differentiation, undergoes dynamic subcellular behaviors in response to different EPIDERMAL PATTERNING FACTOR (EPF) peptides. Activation of ERL1 by EPF1 induces rapid ERL1 internalization via multivesicular bodies/late endosomes to vacuolar degradation, whereas ERL1 constitutively internalizes in the absence of EPF1. The co-receptor, TOO MANY MOUTHS is essential for ERL1 internalization induced by EPF1 but not by EPFL6. The peptide antagonist, Stomagen, triggers retention of ERL1 in the endoplasmic reticulum, likely coupled with reduced endocytosis. In contrast, the dominant-negative ERL1 remained dysfunctional in ligand-induced subcellular trafficking. Our study elucidates that multiple related yet unique peptides specify cell fate by deploying the differential subcellular dynamics of a single receptor.
Collapse
Affiliation(s)
- Xingyun Qi
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, United States
| | - Akira Yoshinari
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Aichi, Japan
| | - Pengfei Bai
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Michal Maes
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, United States
| | - Scott M Zeng
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.,Department of Physics, University of Washington, Seattle, United States
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, United States.,Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Aichi, Japan.,Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
97
|
Liu Z, Zhou Y, Guo J, Li J, Tian Z, Zhu Z, Wang J, Wu R, Zhang B, Hu Y, Sun Y, Shangguan Y, Li W, Li T, Hu Y, Guo C, Rochaix JD, Miao Y, Sun X. Global Dynamic Molecular Profiling of Stomatal Lineage Cell Development by Single-Cell RNA Sequencing. MOLECULAR PLANT 2020; 13:1178-1193. [PMID: 32592820 DOI: 10.1016/j.molp.2020.06.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/26/2020] [Accepted: 06/22/2020] [Indexed: 05/05/2023]
Abstract
The regulation of stomatal lineage cell development has been extensively investigated. However, a comprehensive characterization of this biological process based on single-cell transcriptome analysis has not yet been reported. In this study, we performed RNA sequencing on 12 844 individual cells from the cotyledons of 5-day-old Arabidopsis seedlings. We identified 11 cell clusters corresponding mostly to cells at specific stomatal developmental stages using a series of marker genes. Comparative analysis of genes with the highest variable expression among these cell clusters revealed transcriptional networks that regulate development from meristemoid mother cells to guard mother cells. Examination of the developmental dynamics of marker genes via pseudo-time analysis revealed potential interactions between these genes. Collectively, our study opens the door for understanding how the identified novel marker genes participate in the regulation of stomatal lineage cell development.
Collapse
Affiliation(s)
- Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jinggong Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jiaoai Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Zixia Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhinan Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jiajing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Rui Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Bo Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yongjian Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yijing Sun
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yan Shangguan
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Weiqiang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Tao Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yunhe Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China.
| |
Collapse
|
98
|
Zheng H, Zhang Y, Li J, He L, Wang F, Bi Y, Gao J. Comparative transcriptome analysis between a resistant and a susceptible Chinese cabbage in response to Hyaloperonospora brassicae. PLANT SIGNALING & BEHAVIOR 2020; 15:1777373. [PMID: 32538253 PMCID: PMC8570763 DOI: 10.1080/15592324.2020.1777373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 06/01/2023]
Abstract
Downy mildew caused by Hyaloperonosporabrassicae (H. brassicae) leads to up to 90% of the crop yield loss in Chinese cabbage in China. A transcriptome analysis was carried out between a resistant line (13-13, R) and a susceptible line (15-14, S) of Chinese cabbage in response to H. brassicae. The NOISeq method was used to find differentially expressed genes (DEGs) between these two groups and GO and KEGG were carried out to find R genes related to downy mildew response of Chinese cabbage. qRT-PCR was carried out to verify the reliability of RNA-seq expression data. A total of 3,055 DEGs were screened out from 41,020 genes and clustered into 6 groups with distinct expression patterns. A total of 87 candidate DEGs were identified by functional annotation based on GO and KEGG analysis. These candidate genes are involved in plant-pathogen interaction pathway, among which 54 and 33 DEGs were categorized into plant-pathogen interaction proteins and transcription factors, respectively. Proteins encoded by these genes have been reported to play an important role in the pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) processes of disease responses in some model plants, such as Arabidopsis, rice, tobacco, and tomato. However, little is known about the mechanisms of these genes in resistance to downy mildew in Chinese cabbage. Our findings are useful for further characterization of these candidate genes and helpful in breeding resistant strains.
Collapse
Affiliation(s)
- Han Zheng
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yihui Zhang
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Jingjuan Li
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Lilong He
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Fengde Wang
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Yuping Bi
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Jianwei Gao
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| |
Collapse
|
99
|
Affiliation(s)
- Kae Akita
- Department of Chemical Biological Science, Faculty of Science, Japan Women’s University
| |
Collapse
|
100
|
Yin P, Ma Q, Wang H, Feng D, Wang X, Pei Y, Wen J, Tadege M, Niu L, Lin H. SMALL LEAF AND BUSHY1 controls organ size and lateral branching by modulating the stability of BIG SEEDS1 in Medicago truncatula. THE NEW PHYTOLOGIST 2020; 226:1399-1412. [PMID: 31981419 PMCID: PMC7317789 DOI: 10.1111/nph.16449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/11/2020] [Indexed: 05/23/2023]
Abstract
Organ size is a major agronomic trait that determines grain yield and biomass production in crops. However, the molecular mechanisms controlling organ size, especially in legumes, are poorly understood. Using forward genetic approaches in a Tnt1 insertion mutant population of the model legume Medicago truncatula, we identified SMALL LEAF AND BUSHY1 (SLB1), which is required for the control of organ size and lateral branching. Loss of function of SLB1 led to reduced leaf and flower size but increased lateral branch formation in M. truncatula. SLB1 encodes an F-box protein, an orthologue of Arabidopsis thaliana STERILE APETALA (SAP), that forms part of an SKP1/Cullin/F-box E3 ubiquitin ligase complex. Biochemical and genetic analyses revealed that SLB1 controls M. truncatula organ growth and lateral branching by modulating the stability of BIG SEEDS1 (BS1). Moreover, the overexpression of SLB1 increased seed and leaf size in both M. truncatula and soybean (Glycine max), indicating functional conservation. Our findings revealed a novel mechanism by which SLB1 targets BS1 for degradation to regulate M. truncatula organ size and shoot branching, providing a new genetic tool for increasing seed yield and biomass production in crop and forage legumes.
Collapse
Affiliation(s)
- Pengcheng Yin
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Qingxia Ma
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
- College of Life ScienceShanxi UniversityTaiyuan030006China
| | - Hui Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
- Department of Plant and Soil SciencesInstitute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Dan Feng
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Xianbing Wang
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Yanxi Pei
- College of Life ScienceShanxi UniversityTaiyuan030006China
| | - Jiangqi Wen
- Noble Research Institute, LLCArdmoreOK73401USA
| | - Million Tadege
- Department of Plant and Soil SciencesInstitute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Lifang Niu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Hao Lin
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|