51
|
Zhang XT, Luan XP, Wei JH, Zhang PP, Guo JM, Keesey IW, Gao Y, Yan Q, Zhang J, Dong SL. Identification of a Soybean Volatile Attractive for Riptortus pedestris Using Reverse Chemical Ecology Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27084-27093. [PMID: 39601774 DOI: 10.1021/acs.jafc.4c07789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The bean bug Riptortus pedestris is a major soybean pest and a cause of the stay-green symptoms. However, the molecular mechanisms underlying its olfaction-mediated host-seeking behavior remain unclear. In this study, we compared the antennae transcriptomes of starved and nonstarved adult R. pedestris, identifying four differentially expressed odorant receptor (OR) genes. Among these, RpedOR13 showed a strong response to the host volatile 2-phenylethanol (2-PE) in Xenopus oocyte assays, while electroantennography and behavioral tests confirmed 2-PE as an effective attractant. Next, phylogenetic analysis identified RpedOR72b as a paralog of RpedOR13, with subsequent Xenopus oocyte assays confirming its specific response to 2-PE. Additionally, RNA interference experiments highlighted the crucial role of RpedOR72b in detecting 2-PE. Taken together, these findings provide new insights into the molecular mechanisms of host-seeking behavior in R. pedestris and highlight the successful application of reverse chemical ecology in OR-based screening of bioactive compounds.
Collapse
Affiliation(s)
- Xiao-Tong Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan-Pu Luan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Hang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pan-Pan Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ian W Keesey
- School of Biological Sciences, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska 68588, United States
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130062, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
52
|
Wei H, Liu K, Zhang J, Guo K, Liu S, Xu C, Qiao H, Tan S. Young Goji Fruit Volatiles Regulate the Oviposition Behavior and Chemosensory Gene Expression of Gravid Female Neoceratitis asiatica. Int J Mol Sci 2024; 25:13249. [PMID: 39769014 PMCID: PMC11675652 DOI: 10.3390/ijms252413249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The goji fruit fly, Neoceratitis asiatica, is a major pest on the well-known medicinal plant Lycium barbarum. Dissecting the molecular mechanisms of the oviposition selection of N. asiatica regarding the host plant will help to identify new strategies for pest fly control. However, the molecular mechanism of chemical communication between the goji fruit fly and the host goji remains unclear. Hence, our study found that young goji fruit volatiles induced the oviposition response of gravid female N. asiatica. After N. asiatica was exposed to young goji fruit volatiles, the expression of six chemosensory genes (NasiOBP56h3 and OBP99a1 in the antennae; OBP99a2, OBP99a3 and CSP2 in the legs; and OBP56a in the ovipositor) was significantly upregulated in different organs of female N. asiatica compared with the group without odor treatment according to transcriptome data. Further results of qPCR verification show that the expression levels of the six selected upregulated genes after the flies were exposed to host plant volatiles were mostly consistent with the results of transcriptome data. We concluded that six upregulated genes may be involved in the recognition of young goji fruit volatiles by gravid female N. asiatica. Our study preliminarily identifies young goji fruit volatiles as a key factor in the oviposition behavior of N. asiatica, which will facilitate further studies on the mechanisms of host oviposition selection in N. asiatica.
Collapse
Affiliation(s)
- Hongshuang Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Kexin Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Jingyi Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Kun Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Sai Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Changqing Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Haili Qiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Shuqian Tan
- Key Lab of Integrated Pest Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
53
|
Zhan Y, Zhang J, Xu M, Francis F, Liu Y. Pheromone-Binding Protein 1 Performs a Dual Function for Intra- and Intersexual Signaling in a Moth. Int J Mol Sci 2024; 25:13125. [PMID: 39684833 DOI: 10.3390/ijms252313125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Moths use pheromones to ensure intraspecific communication. Nevertheless, few studies are focused on both intra- and intersexual communication based on pheromone recognition. Pheromone-binding proteins (PBPs) are generally believed pivotal for male moths in recognizing female pheromones. Our research revealed that PBP1 of Agriphila aeneociliella (AaenPBP1) serves a dual function in both intra- and intersexual pheromone recognition. Here, a total of 20 odorant-binding protein (OBP) family genes from A. aeneociliella were identified and subjected to transcriptional analysis. Among these, AaenPBP1 was primarily highly expressed in the antennae. Competitive fluorescence binding assays and molecular docking analyses demonstrated that AaenPBP1 exhibits a strong binding affinity for the female sex pheromone (Z)-9-Hexadecenyl acetate and the male pheromone 1-Nonanal. Notably, hydrogen bonds were observed between Ser56 and the ligands. The analysis of pheromone components and PBPs in lepidopteran lineage suggested that their strong and precise interactions, shaped by coevolution, may play a crucial role in facilitating reproductive isolation in moths. Our findings provide valuable insight into the functional significance of PBPs in invertebrates and support the development of behavioral regulation tools as part of an integrated pest management strategy targeting crambid pests.
Collapse
Affiliation(s)
- Yidi Zhan
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
| | - Jiahui Zhang
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
| | - Mengxian Xu
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
| | - Frederic Francis
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, Liege University, Passage des Deportes 2, 5030 Gembloux, Belgium
| | - Yong Liu
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China
| |
Collapse
|
54
|
Yi SC, Yu JL, Abdelkhalek ST, Sun ZR, Wang MQ. Identification and odor exposure regulation of odorant-binding proteins in Picromerus lewisi. Front Physiol 2024; 15:1503440. [PMID: 39697614 PMCID: PMC11652525 DOI: 10.3389/fphys.2024.1503440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
The highly developed sensitive olfactory system is essential for Picromerus lewisi Scott (Hemiptera: Pentatomidae) adults, an widely distributed natural predatory enemy, to locate host plants. During this process, odorant-binding proteins (OBPs) are thought to have significant involvement in the olfactory recognition. However, the roles of OBPs in the olfactory perception of P. lewisi are not frequently reported. Here, we conducted odor exposure and transcriptome sequencing experiments using healthy and Spodoptera litura-infested tobacco plants as odor sources. The transcriptomic data revealed that the alteration in the expression of mRNA levels upon exposure to odor was sex-dependent. As the expression profiles differed significantly between male and female adults of P. lewisi. A total of 15 P. lewisi OBPs (PlewOBPs) were identified from the P. lewisi transcriptome. Sequence and phylogenetic analysis indicated that PlewOBPs can be classified into two subfamilies (classic OBP and plus-C OBP). The qRT-PCR results showed that the transcript abundance of 8 PlewOBPs substantially altered following exposure to S. litura-infested tobacco plants, compared to the blank control or healthy plants. This implies that these PlewOBPs may have an olfactory function in detecting S. litura-infested tobacco plants. This study establishes the foundation for further understanding of the olfactory recognition mechanism of P. lewisi and helps discover novel targets for functional characterization in future research.
Collapse
Affiliation(s)
- Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Ling Yu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Zhi-Rong Sun
- Southwest Guizhou Autonomous Prefecture Tobacco Company, Xingren, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
55
|
Li X, Huang S, Li Z, Jin R, Zong S. Comparative proteotranscriptomic analysis of four carpenter moth species reveals key salivary proteins related to feeding adaptations. Int J Biol Macromol 2024; 285:138257. [PMID: 39631582 DOI: 10.1016/j.ijbiomac.2024.138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Salivary proteins play a crucial role in insects, facilitating nutrient acquisition and regulating complex interactions with host plants. However, most research has focused on pierce-sucking insects, leaving chewing insects, such as caterpillars largely unexplored. Carpenter moths (Cossidae) are important destructive wood bores whose larvae cause significant damage to forestry. Here, we present the first comparative morphological and proteotranscriptomic analysis of the salivary glands of four cossid species, namely Cossus cossus, Deserticossus arenicola, Streltzoviella insularis and Yakudza vicarious. Despite the conserved structure of their salivary glands, we identified a complex composition of salivary proteins involved in digestion, feeding regulation and silk production. Notably, proteins related to immunity and detoxification were enriched in sialome, indicating their essential roles in insect-plant interactions. Furthermore, our analysis revealed that cossid species with similar feeding habits exhibited convergent patterns in major protein groups and expression. Specifically, serpins were the most expressed in root feeders, while odorant-binding proteins dominated in stem feeders, likely contributing to their specific feeding preferences. Our findings highlight the essentiality of salivary proteins in feeding adaptations of carpenter moths and provide valuable insights for developing targeted pest management strategies against these wood-boring pests.
Collapse
Affiliation(s)
- Xinyu Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Shan Huang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhiyun Li
- Junggar Banner Forestry and Grassland Development Center, Inner Mongolia 017100, China
| | - Rong Jin
- Junggar Banner Forestry and Grassland Development Center, Inner Mongolia 017100, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
56
|
Cotten ML, Starich MR, He Y, Yin J, Yuan Q, Tjandra N. NMR chemical shift assignment of Drosophila odorant binding protein 44a in complex with 8(Z)-eicosenoic acid. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:129-134. [PMID: 38822991 PMCID: PMC11511771 DOI: 10.1007/s12104-024-10178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
The odorant binding protein, OBP44a is one of the most abundant proteins expressed in the brain of the developing fruit fly Drosophila melanogaster. Its cellular function has not yet been determined. The OBP family of proteins is well established to recognize hydrophobic molecules. In this study, NMR is employed to structurally characterize OBP44a. NMR chemical shift perturbation measurements confirm that OBP44a binds to fatty acids. Complete assignments of the backbone chemical shifts and secondary chemical shift analysis demonstrate that the apo state of OBP44a is comprised of six α-helices. Upon binding 8(Z)-eicosenoic acid (8(Z)-C20:1), the OBP44a C-terminal region undergoes a conformational change, from unstructured to α-helical. In addition to C-terminal restructuring upon ligand binding, some hydrophobic residues show dramatic chemical shift changes. Surprisingly, several charged residues are also strongly affected by lipid binding. Some of these residues could represent key structural features that OBP44a relies on to perform its cellular function. The NMR chemical shift assignment is the first step towards characterizing the structure of OBP44a and how specific residues might play a role in lipid binding and release. This information will be important in deciphering the biological function of OBP44a during fly brain development.
Collapse
Affiliation(s)
- Myriam L Cotten
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Mary R Starich
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
57
|
Dikmen F, Dabak T, Özgişi BD, Özenirler Ç, Kuralay SC, Çay SB, Çınar YU, Obut O, Balcı MA, Akbaba P, Aksel EG, Zararsız G, Solares E, Eldem V. Transcriptome-wide analysis uncovers regulatory elements of the antennal transcriptome repertoire of bumblebee at different life stages. INSECT MOLECULAR BIOLOGY 2024; 33:571-588. [PMID: 38676460 DOI: 10.1111/imb.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Bumblebees are crucial pollinators, providing essential ecosystem services and global food production. The success of pollination services relies on the interaction between sensory organs and the environment. The antenna functions as a versatile multi-sensory organ, pivotal in mediating chemosensory/olfactory information, and governs adaptive responses to environmental changes. Despite an increasing number of RNA-sequencing studies on insect antenna, comprehensive antennal transcriptome studies at the different life stages were not elucidated systematically. Here, we quantified the expression profile and dynamics of coding/microRNA genes of larval head and antennal tissues from early- and late-stage pupa to the adult of Bombus terrestris as suitable model organism among pollinators. We further performed Pearson correlation analyses on the gene expression profiles of the antennal transcriptome from larval head tissue to adult stages, exploring both positive and negative expression trends. The positively correlated coding genes were primarily enriched in sensory perception of chemical stimuli, ion transport, transmembrane transport processes and olfactory receptor activity. Negatively correlated genes were mainly enriched in organic substance biosynthesis and regulatory mechanisms underlying larval body patterning and the formation of juvenile antennal structures. As post-transcriptional regulators, miR-1000-5p, miR-13b-3p, miR-263-5p and miR-252-5p showed positive correlations, whereas miR-315-5p, miR-92b-3p, miR-137-3p, miR-11-3p and miR-10-3p exhibited negative correlations in antennal tissue. Notably, based on the inverse expression relationship, positively and negatively correlated microRNA (miRNA)-mRNA target pairs revealed that differentially expressed miRNAs predictively targeted genes involved in antennal development, shaping antennal structures and regulating antenna-specific functions. Our data serve as a foundation for understanding stage-specific antennal transcriptomes and large-scale comparative analysis of transcriptomes in different insects.
Collapse
Affiliation(s)
- Fatih Dikmen
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Tunç Dabak
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | | | | | | | | | - Onur Obut
- Department of Biology, Istanbul University, İstanbul, Turkey
| | | | - Pınar Akbaba
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Esma Gamze Aksel
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Edwin Solares
- Computer Science & Engineering Department, University of California, San Diego, California, USA
| | - Vahap Eldem
- Department of Biology, Istanbul University, İstanbul, Turkey
| |
Collapse
|
58
|
Yang J, Mo BT, Li GC, Huang LQ, Guo H, Wang CZ. Identification and functional characterization of chemosensory genes in olfactory and taste organs of Spodoptera litura (Lepidoptera: Noctuidae). INSECT SCIENCE 2024; 31:1721-1742. [PMID: 38485691 DOI: 10.1111/1744-7917.13350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 12/12/2024]
Abstract
The tobacco cutworm Spodoptera litura is one of the most destructive polyphagous crop pests. Olfaction and taste play a crucial role in its host plant selection and sexual communication, but the expression profile of chemosensory genes remains unclear. In this study, we identified 185 chemosensory genes from 7 organs in S. litura by transcriptome sequencing, of which 72 genes were published for the first time, including 27 odorant receptors (ORs), 26 gustatory receptors (GRs), 1 ionotropic receptor (IR), 16 odorant-binding proteins (OBPs), and 2 chemosensory proteins (CSPs). Phylogenetic analyses revealed that ORs, IRs, OBPs, and sensory neuron membrane proteins (SNMPs) were mainly expressed in antennae and sequence-conserved among Noctuidae species. The most differentially expressed genes (DEGs) between sexes were ORs and OBPs, and no DEGs were found in GRs. GR transcripts were enriched in proboscis, and the expression of sugar receptors was the highest. Carbon dioxide receptors, sugar receptor-SliuGR6, and bitter GRs-SlituGR43 and SlituGR66 had higher sequence identities between Noctuidae species. CSPs were broadly expressed in various organs, and SlituCSP13 was a DEG in adult antennae. The functional analysis in the Drosophila OR67d expression system found that SlituOR50, a receptor highly expressed in female antennae, is selectively tuned to farnesyl acetate. The results provide a solid foundation for understanding the molecular mechanisms by which chemosensory genes operate to elicit behavioral responses in polyphagous insects.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
59
|
Wang JJ, Ma C, Tian ZY, Zhou YP, Yang JF, Gao X, Chen HS, Ma WH, Zhou ZS. Electroantennographic and Behavioral Responses of the Melon fly, Zeugodacus cucurbitae (Coquillett), to Volatile Compounds of Ridge Gourd, Luffa acutangular L. J Chem Ecol 2024; 50:1036-1045. [PMID: 38372833 PMCID: PMC11717787 DOI: 10.1007/s10886-024-01474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
The melon fly, Zeugodacus cucurbitae (Coquillett), is a major invasive pest, widely distributed in the Asia-Pacific region and some parts of Africa. Melon fly attractants could improve the effectiveness of current pest management measures. Previous studies have shown that some host fruits are attractive to melon flies but few have investigated the chemical compounds responsible for their attraction. In this study, we aimed to identify the volatile compounds from Luffa acutangula L that attract Z. cucurbitae. In headspace trapping, chemical profiling identified 19 compounds from ridge gourds, with 1-pentadecene being the major component. EAG results revealed that seven compounds elicited antennal responses in Z. cucurbitae, and significant differences in antennal responses between male and female Z. cucurbitae adults were recorded to p-xylene, alpha-pinene, and 1-octadecene. Behavioral experiments demonstrated that the EAG-active compounds methyl isovalerate and methyl myristate had either attractive or repellent effects on Z. cucurbitae at different concentrations, and 1-octadecene attracted Z. cucurbitae. Our findings provide a theoretical basis producing repellents or attractants for effective Integrated Pest Management of Z. cucurbitae.
Collapse
Affiliation(s)
- Jing Jing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Zhen Ya Tian
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yong Ping Zhou
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jin Fang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Xuyuan Gao
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hong Song Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Wei Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhong Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China.
| |
Collapse
|
60
|
Jiang L, Wang P, Li C, Shen D, Chen A, Qian H, Zhao Q. Compensatory effects of other olfactory genes after CRISPR/cas9 editing of BmOR56 in silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101275. [PMID: 38901107 DOI: 10.1016/j.cbd.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Bombyx mori is an oligophagous economic insect. Cis-Jasmone is one of the main substances in mulberry leaf that attract silkworm for feeding and BmOR56 is its receptor. Potential interaction ways between BmOR56 and cis-Jasmone were explored, which included some crucial amino acids such as Gln172, Val173, Ser176, Lys182, His322, and Arg345. BmOR56 was edited using CRISPR/cas9 for Qiufeng, and a homozygous knockout strain QiufengM was obtained. Compared with Qiufeng, the feeding ability of QiufengM on mulberry leaf did not change significantly, but on artificial diet decreased significantly. QiufengM also showed a dependence on the concentration of mulberry leaf powder. The result indicated that other olfactory genes had a compensatory effect on the attractance of mulberry leaf after the loss of BmOR56. Transcriptome analysis of antennae showed that many genes differentially expressed between Qiufeng and QiufengM, which involved in olfactory system, glucose metabolism, protein metabolism, amino acid metabolism, and insect hormone biosynthesis. Particularly, BmIR21, BmOR53 and BmOR27 were significantly up-regulated, which may have a compensatory effect on BmOR56 loss. In addition, detoxification mechanism was activated and may cause the passivation of feeling external signals in silkworm.
Collapse
Affiliation(s)
- Li Jiang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Pingyang Wang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Cong Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
61
|
Hu X, Tang R, Song L, Li G, Gao T, Chen L, Guo H. Peripheral Coding of Sex Pheromones in the Tomato Leaf Miner, Phthorimaea absoluta (Meyrick). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39545701 DOI: 10.1021/acs.jafc.4c09441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Phthorimaea absoluta releases (E3,Z8,Z11)-tetradeca-3,8,11-trienyl acetate (E3,Z8,Z11-14:OAc) and (E3,Z8)-tetradeca-3,8-dienyl acetate (E3,Z8-14:OAc) with a ratio of 90:10 as the sex pheromone. However, how this pest uses pheromone receptors (PRs) to detect the two pheromone components is unknown. Here, we functionally characterize the PR repertoire of P. absoluta. First, we identified five putative PRs by transcriptome sequencing, i.e., PabsOR4, PabsOR8, PabsOR12a, PabsOR14, and PabsOR17. These receptors are predominantly expressed in the male antennae. Next, we expressed them in Drosophila OR67 neurons and investigated their responses. PabsOR14 and PabsOR8 selectively respond to the main component, E3,Z8,Z11-14:OAc with different sensitivities, while PabsOR17 is tuned to the minor component, E3,Z8-14:OAc. In addition, PabsOR4 weakly responds to both sex pheromone components. Moreover, PabsOR17 and PabsOR4 potently respond to a non-sex pheromone compound, (Z)-7-dodecenyl acetate (Z7-12:OAc). Lastly, we demonstrated that Z7-12:OAc can replace E3,Z8-14:OAc to attract virgin males. Our findings elucidate the peripheral coding of the sex pheromone in P. absoluta, providing a new perspective for controlling it.
Collapse
Affiliation(s)
- Xiaoyu Hu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, P. R. China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Limei Song
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Guoliang Li
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Tenghao Gao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Li Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, P. R. China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Hao Guo
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, P. R. China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, P. R. China
| |
Collapse
|
62
|
Gouda MNR, Naga KC, Nebapure SM, Subramanian S. Unravelling the genomic landscape reveals the presence of six novel odorant-binding proteins in whitefly Bemisia tabaci Asia II-1. Int J Biol Macromol 2024; 279:135140. [PMID: 39216571 DOI: 10.1016/j.ijbiomac.2024.135140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Genome wide analysis identified 14 OBPs in B. tabaci Asia II-1, of which six are new to science. Phylogenetic analysis traced their diversity and evolutionary lineage among Hemipteran insects. Comparative analysis reclassified the OBP gene families among B. tabaci cryptic species: Asia I, II-1, MEAM1, and MED. The 14 OBPs were clustered on four chromosomes of B. tabaci. RT-qPCR showed high expression of OBP3 and 8 across all body tissues and OBP10 in the abdomen. Molecular docking showed that OBP 3 and 10 had high affinity bonding with different candidate ligands, with binding energies ranging from -5.0 to -7.7 kcal/mol. Competitive fluorescence binding assays revealed that β-caryophyllene and limonene had high binding affinities for OBP3 and 10, with their IC50 values ranging from 9.16 to 14 μmol·L-1 and KD values around 7 to 9 μmol·L-1. Behavioural assays revealed that β-caryophyllene and carvacrol were attractants, β-ocimene and limonene were repellents, and γ-terpinene and β-ocimene were oviposition deterrents to B. tabaci. Functional validation by RNAi demonstrated that OBP3 and OBP10 modulated host recognition of B. tabaci. This study expands our understanding of the genomic landscape of OBPs in B. tabaci, offering scope for developing novel pest control strategies.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Kailash Chandra Naga
- Division of Plant Protection, Central Potato Research Institute, Shimla, Himachal Pradesh 171001, India.
| | - S M Nebapure
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
63
|
Pan SX, Qu C, Liu Y, Shi Z, Lu XX, Yang ZK, Huang XB, Li W, Li XS, Zhou ZX, Chen C, Luo C, Qin YG, Yang XL. Sustainable Natural Resources for Aphid Management: β-Ionone and Its Derivatives as Promising Ecofriendly Botanical-Based Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22035-22044. [PMID: 39316709 DOI: 10.1021/acs.jafc.4c04053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
β-Ionone, sustainably derived from Petunia hybrida as a natural bioresource, was identified as a lead compound for integrated aphid management. A series of β-ionone derivatives containing ester groups were designed and synthesized for the purpose of discovering renewable botanical-based products. The odorant-binding protein (OBP) binding test indicated that β-ionone and its derivatives displayed binding affinities with Acyrthosiphon pisum OBP9 (ApisOBP9) and Harmonia axyridis OBP15 (HaxyOBP15). Bioactivity assays revealed that most β-ionone derivatives exhibited a higher repellent activity than that of β-ionone. β-Ionone and derivatives 4g and 4l displayed attractiveness to H. axyridis. Specifically, 4g was a highly promising derivative, possessing good repellent activity against A. pisum and attractiveness to H. axyridis. Molecular dynamics simulations revealed that integrating the hydrophobic ester group into the β-ionone framework strengthened the van der Waals interactions of 4g with ApisOBP9/HaxyOBP15, improving the binding affinity with OBPs and producing higher push-pull activity than β-ionone; 4g also had low toxicity toward nontarget organisms. Thus, 4g is a potential ecofriendly, botanical-based option for aphid management.
Collapse
Affiliation(s)
- Shi-Xiang Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Yan Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhuo Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xing-Xing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhao-Kai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xiao-Bo Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Wan Li
- College of Pharmacy, Hebei University, Baoding 071002, P. R. China
| | - Xue-Sheng Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province 530004, P. R. China
| | - Zheng-Xin Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Chen Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Yao-Guo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Xin-Ling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
64
|
Cicconardi F, Morris BJ, Martelossi J, Ray DA, Montgomery SH. Novel Sex-Specific Genes and Diverse Interspecific Expression in the Antennal Transcriptomes of Ithomiine Butterflies. Genome Biol Evol 2024; 16:evae218. [PMID: 39373182 PMCID: PMC11500719 DOI: 10.1093/gbe/evae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
The olfactory sense is crucial for organisms, facilitating environmental recognition and interindividual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviors, but also because they show convergent evolution of specialized structures within the antennal lobe, called macroglomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of, information from various types of pheromones. In this study, we investigate chemosensory evolution across six Ithomiini species and identify possible links between expression profiles and neuroanatomical. To enable this, we sequenced four new high-quality genome assemblies and six sex-specific antennal transcriptomes for three of these species with different MGC morphologies. With extensive genomic analyses, we found that the expression of antennal transcriptomes across species exhibit profound divergence, and identified highly expressed ORs, which we hypothesize may be associated to MGCs, as highly expressed ORs are absent in Methona, an Ithomiini lineage which also lacks MGCs. More broadly, we show how antennal sexual dimorphism is prevalent in both chemosensory genes and non-chemosensory genes, with possible relevance for behavior. As an example, we show how lipid-related genes exhibit consistent sexual dimorphism, potentially linked to lipid transport or host selection. In this study, we investigate the antennal chemosensory adaptations, suggesting a link between genetic diversity, ecological specialization, and sensory perception with the convergent evolution of MCGs. Insights into chemosensory gene evolution, expression patterns, and potential functional implications enhance our knowledge of sensory adaptations and sexual dimorphisms in butterflies, laying the foundation for future investigations into the genetic drivers of insect behavior, adaptation, and speciation.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Billy J Morris
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
65
|
Hanada T, Kobayash A, Yaguchi H, Maekawa K. Protein localization and potential function of lipocalin in Reticulitermes speratus queens. PLoS One 2024; 19:e0311836. [PMID: 39374259 PMCID: PMC11458055 DOI: 10.1371/journal.pone.0311836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
To understand the mechanisms underlying social evolution and caste development in social insects, caste-specific organs and genes should be investigated. In the rhinotermitid termite, Reticulitermes speratus, the lipocalin gene RS008881, which encodes a protein transporter, is expressed in the ovarian accessory glands of primary queens. To obtain additional data on its expression and product localization, we conducted real-time quantitative polymerase chain reaction and protein assays using a peptide antibody. Gene expression analysis of the castes revealed that RS008881 was highly expressed in female primary and secondary reproductives. Further analysis of its expression during reproductive caste differentiation showed that its expression levels increased prior to molting into reproductive individuals, even during the winged imago (alates) stage. Western blotting and fluorescent immunohistochemical staining revealed that the RS008881 product was localized in the ovary as well as the eggshells produced by female reproductives. RS008881 may play a significant role in the reproductive biology of R. speratus; protein localization in both the ovary and eggshell suggests multiple functions related to embryo protection and potential pheromone interactions.
Collapse
Affiliation(s)
- Takumi Hanada
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Anji Kobayash
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Hajime Yaguchi
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Kiyoto Maekawa
- Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
66
|
Biswas T, Sims C, Yuvaraj JK, Roberts RE, Löfstedt C, Andersson MN. Functional Characterization Supports Multiple Evolutionary Origins of Pheromone Receptors in Bark Beetles. Mol Biol Evol 2024; 41:msae196. [PMID: 39288326 PMCID: PMC11451568 DOI: 10.1093/molbev/msae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Chemical communication using pheromones is thought to have contributed to the diversification and speciation of insects. The species-specific pheromones are detected by specialized pheromone receptors (PRs). Whereas the evolution and function of PRs have been extensively studied in Lepidoptera, only a few PRs have been identified in beetles, which limits our understanding of their evolutionary histories and physiological functions. To shed light on these questions, we aimed to functionally characterize potential PRs in the spruce bark beetle Ips typographus ("Ityp") and explore their evolutionary origins and molecular interactions with ligands. Males of this species release an aggregation pheromone comprising 2-methyl-3-buten-2-ol and (4S)-cis-verbenol, which attracts both sexes to attacked trees. Using two systems for functional characterization, we show that the highly expressed odorant receptor (OR) ItypOR41 responds specifically to (4S)-cis-verbenol, with structurally similar compounds eliciting minor responses. We next targeted the closely related ItypOR40 and ItypOR45. Whereas ItypOR40 was unresponsive, ItypOR45 showed an overlapping response profile with ItypOR41, but a broader tuning. Our phylogenetic analysis shows that these ORs are present in a different OR clade as compared to all other known beetle PRs, suggesting multiple evolutionary origins of PRs in bark beetles. Next, using computational analyses and experimental validation, we reveal two amino acid residues (Gln179 and Trp310) that are important for ligand binding and pheromone specificity of ItypOR41 for (4S)-cis-verbenol, possibly via hydrogen bonding to Gln179. Collectively, our results shed new light on the origins, specificity, and ligand binding mechanisms of PRs in beetles.
Collapse
Affiliation(s)
- Twinkle Biswas
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| | - Cassie Sims
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| | | | | | - Christer Löfstedt
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| | - Martin N Andersson
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| |
Collapse
|
67
|
Xie J, Liu J, Khashaveh A, Tang H, Liu X, Zhao D, Wang Q, Shi W, Liu T, Zhang Y. Two Structural Analogs of Kairomones are Detected by an Odorant Receptor HvarOR28 in the Coccinellid Hippodamia variegata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21624-21634. [PMID: 39300682 DOI: 10.1021/acs.jafc.4c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In natural environments, general plant volatiles and herbivore-induced plant volatiles (HIPVs) serve as critical clues for predatory natural enemies in the search for prey. The insect olfactory system plays a vital role in perceiving plant volatiles including HIPVs. In this study, we found that HIPV (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) and the plant volatile geranyl acetate (GA), two structurally similar chemicals, displayed electrophysiological activities on the antennae of the ladybird Hippodamia variegata, but were only attractive to adult females in behavior. Moreover, mated female ladybirds laid a significantly higher number of eggs on TMTT-treated and GA-treated cotton leaves compared to controls. Screening of female-biased odorant receptors (ORs) from the antennal transcriptomes, performing Xenopus oocytes expression coupled with two-electrode voltage clamp recordings, suggested that HvarOR28 specifically tuned to TMTT and GA. Molecular docking and site-directed mutagenesis revealed that the amino acid residues Tyr143 and Phe81 of HvarOR28 are the key site for binding with TMTT and GA. Furthermore, RNA interference (RNAi) assay demonstrated that HvarOR28-silenced individuals demonstrated a notable decrease in electrophysiological responses, even female adults almost lost behavioral preference for the two compounds. Thus, it could be concluded that HvarOR28 in H. variegata contributes to facilitating egg laying through the perception of TMTT and GA. These findings may help to develop new olfactory modulators based on the behaviorally active ligands of HvarOR28.
Collapse
Affiliation(s)
- Jiaoxin Xie
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingtao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Sichuan University of Arts and Science, Dazhou 635000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Danyang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qingnan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
68
|
Li XF, Qie XT, Mo BT, Wang CF, Xing ZH, Zhao JY, Wang CZ, Hao C, Ma L, Yan XZ. Functional types of long trichoid sensilla responding to sex pheromone components in Plutella xylostella. INSECT SCIENCE 2024; 31:1503-1518. [PMID: 38616579 DOI: 10.1111/1744-7917.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
Sex pheromones, which consist of multiple components in specific ratios promote intraspecific sexual communications of insects. Plutella xylostella (L.) is a worldwide pest of cruciferous vegetables, the mating behavior of which is highly dependent on its olfactory system. Long trichoid sensilla on male antennae are the main olfactory sensilla that can sense sex pheromones. However, the underlying mechanisms remain unclear. In this study, 3 sex pheromone components from sex pheromone gland secretions of P. xylostella female adults were identified as Z11-16:Ald, Z11-16:Ac, and Z11-16:OH in a ratio of 9.4 : 100 : 17 using gas chromatography - mass spectrometry and gas chromatography with electroantennographic detection. Electrophysiological responses of 581 and 385 long trichoid sensilla of male adults and female adults, respectively, to the 3 components were measured by single sensillum recording. Hierarchical clustering analysis showed that the long trichoid sensilla were of 6 different types. In the male antennae, 52.32%, 5.51%, and 1.89% of the sensilla responded to Z11-16:Ald, Z11-16:Ac, and Z11-16:OH, which are named as A type, B type, and C type sensilla, respectively; 2.93% named as D type sensilla responded to both Z11-16:Ald and Z11-16:Ac, and 0.34% named as E type sensilla were sensitive to both Z11-16:Ald and Z11-16:OH. In the female antennae, only 7.53% of long trichoid sensilla responded to the sex pheromone components, A type sensilla were 3.64%, B type and C type sensilla were both 0.52%, D type sensilla were 1.30%, and 1.56% of the sensilla responded to all 3 components, which were named as F type sensilla. The responding long trichoid sensilla were located from the base to the terminal of the male antennae and from the base to the middle of the female antennae. The pheromone mixture (Z11-16:Ald : Z11-16:Ac : Z11-16:OH = 9.4 : 100 : 17) had a weakly repellent effect on female adults of P. xylostella. Our results lay the foundation for further studies on sex pheromone communications in P. xylostella.
Collapse
Affiliation(s)
- Xiao-Fei Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Xing-Tao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Feng Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Zeng-Hua Xing
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Jin-Yu Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Xi-Zhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi Province, China
| |
Collapse
|
69
|
Li L, Wu L, Xu Y, Liu F, Zhao H. Three odorant-binding proteins of small hive beetles, Aethina tumida, participate in the response of bee colony volatiles. Int J Biol Macromol 2024; 278:134905. [PMID: 39173797 DOI: 10.1016/j.ijbiomac.2024.134905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Aethina tumida (small hive beetle, SHB) is a rapidly spreading invasive parasite of bee colonies. The olfactory system plays a key role in insect behavior, and odorant-binding proteins (OBPs) are involved in the first step of the olfactory signal transduction pathway and the detection of host volatiles. However, the olfactory mechanism of OBPs in SHB-localized bee colonies is unclear. In this study, electroantennogram (EAG) and behavioral bioassay showed that only three compounds (2-heptanone, ocimene, and ethyl palmitate) from bee colonies triggered high electrophysiological and behavioral responses. Three antenna-specific OBP genes (OBP6, OBP11, and OBP19) were identified, and they were significantly expressed on adult days 6-7. Furthermore, by combining RNA interference (RNAi) with EAG, olfactometer bioassay, competitive fluorescence binding assays, and molecular docking, we found that these three OBP genes were involved in the recognition of 2-heptanone and ethyl palmitate, and AtumOBP6 is also involved in the recognition of ocimene. These data indicate that AtumOBP6, AtumOBP11, and AtumOBP19 play an important role in the olfactory response to bee colony volatiles. Our results provide new insights into the functions of the OBP families in A. tumida and help to explore more potential target genes for environmentally friendly pest control strategies.
Collapse
Affiliation(s)
- Liangbin Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Lixian Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Yajing Xu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China.
| |
Collapse
|
70
|
Yi SC, Wu J, Wang JQ, Chen XH, Wang MQ. Binding characterization of odorant-binding protein BhorOBP29 in Batocera horsfieldi (Hope) with host-plant volatiles. Int J Biol Macromol 2024; 278:134811. [PMID: 39153681 DOI: 10.1016/j.ijbiomac.2024.134811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Odorant binding proteins (OBPs) are involved in odorant discrimination and act as the first filter in the peripheral olfactory system. Previous studies have shown that BhorOBP29 is potentially involved in olfactory perception in an important wood-boring pest Batocera horsfieldi (Hope) (Coleoptera: Cerambycidae), however, its function remains unclear. Here, we investigated the ligand-binding profiles of recombinant BhorOBP29 with 22 compounds from its host plant using fluorescence competitive binding assays and fluorescence quenching assays. The results showed that BhorOBP29 could bind to five ligands relying mainly on hydrophobic interactions. Molecular docking analysis indicated that residues Ile48, Leu51, Met52, Trp57, Asn105, and Val119 were extensively involved in the interactions between BhorOBP29 and the five ligands. Furthermore, the site-directed mutagenesis analysis revealed that Leu51 and Met52 residues were indispensable for BhorOBP29-ligands binding. Finally, electroantennogram (EAG) assays confirmed that hexanal, (-)-limonene, and 2-methylbutyraldehyde elicited a concentration-dependent EAG response with a maximum at the concentration of 1/10 v/v. These findings suggest that BhorOBP29 may play a significant role in the perception of host plant volatiles by B. horsfieldi. This study may help to discover novel behavioral regulation and environmentally friendly strategies for controlling B. horsfieldi in the future.
Collapse
Affiliation(s)
- Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Qing Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Hui Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
71
|
Li Y, Song W, Wang S, Miao W, Liu Z, Wu F, Wang J, Sheng S. Binding characteristics and structural dynamics of two general odorant-binding proteins with plant volatiles in the olfactory recognition of Glyphodes pyloalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104177. [PMID: 39173848 DOI: 10.1016/j.ibmb.2024.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is the most destructive pest, causing severe damage to mulberry production in China's sericulture industry. The insecticide application in mulberry orchards poses a significant risk of poisoning to Bombyx mori. Shifting from insecticides to odor attractants is a beneficial alternative, but not much data is available on the olfactory system of G. pyloalis. We identified 114 chemosensory genes from the antennal transcriptome database of G. pyloalis, with 18 odorant-binding protein (OBP) and 17 chemosensory protein (CSP) genes significantly expressed in the antennae. Ligand-binding assays for two antennae-biased expressed general odorant-binding proteins (GOBPs) showed high binding affinities of GOBP1 to hexadecanal, β-ionone, and 2-ethylhexyl acrylate, while GOBP2 exhibited binding to 4-tert-octylphenol, benzyl benzoate, β-ionone, and farnesol. Computational simulations indicated that van der Waal forces predominantly contributed to the binding free energy in the binding processes of complexes. Among them, Phe12 of GOBP1 and Phe19 of GOBP2 were demonstrated to play crucial roles in their bindings to plant volatiles using site-directed mutagenesis experiments. Moreover, hexadecanal and β-ionone attracted G. pyloalis male moths in the behavioral assays, while none of the candidate plant volatiles significantly affected female moths. Our findings provide a comprehensive understanding of the molecular mechanisms underlying olfactory recognition in G. pyloalis, setting the groundwork for novel mulberry pests control strategies based on insect olfaction.
Collapse
Affiliation(s)
- Yijiangcheng Li
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Wenmiao Song
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shanshan Wang
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Wanglong Miao
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zhixiang Liu
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Fuan Wu
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
72
|
Pei H, Xie G, Yao X, Wang S, Yan J, Dai L, Wang Y. Exploring the binding affinity and characteristics of DcitOBP9 in citrus psyllids. Gene 2024; 923:148551. [PMID: 38759737 DOI: 10.1016/j.gene.2024.148551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Odorant-binding proteins (OBPs) are crucial in insect olfaction. The most abundant expressed OBP of citrus psyllids, DcitOBP9 encodes 148 amino acids. DcitOBP9 lacks a transmembrane structure and possesses a 17-amino acid signal peptide at the N-terminus. Characterized by the six conserved cysteine sites, DcitOBP9 is classified as the Classical-OBP family. RT-qPCR experiments revealed ubiquitous expression of DcitOBP9 across all developmental stages of the citrus psyllid, with predominant expression in adults antennae. Fluorescence competitive binding assays demonstrated DcitOBP9's strong affinity for ocimene, linalool, dodecanoic acid, and citral, and moderate affinity for dimethyl trisulfide. Additionally, it binds to myrcia, (-)-trans-caryophyllene, (±)-Citronellal, nonanal, and (+)-α-pinene. Among them, ocimene, linalool, and dodecanoic acid were dynamically bound to DcitOBP9, while citral was statically bound to DcitOBP9. Molecular docking simulations with the top five ligands indicated that amino acid residues V92, S72, P128, L91, L75, and A76 are pivotal in the interaction between DcitOBP9 and these odorants. These findings suggest DcitOBP9's involvement in the citrus psyllid's host plant recognition and selection behaviors, thereby laying a foundation for elucidating the potential physiological and biological functions of DcitOBP9 and developing attractants.
Collapse
Affiliation(s)
- Haoran Pei
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Gang Xie
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiang Yao
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shenghui Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jin Yan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
73
|
Nonkhwao S, Leaokittikul D, Patramanon R, Jangpromma N, Daduang J, Daduang S. Revealing the pH-dependent conformational changes in sol g 2.1 protein and potential ligands binding. Sci Rep 2024; 14:21179. [PMID: 39261547 PMCID: PMC11391043 DOI: 10.1038/s41598-024-72014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Sol g 2, a major protein found in the venom of the tropical fire ant (Solenopsis geminata), is well-known for its ability to bind various hydrophobic molecules. In this study, we investigate the binding activity of recombinant Sol g 2.1 protein (rSol g 2.1) with potential molecules, including (E)-β-Farnesene, α-Caryophyllene, and 1-Octen-3-ol at different pH levels (pH 7.4 and 5.5) using fluorescence competitive binding assays (FCBA). Our results revealed that Sol g 2.1 protein has higher affinity binding with these ligands at neutral pH. Relevance to molecular docking and molecular dynamics simulations were utilized to provide insights into the stability and conformational dynamics of Sol g 2.1 and its ligand complexes. After simulation, we found that Sol g 2.1 protein has higher affinity binding with these ligands as well as high structural stability at pH 7.4 than at an acidic pH level, indicating by RMSD, RMSF, Rg, SASA, and principal component analysis (PCA). Additionally, the Sol g 2.1 protein complexes at pH 7.4 showed significantly lower binding free energy (∆Gbind) and higher total residue contributions, particularly from key non-polar amino acids such as Trp36, Met40, Cys62, and Ile104, compared to the lower pH environment. These explain why they exhibited higher binding affinity than the lower pH. Therefore, we suggested that Sol g 2.1 protein is a pH-responsive carrier protein. These findings also expand our understanding of protein-ligand interactions and offer potential avenues for the development of innovative drug delivery strategies targeting Sol g 2.1 protein.
Collapse
Affiliation(s)
- Siriporn Nonkhwao
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
74
|
Zhu X, Yang Y, Li Q, Li J, Du L, Zhou Y, Jin H, Song L, Chen Q, Ren B. An expanded odorant-binding protein mediates host cue detection in the parasitic wasp Baryscapus dioryctriae basis of the chromosome-level genome assembly analysis. BMC Biol 2024; 22:196. [PMID: 39256805 PMCID: PMC11389331 DOI: 10.1186/s12915-024-01998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Baryscapus dioryctriae (Chalcidodea: Eulophidae) is a parasitic wasp that parasitizes the pupae of many Pyralidae members and has been used as a biological control agent against Dioryctria pests of pinecones. RESULTS This B. dioryctriae assembly has a genome size of 485.5 Mb with a contig N50 of 2.17 Mb, and scaffolds were assembled onto six chromosomes using Hi-C analysis, significantly increasing the scaffold N50 to 91.17 Mb, with more than 96.13% of the assembled bases located on chromosomes, and an analysis revealed that 94.73% of the BUSCO gene set. A total of 54.82% (279.27 Mb) of the assembly was composed of repetitive sequences and 24,778 protein-coding genes were identified. Comparative genomic analysis demonstrated that the chemosensory perception, genetic material synthesis, and immune response pathways were primarily enriched in the expanded genes. Moreover, the functional characteristics of an odorant-binding protein (BdioOBP45) with ovipositor-biased expression identified from the expanded olfactory gene families were investigated by the fluorescence competitive binding and RNAi assays, revealing that BdioOBP45 primarily binds to the D. abietella-induced volatile compounds, suggesting that this expanded OBP is likely involved in locating female wasp hosts and highlighting a direction for future research. CONCLUSIONS Taken together, this work not only provides new genomic sequences for the Hymenoptera systematics, but also the high-quality chromosome-level genome of B. dioryctriae offers a valuable foundation for studying the molecular, evolutionary, and parasitic processes of parasitic wasps.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Yi Yang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Qiuyao Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Jing Li
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun, 130033, China
| | - Lin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Yanhan Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Hongbo Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Liwen Song
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun, 130033, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China.
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China.
| |
Collapse
|
75
|
Johny J, Große-Wilde E, Kalinová B, Roy A. Antennal Transcriptome Screening and Identification of Chemosensory Proteins in the Double-Spine European Spruce Bark Beetle, Ips duplicatus (Coleoptera: Scolytinae). Int J Mol Sci 2024; 25:9513. [PMID: 39273461 PMCID: PMC11395090 DOI: 10.3390/ijms25179513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The northern bark beetle, Ips duplicatus, is an emerging economic pest, reportedly infesting various species of spruce (Picea spp.), pine (Pinus spp.), and larch (Larix spp.) in Central Europe. Recent climate changes and inconsistent forest management practices have led to the rapid spread of this species, leaving the current monitoring strategies inefficient. As understanding the molecular components of pheromone detection is key to developing novel control strategies, we generated antennal transcriptomes from males and females of this species and annotated the chemosensory proteins. We identified putative candidates for 69 odorant receptors (ORs), 50 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 27 odorant-binding proteins (OBPs), including a tetramer-OBP, 9 chemosensory proteins (CSPs), and 6 sensory neuron membrane proteins (SNMPs). However, no sex-specific chemosensory genes were detected. The phylogenetic analysis revealed conserved orthology in bark beetle chemosensory proteins, especially with a major forest pest and co-habitant, Ips typographus. Recent large-scale functional studies in I. typographus chemoreceptors add greater significance to the orthologous sequences reported here. Nevertheless, identifying chemosensory genes in I. duplicatus is valuable to understanding the chemosensory system and its evolution in bark beetles (Coleoptera) and, generally, insects.
Collapse
Affiliation(s)
- Jibin Johny
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Ewald Große-Wilde
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Blanka Kalinová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| |
Collapse
|
76
|
Fung W, Kolotuev I, Heiman MG. Specialized structure and function of the apical extracellular matrix at sense organs. Cells Dev 2024; 179:203942. [PMID: 39067521 PMCID: PMC11346620 DOI: 10.1016/j.cdev.2024.203942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Apical extracellular matrix (aECM) covers every surface of the body and exhibits tissue-specific structures that carry out specialized functions. This is particularly striking at sense organs, where aECM forms the interface between sensory neurons and the environment, and thus plays critical roles in how sensory stimuli are received. Here, we review the extraordinary adaptations of aECM across sense organs and discuss how differences in protein composition and matrix structure assist in sensing mechanical forces (tactile hairs, campaniform sensilla, and the tectorial membrane of the cochlea); tastes and smells (uniporous gustatory sensilla and multiporous olfactory sensilla in insects, and salivary and olfactory mucus in vertebrates); and light (cuticle-derived lenses in arthropods and mollusks). We summarize the power of using C. elegans, in which defined sense organs associate with distinct aECM, as a model for understanding the tissue-specific structural and functional specializations of aECM. Finally, we synthesize results from recent studies in C. elegans and Drosophila into a conceptual framework for aECM patterning, including mechanisms that involve transient cellular or matrix scaffolds, mechanical pulling or pushing forces, and localized secretion or endocytosis.
Collapse
Affiliation(s)
- Wendy Fung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
77
|
Lu X, Wang M, Jiang D, Tang F. The function of OforOrco in the allogrooming behavior of Odontotermes formosanus (Shiraki) induced by Serratia marcescens Bizio (SM1). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106004. [PMID: 39277353 DOI: 10.1016/j.pestbp.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 09/17/2024]
Abstract
Termites are consistently confronted with a complex microbial environment. In addition to the role of their innate immune system in resisting pathogen infection, social immune behavior also plays a significant role in helping termites withstand the stress caused by pathogenic microorganisms. The allogrooming behavior among different individuals is commonly observed in termites, and it plays a crucial role in the social immune interaction network. In the case of Odontotermes formosanus (Shiraki), Orco is specifically involved in detecting pheromones and volatile chemicals released by termites to communicate with each other. Nonetheless, the function of Orco in the social immunity remains unreported in O. formosanus. Consequently, in this study, we recorded the allogrooming behavior of O. formosanus workers under SM1 stress. The results indicated a significant increase in allogrooming behavior due to SM1 infection. The allogrooming behavior of workers under SM1 stress was significantly increased after the addition of soldiers. Compared with pronotum group treated by SM1, SM1 treatment of workers' heads significantly reduced the allogrooming behavior among workers. In addition, we found that SM1 could greatly increase the expression of OforOrco. Furthermore, interfering with OforOrco could markedly reduce the allogrooming behavior among workers under SM1 stress, and increase the mortality of worker under SM1 stress. This study demonstrated the significant role of OforOrco in the social immunity of O. formosanus, which offers a theoretical foundation for the advancement of research on termite RNA biopesticides, and the integration of RNA interference (RNAi) with pathogens. This study is valuable for elucidating the social immune behavior and interaction network of termites.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Mingyu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dabao Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
78
|
Gu N, Chen YW, Ma S, Liu Q, Li JQ, Yang SH, Zhu WW, Li JB, Zhu XY, Li XM, Zhang YN. Chemosensory protein 22 in Riptortus pedestris is involved in the recognition of three soybean volatiles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106101. [PMID: 39277423 DOI: 10.1016/j.pestbp.2024.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
Riptortus pedestris (Hemiptera: Alydidae), a common agricultural pest, is the major causative agent of "soybean staygreen." However, the interactions between chemosensory proteins (CSPs) in R. pedestris and host plant volatiles have yet to be comprehensively studied. In this study, we performed real-time fluorescence quantitative polymerase chain reaction (PCR) to analyze the antennal expression of RpedCSP22 and subsequently analyzed the interactions between 21 soybean volatiles, five aggregation pheromones, and RpedCSP22 protein in vitro using a protein expression system, molecular docking, site-directed mutagenesis, and fluorescence competitive binding experiments. The RpedCSP22 protein showed binding affinity to three soybean volatiles (benzaldehyde, 4-ethylbenzaldehyde, and 1-octene-3-ol), with optimal binding observed under neutral pH conditions, and lost binding ability after site-directed mutagenesis. In subsequent RNA interference (RNAi) studies, gene silencing was more than 90 %, and in silenced insects, electroantennographic responses were reduced by more than 75 % compared to non-silenced insects. Moreover, Y-tube olfactory behavioral assessments revealed that the attraction of R. pedestris to the three soybean volatiles was significantly attenuated. These findings suggest that RpedCSP22 plays an important role in the recognition of host plant volatiles by R. pedestris andprovides a theoretical basis for the development of novel inhibitors targeting pest behavior.
Collapse
Affiliation(s)
- Nan Gu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yu-Wen Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Liu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Qiao Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Shu-Han Yang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Wen Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Suzhou Academy of Agricultural Sciences, Suzhou 234000, China; Suzhou Vocational and Technical College, Suzhou 234000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiao-Ming Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
79
|
Gautam S, McKenzie S, Katzke J, Hita Garcia F, Yamamoto S, Economo EP. Evolution of odorant receptor repertoires across Hymenoptera is not linked to the evolution of eusociality. Proc Biol Sci 2024; 291:20241280. [PMID: 39317325 PMCID: PMC11421905 DOI: 10.1098/rspb.2024.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Communication is essential for social organisms. In eusocial insects, olfaction facilitates communication and recognition between nestmates. The study of certain model organisms has led to the hypothesis that odorant receptors are expanded in eusocial Hymenoptera. This has become a widely mentioned idea in the literature, albeit with conflicting reports, and has not been tested with a broad comparative analysis. Here we combined existing genomic and new neuroanatomical data, including from an approximately 100 Myr old fossil ant, across a phylogenetically broad sample of hymenopteran lineages. We find no evidence that variation in the size and evolutionary tempo of odorant receptor repertoires is related to eusociality. Post hoc exploration of our data hinted at loss of flight as a possible factor shaping some of the variation in OR repertoires in Hymenoptera. Nevertheless, our analyses revealed a complex pattern of evolutionary variation, and raise new questions about the ecological, behavioural and social factors that shape olfactory abilities.
Collapse
Affiliation(s)
- Shubham Gautam
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son , Okinawa 904-0495, Japan
| | | | - Julian Katzke
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son , Okinawa 904-0495, Japan
| | - Francisco Hita Garcia
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son , Okinawa 904-0495, Japan
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde Invalidenstraße , Berlin 10115, Germany
| | - Shûhei Yamamoto
- Hokkaido University Museum, Hokkaido University, Kita 10, Nishi 8, Kita-ku , Sapporo 060-0810, Japan
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son , Okinawa 904-0495, Japan
| |
Collapse
|
80
|
Lizana P, Mutis A, Palma-Millanao R, Larama G, Antony B, Quiroz A, Venthur H. Transcriptomic and Gene Expression Analysis of Chemosensory Genes from White Grubs of Hylamorpha elegans (Coleoptera: Scarabaeidae), a Subterranean Pest in South America. INSECTS 2024; 15:660. [PMID: 39336628 PMCID: PMC11432230 DOI: 10.3390/insects15090660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 09/30/2024]
Abstract
Olfaction and gustation processes play key roles in the life cycle of insects, such as finding and accepting food sources, oviposition sites, and mates, among other fundamental aspects of insect development. In this context, chemosensory genes found in sensory organs (e.g., antennae and maxillary palps) are crucial for understanding insect behaviour, particularly the phytophagous behaviour of insect pests that attack economically important crops. An example is the scarab beetle Hylamorpha elegans, which feeds on the roots of several crops important for livestock in its larval stage. In this study, chemosensory gene candidates of H. elegans white grubs identified through the head transcriptome and phylogenetic and tissue-biased gene expression (antennae, head without antennae, and legs) have been reported. Overall, 47 chemosensory genes were identified (2 ORs, 1 GR, 11 IRs, 9 CSPs, and 24 OBPs). Gene expression analysis revealed the predominant presence of IRs in the legs, whereas ORs and the GR were present in the heads and/or antennae. Particularly, HeleOBP9 and HeleCSP2 were significantly expressed in the head but not in the antennae or legs; these and other genes are discussed as potential targets in the context of H. elegans management.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile;
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Rubén Palma-Millanao
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco 4811230, Chile
| | - Giovanni Larama
- Biocontrol Research Laboratory and Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Binu Antony
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
81
|
Ma Y, Si YX, Guo JM, Yang TT, Li Y, Zhang J, Dong SL, Yan Q. Functional Characterization of Odorant Receptors for Sex Pheromone (Z)-11-Hexadecenol in Orthaga achatina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18864-18871. [PMID: 39153187 DOI: 10.1021/acs.jafc.4c05108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Pheromone receptor (PR)-mediated transduction of sex pheromones to electrophysiological signals is the basis for sex pheromone communication. Orthaga achatina, a serious pest of the camphor tree, uses a mixture of four components (Z11-16:OAc, Z11-16:OH, Z11-16:Ald, and Z3,Z6,Z9,Z12,Z15-23:H) as its sex pheromone. In this study, we identified five PR genes (OachPR1-5) by phylogenetic analysis. Further RT-PCR and qPCR experiments showed that PR1-3 were specifically expressed in male antennae, while PR4 was significantly female-biased in expression. Functional characterization using the XOE-TEVC assay demonstrated that PR1 and PR3 both responded strongly to Z11-16:OH, while PR1 and PR3 had a weak response to Z3,Z6,Z9,Z12,Z15-23:H and Z11-16:Ald, respectively. Finally, two key amino acid residues (N78 and R331) were confirmed to be essential for binding of PR3 with Z11-16:OH by molecular docking and site-directed mutagenesis. This study helps understand the sex pheromone recognition molecular mechanism of O. achatina.
Collapse
Affiliation(s)
- Yu Ma
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Xiao Si
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting-Ting Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
82
|
Huang W, Wei S, Zhou T, Fan Z, Cao L, Li Z, Guo S. MCMV-infected maize attracts its insect vector Frankliniella occidentalis by inducing β-myrcene. FRONTIERS IN PLANT SCIENCE 2024; 15:1404271. [PMID: 39233912 PMCID: PMC11371577 DOI: 10.3389/fpls.2024.1404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024]
Abstract
Maize lethal necrosis is attributed to the accumulation of maize chlorotic mottle virus (MCMV), an invasive virus transmitted by insect vectors. The western flower thrips (WFT) can shift host to maize, thus promoting the spread of MCMV. However, our understanding of the characteristics and interactions involved in the transmission of MCMV is still limited. This study finds that non-viruliferous WFTs showed a 57.56% higher preference for MCMV-infected maize plants compared to healthy maize plants, while viruliferous WFTs showed a 53.70% higher preference for healthy maize plants compared to MCMV-infected maize plants. We also show for the first time that both adults and larvae of WFT could successfully acquire MCMV after 1 min of acquisition access period (AAP), and after 48 h of AAP, WFT could transmit MCMV in an inoculation access period of 1 h without a latent period. Both adults and larvae of WFT can transmit MCMV for up to 2 days. Furthermore, the decreasing number of viruliferous WFTs and transmission rates as time progressed, together with the transcriptomic evidence, collectively suggest that WFTs transmit MCMV in a semi-persistent method, a mode of transmission requiring minutes to several hours for acquisition access and having a retention time of several hours to a few days. Additionally, β-myrcene can attract WFTs significantly and is detected in Nicotiana benthamiana plants transiently expressing MCMV CP (coat protein), which is consistent with results in MCMV-infected maize plants through the metabolomic profiling and the preference analyses of WFT. Therefore, this study demonstrates the indirect interaction between MCMV and WFT by inducing maize to synthesize β-myrcene to attract insect vectors. The exploration of specific interactions between MCMV and WFT could help to expand the mechanism studies of virus-vector-host plant interaction and put forward a new insight for the combined control of MCMV and WFT through the manipulation of plant volatiles and key insect genes.
Collapse
Affiliation(s)
- Weiling Huang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tao Zhou
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zaifeng Fan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lijun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shaokun Guo
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
83
|
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat Commun 2024; 15:7041. [PMID: 39147786 PMCID: PMC11327376 DOI: 10.1038/s41467-024-50808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
Collapse
Affiliation(s)
- Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S David Stupski
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - J Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
84
|
Gao P, Tan J, Peng X, Song Y, Qu M, Chen M. Expression Pattern of RpCSP6 from Rhopalosiphum padi and Its Binding Mechanism with Deltamethrin: Insights into Chemosensory Protein-Mediated Insecticide Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17847-17857. [PMID: 39088794 DOI: 10.1021/acs.jafc.4c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The mechanisms of insecticide resistance are complex. Recent studies have revealed a novel mechanism involving the chemosensory system in insecticide resistance. However, the specific binding mechanism between olfactory-related genes and insecticides needs to be clarified. In this study, the binding mechanism between pyrethroid insecticide deltamethrin and RpCSP6 from Rhopalosiphum padi was investigated by using computational and multiple experimental methods. RpCSP6 was expressed in different tissues and developmental stages of R. padi and can be induced by deltamethrin. Knockdown of RpCSP6 significantly increased the susceptibility of R. padi to deltamethrin. The binding affinity of RpCSP6 to 24 commonly used insecticides was measured. Seven key residues were found to steadily interact with deltamethrin, indicating their significance in the binding affinity to the insecticide. Our research provided insights for effectively analyzing the binding mechanism of insect CSPs with insecticides, facilitating the development of new and effective insecticides that target insect CSPs.
Collapse
Affiliation(s)
- Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junjie Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjing Qu
- Shandong Academy of Agricultural Sciences, Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
85
|
Zhao S, Liu H, Wu Y, Wu P, Fu J, Yang H, James AA, Chen XG. The odorant-binding protein genes obp67 and obp56d-like encode products that guide oviposition site selection in the Asian tiger mosquito, Aedes albopictus. INSECT SCIENCE 2024:10.1111/1744-7917.13430. [PMID: 39135329 PMCID: PMC11814287 DOI: 10.1111/1744-7917.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 02/13/2025]
Abstract
Aedes albopictus is an important vector of arboviruses and prefers small containers of stagnant water as oviposition sites. One of the mechanisms mosquitoes use to search for suitable oviposition sites is relying on odor cues from prospective sites and their surroundings. The genetic and molecular bases of this behavior are not known for Ae. albopictus. Oviposition site-searching behavior can be separated into 2 stages: container location and water detection. We applied a glue compound to the antennae and the maxillary palps of adult females to mask their ability to detect molecules that may guide them to preferred oviposition sites. Treatment of the antennae significantly reduces the location index (P < 0.001), indicating a decreased ability to find oviposition sites, whereas no significant difference was observed in mosquitoes with maxillary palps treated with the same glue compound (P > 0.05). The detection time, measured as the duration from contact with the water surface to the deposition of the first egg, was extended in mosquitoes with treated antennae or maxillary palps, supporting the conclusion that olfaction is involved in the detection of oviposition site. Transcriptomic analysis identified differentially expressed olfactory-related genes, including obp67, obp56d-like, obp19d-like and obp67-like. RNA interference (RNAi)-mediated knockdown of obp67 and obp56d-like significantly affected the location index and detection time, respectively. Cas9/guide RNA-mediated knockout of obp56d-like resulted in a prolonged detection time, compared with the wild type (P < 0.05). These findings help to elucidate aspects of the olfactory mechanisms involved in Ae. albopictus oviposition site selection, and provide a basis for the development of mosquito surveillance and control strategies.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiming Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peilin Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junyu Fu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huijuan Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine CA USA 92697-4025
- Department of Molecular Biology & Biochemistry, University of California, Irvine CA 92697-3900, United States
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
86
|
Yuan T, Mang D, Purba ER, Ye J, Qian J, Rao F, Wang H, Wu Z, Zhang W, Zheng Y, Zhang QH, Li Z, Zhang L. Identification and Functional Analysis of Odorant Binding Proteins in Apriona germari (Hope). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17248-17259. [PMID: 39051932 DOI: 10.1021/acs.jafc.4c02789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apriona germari (Hope) presents a significant threat as a dangerous wood-boring pest, inflicting substantial harm to forest trees. Investigating the olfactory sensory system of A. germari holds substantial theoretical promise for developing eco-friendly control strategies. To date, however, the olfactory perception mechanism in A. germari remains largely unknown. Therefore, we performed transcriptome sequencing of A. germari across four distinct body parts: antennae, foreleg tarsal segments, mouthparts (maxillary and labial palps), and abdomen terminals, pinpointing the odorant binding protein (OBP) genes and analyzing their expression. We found eight AgerOBPs (5, 19, 23, 25, 29, 59, 63, 70) highly expressed in the antennae. In our competitive binding experiments, AgerOBP23 showed strong binding abilities to the pheromone component fuscumol acetate, eight plant volatiles (farnesol, cis-3-hexenal, nerolidol, myristol acetate, cis-3-hexenyl benzoate, (-)-α-cedrene, 3-ethylacetophenone, and decane), and four insecticides (chlorpyrifos, phoxim, indoxacarb, and cypermethrin). However, AgerOBP29 and AgerOBP63 did not show prominent binding activities to these tested chemicals. Through homology modeling and molecular docking, we identified the key amino acid sites involved in the binding process of AgerOBP23 to these ligands, which shed light on the molecular interactions underlying its binding specificity. Our study suggests that AgerOBP23 may serve as a potential target for future investigations of AgerOBP ligand binding. This approach is consistent with the reverse chemical ecology principle, establishing the groundwork for future studies focusing on attractant or repellent development by exploring further the molecular interactions between OBP and various compounds.
Collapse
Affiliation(s)
- Tingting Yuan
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Dingze Mang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Endang R Purba
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jia Ye
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jiali Qian
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Fuqiang Rao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Haichao Wang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Zhenchen Wu
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Wenjing Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yongxin Zheng
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Qing-He Zhang
- Sterling International, Inc.,, Spokane, Washington 99216, United States
| | - Zhaoqun Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
87
|
Li R, Song X, Shan S, Hussain Dhiloo K, Wang S, Yin Z, Lu Z, Khashaveh A, Zhang Y. Female-Biased Odorant Receptor MmedOR48 in the Parasitoid Microplitis mediator Broadly Tunes to Plant Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17617-17625. [PMID: 39052973 DOI: 10.1021/acs.jafc.4c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Odorant receptors (ORs) play a crucial role in insect chemoreception. Here, a female-biased odorant receptor MmedOR48 in parasitoid Microplitis mediator was fully functionally characterized. The qPCR analysis suggested that the expression level of MmedOR48 increased significantly after adult emergence and was expressed much more in the antennae. Moreover, an in situ hybridization assay showed MmedOR48 was extensively located in the olfactory sensory neurons. In two-electrode voltage clamp recordings, recombinant MmedOR48 was broadly tuned to 23 kinds of volatiles, among which five plant aldehyde volatiles excited the strongest current recording values. Subsequent molecular docking analysis coupled with site-directed mutagenesis demonstrated that key amino acid residues Thr142, Gln80, Gln282, and Thr312 together formed the binding site in the active pocket for the typical aldehyde ligands. Furthermore, ligands of MmedOR48 could stimulate electrophysiological activities in female adults of the M. mediator. The main aldehyde ligand, nonanal, aroused significant behavioral preference of M. mediator in females than in males. These findings suggest that MmedOR48 may be involved in the recognition of plant volatiles in M. mediator, which provides valuable insight into understanding the olfactory mechanisms of parasitoids.
Collapse
Affiliation(s)
- Ruijun Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Xuan Song
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Khalid Hussain Dhiloo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Shanning Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zixuan Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei 071000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
88
|
Guo S, Liu P, Tang Y, Chen J, Zhang T, Liu H. Identification and expression profiles of olfactory-related genes in the antennal transcriptome of Graphosoma rubrolineatum (Hemiptera: Pentatomidae). PLoS One 2024; 19:e0306986. [PMID: 39106289 DOI: 10.1371/journal.pone.0306986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 08/09/2024] Open
Abstract
Graphosoma rubrolineatum (Hemiptera: Pentatomidae) is an important pest of vegetables and herbs (e.g., Umbelliferae and Cruciferae) in China, Siberia, Korea, and Japan. Insects are highly dependent on their olfactory system to detect odorants. However, no molecular-mediated olfactory genes in G. rubrolineatum have yet been identified. In this study, we first established the antennal transcriptome of G. rubrolineatum and identified 189 candidate olfactory genes, including 31 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs),94 odorant receptors (ORs), 23 ionotropic receptors (IRs), and 22 gustatory receptors (GRs). Additionally, phylogenetic trees were constructed for olfactory genes between G. rubrolineatum and other hemipteran insects. We also detected the expression profiles of ten OBPs, five CSPs, two SNMPs, five ORs, four IRs, and four GRs by real-time quantitative PCR. The results revealed that most genes (GrubOBP1/11/31, GrubCSP3/8, GrubSNMP1a/1b, GrubOrco/OR9/11/13, GrubGR1/4/22, GrubIR25/75h/76b/GluR1) were highly expressed in the antennae, GrubOBP13/31 and GrubCSP4/11/12 were highly expressed in the legs, while GrubOBP20 and GrubGR19 were highly expressed in the wings. Our results will enrich the gene inventory of G. rubrolineatum and provide further insight into the molecular chemosensory mechanisms of G. rubrolineatum.
Collapse
Affiliation(s)
- Shibao Guo
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Panjing Liu
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding, P. R. China
- IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Yin Tang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Junhua Chen
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Tao Zhang
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding, P. R. China
- IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Hongmin Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
89
|
Hu J, Zhang Y, Tan L, Wang X, Liu W, Wang G, Zheng X. Functional characterization of sex pheromone receptors PflaOR29 and PflaOR44 involved in the chemoreception of a diurnal moth, Phauda flammans (Walker) (Lepidoptera: Phaudidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105998. [PMID: 39084772 DOI: 10.1016/j.pestbp.2024.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Recognition of sex pheromones released by heterosexual moths via sex pheromone receptors is key for establishing mating connections in moths. The day-flying moth Phauda flammans is an oligophagous pest in southern cities of China and Southeast Asian countries. Our previous study reported that male P. flammans can be attracted to two sex pheromone compounds [Z-9-hexadecenal and (Z, Z, Z)-9,12,15-octadecadienal] released by females in the field; however, the mechanism of olfactory recognition is not clear. In this study, two sex pheromone receptor genes (PflaOR29 and PflaOR44) were cloned. Among the different tissues, both PflaOR29 and PflaOR44 were highly expressed in the antennae of mated male adults. At different developmental stages, the expression levels of PflaOR29 and PflaOR44 were significantly greater in mated male adults than other stages. The fluorescence signals of PflaOR29 and PflaOR44 were mostly distributed on the dorsal side of the antennae, with a large number of trichoid sensilla. The results of the gene function of PflaOR29 and PflaOR44 based on a Drosophila empty neuron heterologous expression system indicated that PflaOR29 strongly responded to (Z, Z, Z)-9,12,15-octadecadienal but not to Z-9-hexadecenal, whereas PflaOR44 did not respond to the two sex pheromones. Our findings clarify the sex pheromone receptor gene corresponding to (Z, Z, Z)-9,12,15-octadecatrienal. These results provide essential information for analyzing the mechanism of sexual communication in diurnal moths and for identifying target genes for the development of efficient attractants.
Collapse
Affiliation(s)
- Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yan Zhang
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen 518120, China; Northeast Forestry University, Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Harbin 150040, China
| | - Liusu Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wei Liu
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen 518120, China
| | - Guirong Wang
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen 518120, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
90
|
Xiao Y, Wu Y, Lei C, Yin F, Peng Z, Jing X, Zhang Y, Li Z. Ligand binding properties of three odorant-binding proteins in striped flea beetle Phyllotreta striolata towards two phthalate esters. INSECT MOLECULAR BIOLOGY 2024; 33:405-416. [PMID: 38478920 DOI: 10.1111/imb.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/04/2024] [Indexed: 07/10/2024]
Abstract
Odorant-binding proteins (OBPs) initiate insect olfactory perception and mediate specific binding and selection of odorants via uncertain binding mechanisms. We characterized the binding characteristics of four OBPs from the striped flea beetle Phyllotreta striolata (SFB), a major cruciferous crop pest. Tissue expression analysis revealed that the two ABPII OBPs (PstrOBP12 and PstrOBP19) were highly expressed mainly in the antenna, whereas the two minus-C OBPs (PstrOBP13 and PstrOBP16) showed a broad expression pattern. Competitive binding assays of cruciferous plant volatiles showed that PstrOBP12, PstrOBP16 and PstrOBP19 had very strong binding capacities for only two phthalate esters (Ki < 20 μM), and PstrOBP13 specifically bound to four aromatic volatiles (Ki < 11 μM). Fluorescence quenching assays displayed that two phthalate esters bound to three PstrOBPs via different quenching mechanisms. PstrOBP12/PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed static quenching, while PstrOBP12/PstrOBP16-bis(6-methylheptyl) phthalate and PstrOBP19-diisobutyl phthalate followed dynamic quenching. Homology modelling and molecular docking displayed that PstrOBP12-diisobutyl phthalate was driven by H-bonding and van der Waals interactions, while PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed hydrophobic interactions. Finally, behavioural activity analysis demonstrated that phthalate esters exhibited different behavioural activities of SFB at different doses, with low doses attracting and high doses repelling. Overall, we thus revealed the different binding properties of the three PstrOBPs to two phthalate esters, which was beneficial in shedding light on the ligand-binding mechanisms of OBPs.
Collapse
Affiliation(s)
- Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Yuhong Wu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Chunmei Lei
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Fei Yin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Zhengke Peng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhenyu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| |
Collapse
|
91
|
Wang WW, Han KR, Jing XF, Liu TX, Zhang SZ. Odorant-binding protein CrufOBP1 in Cotesia ruficrus females plays a pivotal role in the detection of Spodoptera frugiperda larvae. Int J Biol Macromol 2024; 274:133491. [PMID: 38944096 DOI: 10.1016/j.ijbiomac.2024.133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Cotesia ruficrus presents a promising local natural enemy for controlling the invasive fall armyworm Spodoptera frugiperda in China. However, the mechanisms underlying how C. ruficrus locates its target pest remain unclear. In this study, we analyzed the expression patterns of 18 CrufOBPs across different developmental stages of C. ruficrus, and found that CrufOBP1 exhibited consistent and high expression levels in female adults. CrufOBP1 transcript was predominantly localized in sensilla placodea and sensilla trichodea on the antennae. Additionally, we confirmed the binding properties of CrufOBP1 protein to various cuticular compounds of S. frugiperda larvae. Subsequent electroantennogram and behavioral assays revealed that 1-(2-hydroxy-5-methylphenyl)-ethanone attracted female C. ruficrus, consequently increased the parasitism rate. However, upon silencing CrufOBP1, females exhibited reduced attraction towards 1-(2-hydroxy-5-methylphenyl)-ethanone, indicating the crucial role of CrufOBP1 in the chemoreception of C. ruficrus. These findings shed light on the kairomone-based mechanism employed by C. ruficrus to locate S. frugiperda larvae and hold a promise for the development of environmentally friendly pest management strategies.
Collapse
Affiliation(s)
- Wen-Wen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Kai-Ru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiang-Feng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
92
|
Nooten SS, Korten H, Schmitt T, Kárpáti Z. The heat is on: reduced detection of floral scents after heatwaves in bumblebees. Proc Biol Sci 2024; 291:20240352. [PMID: 39191280 DOI: 10.1098/rspb.2024.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/29/2024] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
Global climate change disrupts key ecological processes and biotic interactions. The recent increase in heatwave frequency and severity prompts the evaluation of physiological processes that ensure the maintenance of vital ecosystem services such as pollination. We used experimental heatwaves to determine how high temperatures affect the bumblebees' ability to detect floral scents. Heatwaves induced strong reductions in antennal responses to floral scents in both tested bumblebee species (Bombus terrestris and Bombus pascuorum). These reductions were generally stronger in workers than in males. Bumblebees showed no consistent pattern of recovery 24 h after heat events. Our results suggest that the projected increased frequency and severity of heatwaves may jeopardize bumblebee-mediated pollination services by disrupting the chemical communication between plants and pollinators. The reduced chemosensitivity can decrease the bumblebees' abilities to locate food sources and lead to declines in colonies and populations.
Collapse
Affiliation(s)
- Sabine S Nooten
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
| | - Hanno Korten
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
| | - Thomas Schmitt
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
| | - Zsolt Kárpáti
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
- Department of Chemical Ecology, Plant Protection Institute, Centre of Agricultural Research, HUN-REN , Budapest, Hungary
| |
Collapse
|
93
|
Yi SC, Chen XH, Wu YH, Wu J, Wang JQ, Wang MQ. Identification of odorant-binding proteins and functional analysis of antenna-specific BhorOBP28 in Batocera horsfieldi (Hope). PEST MANAGEMENT SCIENCE 2024; 80:4055-4068. [PMID: 38567786 DOI: 10.1002/ps.8112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The important wood-boring pest Batocera horsfieldi has evolved a sensitive olfactory system to locate host plants. Odorant-binding proteins (OBPs) are thought to play key roles in olfactory recognition. Therefore, exploring the physiological function of OBPs could facilitate a better understanding of insect chemical communications. RESULTS In this research, 36 BhorOBPs genes were identified via transcriptome sequencing of adults' antennae from B. horsfieldi, and most BhorOBPs were predominantly expressed in chemosensory body parts. Through fluorescence competitive binding and fluorescence quenching assays, the antenna-specific BhorOBP28 was investigated and displayed strong binding affinities forming stable complexes with five volatiles, including (+)-α-Pinene, (+)-Limonene, β-Pinene, (-)-Limonene, and (+)-Longifolene, which could also elicit conformation changes when they were interacting with BhorOBP28. Batocera horsfieldi females exhibited a preference for (-)-Limonene, and a repellent response to (+)-Longifolene. Feeding dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of BhorOBP28, and could further impair B. horsfieldi attraction to (-)-Limonene and repellent activity of (+)-Longifolene. The analysis of site-directed mutagenesis revealed that Leu7, Leu72, and Phe121 play a vital role in selectively binding properties of BhorOBP28. CONCLUSION By modeling the molecular mechanism of olfactory recognition, these results demonstrate that BhorOBP28 is involved in the chemoreception of B. horsfieldi. The bacterial-expressed dsRNA delivery system gains new insights into potential population management strategies. Through the olfactory process concluded that discovering novel behavioral regulation and environmentally friendly control options for B. horsfieldi in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin-Hui Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Hang Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Juan Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Qing Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
94
|
Hou XQ, Jia Z, Zhang DD, Wang G. Odorant receptor orthologues from moths display conserved responses to cis-jasmone. INSECT SCIENCE 2024; 31:1107-1120. [PMID: 38009986 DOI: 10.1111/1744-7917.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
In insects, the odorant receptor (OR) multigene family evolves by the birth-and-death evolutionary model, according to which the OR repertoire of each species has undergone specific gene gains and losses depending on their chemical environment, resulting in taxon-specific OR lineage radiations with different sizes in the phylogenetic trees. Despite the general divergence in the gene family across different insect orders, the ORs in moths seem to be genetically conserved across species, clustered into 23 major clades containing multiple orthologous groups with single-copy gene from each species. We hypothesized that ORs in these orthologous groups are tuned to ecologically important compounds and functionally conserved. cis-Jasmone is one of the compounds that not only primes the plant defense of neighboring receiver plants, but also functions as a behavior regulator to various insects. To test our hypothesis, using Xenopus oocyte recordings, we functionally assayed the orthologues of BmorOR56, which has been characterized as a specific receptor for cis-jasmone. Our results showed highly conserved response specificity of the BmorOR56 orthologues, with all receptors within this group exclusively responding to cis-jasmone. This is supported by the dN/dS analysis, showing that strong purifying selection is acting on this group. Moreover, molecular docking showed that the ligand binding pockets of BmorOR56 orthologues to cis-jasmone are similar. Taken together, our results suggest the high conservation of OR for ecologically important compounds across Heterocera.
Collapse
Affiliation(s)
- Xiao-Qing Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Zhongqiang Jia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
95
|
Wang Z, Wang X, Liu W, Chen R, Liu Y. Functional Characterization of an Odorant Receptor Expressed in Newly Hatched Larvae of Fall Armyworm Spodoptera frugiperda. INSECTS 2024; 15:564. [PMID: 39194769 DOI: 10.3390/insects15080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In the past decade, Spodoptera frugiperda has emerged as a significant invasive pest globally, posing a serious threat to agriculture due to its broad diet, migratory behavior, and ability to cause extensive plant damage. While extensive research has focused on the olfactory capabilities of adult S. frugiperda, understanding of the olfactory process in larvae remains limited, despite larvae playing a crucial role in crop damage. To address this gap, we identified an odorant receptor (OR), SfruOR40, expressed in the first-instar larvae through phylogenetic analysis. Using quantitative real-time PCR, we compared SfruOR40 expression levels in larvae and adults. We then characterized the function of SfruOR40 against 67 compounds using the Xenopus oocyte expression system and found that SfruOR40 responded to three plant volatiles. Further, behavioral experiments revealed a larval attraction to (-)-trans-Caryophyllene oxide. This study elucidates SfruOR40's role in the olfactory recognition of newly hatched S. frugiperda larvae, expanding our knowledge of such mechanisms in Noctuid moths. Furthermore, it highlights the potential of plant-derived natural products for biological pest control from a behavioral ecology perspective.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Run Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
96
|
Li YJ, Liu TA, Zhao H, Han Y, Lou BH, Lei CY, Song YQ, Jiang HB. Repellency, Toxicity, and Chemical Composition of Plant Essential Oils from Myrtaceae against Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemiptera Liviidae). Molecules 2024; 29:3390. [PMID: 39064968 PMCID: PMC11279514 DOI: 10.3390/molecules29143390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main aim of this study was to evaluate the repellent and insecticidal efficacy of essential oils (EOs) from four species of Myrtaceae plants: Psidium guajava (PG), Eucalyptus robusta (ER), Eucalyptus tereticornis (ET), and Baeckea frutescens (BF) against D. citri and to analyze their chemical compositions. GC-MS analysis was performed, and the results indicated that the EOs of PG, ER, ET, and BF were rich in terpenoids, ketones, esters, and alcohol compounds. The repellent rate of all four EOs showed that it decreased with exposure time but increased with the concentration of EOs from 80.50% to 100.00% after treating D. citri for 6 h with four EOs at 100% concentration and decreased to 67.71% to 85.49% after 24 h of exposure. Among the compounds from the EOs tested, eucalyptol had the strongest repellent activity, with a 24 h repellency rate of 100%. The contact toxicity bioassay results showed that all EOs have insecticidal toxicity to D. citri; the LC50 for nymphs was 36.47-93.15 mL/L, and for adults, it was 60.72-111.00 mL/L. These results show that when PG is used as the reference material, the ER, ET, and BF EOs have strong biological activity against D. citri, which provides a scientific basis for the further development of plant-derived agrochemicals.
Collapse
Affiliation(s)
- Yi-Jie Li
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Tian-Ao Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hang Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Han
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Bing-Hai Lou
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Cui-Yun Lei
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Ya-Qin Song
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
97
|
Johny J, Nihad M, Alharbi HA, AlSaleh MA, Antony B. Silencing sensory neuron membrane protein RferSNMPu1 impairs pheromone detection in the invasive Asian Palm Weevil. Sci Rep 2024; 14:16541. [PMID: 39019908 PMCID: PMC11254914 DOI: 10.1038/s41598-024-67309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), also known as the Asian palm weevil, is an invasive pest that causes widespread damage to palm trees around the globe. As pheromone communication is crucial for their mass attack and survival on palm trees, the olfactory concept of pest control strategies has been widely explored recently. We aim to understand the molecular basis of olfaction in RPW by studying one of the key olfactory proteins in insect pheromone communication, sensory neuron membrane proteins (SNMPs). SNMPs belong to the CD36 (cluster of differentiation 36) family that perform two distinct olfactory roles in insects, either in pheromone (odorant) transfer to the odorant receptors (SNMP1) or in the pheromone clearing process (SNMP2). In this study, we performed antennal transcriptomic screening and identified six SNMPs, mapping them on the R. ferrugineus genome, and confirmed four distinct SNMPs. Both SNMP1 proteins in RPW, viz., RferSNMPu1 and RferSNMPu2, were mapped onto the same scaffold in different loci in the RPW genome. To further understand the function of these proteins, we first classified them using phylogenetic analysis and checked their tissue-specific expression patterns. Further, we measured the relative transcript abundance of SNMPs in laboratory-reared, field-collected adults and pheromone-exposure experiments, ultimately identifying RferSNMPu1 as a potential candidate for functional analysis. We mapped RferSNMPu1 expression in the antennae and found that expression patterns were similar in both sexes. We used RNAi-based gene silencing to knockdown RferSNMPu1 and tested the changes in the RPW responses to aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferrugineone), and a kairomone, ethyl acetate using electroantennogram (EAG) recordings. We found a significant reduction in the EAG recordings in the RferSNMPu1 knockdown strain of adult RPWs, confirming its potential role in pheromone detection. The structural modelling revealed the key domains in the RferSNMPu1 structure, which could likely be involved in pheromone detection based on the identified ectodomain tunnels. Our studies on RferSNMPu1 with a putative role in pheromone detection provide valuable insight into understanding the olfaction in R. ferrugineus as well as in other Curculionids, as SNMPs are under-explored in terms of its functional role in insect olfaction. Most importantly, RferSNMPu1 can be used as a potential target for the olfactory communication disruption in the R. ferrugineus control strategies.
Collapse
Affiliation(s)
- Jibin Johny
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Mohammad Nihad
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hattan A Alharbi
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammed Ali AlSaleh
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Binu Antony
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
98
|
Serdo DF. Insects' perception and behavioral responses to plant semiochemicals. PeerJ 2024; 12:e17735. [PMID: 39035155 PMCID: PMC11260073 DOI: 10.7717/peerj.17735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/23/2024] [Indexed: 07/23/2024] Open
Abstract
Insect-plant interactions are shaped by the exchange of chemical cues called semiochemicals, which play a vital role in communication between organisms. Plants release a variety of volatile organic compounds in response to environmental cues, such as herbivore attacks. These compounds play a crucial role in mediating the interactions between plants and insects. This review provides an in-depth analysis of plant semiochemicals, encompassing their classification, current understanding of extraction, identification, and characterization using various analytical techniques, including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. The article also delves into the manner in which insects perceive and respond to plant semiochemicals, as well as the impact of environmental factors on plant odor emission and insect orientation. Furthermore, it explores the underlying mechanisms by which insects perceive and interpret these chemical cues, and how this impacts their behavioral responses, including feeding habits, oviposition patterns, and mating behaviors. Additionally, the potential applications of plant semiochemicals in integrated pest management strategies are explored. This review provides insight into the intricate relationships between plants and insects mediated by semiochemicals, highlighting the significance of continued research in this field to better understand and leverage these interactions for effective pest control.
Collapse
|
99
|
Brożek J, Poprawa I, Wegierek P, Stroiński A. Functional Morphology and Ultrastructure of the Peripheral Antennal Sensillar System of Graphosoma italicum (Müller, 1766) (Insecta: Hemiptera: Pentatomidae). INSECTS 2024; 15:528. [PMID: 39057261 PMCID: PMC11277130 DOI: 10.3390/insects15070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The antennae of the shield bug Graphosoma italicum (Müller, 1766) were examined through scanning and transmission electron microscopy to reveal their general morphology, as well as the antennal sensilla's distribution, size, and ultrastructure of their dendrites and function. The antennae comprise five antennomeres (one scape, two pedicels, and two flagellomeres). Different lengths of chaetic mechanosensilla (Ch1-Ch4) exist on all antennomeres, and several highly sensitive campaniform sensilla are embedded in the exoskeleton and measure cuticular strain. One pair of peg sensilla, the typical proprioceptive, is only on the proximal edge of the first pedicel and directed to the distal edge of the scapus. The antennal flagellum possesses two subtypes of trichoid and basiconic sensilla, each with one type of coeloconic olfactory sensilla. The distinctive characteristics of G. italicum are also apparent in two subtypes of coeloconic sensilla embedded in different cavities on both antennomeres of the flagellum, probably with a thermo-hypersensitive function. All studied morphological types of the sensilla and their function were supported by ultrastructural elements. The long and thin trichoid sensilla type 2 (TrS2) with an olfactive function was the most abundant sensilla localized on both flagellomeres. The peripheral antennal sensilla system consists of six main types of sensilla divided into twelve subtypes.
Collapse
Affiliation(s)
- Jolanta Brożek
- Faculty of Natural Science, Institute Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.B.); (I.P.); (P.W.)
| | - Izabela Poprawa
- Faculty of Natural Science, Institute Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.B.); (I.P.); (P.W.)
| | - Piotr Wegierek
- Faculty of Natural Science, Institute Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.B.); (I.P.); (P.W.)
| | - Adam Stroiński
- Polish Academy of Science, Museum and Institute of Zoology of the Polish Academy of Sciences, 00-818 Warsaw, Poland
| |
Collapse
|
100
|
Kumaran N, Raghu S. Can genomic signatures guide the selection of host-specific agents for weed biological control? Evol Appl 2024; 17:e13760. [PMID: 39027688 PMCID: PMC11254579 DOI: 10.1111/eva.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Biological control of weeds involves deliberate introduction of host-specific natural enemies into invaded range to reduce the negative impacts of invasive species. Assessing the specificity is a crucial step, as introduction of generalist natural enemies into a new territory may pose risks to the recipient communities. A mechanistic understanding of host use can provide valuable insights for the selection of specialist natural enemies, bolster confidence in non-target risk assessment and potentially accelerate the host specificity testing process in biological control. We conducted a comprehensive analysis of studies on the genomics of host specialization with a view to examine if genomic signatures can help predict host specificity in insects. Focusing on phytophagous Lepidoptera, Coleoptera and Diptera, we compared chemosensory receptors and enzymes between "specialist" (insects with narrow host range) and "generalist" (insects with wide host range) insects. The availability of genomic data for biological control agents (natural enemies of weeds) is limited thus our analyses utilized data from pest insects and model organisms for which genomic data are available. Our findings revealed that specialists generally exhibit a lower number of chemosensory receptors and enzymes compared with their generalist counterparts. This pattern was more prominent in Coleoptera and Diptera relative to Lepidoptera. This information can be used to reject agents with large gene repertoires to potentially accelerate the risk assessment process. Similarly, confirming smaller gene repertoires in specialists could further strengthen the risk evaluation. Despite the distinctive signatures between specialists and generalists, challenges such as finite genomic data for biological control agents, ad hoc comparisons, and fewer comparative studies among congeners limit our ability to use genomic signatures to predict host specificity. A few studies have empirically compared phylogenetically closely related species, enhancing the resolution and the predictive power of genomics signatures thus suggesting the need for more targeted studies comparing congeneric specialists and generalists.
Collapse
Affiliation(s)
- Nagalingam Kumaran
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Health and BiosecurityBrisbaneQueenslandAustralia
| | - S. Raghu
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Health and BiosecurityBrisbaneQueenslandAustralia
| |
Collapse
|