51
|
Hardie RC. Phototransduction mechanisms in Drosophila microvillar photoreceptors. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
52
|
Liu W, Wen W, Wei Z, Yu J, Ye F, Liu CH, Hardie R, Zhang M. The INAD Scaffold Is a Dynamic, Redox-Regulated Modulator of Signaling in the Drosophila Eye. Cell 2011; 145:1088-101. [DOI: 10.1016/j.cell.2011.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 03/08/2011] [Accepted: 05/04/2011] [Indexed: 01/08/2023]
|
53
|
Roberts NW, Porter ML, Cronin TW. The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc Lond B Biol Sci 2011; 366:627-37. [PMID: 21282166 PMCID: PMC3049014 DOI: 10.1098/rstb.2010.0206] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The underlying mechanisms of polarization sensitivity (PS) have long remained elusive. For rhabdomeric photoreceptors, questions remain over the high levels of PS measured experimentally. In ciliary photoreceptors, and specifically cones, little direct evidence supports any type of mechanism. In order to promote a greater interest in these fundamental aspects of polarization vision, we examined a varied collection of studies linking membrane biochemistry, protein-protein interactions, molecular ordering and membrane phase behaviour. While initially these studies may seem unrelated to polarization vision, a common narrative emerges. A surprising amount of evidence exists demonstrating the importance of protein-protein interactions in both rhabdomeric and ciliary photoreceptors, indicating the possible long-range ordering of the opsin protein for increased PS. Moreover, we extend this direction by considering how such protein paracrystalline organization arises in all cell types from controlled membrane phase behaviour and propose a universal pathway for PS to occur in both rhabdomeric and cone photoreceptors.
Collapse
Affiliation(s)
- Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
54
|
|
55
|
Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 2010; 468:921-6. [PMID: 21068723 PMCID: PMC3026603 DOI: 10.1038/nature09576] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 10/13/2010] [Indexed: 11/09/2022]
Abstract
Photoreceptors for visual perception, phototaxis or light avoidance are typically clustered in eyes or related structures such as the Bolwig organ of Drosophila larvae. Unexpectedly, we found that the class IV dendritic arborization neurons of Drosophila melanogaster larvae respond to ultraviolet, violet and blue light, and are major mediators of light avoidance, particularly at high intensities. These class IV dendritic arborization neurons, which are present in every body segment, have dendrites tiling the larval body wall nearly completely without redundancy. Dendritic illumination activates class IV dendritic arborization neurons. These novel photoreceptors use phototransduction machinery distinct from other photoreceptors in Drosophila and enable larvae to sense light exposure over their entire bodies and move out of danger.
Collapse
Affiliation(s)
- Yang Xiang
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
56
|
Hatori M, Panda S. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol Med 2010; 16:435-46. [PMID: 20810319 DOI: 10.1016/j.molmed.2010.07.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/10/2010] [Accepted: 07/13/2010] [Indexed: 12/14/2022]
Abstract
The adaptation of behavior and physiology to changes in the ambient light level is of crucial importance to life. These adaptations include the light modulation of neuroendocrine function and temporal alignment of physiology and behavior to the day:night cycle by the circadian clock. These non-image-forming (NIF) responses can function independent of rod and cone photoreceptors but depend on ocular light reception, suggesting the participation of novel photoreceptors in the eye. The discovery of melanopsin in intrinsically photosensitive retinal ganglion cells (ipRGCs) and genetic proof for its important role in major NIF responses have offered an exciting entry point to comprehend how mammals adapt to the light environment. Here, we review the recent advances in our understanding of the emerging roles of melanopsin and ipRGCs. These findings now offer new avenues to understand the role of ambient light in sleep, alertness, dependent physiologies and potential pharmacological intervention as well as lifestyle modifications to improve the quality of life.
Collapse
Affiliation(s)
- Megumi Hatori
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
57
|
Bellen HJ, Tong C, Tsuda H. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 2010; 11:514-22. [PMID: 20383202 PMCID: PMC4022039 DOI: 10.1038/nrn2839] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key discoveries that will impact vertebrate neuroscience.
Collapse
Affiliation(s)
- Hugo J Bellen
- Department ofNeuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
58
|
Halme A, Cheng M, Hariharan IK. Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 2010; 20:458-63. [PMID: 20189388 PMCID: PMC2847081 DOI: 10.1016/j.cub.2010.01.038] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
Damage to Drosophila imaginal discs elicits a robust regenerative response from the surviving tissue [1-4]. However, as in other organisms, developmental progression and differentiation can restrict the regenerative capacity of Drosophila tissues. Experiments in Drosophila and other holometabolous insects have demonstrated that either damage to imaginal tissues [5, 6] or transplantation of a damaged imaginal disc [7, 8] delays the onset of metamorphosis. Therefore, in Drosophila there appears to be a mechanism that senses tissue damage and extends the larval phase to coordinate tissue regeneration with the overall developmental program of the organism. However, how such a pathway functions remains unknown. Here we demonstrate that a developmental checkpoint extends larval growth after imaginal disc damage by inhibiting the transcription of the gene encoding PTTH, a neuropeptide that promotes the release of the steroid hormone ecdysone. Using a genetic screen, we identify a previously unsuspected role for retinoid biosynthesis in regulating PTTH expression and delaying development in response to tissue damage. Retinoid signaling plays an important but poorly defined role in several vertebrate regeneration models [9-11]. Our findings demonstrate that retinoid biosynthesis in Drosophila is important for the maintenance of a condition that is permissive for regenerative growth.
Collapse
Affiliation(s)
- Adrian Halme
- Department of Cell and Developmental Biology, University of California, Berkeley, 365 LSA, MC 3200, Berkeley, CA 94703
| | - Michelle Cheng
- Department of Cell and Developmental Biology, University of California, Berkeley, 365 LSA, MC 3200, Berkeley, CA 94703
| | - Iswar K. Hariharan
- Department of Cell and Developmental Biology, University of California, Berkeley, 365 LSA, MC 3200, Berkeley, CA 94703
| |
Collapse
|
59
|
|
60
|
Roles of dopamine in circadian rhythmicity and extreme light sensitivity of circadian entrainment. Curr Biol 2010; 20:209-14. [PMID: 20096587 DOI: 10.1016/j.cub.2009.11.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/05/2009] [Accepted: 11/13/2009] [Indexed: 11/15/2022]
Abstract
Light has profound behavioral effects on almost all animals, and nocturnal animals show sensitivity to extremely low light levels [1-4]. Crepuscular, i.e., dawn/dusk-active animals such as Drosophila melanogaster are thought to show far less sensitivity to light [5-8]. Here we report that Drosophila respond to extremely low levels of monochromatic blue light. Light levels three to four orders of magnitude lower than previously believed impact circadian entrainment and the light-induced stimulation of locomotion known as positive behavioral masking. We use GAL4;UAS-mediated rescue of tyrosine hydroxylase (DTH) mutant (ple) flies to study the roles of dopamine in these processes. We present evidence for two roles of dopamine in circadian behaviors. First, rescue with either a wild-type DTH or a DTH mutant lacking neural expression leads to weak circadian rhythmicity, indicating a role for strictly regulated DTH and dopamine in robust circadian rhythmicity. Second, the DTH rescue strain deficient in neural dopamine selectively shows a defect in circadian entrainment to low light, whereas another response to light, positive masking, has normal light sensitivity. These findings imply separable pathways from light input to the behavioral outputs of masking versus circadian entrainment, with only the latter dependent on dopamine.
Collapse
|
61
|
Tsui MM, York JD. Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. ACTA ACUST UNITED AC 2009; 50:324-37. [PMID: 20006638 DOI: 10.1016/j.advenzreg.2009.12.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marco M Tsui
- Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Box 3813, Durham, NC 27710, USA
| | | |
Collapse
|
62
|
Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proc Natl Acad Sci U S A 2009; 106:20063-8. [PMID: 19892737 DOI: 10.1073/pnas.0911028106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of phosphatidylinositol 4, 5, bisphosphate (PIP(2)), altering its distribution. Fluorescence image correlation spectroscopic studies on model membranes suggest that an increase in ceramide decreases clustering of PIP(2) and its partitioning into ordered membrane domains. Thus ceramide kinase-mediated maintenance of ceramide level is important for the local regulation of PIP(2) and PLC during phototransduction.
Collapse
|
63
|
Grover D, Ford D, Brown C, Hoe N, Erdem A, Tavaré S, Tower J. Hydrogen peroxide stimulates activity and alters behavior in Drosophila melanogaster. PLoS One 2009; 4:e7580. [PMID: 19862323 PMCID: PMC2763216 DOI: 10.1371/journal.pone.0007580] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms in animals are regulated at the level of individual cells and by systemic signaling to coordinate the activities of multiple tissues. The circadian pacemakers have several physiological outputs, including daily locomotor rhythms. Several redox-active compounds have been found to function in regulation of circadian rhythms in cells, however, how particular compounds might be involved in regulating specific animal behaviors remains largely unknown. Here the effects of hydrogen peroxide on Drosophila movement were analyzed using a recently developed three-dimensional real-time multiple fly tracking assay. Both hydrogen peroxide feeding and direct injection of hydrogen peroxide caused increased adult fly locomotor activity. Continuous treatment with hydrogen peroxide also suppressed daily locomotor rhythms. Conditional over-expression of the hydrogen peroxide-producing enzyme superoxide dismutase (SOD) also increased fly activity and altered the patterns of locomotor activity across days and weeks. The real-time fly tracking system allowed for detailed analysis of the effects of these manipulations on behavior. For example, both hydrogen peroxide feeding and SOD over-expression increased all fly motion parameters, however, hydrogen peroxide feeding caused relatively more erratic movement, whereas SOD over-expression produced relatively faster-moving flies. Taken together, the data demonstrate that hydrogen peroxide has dramatic effects on fly movement and daily locomotor rhythms, and implicate hydrogen peroxide in the normal control of these processes.
Collapse
Affiliation(s)
- Dhruv Grover
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Daniel Ford
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Christopher Brown
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Nicholas Hoe
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Aysen Erdem
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Simon Tavaré
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
64
|
Zuniga FI, Ochoa GH, Kelly SD, Robles LJ. S-crystallin and arginine kinase bind F-actin in light- and dark-adapted octopus retinas. Curr Eye Res 2009; 28:343-50. [PMID: 15287371 DOI: 10.1076/ceyr.28.5.343.28683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Rhabdomere microvilli dramatically reorganize in conditions of light and dark. This reorganization involves remodeling of the microvillus actin cytoskeleton. We are using the rhabdomeric retina of Octopus bimaculoides to identify actin-binding proteins that may be involved in this remodeling. METHODS Octopus were light-/dark-adapted, retinas separated into dorsal and ventral halves, and homogenized. Actin-binding proteins were recognized using F-actin overlay blot assays and selected proteins from the overlays were identified using N-terminal sequencing methods or mass spectroscopy. Protein concentrations were quantified and compared by statistical analysis. RESULTS Total protein gels of light-/dark-adapted, ventral/dorsal halves were almost identical except for a protein band at 26 kD. The relative amount of this protein in the dark was almost double that found in the light. The levels of other proteins did not vary significantly between the light and dark. F-actin overlays also showed matching patterns of actin-binding proteins except for the 26 kD protein. Although the 26 kD protein from light-adapted retinas transferred to the blotting membranes, it did not bind F-actin while the 26 kD protein on overlays from dark-adapted retinas always demonstrated F-actin binding. Besides the 26 kD protein, other proteins at 200 kD, 80 kD, 40 kD appeared on the overlays. These proteins and the 26 kD protein were sequenced and identified as hemocynanin, transitional ER ATPase, arginine kinase and S-crystallin, respectively. CONCLUSIONS The amount of S-crystallin present in the octopus retina is significantly greater in dark-adapted retinas and it binds to F-actin. In the light, the level of S-crystallin is greatly reduced and there is no apparent F-actin binding. No other studies, to our knowledge, show that S-crystallin binds to the actin cytoskeleton or that its expression is regulated by light. Arginine kinase may provide energy for cytoskeletal remodeling as it may in other neural tissues.
Collapse
Affiliation(s)
- Freddi Isaac Zuniga
- Department of Chemistry, California State University, Dominguez Hills, Carson, CA, USA
| | | | | | | |
Collapse
|
65
|
Kim K, Yang J, Zhong XP, Kim MH, Kim YS, Lee HW, Han S, Choi J, Han K, Seo J, Prescott SM, Topham MK, Bae YC, Koretzky G, Choi SY, Kim E. Synaptic removal of diacylglycerol by DGKzeta and PSD-95 regulates dendritic spine maintenance. EMBO J 2009; 28:1170-9. [PMID: 19229292 PMCID: PMC2683696 DOI: 10.1038/emboj.2009.44] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 01/27/2009] [Indexed: 12/22/2022] Open
Abstract
Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKzeta is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD-95. Overexpression of DGKzeta in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD-95 binding. Conversely, DGKzeta knockdown reduces spine density. Mice deficient in DGKzeta expression show reduced spine density and excitatory synaptic transmission. Time-lapse imaging indicates that DGKzeta is required for spine maintenance but not formation. We propose that PSD-95 targets DGKzeta to synaptic DAG-producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.
Collapse
Affiliation(s)
- Karam Kim
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinhee Yang
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Xiao-Ping Zhong
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Myoung-Hwan Kim
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yun Sook Kim
- BK21 Program, Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Woo Lee
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seungnam Han
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeonghoon Choi
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kihoon Han
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinsoo Seo
- BK21 Program, Department of Physiology, College of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Stephen M Prescott
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Matthew K Topham
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Yong Chul Bae
- BK21 Program, Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Gary Koretzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Se-Young Choi
- BK21 Program, Department of Physiology, College of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Eunjoon Kim
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
66
|
Grover D, Yang J, Ford D, Tavaré S, Tower J. Simultaneous tracking of movement and gene expression in multiple Drosophila melanogaster flies using GFP and DsRED fluorescent reporter transgenes. BMC Res Notes 2009; 2:58. [PMID: 19374758 PMCID: PMC2679045 DOI: 10.1186/1756-0500-2-58] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/17/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fluorescent proteins such as GFP (Green Fluorescent Protein) and DsRED (Discosoma sp.Red Fluorescent Protein) are often used as reporter molecules for transgene expression in Drosophila and other species. We have recently reported methods that allow simultaneous tracking of animal movement and GFP expression in real time, however the assay was limited to single animals and a single transgene. Numerous studies would be facilitated by methods that allow for assay of multiple animals and multiple transgenes. FINDINGS Here we report an improved fly video tracking system that allows multiple transgenic flies to be tracked simultaneously using visible light, GFP fluorescence and DsRED fluorescence. The movement of multiple flies could be accurately tracked at real time rates, while simultaneously assaying the expression level of two different transgenes marked with GFP and DsRED. The individual flies could be accurately tracked and distinguished even during periods when transgene fluorescence was undetected. For example, characteristic patterns of hsp70 and hsp22 transgene induction could be simultaneously quantified and correlated with animal movement in aging flies, and as groups of flies died due to dessication/starvation. CONCLUSION The improved methods allow for more efficient assay of the correlation between gene expression, behavior, aging and mortality: multiple animals can be assayed with simultaneous quantification of multiple transgenes using GFP and DsRED fluorescence. These methods should allow for increased flexibility in experimental designs. For example, in the future it should be possible to use gene expression levels to predict remaining life span more accurately, and to quantify gene expression changes caused by interactions between animals in real time.
Collapse
Affiliation(s)
- Dhruv Grover
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA.
| | | | | | | | | |
Collapse
|
67
|
Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration. PLoS Genet 2009; 5:e1000377. [PMID: 19214218 PMCID: PMC2633617 DOI: 10.1371/journal.pgen.1000377] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 01/09/2009] [Indexed: 12/23/2022] Open
Abstract
Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons.
Collapse
|
68
|
Ni L, Guo P, Reddig K, Mitra M, Li HS. Mutation of a TADR protein leads to rhodopsin and Gq-dependent retinal degeneration in Drosophila. J Neurosci 2008; 28:13478-87. [PMID: 19074021 PMCID: PMC2630459 DOI: 10.1523/jneurosci.2122-08.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 10/10/2008] [Accepted: 11/01/2008] [Indexed: 11/21/2022] Open
Abstract
The Drosophila photoreceptor is a model system for genetic study of retinal degeneration. Many gene mutations cause fly photoreceptor degeneration, either because of excessive stimulation of the visual transduction (phototransduction) cascade, or through apoptotic pathways that in many cases involve a visual arrestin Arr2. Here we report a gene named tadr (for torn and diminished rhabdomeres), which, when mutated, leads to photoreceptor degeneration through a different mechanism. Degeneration in the tadr mutant is characterized by shrunk and disrupted rhabdomeres, the light sensory organelles of photoreceptor. The TADR protein interacted in vitro with the major light receptor Rh1 rhodopsin, and genetic reduction of the Rh1 level suppressed the tadr mutation-caused degeneration, suggesting the degeneration is Rh1-dependent. Nonetheless, removal of phospholipase C (PLC), a key enzyme in phototransduction, and that of Arr2 failed to inhibit rhabdomeral degeneration in the tadr mutant background. Biochemical analyses revealed that, in the tadr mutant, the G(q) protein of Rh1 is defective in dissociation from the membrane during light stimulation. Importantly, reduction of G(q) level by introducing a hypomorphic allele of G(alphaq) gene greatly inhibited the tadr degeneration phenotype. These results may suggest that loss of a potential TADR-Rh1 interaction leads to an abnormality in the G(q) signaling, which in turn triggers rhabdomeral degeneration independent of the PLC phototransduction cascade. We propose that TADR-like proteins may also protect photoreceptors from degeneration in mammals including humans.
Collapse
Affiliation(s)
- Lina Ni
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Peiyi Guo
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Keith Reddig
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Mirna Mitra
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Hong-Sheng Li
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
69
|
Cornell RA, Aarts M, Bautista D, García-Añoveros J, Kiselyov K, Liman ER. A double TRPtych: six views of transient receptor potential channels in disease and health. J Neurosci 2008; 28:11778-84. [PMID: 19005039 PMCID: PMC2775540 DOI: 10.1523/jneurosci.3929-08.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 02/03/2023] Open
Abstract
At the 2008 Annual Meeting of the Society for Neuroscience, a Mini-Symposium entitled "Contributions to TRP Channels to Neurological Disease" included talks from six heads of newly established laboratories, each with a unique research focus, model system, and set of experimental tools. Some of the questions addressed in these talks include the following. What is the role of transient receptor potential (TRP) channels in pain perception? How do normally functioning TRP channels contribute to cell death pathways? What are the characteristics of TRPpathies, disease states that result from overactive or underactive TRP channels? How are TRP channels regulated by signal transduction cascades? This review summarizes recent results from those laboratories and provides six perspectives on the subject of TRP channels and disease.
Collapse
Affiliation(s)
- Robert A Cornell
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Liu CH, Satoh AK, Postma M, Huang J, Ready DF, Hardie RC. Ca2+-dependent metarhodopsin inactivation mediated by calmodulin and NINAC myosin III. Neuron 2008; 59:778-89. [PMID: 18786361 PMCID: PMC2562427 DOI: 10.1016/j.neuron.2008.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/03/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
Phototransduction in flies is the fastest known G protein-coupled signaling cascade, but how this performance is achieved remains unclear. Here, we investigate the mechanism and role of rhodopsin inactivation. We determined the lifetime of activated rhodopsin (metarhodopsin = M( *)) in whole-cell recordings from Drosophila photoreceptors by measuring the time window within which inactivating M( *) by photoreisomerization to rhodopsin could suppress responses to prior illumination. M( *) was inactivated rapidly (tau approximately 20 ms) under control conditions, but approximately 10-fold more slowly in Ca2+-free solutions. This pronounced Ca2+ dependence of M( *) inactivation was unaffected by mutations affecting phosphorylation of rhodopsin or arrestin but was abolished in mutants of calmodulin (CaM) or the CaM-binding myosin III, NINAC. This suggests a mechanism whereby Ca2+ influx acting via CaM and NINAC accelerates the binding of arrestin to M( *). Our results indicate that this strategy promotes quantum efficiency, temporal resolution, and fidelity of visual signaling.
Collapse
Affiliation(s)
- Che-Hsiung Liu
- Cambridge University, Department of Physiology Development and Neuroscience, Cambridge CB2 3DY, UK
| | - Akiko K. Satoh
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Marten Postma
- Cambridge University, Department of Physiology Development and Neuroscience, Cambridge CB2 3DY, UK
| | - Jiehong Huang
- Cambridge University, Department of Physiology Development and Neuroscience, Cambridge CB2 3DY, UK
| | - Donald F. Ready
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Roger C. Hardie
- Cambridge University, Department of Physiology Development and Neuroscience, Cambridge CB2 3DY, UK
| |
Collapse
|
71
|
Membrane signalling complexes: implications for development of functionally selective ligands modulating heptahelical receptor signalling. Cell Signal 2008; 21:179-85. [PMID: 18790047 DOI: 10.1016/j.cellsig.2008.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/24/2008] [Indexed: 11/24/2022]
Abstract
Technological development has considerably changed the way in which we evaluate drug efficacy and has led to a conceptual revolution in pharmacological theory. In particular, molecular resolution assays have revealed that heptahelical receptors may adopt multiple active conformations with unique signalling properties. It is therefore becoming widely accepted that ligand ability to stabilize receptor conformations with distinct signalling profiles may allow to direct the stimulus generated by an activated receptor towards a specific signalling pathway. This capacity to induce only a subset of the ensemble of responses regulated by a given receptor has been termed "functional selectivity" (or "stimulus trafficking"), and provides the bases for a highly specific regulation of receptor signalling. Concomitant with these observations, heptahelical receptors have been shown to associate with G proteins and effectors to form multimeric arrays. These complexes are constitutively formed during protein synthesis and are targeted to the cell surface as integral signalling units. Herein we summarize evidence supporting the existence of such constitutive signalling arrays and analyze the possibility that they may constitute viable targets for developing ligands with "functional selectivity".
Collapse
|
72
|
Ward A, Liu J, Feng Z, Xu XZS. Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 2008; 11:916-22. [PMID: 18604203 PMCID: PMC2652401 DOI: 10.1038/nn.2155] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 06/02/2008] [Indexed: 11/08/2022]
Abstract
Phototaxis behavior is commonly observed in animals with light-sensing organs. C. elegans, however, is generally believed to lack phototaxis, as this animal lives in darkness (soil) and does not possess eyes. Here, we found that light stimuli elicited negative phototaxis in C. elegans and that this behavior is important for survival. We identified a group of ciliary sensory neurons as candidate photoreceptor cells for mediating phototaxis. Furthermore, we found that light excited photoreceptor cells by evoking a depolarizing conductance carried by cyclic guanosine monophosphate (cGMP)-sensitive cyclic nucleotide-gated (CNG) channels, revealing a conservation in phototransduction between worms and vertebrates. These results identify a new sensory modality in C. elegans and suggest that animals living in dark environments without light-sensing organs may not be presumed to be light insensitive. We propose that urbilaterians, the last common ancestor of bilaterians, might have already evolved a visual system that employs CNG channels and the second messenger cGMP for phototransduction.
Collapse
Affiliation(s)
- Alex Ward
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
73
|
Alvarez CE. On the origins of arrestin and rhodopsin. BMC Evol Biol 2008; 8:222. [PMID: 18664266 PMCID: PMC2515105 DOI: 10.1186/1471-2148-8-222] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 07/29/2008] [Indexed: 01/14/2023] Open
Abstract
Background G protein coupled receptors (GPCRs) are the most numerous proteins in mammalian genomes, and the most common targets of clinical drugs. However, their evolution remains enigmatic. GPCRs are intimately associated with trimeric G proteins, G protein receptor kinases, and arrestins. We conducted phylogenetic studies to reconstruct the history of arrestins. Those findings, in turn, led us to investigate the origin of the photosensory GPCR rhodopsin. Results We found that the arrestin clan is comprised of the Spo0M protein family in archaea and bacteria, and the arrestin and Vps26 families in eukaryotes. The previously known animal arrestins are members of the visual/beta subfamily, which branched from the founding "alpha" arrestins relatively recently. Curiously, we identified both the oldest visual/beta arrestin and opsin genes in Cnidaria (but not in sponges). The arrestin clan has 14 human members: 6 alphas, 4 visual/betas, and 4 Vps26 genes. Others recently showed that the 3D structure of mammalian Vps26 and the biochemical function of the yeast alpha arrestin PalF are similar to those of beta arrestins. We note that only alpha arrestins have PY motifs (known to bind WW domains) in their C-terminal tails, and only visual/betas have helix I in the Arrestin N domain. Conclusion We identified ciliary opsins in Cnidaria and propose this subfamily is ancestral to all previously known animal opsins. That finding is consistent with Darwin's theory that eyes evolved once, and lends some support to Parker's hypothesis that vision triggered the Cambrian explosion of life forms. Our arrestin findings have implications on the evolution of GPCR signaling, and on the biological roles of human alpha arrestins.
Collapse
Affiliation(s)
- Carlos E Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| |
Collapse
|
74
|
Abstract
Retinal rods and cones, which are the front-end light detectors in the eye, achieve wonders together by being able to signal single-photon absorption and yet also able to adjust their function to brightness changes spanning 10(9)-fold. How these cells detect light is now quite well understood. Not surprising for almost any biological process, the intial step of seeing reveals a rich complexity as the probing goes deeper. The odyssey continues, but the knowledge gained so far is already nothing short of remarkable in qualitative and quantitative detail. It has also indirectly opened up the mystery of odorant sensing. Basic science aside, clinical ophthalmology has benefited tremendously from this endeavor as well. This article begins by recapitulating the key developments in this understanding from the mid-1960s to the late 1980s, during which period the advances were particularly rapid and fit for an intricate detective story. It then highlights some details discovered more recently, followed by a comparison between rods and cones.
Collapse
Affiliation(s)
- Dong-Gen Luo
- *Solomon H. Snyder Department of Neuroscience and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tian Xue
- *Solomon H. Snyder Department of Neuroscience and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - King-Wai Yau
- *Solomon H. Snyder Department of Neuroscience and
- Department of Ophthalmology and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
75
|
The characteristics of action potential and nonselective cation current of cardiomyocytes in rabbit superior vena cava. ACTA ACUST UNITED AC 2008; 51:326-35. [PMID: 18368310 DOI: 10.1007/s11427-008-0043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
As a special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cava (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyocytes, the SVC cardiomyocytes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyocytes. A few of SVC cardiomyocytes showed slow response action potentials with automatic activity and some others showed early after depolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of I Ns in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may increase or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can increase or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyocytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.
Collapse
|
76
|
Acharya JK, Dasgupta U, Rawat SS, Yuan C, Sanxaridis PD, Yonamine I, Karim P, Nagashima K, Brodsky MH, Tsunoda S, Acharya U. Cell-nonautonomous function of ceramidase in photoreceptor homeostasis. Neuron 2008; 57:69-79. [PMID: 18184565 PMCID: PMC2271043 DOI: 10.1016/j.neuron.2007.10.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/17/2007] [Accepted: 10/30/2007] [Indexed: 01/10/2023]
Abstract
Neutral ceramidase, a key enzyme of sphingolipid metabolism, hydrolyzes ceramide to sphingosine. These sphingolipids are critical structural components of cell membranes and act as second messengers in diverse signal transduction cascades. Here, we have isolated and characterized functional null mutants of Drosophila ceramidase. We show that secreted ceramidase functions in a cell-nonautonomous manner to maintain photoreceptor homeostasis. In the absence of ceramidase, photoreceptors degenerate in a light-dependent manner, are defective in normal endocytic turnover of rhodopsin, and do not respond to light stimulus. Consistent with a cell-nonautonomous function, overexpression of ceramidase in tissues distant from photoreceptors suppresses photoreceptor degeneration in an arrestin mutant and facilitates membrane turnover in a rhodopsin null mutant. Furthermore, our results show that secreted ceramidase is internalized and localizes to endosomes. Our findings establish a role for a secreted sphingolipid enzyme in the regulation of photoreceptor structure and function.
Collapse
Affiliation(s)
- Jairaj K. Acharya
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702, USA
| | - Ujjaini Dasgupta
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Satinder S. Rawat
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Changqing Yuan
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Ikuko Yonamine
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pusha Karim
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kunio Nagashima
- EM Facility/Image Analysis Laboratory, SAIC Frederick, MD 21702, USA
| | - Michael H. Brodsky
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Susan Tsunoda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Usha Acharya
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
77
|
Gamper N, Shapiro MS. Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 2007; 8:921-34. [DOI: 10.1038/nrn2257] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
78
|
|
79
|
Han J, Reddig K, Li HS. Prolonged G(q) activity triggers fly rhodopsin endocytosis and degradation, and reduces photoreceptor sensitivity. EMBO J 2007; 26:4966-73. [PMID: 18034157 DOI: 10.1038/sj.emboj.7601929] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 10/26/2007] [Indexed: 11/09/2022] Open
Abstract
Rapid deactivation of the Drosophila light receptor rhodopsin, through a visual arrestin Arr2 and a pathway that involves a transcription factor dCAMTA, is required for timely termination of light responses in the photoreceptor neuron. Here we report that this process is also critical for maintenance of the photoreceptor sensitivity. In both dCAMTA- and arr2-mutant flies, the endocytosis of the major rhodopsin Rh1 was dramatically increased, which was mediated by a G(q) protein that signals downstream of rhodopsin in the visual transduction pathway. Consequently, the Rh1 level was downregulated and the photoreceptor became less sensitive to light. Remarkably, the G(q)-stimulated Rh1 endocytosis does not require phospholipase C, a known effector of G(q), but depends on a tetraspanin protein. Our work has identified an arrestin-independent endocytic pathway of G protein-coupled receptor in the fly. This pathway may also function in mammals and mediate an early feedback regulation of receptor signaling.
Collapse
Affiliation(s)
- Junhai Han
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | |
Collapse
|
80
|
Elsaesser R, Paysan J. The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells. BMC Neurosci 2007; 8 Suppl 3:S1. [PMID: 17903277 PMCID: PMC1995455 DOI: 10.1186/1471-2202-8-s3-s1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existence of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use.
Collapse
Affiliation(s)
- Rebecca Elsaesser
- Johns Hopkins University School of Medicine, 725 N. Wolfe St., 408 WBSB, Baltimore, MD 21205, USA
| | - Jacques Paysan
- Technical University of Darmstadt, Institute of Zoology, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany
| |
Collapse
|
81
|
Abstract
Vertebrate photoreceptor cells are ciliated sensory cells specialized for single photon detection. The photoreceptor outer segment corresponds to the ciliary shaft of a prototypic cilium. In the outer segment compartment, the ciliary membrane is highly modified into membranous disks which are enveloped by the plasma membrane in rod cells. At these outer segment disks, the visual transduction cascade--a prototypical G-protein coupled receptor transduction pathway is arranged. The light sensitive outer segments are linked by the socalled connecting cilium with the inner segment, the photoreceptor compartment which contains all organelles necessary for cell metabolism. The connecting cilium correlates with the transition zone, the short junction between the basal body and the axoneme of a prototypic cilium. The connecting cilium and the calycal processes, including the periciliary ridge complex, as well as the basal body complex are in close functional association with each other. In the latter ciliary compartments, the export and import from/into the outer segment of the photoreceptor cell are controlled and regulated. In all subciliary compartments, proteins are arranged in functional multiprotein complexes. In the outer segment, signaling components are arranged into complexes which provide specificity and speed for the signaling and serve in adaptation. Centrin-G-protein complexes may regulate the light driven translocation of the visual G-protein transducin through the connecting cilium. Intraflagellar transport (IFT) complexes may serve in intersegmental exchange of molecules. The import/export of molecules is thought to be regulated by proteins arranged in networks at the basal body complex. Proteins of the interactome related to the human Usher syndrome are localized in the connecting cilium and may participate in the ciliary transport, but are also arranged at interfaces between the inner segment and the connecting cilium where they probably control the cargo handover between the transport systems of the inner segment and these of the cilium. Furthermore, USH protein complexes may further provide mechanical stabilization to membrane specializations of the calycal processes and the connecting cilium. The protein complex in which the retinitis pigmentosa GTPase regulator (RPGR) participates in the ciliary compartments also plays a key role in the function and maintenance of photoreceptor cells. It further associates through the presumed scaffolding protein RPGRIP1 with the nephrocystin protein network. Although many of these proteins have been also found in prototypic cilia or primary cilia, the arrangements of the proteins in complexes can be specific for vertebrate photoreceptor cells. Defects of proteins in these complexes lead to photoreceptor cell death and retinal degeneration, underlying syndromic and non-syndromic blindness.
Collapse
|
82
|
Finkler A, Ashery-Padan R, Fromm H. CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett 2007; 581:3893-8. [PMID: 17689537 DOI: 10.1016/j.febslet.2007.07.051] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 02/08/2023]
Abstract
Recently, a novel family of calmodulin-binding transcription activators (CAMTAs) was reported in various eukaryotes. All CAMTAs share a similar domain organization, with a novel type of sequence-specific DNA-binding domain (designated CG-1). This domain could bind DNA directly and activate transcription, or interact with other transcription factors, not through DNA binding, thus acting as a co-activator of transcription. Investigations of CAMTAs in various organisms imply a broad range of functions from sensory mechanisms to embryo development and growth control, highlighted by the apparent involvement of mammalian CAMTA2 in cardiac growth, and of CAMTA1 in tumor suppression and memory performance.
Collapse
Affiliation(s)
- Aliza Finkler
- Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
83
|
Wang T, Jiao Y, Montell C. Dissection of the pathway required for generation of vitamin A and for Drosophila phototransduction. ACTA ACUST UNITED AC 2007; 177:305-16. [PMID: 17452532 PMCID: PMC2064138 DOI: 10.1083/jcb.200610081] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary carotenoids are precursors for the production of retinoids, which participate in many essential processes, including the formation of the photopigment rhodopsin. Despite the importance of conversion of carotenoids to vitamin A (all-trans-retinol), many questions remain concerning the mechanisms that promote this process, including the uptake of carotenoids. We use the Drosophila visual system as a genetic model to study retinoid formation from β-carotene. In a screen for mutations that affect the biosynthesis of rhodopsin, we identified a class B scavenger receptor, SANTA MARIA. We demonstrate that SANTA MARIA functions upstream of vitamin A formation in neurons and glia, which are outside of the retina. The protein is coexpressed and functionally coupled with the β, β-carotene-15, 15′-monooxygenase, NINAB, which converts β-carotene to all-trans-retinal. Another class B scavenger receptor, NINAD, functions upstream of SANTA MARIA in the uptake of carotenoids, enabling us to propose a pathway involving multiple extraretinal cell types and proteins essential for the formation of rhodopsin.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, Department of Neuroscience, and Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
84
|
Landry CR, Castillo-Davis CI, Ogura A, Liu JS, Hartl DL. Systems-level analysis and evolution of the phototransduction network in Drosophila. Proc Natl Acad Sci U S A 2007; 104:3283-8. [PMID: 17360639 PMCID: PMC1805570 DOI: 10.1073/pnas.0611402104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Networks of interacting genes are responsible for generating life's complexity and for mediating how organisms respond to their environment. Thus, a basic understanding of genetic variation in gene networks in natural populations is important for elucidating how changes at the genetic level map to higher levels of biological organization. Here, using the well-characterized phototransduction network in Drosophila, we analyze variation in gene expression within and between two closely related species, Drosophila melanogaster and Drosophila simulans, under different environmental conditions. Gene expression levels in the pathway are largely conserved between these two sibling species. For most genes in the network, differences in level of gene expression between species are correlated with degree of polymorphism within species. However, one gene encoding the light-induced ion channel TRPL (transient receptor potential-like) shows an excess of expression divergence relative to polymorphism, suggesting a possible role for natural selection in shaping this expression difference between species. Finally, this difference in TRPL expression likely has significant functional consequences, because it is known that a high level of rhabdomeral TRPL leads to increased sensitivity to dim background light and an increased response to a wider range of light intensities. These results provide a preliminary quantification of variation and divergence of gene expression between species in a known gene network and provide a foundation for a system-level understanding of functional and evolutionary change.
Collapse
Affiliation(s)
| | - Cristian I. Castillo-Davis
- Statistics, Harvard University, Cambridge, MA 02138
- To whom correspondence may be addressed at the present address:
Department of Biology, University of Maryland, College Park, MD 20742. E-mail:
| | - Atsushi Ogura
- Departments of *Organismic and Evolutionary Biology and
| | - Jun S. Liu
- Statistics, Harvard University, Cambridge, MA 02138
| | - Daniel L. Hartl
- Departments of *Organismic and Evolutionary Biology and
- To whom correspondence may be addressed at:
Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138. E-mail:
| |
Collapse
|
85
|
Mecklenburg KL. Drosophila retinophilin contains MORN repeats and is conserved in humans. Mol Genet Genomics 2007; 277:481-9. [PMID: 17285308 DOI: 10.1007/s00438-007-0211-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Accepted: 01/13/2007] [Indexed: 11/28/2022]
Abstract
The function of conserved novel human genes can be efficiently addressed in genetic model organisms. From a collection of genes expressed in the Drosophila visual system, cDNAs expressed in vertebrates were identified and one similar to a novel human gene was chosen for further investigation. The results reported here characterize the Drosophila retinophilin gene and demonstrate that a similar gene is expressed in the human retina. The Drosophila and human retinophilin sequences are 50% identical, and they share an additional 16% conserved substitutions. Examination of the cDNA and genomic sequence indicates that it corresponds to the gene CG10233 of the annotated genome and predicts a 22.7 kDa protein. Polyclonal antibodies generated to a predicted retinophilin peptide recognize an antigen in Drosophila photoreceptor cells. The retinophilins encode 4 copies of a repeat associated with a Membrane Occupation and Recognition Nexus (MORN) function first discovered in junctophilins, which may interact with the plasma membrane. These results therefore show that Drosophila retinophilin is expressed in fly photoreceptor cells, demonstrate that a conserved human gene is expressed in human retina, and suggest that a mutational analysis of the Drosophila gene would be valuable.
Collapse
|
86
|
Liu CH, Wang T, Postma M, Obukhov AG, Montell C, Hardie RC. In vivo identification and manipulation of the Ca2+ selectivity filter in the Drosophila transient receptor potential channel. J Neurosci 2007; 27:604-15. [PMID: 17234592 PMCID: PMC6672779 DOI: 10.1523/jneurosci.4099-06.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/08/2006] [Accepted: 12/08/2006] [Indexed: 11/21/2022] Open
Abstract
Null mutations in the transient receptor potential (trp) gene eliminate the major, Ca2+-selective component of the light-sensitive conductance in Drosophila photoreceptors. Although it is the prototypical member of the TRP ion channel superfamily, conclusive evidence that TRP is a pore-forming channel subunit in vivo is lacking. We show here that mutating a specific acidic residue (Asp621) in the putative pore virtually eliminated Ca2+ permeation in vivo and altered other biophysical properties of the native TRP conductance. The results identify Asp621 as a critical residue of the TRP Ca2+ selectivity filter, provide the first rigorous demonstration that a TRP protein is a pore-forming subunit in any native system, and point to the likely location of the pore in mammalian canonical TRP channels. The specific elimination of Ca2+ permeation in TRP also provided a unique opportunity to address the roles of Ca2+ influx in vivo. We found that Asp621 mutations profoundly affected several key aspects of the light response and caused light-dependent retinal degeneration.
Collapse
Affiliation(s)
- Che H. Liu
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, United Kingdom
| | - Tao Wang
- Departments of Biological Chemistry and Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Marten Postma
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, United Kingdom
| | - Alexander G. Obukhov
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indianapolis 46202
| | - Craig Montell
- Departments of Biological Chemistry and Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Roger C. Hardie
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
87
|
Hardie RC. TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 2007; 578:9-24. [PMID: 16990401 PMCID: PMC2075119 DOI: 10.1113/jphysiol.2006.118372] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 09/18/2006] [Indexed: 01/10/2023] Open
Abstract
The transient receptor potential (TRP) ion channel family was the last major ion channel family to be discovered. The prototypical member (dTRP) was identified by a forward genetic approach in Drosophila, where it represents the transduction channel in the photoreceptors, activated downstream of a Gq-coupled PLC. In the meantime 29 vertebrate TRP isoforms are recognized, distributed amongst seven subfamilies (TRPC, TRPV, TRPM, TRPML, TRPP, TRPA, TRPN). They subserve a wide range of functions throughout the body, most notably, though by no means exclusively, in sensory transduction and in vascular smooth muscle. However, their precise physiological roles and mechanism of activation and regulation are still only gradually being revealed. Most TRP channels are subject to multiple modes of regulation, but a common theme amongst the TRPC/V/M subfamilies is their regulation by lipid messengers. Genetic evidence supports an excitatory role of diacylglycerol (DAG) for the dTRP's, although curiously only DAG metabolites (PUFAs) have been found to activate the Drosophila channels. TRPC2,3,6 and 7 are widely accepted as DAG-activated channels, although TRPC3 can also be regulated via a store-operated mechanism. More recently PIP2 has been shown to be required for activity of TRPV5, TRPM4,5,7 and 8, whilst it may inhibit TRPV1 and the dTRPs. Although compelling evidence for a direct interaction of DAG with the TRPC channels is lacking, mutagenesis studies have identified putative PIP2-interacting domains in the C-termini of several TRPV and TRPM channels.
Collapse
Affiliation(s)
- Roger C Hardie
- Department of Physiology Development and Neuroscience, Cambridge University, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
88
|
Parnas M, Katz B, Minke B. Open channel block by Ca2+ underlies the voltage dependence of drosophila TRPL channel. J Gen Physiol 2007; 129:17-28. [PMID: 17190901 PMCID: PMC1999407 DOI: 10.1085/jgp.200609659] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/07/2006] [Indexed: 11/20/2022] Open
Abstract
The light-activated channels of Drosophila photoreceptors transient receptor potential (TRP) and TRP-like (TRPL) show voltage-dependent conductance during illumination. Recent studies implied that mammalian members of the TRP family, which belong to the TRPV and TRPM subfamilies, are intrinsically voltage-gated channels. However, it is unclear whether the Drosophila TRPs, which belong to the TRPC subfamily, share the same voltage-dependent gating mechanism. Exploring the voltage dependence of Drosophila TRPL expressed in S2 cells, we found that the voltage dependence of this channel is not an intrinsic property since it became linear upon removal of divalent cations. We further found that Ca(2+) blocked TRPL in a voltage-dependent manner by an open channel block mechanism, which determines the frequency of channel openings and constitutes the sole parameter that underlies its voltage dependence. Whole cell recordings from a Drosophila mutant expressing only TRPL indicated that Ca(2+) block also accounts for the voltage dependence of the native TRPL channels. The open channel block by Ca(2+) that we characterized is a useful mechanism to improve the signal to noise ratio of the response to intense light when virtually all the large conductance TRPL channels are blocked and only the low conductance TRP channels with lower Ca(2+) affinity are active.
Collapse
Affiliation(s)
- Moshe Parnas
- Department of Physiology and the Kühne Minerva Center for Studies of Visual Transduction, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | | | | |
Collapse
|
89
|
Abstract
The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
Collapse
Affiliation(s)
- Kartik Venkatachalam
- Departments of Biological Chemistry and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Craig Montell
- Departments of Biological Chemistry and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
90
|
Trebak M, Lemonnier L, Smyth JT, Vazquez G, Putney JW. Phospholipase C-coupled receptors and activation of TRPC channels. Handb Exp Pharmacol 2007:593-614. [PMID: 17217081 DOI: 10.1007/978-3-540-34891-7_35] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The canonical transient receptor potential (TRPC) cation channels are mammalian homologs of the photoreceptor channel TRP in Drosophila melanogaster. All seven TRPCs (TRPC1 through TRPC7) can be activated through Gq/11 receptors or receptor tyrosine kinase (RTK) by mechanisms downstream of phospholipase C. The last decade saw a rapidly growing interest in understanding the role of TRPC channels in calcium entry pathways as well as in understanding the signal(s) responsible for TRPC activation. TRPC channels have been proposed to be activated by a variety of signals including store depletion, membrane lipids, and vesicular insertion into the plasma membrane. Here we discuss recent developments in the mode of activation as well as the pharmacological and electrophysiological properties of this important and ubiquitous family of cation channels.
Collapse
Affiliation(s)
- M Trebak
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences-NIH, Research Triangle Park, PO Box 12233, NC 27709, USA
| | | | | | | | | |
Collapse
|
91
|
Soboloff J, Spassova M, Hewavitharana T, He LP, Luncsford P, Xu W, Venkatachalam K, van Rossum D, Patterson RL, Gill DL. TRPC channels: integrators of multiple cellular signals. Handb Exp Pharmacol 2007:575-91. [PMID: 17217080 DOI: 10.1007/978-3-540-34891-7_34] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TRPC channels are ubiquitously expressed among cell types and mediate signals in response to phospholipase C (PLC)-coupled receptors. TRPC channels function as integrators of multiple signals resulting from receptor-induced PLC activation, which catalyzes the breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 depletes Ca2+ stores and TRPC3 channels can be activated by store-depletion. InsP3 also activates the InsP3 receptor, which may undergo direct interactions with the TRPC3 channel, perhaps mediating store-dependence. The other PLC product, DAG, has a direct non-PKC-dependent activating role on TRPC3 channels likely by direct binding. DAG also has profound effects on the TRPC3 channel through PKC. Thus PKC is a powerful inhibitor of most TRPC channels and DAG is a dual regulator of the TRPC3 channel. PLC-mediated DAG results in rapid channel opening followed later by a slower DAG-induced PKC-mediated deactivation of the channel. The decreased level of PIP2 from PLC activation also has an important modifying action on TRPC3 channels. Thus, the TRPC3 channel and PLCgamma form an intermolecular PH domain that has high specificity for binding PIP2. This interaction allows the channel to be retained within the plasma membrane, a further operational control factor for TRPC3. As nonselective cation channels, TRPC channel opening results in the entry of both Na+ and Ca2+ ions. Thus, while they may mediate Ca2+ entry signals, TRPC channels are also powerful modifiers of membrane potential.
Collapse
Affiliation(s)
- J Soboloff
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Drosophila phototransduction serves as a model for phosphoinositide (PI) signaling and for characterizing the mechanisms regulating transient receptor potential (TRP) channels in vivo. Activation of TRP and TRP-like (TRPL) requires hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), resulting in the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Although a role for IP3 has been excluded, TRP channels have been proposed to be activated by either a reduction of inhibitory PIP2 or production of DAG/polyunsaturated fatty acids. Here, we characterize a protein, phosphatidylinositol synthase (dPIS), required for a key step during PIP2 regeneration, the production of phosphatidylinositol. Overexpression of dPIS suppressed the retinal degeneration resulting from two other mutations affecting PIP2 cycling, rdgB (retinal degeneration B) and cds (CDP-diacylglycerol synthase). To characterize the role of dPIS, we generated a mutation in dpis, which represented the first mutation in a gene encoding a PI synthase in an animal. In contrast to other mutations that reduce PIP2 regeneration, the dpis1 mutation eliminated all PI synthase activity in flies and resulted in lethality. In mosaic animals, we found that dPIS was essential for maintaining the photoresponse. Because the dpis1 mutation eliminates production of an enzyme essential for PIP2 regeneration, our data argue against activation of TRP and TRPL through a reduction of inhibitory PIP2.
Collapse
Affiliation(s)
- Tao Wang
- Departments of Biological Chemistry and Neuroscience, The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Craig Montell
- Departments of Biological Chemistry and Neuroscience, The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
93
|
Herlitze S, Landmesser LT. New optical tools for controlling neuronal activity. Curr Opin Neurobiol 2006; 17:87-94. [PMID: 17174547 DOI: 10.1016/j.conb.2006.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 12/06/2006] [Indexed: 11/26/2022]
Abstract
A major challenge in understanding the relationship between neural activity and development, and ultimately behavior, is to control simultaneously the activity of either many neurons belonging to specific subsets or specific regions within individual neurons. Optimally, such a technique should be capable of both switching nerve cells on and off within milliseconds in a non-invasive manner, and inducing depolarizations or hyperpolarizations for periods lasting from milliseconds to many seconds. Specific ion conductances in subcellular compartments must also be controlled to bypass signaling cascades in order to regulate precisely cellular events such as synaptic transmission. Light-activated G-protein-coupled receptors and ion channels, which can be genetically manipulated and targeted to neuronal circuits, have the greatest potential to fulfill these requirements.
Collapse
Affiliation(s)
- Stefan Herlitze
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4975, USA.
| | | |
Collapse
|
94
|
Krans J, Gilbert C, Hoy R. Teaching insect retinal physiology with newly designed, inexpensive micromanipulators. ADVANCES IN PHYSIOLOGY EDUCATION 2006; 30:254-61. [PMID: 17108255 DOI: 10.1152/advan.00029.2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this article, we detail how to produce two inexpensive micromanipulators that offer high precision (approximately 25 microm) along a single axis of movement. The more expensive of the designs provides improved versatility along multiple axes. Both manipulators offer substantial savings over commercially available micromanipulators with comparable capabilities. Plans and instructions are given such that a novice can produce the manipulators with simple tools. The manipulators are designed to serve undergraduate teaching exercises in physiology. An electroretinogram exercise is suggested in adult house flies (Musca) or flesh flies (Neobellieria). Measuring the intensity-response function and temporal characteristics of visual transduction are discussed. A brief introduction to the field of visual transduction and the physiology of the laboratory exercises is provided as well.
Collapse
Affiliation(s)
- Jacob Krans
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA.
| | | | | |
Collapse
|
95
|
Natochin M, Barren B, Ahmad ST, O'Tousa JE, Artemyev NO. Probing rhodopsin–transducin interaction using Drosophila Rh1–bovine rhodopsin chimeras. Vision Res 2006; 46:4575-81. [PMID: 16979689 DOI: 10.1016/j.visres.2006.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Invertebrate and vertebrate rhodopsins share a low degree of homology and are coupled to G-proteins from different families. Here we explore the utility of fly-expressed chimeras between Drosophila rhodopsin Rh1 and bovine rhodopsin (Rho) to probe the interactions between the invertebrate and vertebrate visual pigments and their cognate G-proteins. Chimeric Rh1 pigments carrying individual substitutions of the cytoplasmic loops C2 and C3 and the C-terminus with the corresponding regions of Rho retained the ability to stimulate phototranduction in Drosophila, but failed to activate transducin. Surprisingly, chimeric Rho containing the Rh1 C-terminus was fully capable of transducin activation, indicating that the C-terminal domain of vertebrate rhodopsins is not essential for the functional coupling to transducin.
Collapse
Affiliation(s)
- Michael Natochin
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
96
|
Defining the roles of Ca2+ — permeable channels in sperm. Open Life Sci 2006. [DOI: 10.2478/s11535-006-0034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractIon channels exert a vital role in the dialogue between male and female gametes and thus in the generation of new individuals in many species. Intracellular Ca2+ is possibly the key messenger between gametes. Different Ca2+-permeable channels have been detected in the plasma membrane and in the organelle-like acrosome membrane of sperm, which play vital roles in determining sperm fertilizing ability. Recent reports from several laboratories have adequately documented that the Ca2+-permeable channels of a sperm control a variety of functions ranging from motility to the acrosome reaction. In this article, we have reviewed the data from our and other laboratories, and have documented the mechanisms of different Ca2+-permeable channels involved in the fertilization event.
Collapse
|
97
|
Han J, Gong P, Reddig K, Mitra M, Guo P, Li HS. The Fly CAMTA Transcription Factor Potentiates Deactivation of Rhodopsin, a G Protein-Coupled Light Receptor. Cell 2006; 127:847-58. [PMID: 17110341 DOI: 10.1016/j.cell.2006.09.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 06/12/2006] [Accepted: 09/04/2006] [Indexed: 12/23/2022]
Abstract
Control of membrane-receptor activity is required not only for the accuracy of sensory responses, but also to protect cells from excitotoxicity. Here we report the isolation of two noncomplementary fly mutants with slow termination of photoresponses. Genetic and electrophysiological analyses of the mutants revealed a defect in the deactivation of rhodopsin, a visual G protein-coupled receptor (GPCR). The mutant gene was identified as the calmodulin-binding transcription activator (dCAMTA). The known rhodopsin regulator Arr2 does not mediate this visual function of dCAMTA. A genome-wide screen identified five dCAMTA target genes. Of these, overexpression of the F box gene dFbxl4 rescued the mutant phenotypes. We further showed that dCAMTA is stimulated in vivo through interaction with the Ca(2+) sensor calmodulin. Our data suggest that calmodulin/CAMTA/Fbxl4 may mediate a long-term feedback regulation of the activity of Ca(2+)-stimulating GPCRs, which could prevent cell damage due to extra Ca(2+) influx.
Collapse
Affiliation(s)
- Junhai Han
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
98
|
Popescu DC, Ham AJL, Shieh BH. Scaffolding protein INAD regulates deactivation of vision by promoting phosphorylation of transient receptor potential by eye protein kinase C in Drosophila. J Neurosci 2006; 26:8570-7. [PMID: 16914683 PMCID: PMC1577681 DOI: 10.1523/jneurosci.1478-06.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drosophila visual signaling is one of the fastest G-protein-coupled transduction cascades, because effector and modulatory proteins are organized into a macromolecular complex ("transducisome"). Assembly of the complex is orchestrated by inactivation no afterpotential D (INAD), which colocalizes the transient receptor potential (TRP) Ca2+ channel, phospholipase Cbeta, and eye protein kinase C (eye-PKC), for more efficient signal transduction. Eye-PKC is critical for deactivation of vision. Moreover, deactivation is regulated by the interaction between INAD and TRP, because abrogation of this interaction in InaD(p215) results in slow deactivation similar to that of inaC(p209) lacking eye-PKC. To elucidate the mechanisms whereby eye-PKC modulates deactivation, here we demonstrate that eye-PKC, via tethering to INAD, phosphorylates TRP in vitro. We reveal that Ser982 of TRP is phosphorylated by eye-PKC in vitro and, importantly, in the fly eye, as shown by mass spectrometry. Furthermore, transgenic expression of modified TRP bearing an Ala substitution leads to slow deactivation of the visual response similar to that of InaD(p215). These results suggest that the INAD macromolecular complex plays an essential role in termination of the light response by promoting efficient phosphorylation at Ser982 of TRP for fast deactivation of the visual signaling.
Collapse
|
99
|
Orem NR, Xia L, Dolph PJ. An essential role for endocytosis of rhodopsin through interaction of visual arrestin with the AP-2 adaptor. J Cell Sci 2006; 119:3141-8. [PMID: 16835270 DOI: 10.1242/jcs.03052] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we have identified a class of retinal degeneration mutants in Drosophila in which the normally transient interaction between arrestin2 (Arr2) and rhodopsin is stabilized and the complexes are rapidly internalized into the cell body by receptor-mediated endocytosis. The accumulation of protein complexes in the cytoplasm eventually results in photoreceptor cell death. We now show that the endocytic adapter protein AP-2 is essential for rhodopsin endocytosis through an Arr2-AP-2β interaction, and mutations in Arr2 that disrupt its interaction with the β subunit of AP-2 prevent endocytosis-induced retinal degeneration. We further demonstrate that if the interaction between Arr2 and AP-2 is blocked, this also results in retinal degeneration in an otherwise wild-type background. This indicates that the Arr2-AP-2 interaction is necessary for the pathology observed in a number of Drosophila visual system mutants, and suggests that regular rhodopsin turnover in wild-type photoreceptor cells by Arr2-mediated endocytosis is essential for photoreceptor cell maintenance.
Collapse
Affiliation(s)
- Nicholas R Orem
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
100
|
Rebois RV, Robitaille M, Galés C, Dupré DJ, Baragli A, Trieu P, Ethier N, Bouvier M, Hébert TE. Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci 2006; 119:2807-18. [PMID: 16787947 DOI: 10.1242/jcs.03021] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bioluminescence resonance energy transfer (BRET) and co-immunoprecipitation experiments revealed that heterotrimeric G proteins and their effectors were found in stable complexes that persisted during signal transduction. Adenylyl cyclase, Kir3.1 channel subunits and several G-protein subunits (Gαs, Gαi, Gβ1 and Gγ2) were tagged with luciferase (RLuc) or GFP, or the complementary fragments of YFP (specifically Gβ1-YFP1-158 and Gγ2-YFP159-238, which heterodimerize to produce fluorescent YFP-Gβ1γ2). BRET was observed between adenylyl-cyclase-RLuc or Kir3.1-RLuc and GFP-Gγ2, GFP-Gβ1 or YFP-Gβ1γ2. Gα subunits were also stably associated with both effectors regardless of whether or not signal transduction was initiated by a receptor agonist. Although BRET between effectors and Gβγ was increased by receptor stimulation, our data indicate that these changes are likely to be conformational in nature. Furthermore, receptor-sensitive G-protein-effector complexes could be detected before being transported to the plasma membrane, providing the first direct evidence for an intracellular site of assembly.
Collapse
Affiliation(s)
- R Victor Rebois
- Laboratory of Cellular Biology, 5 Research Court, National Institute of Deafness and Communicative Disorders, National Institutes of Health, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|