51
|
Farahmand S, Fatemi F, Hajihosseini R. Sequencing of the rus gene before and after the mutation with DES in the bacterial Acidithiobacillus sp. FJ2. NOVA BIOLOGICA REPERTA 2019. [DOI: 10.29252/nbr.6.1.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
52
|
Alagumuthu M, Dahiya D, Singh Nigam P. Phospholipid—the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future. AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
53
|
Monachon M, Albelda-Berenguer M, Joseph E. Biological oxidation of iron sulfides. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:1-27. [PMID: 31128745 DOI: 10.1016/bs.aambs.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biological oxidation of minerals and ores, called bioleaching, has been studied for the last decades to solubilize metals and recover them. In particular, iron sulfides are the most studied ores for an optimum extraction of different metals, such as copper or zinc. The use of chemolithotrophic bacteria, as Acidothiobacillus ferrooxidans, to oxidize both iron and sulfur species in aerobic conditions and at acidic pH shows promising results. In the field of heritage preservation, the development of "green" treatments is more and more studied. Waterlogged archeological wood presents an accumulation of iron sulfides within its structure, which, after exposition to oxygen, lead to salt precipitation and acidification and so to the degradation of the wooden artifact. A new extraction method, based on the dissolution of iron sulfides by the use of bacteria could be an alternative to the current chemical extraction methods, as being more respectful and ecological. While A. ferrooxidans is very effective in mines and groundwater, in the field of conservation-restoration of wood, Thiobacillus denitrificans is a better candidate as it grows at neutral pH, which is less aggressive for organic substrates (wood here). Preliminary studies show the efficiency of T. denitrificans for the dissolution of iron sulfides, as the concentration of nitrates used as electron donors decreases while the concentration of sulfates produced increases without degrading the wooden matrix. Long-term behavior should be studied to assess the stability of the artifacts after treatment.
Collapse
|
54
|
Application Potentials of Geobiotechnology in Mining, Mineral Processing, and Metal Recycling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 173:299-323. [DOI: 10.1007/10_2018_82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
56
|
Transposase-Mediated Chromosomal Integration of Exogenous Genes in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 2018; 84:AEM.01381-18. [PMID: 30143507 DOI: 10.1128/aem.01381-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 01/21/2023] Open
Abstract
The development of Acidithiobacillus ferrooxidans as a non-model host organism for synthetic biology is hampered by a lack of genetic tools and techniques. New plating and liquid-based selection methods were developed to improve the identification of transformed cell lines. Enabled by these methods, a hyperactive transposase was used to generate mutants with integrated genes for the expression of the superfolder green fluorescent protein (sfGFP) gene or a 2-keto decarboxylase (KDC) gene, which enabled the production and secretion of isobutyric acid (IBA). An inverse PCR method was used to identify the insertion sites of the KDC gene in several mutants, leading to the identification of a region on the chromosome that may be suitable for future genetic insertions. These results demonstrate that functional exogenous metabolic genes have been chromosomally integrated into A. ferrooxidans, and this advance will facilitate the future development of these cells for new biotechnology applications.IMPORTANCE Acidithiobacillus ferrooxidans is an iron- and sulfur-oxidizing chemolithoautotroph and is a key member of the microbial consortia used in industrial biomining applications. There is interest in exploiting these cells for other metal recovery applications as well as in developing them as unique nonmodel microbial cell factories. Plasmid-driven expression of exogenous genes has been reported, and homologous recombination has been used to knock out some gene expression. Here, new selection protocols facilitated the development of a transposition method for chromosomal integration of exogenous genes into A. ferrooxidans This greatly expands the available genetic toolbox, which will open the door to greater metabolic engineering efforts for these cells.
Collapse
|
57
|
Boxall NJ, Cheng KY, Bruckard W, Kaksonen AH. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:504-511. [PMID: 30144769 DOI: 10.1016/j.jhazmat.2018.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 05/15/2023]
Abstract
Applying biohydrometallurgy for metal extraction and recovery from mixed and polymetallic wastes such as electronic waste is limited due to microbial inhibition at low pulp densities and substrate (iron and sulfur) limitation. Here, we investigated the application of indirect non-contact bioleaching with biogenic ferric iron and sulfuric acid to extract metals from lithium-ion battery (LIB) waste. Results showed that although a single leach stage at ambient temperature only facilitated low leach yields (<10%), leach yields for all metals improved with multiple sequential leach stages (4 × 1 h). Biogenic ferric leaching augmented with 100 mM H2SO4 further enabled the highest leach yields (53.2% cobalt, 60.0% lithium, 48.7% nickel, 81.8% manganese, 74.4% copper). The proposed use of bioreagents is a viable and a more environmentally benign alternative to traditional mineral processing, which could be further improved by appropriate pre-treatment of the LIB waste.
Collapse
Affiliation(s)
- Naomi J Boxall
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia.
| | - Ka Yu Cheng
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Warren Bruckard
- CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia; School of Pathology and Laboratory Medicine, and Oceans Institute, University of Western Australia, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
58
|
Identification of trehalose as a compatible solute in different species of acidophilic bacteria. J Microbiol 2018; 56:727-733. [PMID: 30267316 DOI: 10.1007/s12275-018-8176-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
The major industrial heap bioleaching processes are located in desert regions (mainly Chile and Australia) where fresh water is scarce and the use of resources with low water activity becomes an attractive alternative. However, in spite of the importance of the microbial populations involved in these processes, little is known about their response or adaptation to osmotic stress. In order to investigate the response to osmotic stress in these microorganisms, six species of acidophilic bacteria were grown at elevated osmotic strength in liquid media, and the compatible solutes synthesised were identified using ion chromatography and MALDI-TOF mass spectrometry. Trehalose was identified as one of, or the sole, compatible solute in all species and strains, apart from Acidithiobacillus thiooxidans where glucose and proline levels increased at elevated osmotic potentials. Several other potential compatible solutes were tentatively identified by MALDITOF analysis. The same compatible solutes were produced by these bacteria regardless of the salt used to produce the osmotic stress. The results correlate with data from sequenced genomes which confirm that many chemolithotrophic and heterotrophic acidophiles possess genes for trehalose synthesis. This is the first report to identify and quantify compatible solutes in acidophilic bacteria that have important roles in biomining technologies.
Collapse
|
59
|
Reflecting on Gold Geomicrobiology Research: Thoughts and Considerations for Future Endeavors. MINERALS 2018. [DOI: 10.3390/min8090401] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Research in gold (Au) geomicrobiology has developed extensively over the last ten years, as more Au-bearing materials from around the world point towards a consistent story: That microbes interact with Au. In weathering environments, Au is mobile, taking the form of oxidized, soluble complexes or reduced, elemental Au nanoparticles. The transition of Au between aqueous and solid states is attributed to varying geochemical conditions, catalyzed in part by the biosphere. Hence, a global Au-biogeochemical-cycle was proposed. The primary focus of this mini-review is to reflect upon the biogeochemical processes that contribute to what we currently know about Au cycling. In general, the global Au-biogeochemical-cycle begins with the liberation of gold-silver particles from a primary host rock, by physical weathering. Through oxidative-complexation, inorganic and organic soluble-Au complexes are produced. However, in the presence of microbes or other reductants—e.g., clays and Fe-oxides—these Au complexes can be destabilized. The reduction of soluble Au ultimately leads to the bioprecipitation and biomineralization of Au, the product of which can aggregate into larger structures, thereby completing the Au cycle. Evidence of these processes have been “recorded” in the preservation of secondary Au structures that have been observed on Au particles from around the world. These structures—i.e., nanometer-size to micrometer-size Au dissolution and reprecipitation features—are “snap shots” of biogeochemical influences on Au, during its journey in Earth-surface environments. Therefore, microbes can have a profound effect on the occurrence of Au in natural environments, given the nutrients necessary for microbial metabolism are sustained and Au is in the system.
Collapse
|
60
|
Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and Niche of Archaea in Bioremediation. ARCHAEA (VANCOUVER, B.C.) 2018; 2018:3194108. [PMID: 30254509 PMCID: PMC6140281 DOI: 10.1155/2018/3194108] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/01/2018] [Indexed: 12/03/2022]
Abstract
Bioremediation is the use of microorganisms for the degradation or removal of contaminants. Most bioremediation research has focused on processes performed by the domain Bacteria; however, Archaea are known to play important roles in many situations. In extreme conditions, such as halophilic or acidophilic environments, Archaea are well suited for bioremediation. In other conditions, Archaea collaboratively work alongside Bacteria during biodegradation. In this review, the various roles that Archaea have in bioremediation is covered, including halophilic hydrocarbon degradation, acidophilic hydrocarbon degradation, hydrocarbon degradation in nonextreme environments such as soils and oceans, metal remediation, acid mine drainage, and dehalogenation. Research needs are addressed in these areas. Beyond bioremediation, these processes are important for wastewater treatment (particularly industrial wastewater treatment) and help in the understanding of the natural microbial ecology of several Archaea genera.
Collapse
Affiliation(s)
- Mark James Krzmarzick
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - David Kyle Taylor
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiang Fu
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Aubrey Lynn McCutchan
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
61
|
Quina MJ, Bontempi E, Bogush A, Schlumberger S, Weibel G, Braga R, Funari V, Hyks J, Rasmussen E, Lederer J. Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:526-542. [PMID: 29679825 DOI: 10.1016/j.scitotenv.2018.04.150] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 05/03/2023]
Abstract
Environmental policies in the European Union focus on the prevention of hazardous waste and aim to mitigate its impact on human health and ecosystems. However, progress is promoting a shift in perspective from environmental impacts to resource recovery. Municipal solid waste incineration (MSWI) has been increasing in developed countries, thus the amount of air pollution control residues (APCr) and fly ashes (FA) have followed the same upward trend. APCr from MSWI is classified as hazardous waste in the List of Waste (LoW) and as an absolute entry (19 01 07*), but FA may be classified as a mirror entry (19 0 13*/19 01 14). These properties arise mainly from their content in soluble salts, potentially toxic metals, trace organic pollutants and high pH in contact with water. Since these residues have been mostly disposed of in underground and landfills, other possibilities must be investigated to recover secondary raw materials and products. According to the literature, four additional routes of recovery have been found: detoxification (e.g. washing), product manufacturing (e.g. ceramic products and cement), practical applications (e.g. CO2 sequestration) and recovery of materials (e.g. Zn and salts). This work aims to identify the best available technologies for material recovery in order to avoid landfill solutions. Within this scope, six case studies are presented and discussed: recycling in lightweight aggregates, glass-ceramics, cement, recovery of zinc, rare metals and salts. Finally, future perspectives are provided to advance understanding of this anthropogenic waste as a source of resources, yet tied to safeguards for the environment.
Collapse
Affiliation(s)
- Margarida J Quina
- CIEPQPF - Research Centre on Chemical Processes Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, Polo II, 3030-790 Coimbra, Portugal.
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, 25123 Brescia, Italy.
| | - Anna Bogush
- Centre for Resource Efficiency & the Environment (CREE), Department of Civil, Environmental & Geomatic Engineering (CEGE), University College London (UCL), Chadwick Building, Gower Street, London WC1E 6BT, UK.
| | - Stefan Schlumberger
- Development Center for Sustainable Management of Recyclable Waste and Resources (ZAR), Wildbachstrasse 2, 8340 Hinwil, Switzerland.
| | - Gisela Weibel
- Development Center for Sustainable Management of Recyclable Waste and Resources (ZAR), Wildbachstrasse 2, 8340 Hinwil, Switzerland.
| | - Roberto Braga
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Piazza di Porta San Donato 1, 40126 Bologna, Italy.
| | - Valerio Funari
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Piazza di Porta San Donato 1, 40126 Bologna, Italy.
| | - Jiri Hyks
- Danish Waste Solutions ApS, Agern Allé 3, DK-2970 Hørsholm, Denmark.
| | - Erik Rasmussen
- Stena Recycling AS, Banemarksvej 40, DK-2605 Brøndby, Denmark.
| | - Jakob Lederer
- TU Wien, Christian-Doppler-Laboratory for Anthropogenic Resources, Karlsplatz 13/226, 1040 Vienna, Austria.
| |
Collapse
|
62
|
Gu T, Rastegar SO, Mousavi SM, Li M, Zhou M. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. BIORESOURCE TECHNOLOGY 2018; 261:428-440. [PMID: 29703427 DOI: 10.1016/j.biortech.2018.04.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/01/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Bioleaching has been successfully used in commercial metal mining for decades. It uses microbes to biosolubilize metal-containing inorganic compounds such as metal oxides and sulfides. There is a growing interest in using bioleaching for bioremediation of solid wastes by removing heavy metals from ash and sewage sludge. This review presents the state of the art in bioleaching research for recovery of metals and bioremediation of solid wastes. Various process parameters such as reaction time, pH, temperature, mass transfer rate, nutrient requirement, pulp density and particle size are discussed. Selections of more effective microbes are assessed. Pretreatment methods that enhance bioleaching are also discussed. Critical issues in bioreactor scale-up are analyzed. The potential impact of advances in biofilm and microbiome is explained.
Collapse
Affiliation(s)
- Tingyue Gu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Seyed Omid Rastegar
- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Ming Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
63
|
Coral T, Descostes M, De Boissezon H, Bernier-Latmani R, de Alencastro LF, Rossi P. Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:26-35. [PMID: 29428857 DOI: 10.1016/j.scitotenv.2018.01.321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
A large fraction (47%) of the world's uranium is mined by a technique called "In Situ Recovery" (ISR). This mining technique involves the injection of a leaching fluid (acidic or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution through cation exchange columns for the recovery of dissolved uranium. The present study reports the in-depth alterations brought to autochthonous microbial communities during acidic ISR activities. Water samples were collected from a uranium roll-front deposit that is part of an ISR mine in operation (Tortkuduk, Kazakhstan). Water samples were obtained at a depth of ca 500 m below ground level from several zones of the Uyuk aquifer following the natural redox zonation inherited from the roll front deposit, including the native mineralized orebody and both upstream and downstream adjacent locations. Samples were collected equally from both the entrance and the exit of the uranium concentration plant. Next-generation sequencing data showed that the redox gradient shaped the community structures, within the anaerobic, reduced, and oligotrophic habitats of the native aquifer zones. Acid injection induced drastic changes in the structures of these communities, with a large decrease in both cell numbers and diversity. Communities present in the acidified (pH values < 2) mining areas exhibited similarities to those present in acid mine drainage, with the dominance of Sulfobacillus sp., Leptospirillum sp. and Acidithiobacillus sp., as well as the archaean Ferroplasma sp. Communities located up- and downstream of the mineralized zone under ISR and affected by acidic fluids were blended with additional facultative anaerobic and acidophilic microorganisms. These mixed biomes may be suitable communities for the natural attenuation of ISR mining-affected subsurface through the reduction of metals and sulfate. Assessing the effect of acidification on the microbial community is critical to evaluating the potential for natural attenuation or active bioremediation strategies.
Collapse
Affiliation(s)
- Thomas Coral
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland
| | - Michaël Descostes
- AREVA Mines, R&D Dpt., Tour AREVA, 1, place Jean Millier, 92084 Paris, La Défense, France
| | - Hélène De Boissezon
- AREVA Mines, R&D Dpt., Tour AREVA, 1, place Jean Millier, 92084 Paris, La Défense, France
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| | - Luiz Felippe de Alencastro
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland
| | - Pierre Rossi
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland.
| |
Collapse
|
64
|
Thompson ED, Hogstrand C, Glover CN. From sea squirts to squirrelfish: facultative trace element hyperaccumulation in animals. Metallomics 2018; 10:777-793. [PMID: 29850752 DOI: 10.1039/c8mt00078f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hyperaccumulation of trace elements is a widely characterized phenomenon in plants, bacteria, and fungi, but has received little attention in animals. However, there are numerous examples of animals that specifically and facultatively accumulate trace elements in the absence of elevated environmental concentrations. Metal hyperaccumulating animals are usually marine invertebrates, likely owing to environmental (e.g. constant exposure via the water) and physiological (e.g. osmoconforming and reduced integument permeability) factors. However, there are examples of terrestrial animals (insect larvae) and marine vertebrates (e.g. squirrelfish) that accumulate high body and/or tissue metal burdens. This review examines examples of animal hyperaccumulation of the elements arsenic, copper, iron, titanium, vanadium and zinc, describing mechanisms by which accumulation occurs and, where possible, hypothesizing functional roles. Groups such as the ascidians (sea squirts), molluscs (gastropods, bivalves and cephalopods) and polychaete annelids feature prominently as animals with hyperaccumulating capacity. Many of these species are potential model organisms offering insight into fundamental processes underlying metal handling, with relevance to human disease and aquatic metal toxicity, and some offer promise in applied fields such as bioremediation.
Collapse
Affiliation(s)
- E David Thompson
- Department of Biological Sciences, Northern Kentucky University, SC 245 Nunn Dr Highland Heights, KY 41099, USA.
| | | | | |
Collapse
|
65
|
|
66
|
Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnol Adv 2018; 36:1048-1062. [PMID: 29555455 DOI: 10.1016/j.biotechadv.2018.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/21/2022]
Abstract
The increasing demand of different essential metals as a consequence of the development of new technologies, especially in the so called "low carbon technologies" require the development of innovative technologies that enable an economic and environmentally friendly metal recovery from primary and secondary resources. There is serious concern that the demand of some critical elements might exceed the present supply within a few years, thus necessitating the development of novel strategies and technologies to meet the requirements of industry and society. Besides an improvement of exploitation and processing of ores, the more urgent issue of recycling of strategic metals has to be enforced. However, current recycling rates are very low due to the increasing complexity of products and the low content of certain critical elements, thus hindering an economic metal recovery. On the other hand, increasing environmental consciousness as well as limitations of classical methods require innovative recycling methodologies in order to enable a circular economy. Modern biotechnologies can contribute to solve some of the problems related to metal recycling. These approaches use natural properties of organisms, bio-compounds, and biomolecules to interact with minerals, materials, metals, or metal ions such as surface attachment, mineral dissolution, transformation, and metal complexation. Further, modern genetic approaches, e.g. realized by synthetic biology, enable the smart design of new chemicals. The article presents some recent developments in the fields of bioleaching, biosorption, bioreduction, and bioflotation, and their use for metal recovery from different waste materials. Currently only few of these developments are commercialized. Major limitations are high costs in comparison to conventional methods and low element selectivity. The article discusses future trends to overcome these barriers. Especially interdisciplinary approaches, the combination of different technologies, the inclusion of modern genetic methods, as well as the consideration of existing, yet unexplored natural resources will push innovations in these fields.
Collapse
|
67
|
Cetinel S, Shen WZ, Aminpour M, Bhomkar P, Wang F, Borujeny ER, Sharma K, Nayebi N, Montemagno C. Biomining of MoS 2 with Peptide-based Smart Biomaterials. Sci Rep 2018; 8:3374. [PMID: 29463859 PMCID: PMC5820330 DOI: 10.1038/s41598-018-21692-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
Biomining of valuable metals using a target specific approach promises increased purification yields and decreased cost. Target specificity can be implemented with proteins/peptides, the biological molecules, responsible from various structural and functional pathways in living organisms by virtue of their specific recognition abilities towards both organic and inorganic materials. Phage display libraries are used to identify peptide biomolecules capable of specifically recognizing and binding organic/inorganic materials of interest with high affinities. Using combinatorial approaches, these molecular recognition elements can be converted into smart hybrid biomaterials and harnessed for biotechnological applications. Herein, we used a commercially available phage-display library to identify peptides with specific binding affinity to molybdenite (MoS2) and used them to decorate magnetic NPs. These peptide-coupled NPs could capture MoS2 under a variety of environmental conditions. The same batch of NPs could be re-used multiple times to harvest MoS2, clearly suggesting that this hybrid material was robust and recyclable. The advantages of this smart hybrid biomaterial with respect to its MoS2-binding specificity, robust performance under environmentally challenging conditions and its recyclability suggests its potential application in harvesting MoS2 from tailing ponds and downstream mining processes.
Collapse
Affiliation(s)
- Sibel Cetinel
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Wei-Zheng Shen
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Maral Aminpour
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Prasanna Bhomkar
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,National Institute of Nanotechnology (NINT), University of Alberta, T6G 2M9, Edmonton, AB, Canada
| | - Feng Wang
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,National Institute of Nanotechnology (NINT), University of Alberta, T6G 2M9, Edmonton, AB, Canada
| | - Elham Rafie Borujeny
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Kumakshi Sharma
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Niloofar Nayebi
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Carlo Montemagno
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada. .,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada. .,Southern Illinois University, 62901, Carbondale, IL, USA.
| |
Collapse
|
68
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
69
|
|
70
|
|
71
|
Castillo A, Tello M, Ringwald K, Acuña LG, Quatrini R, Orellana O. A DNA segment encoding the anticodon stem/loop of tRNA determines the specific recombination of integrative-conjugative elements in Acidithiobacillus species. RNA Biol 2017; 15:492-499. [PMID: 29168417 DOI: 10.1080/15476286.2017.1408765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Horizontal gene transfer is crucial for the adaptation of microorganisms to environmental cues. The acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans encodes an integrative-conjugative genetic element (ICEAfe1) inserted in the gene encoding a tRNAAla. This genetic element is actively excised from the chromosome upon induction of DNA damage. A similar genetic element (ICEAcaTY.2) is also found in an equivalent position in the genome of Acidithiobacillus caldus. The local genomic context of both mobile genetic elements is highly syntenous and the cognate integrases are well conserved. By means of site directed mutagenesis, target site deletions and in vivo integrations assays in the heterologous model Escherichia coli, we assessed the target sequence requirements for site-specific recombination to be catalyzed by these integrases. We determined that each enzyme recognizes a specific small DNA segment encoding the anticodon stem/loop of the tRNA as target site and that specific positions in these regions are well conserved in the target attB sites of orthologous integrases. Also, we demonstrate that the local genetic context of the target sequence is not relevant for the integration to take place. These findings shed new light on the mechanism of site-specific integration of integrative-conjugative elements in members of Acidithiobacillus genus.
Collapse
Affiliation(s)
- Andrés Castillo
- a Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Región Metropolitana , Chile
| | - Mario Tello
- b Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología , Universidad de Santiago de Chile , Santiago , Chile
| | - Kenneth Ringwald
- c Carl R. Woese Institute for Genomic Biology, Department of Microbiology , University of Illinois , Urbana-Champaign , Illinois , United States
| | - Lillian G Acuña
- d Fundación Ciencia y Vida. Ave. Zañartu 1482 - Ñuñoa, Santiago , Región Metropolitana , Chile
| | - Raquel Quatrini
- d Fundación Ciencia y Vida. Ave. Zañartu 1482 - Ñuñoa, Santiago , Región Metropolitana , Chile
| | - Omar Orellana
- a Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Región Metropolitana , Chile
| |
Collapse
|
72
|
Belfiore C, Curia MV, Farías ME. Characterization of Rhodococcus sp. A5 wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Rev Argent Microbiol 2017; 50:311-322. [PMID: 29239754 DOI: 10.1016/j.ram.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/19/2017] [Accepted: 07/02/2017] [Indexed: 01/07/2023] Open
Abstract
Lithium (Li) is widely distributed in nature and has several industrial applications. The largest reserves of Li (over 85%) are in the so-called "triangle of lithium" that includes the Salar de Atacama in Chile, Salar de Uyuni in Bolivia and Salar del Hombre Muerto in Argentina. Recently, the use of microorganisms in metal recovery such as copper has increased; however, there is little information about the recovery of lithium. The strain Rhodococcus sp. A5wh used in this work was previously isolated from Laguna Azul. The assays revealed that this strain was able to accumulate Li (39.52% of Li/g microbial cells in 180min) and that it was able to grow in its presence up to 1M. In order to understand the mechanisms implicated in Li tolerance, a proteomic approach was conducted. Comparative proteomic analyses of strain A5wh exposed and unexposed to Li reveal that 17 spots were differentially expressed. The identification of proteins was performed by MALDI-TOF/MS, and the obtained results showed that proteins involved in stress response, transcription, translations, and metabolism were expressed under Li stress. This knowledge constitutes the first proteomic approach to elucidate the strategy followed by Rhodococcus to adapt to Li.
Collapse
Affiliation(s)
- Carolina Belfiore
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Av. Belgrano y Pasaje Caseros, 4000 S. M. de Tucumán, Argentina.
| | - María V Curia
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Av. Belgrano y Pasaje Caseros, 4000 S. M. de Tucumán, Argentina
| | - María E Farías
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Av. Belgrano y Pasaje Caseros, 4000 S. M. de Tucumán, Argentina
| |
Collapse
|
73
|
Crasto de Lima FD, Miwa RH, Miranda CR. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study. J Chem Phys 2017; 147:174704. [DOI: 10.1063/1.5009585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. D. Crasto de Lima
- Instituto de Física, Universidade Federal de Uberlândia, C.P. 593, 38400-902 Uberlândia, MG, Brazil
| | - R. H. Miwa
- Instituto de Física, Universidade Federal de Uberlândia, C.P. 593, 38400-902 Uberlândia, MG, Brazil
| | - Caetano R. Miranda
- Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil
| |
Collapse
|
74
|
Li Q, Sun J, Ding D, Wang Q, Shi W, Hu E, Wang X, Jiang X. Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5569-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
75
|
Chabert N, Bonnefoy V, Achouak W. Quorum sensing improves current output with Acidithiobacillus ferrooxidans. Microb Biotechnol 2017; 11:136-140. [PMID: 28925584 PMCID: PMC5743822 DOI: 10.1111/1751-7915.12797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Acidithiobacillus ferrooxidans is a strict acidophilic chemolithoautotrophic bacterium that obtains its energy from reduced inorganic sulfur species or ferrous iron oxidation under aerobic conditions. Carbon felt electrodes were pre‐colonized by A. ferrooxidansATCC 23270T using ferrous iron or sulfur as electron donors, via the addition (or not) of a mixture of C14 acyl‐homoserine lactones (C14‐AHLs). Electrode coverage during pre‐colonization was sparse regardless of the electron donor source, whereas activation of quorum sensing significantly enhanced it. Microbial fuel cells (MFCs) inoculated with pre‐colonized electrodes (which behaved as biocathodes) were more efficient in terms of current production when iron was used as an electron donor. Biocathode coverage and current output were remarkably increased to −0.56 A m−2 by concomitantly using iron‐based metabolism and C14‐AHLs. Cyclic voltammetry displayed different electrochemical reactions in relation to the nature of the electron donor, underlying the implication of different electron transfer mechanisms.
Collapse
Affiliation(s)
- Nicolas Chabert
- CEA, CNRS, UMR7265, ECCOREV FR 3098, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement Extrêmes, Aix Marseille Univ, F-13108, St Paul Les Durance, France
| | - Violaine Bonnefoy
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, Marseille, France
| | - Wafa Achouak
- CEA, CNRS, UMR7265, ECCOREV FR 3098, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement Extrêmes, Aix Marseille Univ, F-13108, St Paul Les Durance, France
| |
Collapse
|
76
|
Kernan T, West AC, Banta S. Characterization of endogenous promoters for control of recombinant gene expression in
Acidithiobacillus ferrooxidans. Biotechnol Appl Biochem 2017; 64:793-802. [DOI: 10.1002/bab.1546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/16/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy Kernan
- Department of Physiology & Cellular Biophysics Columbia University New York NY USA
| | - Alan C. West
- Department of Chemical Engineering Columbia University New York NY USA
| | - Scott Banta
- Department of Chemical Engineering Columbia University New York NY USA
| |
Collapse
|
77
|
Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications. Curr Opin Biotechnol 2017; 45:144-155. [PMID: 28371651 DOI: 10.1016/j.copbio.2017.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 01/06/2023]
Abstract
Developing new feedstocks for the efficient production of biochemicals and biofuels will be a critical challenge as we diversify away from petrochemicals. One possible opportunity is the utilization of sulfide-based minerals in the Earth's crust. Non-photosynthetic chemolithoautotrophic bacteria are starting to be developed to produce biochemicals from CO2 using energy obtained from the oxidation of inorganic feedstocks. Biomining of metals like gold and copper already exploit the native metabolism of these bacteria and these represent perhaps the largest-scale bioprocesses ever developed. The metabolic engineering of these bacteria could be a desirable alternative to classical heterotrophic bioproduction. In this review, we discuss biomining operations and the challenges and advances in the engineering of associated chemolithoautotrophic bacteria for biofuel production. The co-generation of biofuels integrated with mining operations is a largely unexplored opportunity that will require advances in fundamental microbiology and the development of new genetic tools and techniques for these organisms. Although this approach is presently in its infancy, the production of biochemicals using energy from non-petroleum mineral resources is an exciting new biotechnology opportunity.
Collapse
|
78
|
Ning C, Lin CSK, Hui DCW, McKay G. Waste Printed Circuit Board (PCB) Recycling Techniques. Top Curr Chem (Cham) 2017; 375:43. [PMID: 28353257 DOI: 10.1007/s41061-017-0118-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/31/2017] [Indexed: 10/19/2022]
Abstract
With the development of technologies and the change of consumer attitudes, the amount of waste electrical and electronic equipment (WEEE) is increasing annually. As the core part of WEEE, the waste printed circuit board (WPCB) is a dangerous waste but at the same time a rich resource for various kinds of materials. In this work, various WPCB treatment methods as well as WPCB recycling techniques divided into direct treatment (landfill and incineration), primitive recycling technology (pyrometallurgy, hydrometallurgy, biometallurgy and primitive full recovery of NMF-non metallic fraction), and advanced recycling technology (mechanical separation, direct use and modification of NMF) are reviewed and analyzed based on their advantages and disadvantages. Also, the evaluation criteria are discussed including economic, environmental, and gate-to-market ability. This review indicates the future research direction of WPCB recycling should focus on a combination of several techniques or in series recycling to maximize the benefits of process.
Collapse
Affiliation(s)
- Chao Ning
- Chemical and Biomolecular Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, The City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, Hong Kong
| | - David Chi Wai Hui
- Chemical and Biomolecular Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, Hong Kong
| | - Gordon McKay
- Chemical and Biomolecular Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, Hong Kong. .,College of Science and Engineering, Hamad bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
79
|
Priya A, Hait S. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6989-7008. [PMID: 28091997 DOI: 10.1007/s11356-016-8313-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/21/2016] [Indexed: 05/11/2023]
Abstract
Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.
Collapse
Affiliation(s)
- Anshu Priya
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801 103, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801 103, India.
| |
Collapse
|
80
|
Funari V, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 60:397-406. [PMID: 27478021 DOI: 10.1016/j.wasman.2016.07.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Bio- and hydrometallurgical experimental setups at 2-l reactor scale for the processing of fly ash from municipal waste incinerators were explored. We aimed to compare chemical H2SO4 leaching and bioleaching; the latter involved the use of H2SO4 and a mixed culture of acidophilic bacteria. The leaching yields of several elements, including some of those considered as critical (Mg, Co, Ce, Cr, Ga, Nb, Nd, Sb and Sm), are provided. At the end of the experiments, both leaching methods resulted in comparable yields for Mg and Zn (>90%), Al and Mn (>85%), Cr (∼65%), Ga (∼60%), and Ce (∼50%). Chemical leaching showed the best yields for Cu (95%), Fe (91%), and Ni (93%), whereas bioleaching was effective for Nd (76%), Pb (59%), and Co (55%). The two leaching methods generated solids of different quality with respect to the original material as we removed and significantly reduced the metals amounts, and enriched solutions where metals can be recovered for example as mixed salts for further treatment. Compared to chemical leaching the bioleaching halved the use of H2SO4, i.e., a part of agent costs, as a likely consequence of bio-produced acid and improved metal solubility.
Collapse
Affiliation(s)
- V Funari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - J Mäkinen
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - J Salminen
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - R Braga
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - E Dinelli
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - H Revitzer
- Aalto University, School of Chemical Technology, Espoo, Finland
| |
Collapse
|
81
|
Salmelin J, Leppänen MT, Karjalainen AK, Vuori KM, Gerhardt A, Hämäläinen H. Assessing ecotoxicity of biomining effluents in stream ecosystems by in situ invertebrate bioassays: A case study in Talvivaara, Finland. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:147-155. [PMID: 27253991 DOI: 10.1002/etc.3511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/22/2016] [Accepted: 05/30/2016] [Indexed: 06/05/2023]
Abstract
Mining of sulfide-rich pyritic ores produces acid mine drainage waters and has induced major ecological problems in aquatic ecosystems worldwide. Biomining utilizes microbes to extract metals from the ore, and it has been suggested as a new sustainable way to produce metals. However, little is known of the potential ecotoxicological effects of biomining. In the present study, biomining impacts were assessed using survival and behavioral responses of aquatic macroinvertebrates at in situ exposures in streams. The authors used an impedance conversion technique to measure quantitatively in situ behavioral responses of larvae of the regionally common mayfly, Heptagenia dalecarlica, to discharges from the Talvivaara mine (Sotkamo, Northern Finland), which uses a biomining technique. Behavioral responses measured in 3 mine-impacted streams were compared with those measured in 3 reference streams. In addition, 3-d survival of the mayfly larvae and the oligochaete Lumbriculus variegatus was measured in the study sites. Biomining impacts on stream water quality included increased concentrations of sulfur, sulfate, and metals, especially manganese, cadmium, zinc, sodium, and calcium. Survival of the invertebrates in the short term was not affected by the mine effluents. In contrast, apparent behavioral changes in mayfly larvae were detected, but these responses were not consistent among sites, which may reflect differing natural water chemistry of the study sites. Environ Toxicol Chem 2017;36:147-155. © 2016 SETAC.
Collapse
Affiliation(s)
- Johanna Salmelin
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyväskylä, Finland
| | - Matti T Leppänen
- Laboratory Center/Ecotoxicology and Risk Assessment, Finnish Environment Institute, Jyväskylä, Finland
| | - Anna K Karjalainen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyväskylä, Finland
| | - Kari-Matti Vuori
- Laboratory Center/Ecotoxicology and Risk Assessment, Finnish Environment Institute, Jyväskylä, Finland
- Lappeenranta University of Technology, Lappeenranta, Finland
| | | | - Heikki Hämäläinen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
82
|
Bindschedler S, Vu Bouquet TQT, Job D, Joseph E, Junier P. Fungal Biorecovery of Gold From E-waste. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:53-81. [PMID: 28438268 DOI: 10.1016/bs.aambs.2017.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Waste electric and electronic devices (e-waste) represent a source of valuable raw materials of great interest, and in the case of metals, e-waste might become a prized alternative source. Regarding gold, natural ores are difficult to mine due to their refractory nature and the richest ores have almost all been exploited. Additionally, some gold mining areas are present in geopolitically unstable regions. Finally, the gold mining industry produces toxic compounds, such as cyanides. As a result, the gold present in e-waste represents a nonnegligible resource (urban mining). Extraction methods of gold from natural ores (pyro- and hydrometallurgy) have been adapted to this particular type of matrix. However, to propose novel approaches with a lower environmental footprint, biotechnological methods using microorganisms are being developed (biometallurgy). These processes use the extensive metabolic potential of microbes (algae, bacteria, and fungi) to mobilize and immobilize gold from urban and industrial sources. In this review, we focus on the use of fungi for gold biomining. Fungi interact with gold by mobilizing it through mechanical attack as well as through biochemical leaching by the production of cyanides. Moreover, fungi are also able to release Au through the degradation of cyanide from aurocyanide complexes. Finally, fungi immobilize gold through biosorption, bioaccumulation, and biomineralization, in particular, as gold nanoparticles. Overall, the diversity of mechanisms of gold recycling using fungi combined with their filamentous lifestyle, which allows them to thrive in heterogeneous and solid environments such as e-waste, makes fungi an important bioresource to be harnessed for the biorecovery of gold.
Collapse
Affiliation(s)
| | | | - Daniel Job
- University of Neuchâtel, Neuchâtel, Switzerland
| | | | | |
Collapse
|
83
|
Li LF, Fu LJ, Lin JQ, Pang X, Liu XM, Wang R, Wang ZB, Lin JQ, Chen LX. The σ54-dependent two-component system regulating sulfur oxidization (Sox) system in Acidithiobacillus caldus and some chemolithotrophic bacteria. Appl Microbiol Biotechnol 2016; 101:2079-2092. [DOI: 10.1007/s00253-016-8026-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022]
|
84
|
Guo W, Zhang H, Zhou W, Wang Y, Zhou H, Chen X. Sulfur Metabolism Pathways in Sulfobacillus acidophilus TPY, A Gram-Positive Moderate Thermoacidophile from a Hydrothermal Vent. Front Microbiol 2016; 7:1861. [PMID: 27917169 PMCID: PMC5114278 DOI: 10.3389/fmicb.2016.01861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Sulfobacillus acidophilus TPY, isolated from a hydrothermal vent in the Pacific Ocean, is a moderately thermoacidophilic Gram-positive bacterium that can oxidize ferrous iron or sulfur compounds to obtain energy. In this study, comparative transcriptomic analyses of S. acidophilus TPY were performed under different redox conditions. Based on these results, pathways involved in sulfur metabolism were proposed. Additional evidence was obtained by analyzing mRNA abundance of selected genes involved in the sulfur metabolism of sulfur oxygenase reductase (SOR)-overexpressed S. acidophilus TPY recombinant under different redox conditions. Comparative transcriptomic analyses of S. acidophilus TPY cultured in the presence of ferrous sulfate (FeSO4) or elemental sulfur (S0) were employed to detect differentially transcribed genes and operons involved in sulfur metabolism. The mRNA abundances of genes involved in sulfur metabolism decreased in cultures containing elemental sulfur, as opposed to cultures in which FeSO4 was present where an increase in the expression of sulfur metabolism genes, particularly sulfite reductase (SiR) involved in the dissimilatory sulfate reduction, was observed. SOR, whose mRNA abundance increased in S0 culture, may play an important role in the initial sulfur oxidation. In order to confirm the pathways, SOR overexpression in S. acidophilus TPY and subsequent mRNA abundance analysis of sulfur metabolism-related genes were carried out. Conjugation-based transformation of pTrc99A derived plasmid from heterotrophic E. coli to facultative autotrophic S. acidophilus TPY was developed in this study. Transconjugation between E. coli and S. acidophilus was performed on modified solid 2:2 medium at pH 4.8 and 37°C for 72 h. The SOR-overexpressed recombinant S. acidophilus TPY-SOR had a [Formula: see text]-accumulation increase, higher oxidation/ reduction potentials (ORPs) and lower pH compared with the wild type strain in the late growth stage of S0 culture condition. The transcript level of sor gene in the recombinant strain increased in both S0 and FeSO4 culture conditions, which influenced the transcription of other genes in the proposed sulfur metabolism pathways. Overall, these results expand our understanding of sulfur metabolism within the Sulfobacillus genus and provide a successful gene-manipulation method.
Collapse
Affiliation(s)
- Wenbin Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
| | - Huijun Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
| | - Wengen Zhou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
| | - Yuguang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
| | - Hongbo Zhou
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory forMarine Science and TechnologyQingdao, China
| |
Collapse
|
85
|
Li X, Wang C, Zeng Y, Li P, Xie T, Zhang Y. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:563-569. [PMID: 27344257 DOI: 10.1016/j.jhazmat.2016.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/27/2016] [Accepted: 06/09/2016] [Indexed: 05/07/2023]
Abstract
Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe2O3 red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe2O3 red pigment powders contained 98.24wt.% of Fe2O3 were successfully prepared, with a morphology of spheroidal and particle size ranged from 22nm to 86nm and averaged at 45nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Chuankai Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yu Zeng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
86
|
Fashola MO, Ngole-Jeme VM, Babalola OO. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111047. [PMID: 27792205 PMCID: PMC5129257 DOI: 10.3390/ijerph13111047] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.
Collapse
Affiliation(s)
- Muibat Omotola Fashola
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Veronica Mpode Ngole-Jeme
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA, Florida, Private Bag X6 Florida, Roodepoort 1710, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
87
|
Donati ER, Castro C, Urbieta MS. Thermophilic microorganisms in biomining. World J Microbiol Biotechnol 2016; 32:179. [PMID: 27628339 DOI: 10.1007/s11274-016-2140-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.
Collapse
Affiliation(s)
- Edgardo Rubén Donati
- CINDEFI (CCT LA PLATA-CONICET, UNLP), Facultad de Ciencias Exactas (UNLP), 47 y 115, (1900) La Plata, Buenos Aires, Argentina.
| | - Camila Castro
- CINDEFI (CCT LA PLATA-CONICET, UNLP), Facultad de Ciencias Exactas (UNLP), 47 y 115, (1900) La Plata, Buenos Aires, Argentina
| | - María Sofía Urbieta
- CINDEFI (CCT LA PLATA-CONICET, UNLP), Facultad de Ciencias Exactas (UNLP), 47 y 115, (1900) La Plata, Buenos Aires, Argentina
| |
Collapse
|
88
|
Merino MP, Andrews BA, Parada P, Asenjo JA. Characterization of Ferroplasma acidiphilum growing in pure and mixed culture with Leptospirillum ferriphilum. Biotechnol Prog 2016; 32:1390-1396. [PMID: 27535541 DOI: 10.1002/btpr.2340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/27/2016] [Indexed: 11/07/2022]
Abstract
Biomining is defined as biotechnology for metal recovery from minerals, and is promoted by the concerted effort of a consortium of acidophile prokaryotes, comprised of members of the Bacteria and Archaea domains. Ferroplasma acidiphilum and Leptospirillum ferriphilum are the dominant species in extremely acid environments and have great use in bioleaching applications; however, the role of each species in this consortia is still a subject of research. The hypothesis of this work is that F. acidiphilum uses the organic matter secreted by L. ferriphilum for growth, maintaining low levels of organic compounds in the culture medium, preventing their toxic effects on L. ferriphilum. To test this hypothesis, a characterization of Ferroplasma acidiphilum strain BRL-115 was made with the objective of determining its optimal growth conditions. Subsequently, under the optimal conditions, L. ferriphilum and F. acidiphilum were tested growing in each other's supernatant, in order to define if there was exchange of metabolites between the species. With these results, a mixed culture in batch cyclic operation was performed to obtain main specific growth rates, which were used to evaluate a mixed metabolic model previously developed by our group. It was observed that F. acidiphilum, strain BRL-115 is a chemomixotrophic organism, and its growth is maximized with yeast extract at a concentration of 0.04% wt/vol. From the experiments of L. ferriphilum growing on F. acidiphilum supernatant and vice versa, it was observed that in both cases cell growth is favorably affected by the presence of the filtered medium of the other microorganism, proving a synergistic interaction between these species. Specific growth rates were obtained in cyclic batch operation of the mixed culture and were used as input data for a Flux Balance Analysis of the mixed metabolic model, obtaining a reasonable behavior of the metabolic fluxes and the system as a whole, therefore consolidating the model previously developed. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1390-1396, 2016.
Collapse
Affiliation(s)
- M P Merino
- Centre for Biotechnology and Bioengineering, CeBiB, Dept. of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - B A Andrews
- Centre for Biotechnology and Bioengineering, CeBiB, Dept. of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - P Parada
- Biosigma S.A, Carretera Gral. San Martín 16500, Loteo Industrial Los Libertadores, Lote 106, Colina, Chile
| | - J A Asenjo
- Centre for Biotechnology and Bioengineering, CeBiB, Dept. of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| |
Collapse
|
89
|
Influence of Sulfobacillus thermosulfidooxidans on Initial Attachment and Pyrite Leaching by Thermoacidophilic Archaeon Acidianus sp. DSM 29099. MINERALS 2016. [DOI: 10.3390/min6030076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
90
|
Novel Biotechnological Approaches for the Recovery of Metals from Primary and Secondary Resources. MINERALS 2016. [DOI: 10.3390/min6020054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
91
|
Ferrer A, Rivera J, Zapata C, Norambuena J, Sandoval Á, Chávez R, Orellana O, Levicán G. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1. Front Microbiol 2016; 7:748. [PMID: 27242761 PMCID: PMC4876134 DOI: 10.3389/fmicb.2016.00748] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022] Open
Abstract
Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.
Collapse
Affiliation(s)
- Alonso Ferrer
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Javier Rivera
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Claudia Zapata
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Javiera Norambuena
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Álvaro Sandoval
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Renato Chávez
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Omar Orellana
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile Santiago, Chile
| | - Gloria Levicán
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| |
Collapse
|
92
|
Campodonico MA, Vaisman D, Castro JF, Razmilic V, Mercado F, Andrews BA, Feist AM, Asenjo JA. Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications. Metab Eng Commun 2016; 3:84-96. [PMID: 29468116 PMCID: PMC5779729 DOI: 10.1016/j.meteno.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/16/2015] [Accepted: 03/14/2016] [Indexed: 10/28/2022] Open
Abstract
Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest for biomining and environmental applications, as it can process mineral ores and alleviate the negative environmental consequences derived from the mining processes. In this study, the first genome-scale metabolic reconstruction of A. ferrooxidans ATCC 23270 was generated (iMC507). A total of 587 metabolic and transport/exchange reactions, 507 genes and 573 metabolites organized in over 42 subsystems were incorporated into the model. Based on a new genetic algorithm approach, that integrates flux balance analysis, chemiosmotic theory, and physiological data, the proton translocation stoichiometry for a number of enzymes and maintenance parameters under aerobic chemolithoautotrophic conditions using three different electron donors were estimated. Furthermore, a detailed electron transfer and carbon flux distributions during chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were determined and reported. Finally, 134 growth-coupled designs were calculated that enables Extracellular Polysaccharide production. iMC507 serves as a knowledgebase for summarizing and categorizing the information currently available for A. ferrooxidans and enables the understanding and engineering of Acidithiobacillus and similar species from a comprehensive model-driven perspective for biomining applications.
Collapse
Affiliation(s)
- Miguel A Campodonico
- Centre for Biotechnology and Bioengineering, CeBiB, University of Chile, Beauchef 850, Santiago, Chile
| | - Daniela Vaisman
- Centre for Biotechnology and Bioengineering, CeBiB, University of Chile, Beauchef 850, Santiago, Chile
| | - Jean F Castro
- Centre for Biotechnology and Bioengineering, CeBiB, University of Chile, Beauchef 850, Santiago, Chile
| | - Valeria Razmilic
- Centre for Biotechnology and Bioengineering, CeBiB, University of Chile, Beauchef 850, Santiago, Chile
| | - Francesca Mercado
- Centre for Biotechnology and Bioengineering, CeBiB, University of Chile, Beauchef 850, Santiago, Chile
| | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering, CeBiB, University of Chile, Beauchef 850, Santiago, Chile
| | - Adam M Feist
- Department of Bioengineering, University of California, 9500 Gilman Drive # 0412, San Diego, La Jolla, CA 92093, USA
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering, CeBiB, University of Chile, Beauchef 850, Santiago, Chile
| |
Collapse
|
93
|
Mitsunobu S, Zhu M, Takeichi Y, Ohigashi T, Suga H, Jinno M, Makita H, Sakata M, Ono K, Mase K, Takahashi Y. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching. Microbes Environ 2016; 31:63-9. [PMID: 26947441 PMCID: PMC4791118 DOI: 10.1264/jsme2.me15137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/09/2016] [Indexed: 11/12/2022] Open
Abstract
We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution.
Collapse
Affiliation(s)
- Satoshi Mitsunobu
- Department of Environmental Conservation, Graduate School of Agriculture, Ehime UniversityTarumi, Matsuyama 790–8566Japan
| | - Ming Zhu
- Graduate Division of Nutritional and Environmental Sciences, University of ShizuokaYada, Suruga-ku, Shizuoka 422–8526Japan
| | - Yasuo Takeichi
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK)Oho, Tsukuba, Ibaraki 305–0801Japan
- The Graduate University for Advanced Studies1–1 Oho, Tsukuba 305–0801Japan
| | - Takuji Ohigashi
- UVSOR facility, Institute for Molecular ScienceMyodaiji, Okazaki 444–8585Japan
| | - Hiroki Suga
- Department of Earth and Planetary Systems Science, Hiroshima UniversityKagamiyama, Higashi-Hiroshima, Hiroshima 739–8526
| | - Muneaki Jinno
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK)Oho, Tsukuba, Ibaraki 305–0801Japan
- Toyama Co. Ltd.4–13–16 Hibarigaoka, Zama, Kanagawa 252–0002Japan
| | - Hiroko Makita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Natsushima-cho, Yokosuka, Kanagawa 237–0061Japan
| | - Masahiro Sakata
- Graduate Division of Nutritional and Environmental Sciences, University of ShizuokaYada, Suruga-ku, Shizuoka 422–8526Japan
| | - Kanta Ono
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK)Oho, Tsukuba, Ibaraki 305–0801Japan
- The Graduate University for Advanced Studies1–1 Oho, Tsukuba 305–0801Japan
| | - Kazuhiko Mase
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK)Oho, Tsukuba, Ibaraki 305–0801Japan
- The Graduate University for Advanced Studies1–1 Oho, Tsukuba 305–0801Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, The University of TokyoHongo, Bunkyo-ku, Tokyo 113–0033Japan
| |
Collapse
|
94
|
Ferrer A, Bunk B, Spröer C, Biedendieck R, Valdés N, Jahn M, Jahn D, Orellana O, Levicán G. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1. J Biotechnol 2016; 222:21-2. [PMID: 26853478 DOI: 10.1016/j.jbiotec.2016.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments.
Collapse
Affiliation(s)
- Alonso Ferrer
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Chile
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Rebekka Biedendieck
- Institute of Microbiology, Technische Universität Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Natalia Valdés
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Chile
| | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Omar Orellana
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Chile.
| |
Collapse
|
95
|
Measuring microbial metabolism in atypical environments: Bentonite in used nuclear fuel storage. J Microbiol Methods 2016; 120:79-90. [DOI: 10.1016/j.mimet.2015.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022]
|
96
|
Liu R, Li J, Ge Z. Review on Chromobacterium Violaceum for Gold Bioleaching from E-waste. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.proenv.2016.02.119] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
ÇOLAK DN, GÜLER Hİ, ÇANAKÇI S, BELDÜZ AO. Biochemical characterization of wild-type and mutant (Q9F and S21Y/V22D)iron oxidases isolated from Acidithiobacillus ferrooxidans M1. Turk J Biol 2016. [DOI: 10.3906/biy-1501-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
98
|
Kernan T, Majumdar S, Li X, Guan J, West AC, Banta S. Engineering the iron‐oxidizing chemolithoautotroph
Acidithiobacillus ferrooxidans
for biochemical production. Biotechnol Bioeng 2015; 113:189-97. [DOI: 10.1002/bit.25703] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Timothy Kernan
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Sudipta Majumdar
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Xiaozheng Li
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Jingyang Guan
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Alan C. West
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Scott Banta
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| |
Collapse
|
99
|
Martinez P, Vera M, Bobadilla-Fazzini RA. Omics on bioleaching: current and future impacts. Appl Microbiol Biotechnol 2015; 99:8337-50. [PMID: 26278538 PMCID: PMC4768214 DOI: 10.1007/s00253-015-6903-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Bioleaching corresponds to the microbial-catalyzed process of conversion of insoluble metals into soluble forms. As an applied biotechnology globally used, it represents an extremely interesting field of research where omics techniques can be applied in terms of knowledge development, but moreover in terms of process design, control, and optimization. In this mini-review, the current state of genomics, proteomics, and metabolomics of bioleaching and the major impacts of these analytical methods at industrial scale are highlighted. In summary, genomics has been essential in the determination of the biodiversity of leaching processes and for development of conceptual and functional metabolic models. Proteomic impacts are mostly related to microbe-mineral interaction analysis, including copper resistance and biofilm formation. Early steps of metabolomics in the field of bioleaching have shown a significant potential for the use of metabolites as industrial biomarkers. Development directions are given in order to enhance the future impacts of the omics in biohydrometallurgy.
Collapse
Affiliation(s)
- Patricio Martinez
- BioSigma 'S.A.', Parque Industrial Los Libertadores, Lote 106, Colina, Chile
| | - Mario Vera
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Universitätstraße 5, 45141, Essen, Germany
| | | |
Collapse
|
100
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|