51
|
Vibrio cholerae Virulence Activator ToxR Regulates Manganese Transport and Resistance to Reactive Oxygen Species. Infect Immun 2020; 88:IAI.00944-19. [PMID: 31871097 DOI: 10.1128/iai.00944-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Like many other pathogens, Vibrio cholerae, the causative agent of cholera, can modulate its gene expression to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). We previously reported that the virulence activator AphB in V. cholerae is involved in ROS resistance. In this study, we found that another key virulence regulator, ToxR, was important for V. cholerae resistance to hydrogen peroxide. Through a genome-wide transposon screen, we discovered that a deletion in mneA, which encodes a manganese exporter, restored ROS resistance of the toxR mutant. We then showed that ToxR did not affect mneA transcription but that the ToxR-regulated major porin OmpU was critical for ROS resistance. The addition of manganese in culture medium restored ROS resistance in both the toxR and ompU mutants. Furthermore, elemental analysis indicated that the intracellular concentration of manganese in both the toxR and ompU mutants was reduced. This may result in intracellular ROS accumulation in these mutants. Our data suggest that ToxR plays an important role in the resistance to reactive oxygen species through the regulation of manganese transport.
Collapse
|
52
|
Chetan, Vijayalakshmi U. A systematic review of the interaction and effects generated by antimicrobial metallic substituents in bone tissue engineering. Metallomics 2020; 12:1458-1479. [DOI: 10.1039/d0mt00127a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes brought about by metal ions and metal nanoparticles within bacterial cells and the damage caused to the cellular membrane upon contact with negatively charged surface components.
Collapse
Affiliation(s)
- Chetan
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore-632 014
- India
| | - Uthirapathy Vijayalakshmi
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore-632 014
- India
| |
Collapse
|
53
|
Lee MY, Lee DW, Joo HK, Jeong KH, Lee JY. Structural analysis of the manganese transport regulator MntR from Bacillus halodurans in apo and manganese bound forms. PLoS One 2019; 14:e0224689. [PMID: 31738781 PMCID: PMC6860424 DOI: 10.1371/journal.pone.0224689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 01/05/2023] Open
Abstract
The manganese transport regulator MntR is a metal-ion activated transcriptional repressor of manganese transporter genes to maintain manganese ion homeostasis. MntR, a member of the diphtheria toxin repressor (DtxR) family of metalloregulators, selectively responds to Mn2+ and Cd2+ over Fe2+, Co2+ and Zn2+. The DtxR/MntR family members are well conserved transcriptional repressors that regulate the expression of metal ion uptake genes by sensing the metal ion concentration. MntR functions as a homo-dimer with one metal ion binding site per subunit. Each MntR subunit contains two domains: an N-terminal DNA binding domain, and a C-terminal dimerization domain. However, it lacks the C-terminal SH3-like domain of DtxR/IdeR. The metal ion binding site of MntR is located at the interface of the two domains, whereas the DtxR/IdeR subunit contains two metal ion binding sites, the primary and ancillary sites, separated by 9 Å. In this paper, we reported the crystal structures of the apo and Mn2+-bound forms of MntR from Bacillus halodurans, and analyze the structural basis of the metal ion binding site. The crystal structure of the Mn2+-bound form is almost identical to the apo form of MntR. In the Mn2+-bound structure, one subunit contains a binuclear cluster of manganese ions, the A and C sites, but the other subunit forms a mononuclear complex. Structural data about MntR from B. halodurans supports the previous hypothesizes about manganese-specific activation mechanism of MntR homologues.
Collapse
Affiliation(s)
- Myeong Yeon Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Dong Won Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Kyu Joo
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kang Hwa Jeong
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
54
|
Párraga Solórzano PK, Yao J, Rock CO, Kehl-Fie TE. Disruption of Glycolysis by Nutritional Immunity Activates a Two-Component System That Coordinates a Metabolic and Antihost Response by Staphylococcus aureus. mBio 2019; 10:e01321-19. [PMID: 31387906 PMCID: PMC6686040 DOI: 10.1128/mbio.01321-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 02/01/2023] Open
Abstract
During infection, bacteria use two-component signal transduction systems to sense and adapt to the dynamic host environment. Despite critically contributing to infection, the activating signals of most of these regulators remain unknown. This also applies to the Staphylococcus aureus ArlRS two-component system, which contributes to virulence by coordinating the production of toxins, adhesins, and a metabolic response that enables the bacterium to overcome host-imposed manganese starvation. Restricting the availability of essential transition metals, a strategy known as nutritional immunity, constitutes a critical defense against infection. In this work, expression analysis revealed that manganese starvation imposed by the immune effector calprotectin or by the absence of glycolytic substrates activates ArlRS. Manganese starvation imposed by calprotectin also activated the ArlRS system even when glycolytic substrates were present. A combination of metabolomics, mutational analysis, and metabolic feeding experiments revealed that ArlRS is activated by alterations in metabolic flux occurring in the latter half of the glycolytic pathway. Moreover, calprotectin was found to induce expression of staphylococcal leukocidins in an ArlRS-dependent manner. These studies indicated that ArlRS is a metabolic sensor that allows S. aureus to integrate multiple environmental stresses that alter glycolytic flux to coordinate an antihost response and to adapt to manganese starvation. They also established that the latter half of glycolysis represents a checkpoint to monitor metabolic state in S. aureus Altogether, these findings contribute to understanding how invading pathogens, such as S. aureus, adapt to the host during infection and suggest the existence of similar mechanisms in other bacterial species.IMPORTANCE Two-component regulatory systems enable bacteria to adapt to changes in their environment during infection by altering gene expression and coordinating antihost responses. Despite the critical role of two-component systems in bacterial survival and pathogenesis, the activating signals for most of these regulators remain unidentified. This is exemplified by ArlRS, a Staphylococcus aureus global regulator that contributes to virulence and to resisting host-mediated restriction of essential nutrients, such as manganese. In this report, we demonstrate that manganese starvation and the absence of glycolytic substrates activate ArlRS. Further investigations revealed that ArlRS is activated when the latter half of glycolysis is disrupted, suggesting that S. aureus monitors flux through the second half of this pathway. Host-imposed manganese starvation also induced the expression of pore-forming toxins in an ArlRS-dependent manner. Cumulatively, this work reveals that ArlRS acts as a sensor that links nutritional status, cellular metabolism, and virulence regulation.
Collapse
Affiliation(s)
- Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departmento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
55
|
Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiol Mol Biol Rev 2019; 83:83/3/e00008-19. [PMID: 31315902 DOI: 10.1128/mmbr.00008-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterococcus is a diverse and rugged genus colonizing the gastrointestinal tract of humans and numerous hosts across the animal kingdom. Enterococci are also a leading cause of multidrug-resistant hospital-acquired infections. In each of these settings, enterococci must contend with changing biophysical landscapes and innate immune responses in order to successfully colonize and transit between hosts. Therefore, it appears that the intrinsic durability that evolved to make enterococci optimally competitive in the host gastrointestinal tract also ideally positioned them to persist in hospitals, despite disinfection protocols, and acquire new antibiotic resistances from other microbes. Here, we discuss the molecular mechanisms and regulation employed by enterococci to tolerate diverse stressors and highlight the role of stress tolerance in the biology of this medically relevant genus.
Collapse
|
56
|
Gagnon DM, Hadley RC, Ozarowski A, Nolan EM, Britt RD. High-Field EPR Spectroscopic Characterization of Mn(II) Bound to the Bacterial Solute-Binding Proteins MntC and PsaA. J Phys Chem B 2019; 123:4929-4934. [PMID: 31117618 DOI: 10.1021/acs.jpcb.9b03633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During infection, the bacterial pathogens Staphylococcus aureus and Streptococcus pneumoniae employ ATP-binding cassette (ABC) transporters to acquire Mn(II), an essential nutrient, from the host environment. Staphylococcal MntABC and streptococcal PsaABC attract the attention of the biophysical and bacterial pathogenesis communities because of their established importance during infection. Previous biophysical examination of Mn(II)-MntC and Mn(II)-PsaA using continuous-wave (≈9 GHz) electron paramagnetic resonance (EPR) spectroscopy revealed broad, difficult-to-interpret spectra (Hadley et al. J. Am. Chem. Soc. 2018, 140, 110-113). Herein, we employ high-frequency (>90 GHz), high-field (>3 T) EPR spectroscopy to investigate the Mn(II)-binding sites of these proteins and determine the spin Hamiltonian parameters. Our analyses demonstrate that the zero-field splitting (ZFS) is large for Mn(II)-MntC and Mn(II)-PsaA at +2.72 and +2.87 GHz, respectively. The measured 55Mn hyperfine coupling values for Mn(II)-MntC and Mn(II)-PsaA of 241 and 236 MHz, respectively, demonstrate a more covalent interaction between Mn(II) and the protein compared to Mn(II) in aqueous solution (≈265 MHz). These studies indicate that MntC and PsaA bind Mn(II) in a similar coordination geometry. Comparison of the ZFS values determined herein with those ascertained for other Mn(II) proteins suggests that the Mn(II)-MntC and Mn(II)-PsaA coordination spheres are not five-coordinate in solution.
Collapse
Affiliation(s)
- Derek M Gagnon
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| | - Rose C Hadley
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - R David Britt
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| |
Collapse
|
57
|
Hadley RC, Gagnon DM, Ozarowski A, Britt RD, Nolan EM. Murine Calprotectin Coordinates Mn(II) at a Hexahistidine Site with Ca(II)-Dependent Affinity. Inorg Chem 2019; 58:13578-13590. [PMID: 31145609 DOI: 10.1021/acs.inorgchem.9b00763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Manganese is an essential metal ion that bacterial pathogens need to acquire from the vertebrate host during infection. In the mammalian nutritional immunity strategy to combat bacterial infection, the host restricts bacterial access to Mn(II) by sequestering this metal nutrient using the protein calprotectin (CP). The role of murine calprotectin (mCP) in Mn(II) sequestration has been demonstrated in vivo, but the molecular basis of this function has not been evaluated. Herein, biochemical assays and electron paramagnetic resonance (EPR) spectroscopy are employed to characterize the Mn(II) binding properties of mCP. We report that mCP has one high-affinity Mn(II) binding site. This site is a His6 site composed of His17 and His27 of mS100A8 and His92, His97, His105, and His107 of mS100A9. Similar to the human ortholog (hCP), Ca(II) binding to the EF-hand domains of mCP enhances the Mn(II) affinity of the protein; however, this effect requires ≈10-fold more Ca(II) than was previously observed for hCP. Mn(II) coordination to the His6 site also promotes self-association of two mCP heterodimers to form a heterotetramer. Low-temperature X-band EPR spectroscopy revealed a nearly octahedral Mn(II) coordination sphere for the Mn(II)-His6 site characterized by the zero-field splitting parameters D = 525 MHz and E/D = 0.3. Further electron-nuclear double resonance studies with globally 15N-labeled mCP provided hyperfine couplings from the coordinating ε-nitrogen atoms of the His ligands (aiso = 4.3 MHz) as well as the distal δ-nitrogen atoms (aiso = 0.25 MHz). Mn(II) competition assays between mCP and two bacterial Mn(II) solute-binding proteins, staphylococcal MntC and streptococcal PsaA, showed that mCP outcompetes both proteins for Mn(II) under conditions of excess Ca(II). In total, this work provides the first coordination chemistry study of mCP and reveals striking similarities in the Mn(II) coordination sphere as well as notable differences in the Ca(II) sensitivity and oligomerization behavior between hCP and mCP.
Collapse
Affiliation(s)
- Rose C Hadley
- Department of Chemistry , Massachusetts Institute of Technology (MIT) , Cambridge , Massachusetts 02139 , United States
| | - Derek M Gagnon
- Department of Chemistry , University of California, Davis , Davis , California 95616 , United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - R David Britt
- Department of Chemistry , University of California, Davis , Davis , California 95616 , United States
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology (MIT) , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
58
|
Zhu M, Dai X. Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli. Nucleic Acids Res 2019; 47:4684-4693. [PMID: 30916318 PMCID: PMC6511861 DOI: 10.1093/nar/gkz211] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding how bacteria coordinate gene expression with biomass growth to adapt to various stress conditions remains a grand challenge in biology. Stress response is often associated with dramatic accumulation of cellular guanosine tetra- or penta-phosphate (p)ppGpp (also known as 'magic spot'), which is a key second messenger participating in regulating various biochemical and physiological processes of bacteria. Despite of the extensive studies on the mechanism of gene regulation by (p)ppGpp during stringent response, the connection between (p)ppGpp and bacterial steady-state exponential growth remains elusive. Here, we establish a versatile genetic approach to systematically perturb the (p)ppGpp level of Escherichia coli through titrating either the single-function (p)ppGpp synthetase or the singe-function (p)ppGpp hydrolase and quantitatively characterize cell growth and gene expression. Strikingly, increased and decreased (p)ppGpp levels both cause remarkable growth suppression of E. coli. From a coarse-grained insight, we demonstrate that increased (p)ppGpp levels limit ribosome synthesis while decreased (p)ppGpp levels limit the expression of metabolic proteins, both resulting in non-optimal resource allocation. Our study reveals a profound role of (p)ppGpp in regulating bacterial growth through governing global resource allocation. Moreover, we highlight the Mesh1 (p)ppGpp hydrolase from Drosophila melanogaster as a powerful genetic tool for interrogating bacterial (p)ppGpp physiology.
Collapse
Affiliation(s)
- Manlu Zhu
- School of life sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xiongfeng Dai
- School of life sciences, Central China Normal University, Wuhan, Hubei Province, China
| |
Collapse
|
59
|
Radin JN, Zhu J, Brazel EB, McDevitt CA, Kehl-Fie TE. Synergy between Nutritional Immunity and Independent Host Defenses Contributes to the Importance of the MntABC Manganese Transporter during Staphylococcus aureus Infection. Infect Immun 2019; 87:e00642-18. [PMID: 30348827 PMCID: PMC6300641 DOI: 10.1128/iai.00642-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
During infection, the host utilizes a diverse array of processes to combat invaders, including the restriction of availability of essential nutrients such as manganese. Similarly to many other pathogens, Staphylococcus aureus possesses two manganese importers, MntH and MntABC. Several infection models have revealed a critical role for MntABC during staphylococcal infection. However, culture-based studies have suggested parity between the two transporters when cells are resisting manganese starvation imposed by the manganese binding immune effector calprotectin. In this investigation, initial elemental analysis revealed that MntABC is the primary transporter responsible for obtaining manganese in culture in the presence of calprotectin. MntABC was also necessary to maintain wild-type levels of manganese-dependent superoxide dismutase activity in the presence of calprotectin. Building on this framework, we investigated if MntABC enabled S. aureus to resist the synergistic actions of nutritional immunity and other host defenses. This analysis revealed that MntABC critically contributes to staphylococcal growth when S. aureus is subjected to manganese limitations and exposed to oxidative stress. This transporter was also important for growth in manganese-limited environments when S. aureus was forced to consume glucose as an energy source, which occurs when it encounters nitric oxide. MntABC also expanded the pH range conducive for S. aureus growth under conditions of manganese scarcity. Collectively, the data presented in this work provide a robust molecular basis for the crucial role of MntABC in staphylococcal virulence. Further, this work highlights the importance of synergy between host defenses and the necessity of evaluating the contribution of virulence factors to pathogenesis in the presence of multiple stressors.
Collapse
Affiliation(s)
- Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jamie Zhu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
60
|
Colomer-Winter C, Flores-Mireles AL, Baker SP, Frank KL, Lynch AJL, Hultgren SJ, Kitten T, Lemos JA. Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathog 2018; 14:e1007102. [PMID: 30235334 PMCID: PMC6147510 DOI: 10.1371/journal.ppat.1007102] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient that is not readily available to pathogens during infection due to an active host defense mechanism known as nutritional immunity. To overcome this nutrient restriction, bacteria utilize high-affinity transporters that allow them to compete with host metal-binding proteins. Despite the established role of Mn in bacterial pathogenesis, little is known about the relevance of Mn in the pathophysiology of E. faecalis. Here, we identified and characterized the major Mn acquisition systems of E. faecalis. We discovered that the ABC-type permease EfaCBA and two Nramp-type transporters, named MntH1 and MntH2, work collectively to promote cell growth under Mn-restricted conditions. The simultaneous inactivation of EfaCBA, MntH1 and MntH2 (ΔefaΔmntH1ΔmntH2 strain) led to drastic reductions (>95%) in cellular Mn content, severe growth defects in body fluids (serum and urine) ex vivo, significant loss of virulence in Galleria mellonella, and virtually complete loss of virulence in rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI) models. Despite the functional redundancy of EfaCBA, MntH1 and MntH2 under in vitro or ex vivo conditions and in the invertebrate model, dual inactivation of efaCBA and mntH2 (ΔefaΔmntH2 strain) was sufficient to prompt maximal sensitivity to calprotectin, a Mn- and Zn-chelating host antimicrobial protein, and for the loss of virulence in mammalian models. Interestingly, EfaCBA appears to play a prominent role during systemic infection, whereas MntH2 was more important during CAUTI. The different roles of EfaCBA and MntH2 in these sites could be attributed, at least in part, to the differential expression of efaA and mntH2 in cells isolated from hearts or from bladders. Collectively, this study demonstrates that Mn acquisition is essential for the pathogenesis of E. faecalis and validates Mn uptake systems as promising targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Ana L. Flores-Mireles
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shannon P. Baker
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kristi L. Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aaron J. L. Lynch
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| |
Collapse
|
61
|
MntC-Dependent Manganese Transport Is Essential for Staphylococcus aureus Oxidative Stress Resistance and Virulence. mSphere 2018; 3:3/4/e00336-18. [PMID: 30021878 PMCID: PMC6052334 DOI: 10.1128/msphere.00336-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence. Staphylococcus aureus is a human pathogen that has developed several approaches to evade the immune system, including a strategy to resist oxidative killing by phagocytes. This resistance is mediated by production of superoxide dismutase (SOD) enzymes which use manganese as a cofactor. S. aureus encodes two manganese ion transporters, MntABC and MntH, and a possible Nramp family manganese transporter, exemplified by S. aureus N315 SA1432. Their relative contributions to manganese transport have not been well defined in clinically relevant isolates. For this purpose, insertional inactivation mutations were introduced into mntC, mntH, and SA1432 individually and in combination. mntC was necessary for full resistance to methyl viologen, a compound that generates intracellular free radicals. In contrast, strains with an intact mntH gene had a minimal increase in resistance that was revealed only in mntC strains, and no change was observed upon mutation of SA1432 in strains lacking both mntC and mntH. Similarly, MntC alone was required for high cellular SOD activity. In addition, mntC strains were attenuated in a murine sepsis model. To further link these observations to manganese transport, an S. aureus MntC protein lacking manganese binding activity was designed, expressed, and purified. While circular dichroism experiments demonstrated that the secondary and tertiary structures of this protein were unaltered, a defect in manganese binding was confirmed by isothermal titration calorimetry. Unlike complementation with wild-type mntC, introduction of the manganese-binding defective allele into the chromosome of an mntC strain did not restore resistance to oxidative stress or virulence. Collectively, these results underscore the importance of MntC-dependent manganese transport in S. aureus oxidative stress resistance and virulence. IMPORTANCE Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence.
Collapse
|
62
|
Zheng Y, Li Y, Long H, Zhao X, Jia K, Li J, Wang L, Wang R, Lu X, Zhang D. bifA Regulates Biofilm Development of Pseudomonas putida MnB1 as a Primary Response to H 2O 2 and Mn 2. Front Microbiol 2018; 9:1490. [PMID: 30042743 PMCID: PMC6048274 DOI: 10.3389/fmicb.2018.01490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas putida (P. putida) MnB1 is a widely used model strain in environment science and technology for determining microbial manganese oxidation. Numerous studies have demonstrated that the growth and metabolism of P. putida MnB1 are influenced by various environmental factors. In this study, we investigated the effects of hydrogen peroxide (H2O2) and manganese (Mn2+) on proliferation, Mn2+ acquisition, anti-oxidative system, and biofilm formation of P. putida MnB1. The related orthologs of 4 genes, mco, mntABC, sod, and bifA, were amplified from P. putida GB1 and their involvement were assayed, respectively. We found that P. putida MnB1 degraded H2O2, and quickly recovered for proliferation, but its intracellular oxidative stress state was maintained, with rapid biofilm formation after H2O2 depletion. The data from mco, mntABC, sod and bifA expression levels by qRT-PCR, elucidated a sensitivity toward bifA-mediated biofilm formation, in contrary to intracellular anti-oxidative system under H2O2 exposure. Meanwhile, Mn2+ ion supply inhibited biofilm formation of P. putida MnB1. The expression pattern of these genes showed that Mn2+ ion supply likely functioned to modulate biofilm formation rather than only acting as nutrient substrate for P. putida MnB1. Furthermore, blockade of BifA activity by GTP increased the formation and development of biofilms during H2O2 exposure, while converse response to Mn2+ ion supply was evident. These distinct cellular responses to H2O2 and Mn2+ provide insights on the common mechanism by which environmental microorganisms may be protected from exogenous factors. We postulate that BifA-mediated biofilm formation but not intracellular anti-oxidative system may be a primary protective strategy adopted by P. putida MnB1. These findings will highlight the understanding of microbial adaptation mechanisms to distinct environmental stresses.
Collapse
Affiliation(s)
- Yanjing Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yumei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongyan Long
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Keke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Juan Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing, China
| | - Ruiyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Dongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
63
|
Arunima A, Yelamanchi SD, Padhi C, Jaiswal S, Ryan D, Gupta B, Sathe G, Advani J, Gowda H, Prasad TSK, Suar M. "Omics" of Food-Borne Gastroenteritis: Global Proteomic and Mutagenic Analysis of Salmonella enterica Serovar Enteritidis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:571-583. [PMID: 29049011 DOI: 10.1089/omi.2017.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Salmonella Enteritidis causes food-borne gastroenteritis by the two type three secretion systems (TTSS). TTSS-1 mediates invasion through intestinal lining, and TTSS-2 facilitates phagocytic survival. The pathogens' ability to infect effectively under TTSS-1-deficient background in host's phagocytes is poorly understood. Therefore, pathobiological understanding of TTSS-1-defective nontyphoidal Salmonellosis is highly important. We performed a comparative global proteomic analysis of the isogenic TTSS-1 mutant of Salmonella Enteritidis (M1511) and its wild-type isolate P125109. Our results showed 43 proteins were differentially expressed. Functional annotation further revealed that differentially expressed proteins belong to pathogenesis, tRNA and ncRNA metabolic processes. Three proteins, tryptophan subunit alpha chain, citrate lyase subunit alpha, and hypothetical protein 3202, were selected for in vitro analysis based on their functional annotations. Deletion mutants generated for the above proteins in the M1511 strain showed reduced intracellular survival inside macrophages in vitro. In sum, this study provides mass spectrometry-based evidence for seven hypothetical proteins, which will be subject of future investigations. Our study identifies proteins influencing virulence of Salmonella in the host. The study complements and further strengthens previously published research on proteins involved in enteropathogenesis of Salmonella and extends their role in noninvasive Salmonellosis.
Collapse
Affiliation(s)
| | - Soujanya D Yelamanchi
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | | | | | - Daniel Ryan
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Bhawna Gupta
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Gajanan Sathe
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Jayshree Advani
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Harsha Gowda
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - T S Keshava Prasad
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Mrutyunjay Suar
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| |
Collapse
|
64
|
Iron and Zinc Regulate Expression of a Putative ABC Metal Transporter in Corynebacterium diphtheriae. J Bacteriol 2018; 200:JB.00051-18. [PMID: 29507090 DOI: 10.1128/jb.00051-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, a Gram-positive, aerobic bacterium, is the causative agent of diphtheria and cutaneous infections. While mechanisms required for heme iron acquisition are well known in C. diphtheriae, systems involved in the acquisition of other metals such as zinc and manganese remain poorly characterized. In this study, we identified a genetic region that encodes an ABC-type transporter (iutBCD) and that is flanked by two genes (iutA and iutE) encoding putative substrate binding proteins of the cluster 9 family, a related group of transporters associated primarily with the import of Mn and Zn. We showed that IutA and IutE are both membrane proteins with comparable Mn and Zn binding abilities. We demonstrated that the iutABCD genes are cotranscribed and repressed in response to iron by the iron-responsive repressor DtxR. Transcription of iutE was positively regulated in response to iron availability in a DtxR-dependent manner and was repressed in response to Zn by the Zn-dependent repressor Zur. Electrophoretic mobility shift assays showed that DtxR does not bind to the iutE upstream region, which indicates that DtxR regulation of iutE is indirect and that other regulatory factors controlled by DtxR are likely responsible for the iron-responsive regulation. Analysis of the iutE promoter region identified a 50-bp sequence at the 3' end of the iutD gene that is required for the DtxR-dependent and iron-responsive activation of the iutE gene. These findings indicate that transcription of iutE is controlled by a complex mechanism that involves multiple regulatory factors whose activity is impacted by both Zn and Fe.IMPORTANCE Vaccination against diphtheria prevents toxin-related symptoms but does not inhibit bacterial colonization of the human host by the bacterium. Thus, Corynebacterium diphtheriae remains an important human pathogen that poses a significant health risk to unvaccinated individuals. The ability to acquire iron, zinc, and manganese is critical to the pathogenesis of many disease-causing organisms. Here, we describe a gene cluster in C. diphtheriae that encodes a metal importer that is homologous to broadly distributed metal transport systems, some with important roles in virulence in other bacterial pathogens. Two metal binding components of the gene cluster encode surface exposed proteins, and studies of such proteins may guide the development of second-generation vaccines for C. diphtheriae.
Collapse
|
65
|
Yoo D, Bagon BB, Valeriano VDV, Oh JK, Kim H, Cho S, Kang DK. Complete genome analysis of Lactobacillus fermentum SK152 from kimchi reveals genes associated with its antimicrobial activity. FEMS Microbiol Lett 2018; 364:4094913. [PMID: 28934382 DOI: 10.1093/femsle/fnx185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Research findings on probiotics highlight their importance in repressing harmful bacteria, leading to more extensive research on their potential applications. We analysed the genome of Lactobacillus fermentum SK152, which was isolated from the Korean traditional fermented vegetable dish kimchi, to determine the genetic makeup and genetic factors responsible for the antimicrobial activity of L. fermentum SK152 and performed a comparative genome analysis with other L. fermentum strains. The genome of L. fermentum SK152 was found to comprise a complete circular chromosome of 2092 273 bp, with an estimated GC content of 51.9% and 2184 open reading frames. It consisted of 2038 protein-coding genes and 73 RNA-coding genes. Moreover, a gene encoding a putative endolysin was found. A comparative genome analysis with other L. fermentum strains showed that SK152 is closely related to L. fermentum 3872 and F-6. An evolutionary analysis identified five positively selected genes that encode proteins associated with transport, survival and stress resistance. These positively selected genes may be essential for L. fermentum to colonise and survive in the stringent environment of the human gut and exert its beneficial effects. Our findings highlight the potential benefits of SK152.
Collapse
Affiliation(s)
- DongAhn Yoo
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Seoul 151-919, Gwanakgu, Republic of Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Korea
| | - Bernadette B Bagon
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | | | - Ju Kyoung Oh
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Korea.,Department of Agricultural Biotechnology and Research Institute of Population Genomics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seoae Cho
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
66
|
Zeinert R, Martinez E, Schmitz J, Senn K, Usman B, Anantharaman V, Aravind L, Waters LS. Structure-function analysis of manganese exporter proteins across bacteria. J Biol Chem 2018; 293:5715-5730. [PMID: 29440394 DOI: 10.1074/jbc.m117.790717] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/26/2018] [Indexed: 01/01/2023] Open
Abstract
Manganese (Mn) is an essential trace nutrient for organisms because of its role in cofactoring enzymes and providing protection against reactive oxygen species (ROS). Many bacteria require manganese to form pathogenic or symbiotic interactions with eukaryotic host cells. However, excess manganese is toxic, requiring cells to have manganese export mechanisms. Bacteria are currently known to possess two widely distributed classes of manganese export proteins, MntP and MntE, but other types of transporters likely exist. Moreover, the structure and function of MntP is not well understood. Here, we characterized the role of three structurally related proteins known or predicted to be involved in manganese transport in bacteria from the MntP, UPF0016, and TerC families. These studies used computational analysis to analyze phylogeny and structure, physiological assays to test sensitivity to high levels of manganese and ROS, and inductively coupled plasma-mass spectrometry (ICP-MS) to measure metal levels. We found that MntP alters cellular resistance to ROS. Moreover, we used extensive computational analyses and phenotypic assays to identify amino acids required for MntP activity. These negatively charged residues likely serve to directly bind manganese and transport it from the cytoplasm through the membrane. We further characterized two other potential manganese transporters associated with a Mn-sensing riboswitch and found that the UPF0016 family of proteins has manganese export activity. We provide here the first phenotypic and biochemical evidence for the role of Alx, a member of the TerC family, in manganese homeostasis. It does not appear to export manganese, but rather it intriguingly facilitates an increase in intracellular manganese concentration. These findings expand the available knowledge about the identity and mechanisms of manganese homeostasis proteins across bacteria and show that proximity to a Mn-responsive riboswitch can be used to identify new components of the manganese homeostasis machinery.
Collapse
Affiliation(s)
- Rilee Zeinert
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Eli Martinez
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Jennifer Schmitz
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Katherine Senn
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Bakhtawar Usman
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Vivek Anantharaman
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - L Aravind
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Lauren S Waters
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| |
Collapse
|
67
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
68
|
Tong Y, Zhai Q, Lu W, Tian F, Zhao J, Zhang H, Chen W. New insights in integrated response mechanism of Lactobacillus plantarum under excessive manganese stress. Food Res Int 2017; 102:323-332. [DOI: 10.1016/j.foodres.2017.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
69
|
Saramago M, Peregrina A, Robledo M, Matos RG, Hilker R, Serrania J, Becker A, Arraiano CM, Jiménez-Zurdo JI. Sinorhizobium meliloti YbeY is an endoribonuclease with unprecedented catalytic features, acting as silencing enzyme in riboregulation. Nucleic Acids Res 2017; 45:1371-1391. [PMID: 28180335 PMCID: PMC5388416 DOI: 10.1093/nar/gkw1234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/23/2023] Open
Abstract
Structural and biochemical features suggest that the almost ubiquitous bacterial YbeY protein may serve catalytic and/or Hfq-like protective functions central to small RNA (sRNA)-mediated regulation and RNA metabolism. We have biochemically and genetically characterized the YbeY ortholog of the legume symbiont Sinorhizobium meliloti (SmYbeY). Co-immunoprecipitation (CoIP) with a FLAG-tagged SmYbeY yielded a poor enrichment in RNA species, compared to Hfq CoIP-RNA uncovered previously by a similar experimental setup. Purified SmYbeY behaved as a monomer that indistinctly cleaved single- and double-stranded RNA substrates, a unique ability among bacterial endoribonucleases. SmYbeY-mediated catalysis was supported by the divalent metal ions Mg2+, Mn2+ and Ca2+, which influenced in a different manner cleavage efficiency and reactivity patterns, with Ca2+ specifically blocking activity on double-stranded and some structured RNA molecules. SmYbeY loss-of-function compromised expression of core energy and RNA metabolism genes, whilst promoting accumulation of motility, late symbiotic and transport mRNAs. Some of the latter transcripts are known Hfq-binding sRNA targets and might be SmYbeY substrates. Genetic reporter and in vitro assays confirmed that SmYbeY is required for sRNA-mediated down-regulation of the amino acid ABC transporter prbA mRNA. We have thus discovered a bacterial endoribonuclease with unprecedented catalytic features, acting also as gene silencing enzyme.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
- These authors contributed equally to the work as the first authors
| | - Alexandra Peregrina
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- These authors contributed equally to the work as the first authors
| | - Marta Robledo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- These authors contributed equally to the work as the first authors
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Rolf Hilker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Cecilia M. Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - José I. Jiménez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- To whom correspondence should be addressed. Tel: +34 958181600; Fax: +34 958181609;
| |
Collapse
|
70
|
Quantum chemical calculations of the active site of the solute-binding protein PsaA from Streptococcus pneumoniae explain electronic selectivity of metal binding. Struct Chem 2017. [DOI: 10.1007/s11224-017-1036-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
71
|
Yu W, Wang L, Wang M, Liu S, Li W, Wang X, Li X, Yu S, Yao D, Ma J, Yu L, Chen J, Feng Z, Cui Y. Identification and characterization of CD4 + T cell epitopes on manganese transport protein C of Staphylococcus aureus. Microb Pathog 2017; 112:30-37. [PMID: 28942173 DOI: 10.1016/j.micpath.2017.09.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/26/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022]
Abstract
Manganese transport protein C (MntC) of Staphylococcus aureus represents an excellent vaccine-candidate antigen. The important role of CD4+ T cells in effective immunity against S. aureus infection was shown; however, CD4+ T cell-specific epitopes on S. aureus MntC have not been well identified. Here, we used bioinformatics prediction algorithms to evaluate and identify nine candidate epitopes within MntC. Our results showed that peptide M8 emulsified in Freund's adjuvant induced a much higher cell-proliferation rate as compared with controls. Additionally, CD4+ T cells stimulated with peptide M8 secreted significantly higher levels of interferon-γ and interleukin-17A. These results suggested that peptide M8 represented an H-2d (I-E)-restricted Th17-specific epitope.
Collapse
Affiliation(s)
- Wei Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Mengyao Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Shuo Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Wanyu Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Xintong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Xiaoting Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Simiao Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Di Yao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Jing Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China.
| |
Collapse
|
72
|
Jiménez-Zurdo JI, Robledo M. RNA silencing in plant symbiotic bacteria: Insights from a protein-centric view. RNA Biol 2017; 14:1672-1677. [PMID: 28805544 DOI: 10.1080/15476286.2017.1356565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Extensive work in model enterobacteria has evidenced that the RNA chaperone Hfq and several endoribonucleases, such as RNase E or RNase III, serve pivotal roles in small RNA-mediated post-transcriptional silencing of gene expression. Characterization of these protein hubs commonly provide global functional and mechanistic insights into complex sRNA regulatory networks. The legume endosymbiont Sinorhizobium meliloti is a non-classical model bacterium with a very complex lifestyle in which riboregulation is expected to play important adaptive functions. Here, we discuss current knowledge about RNA silencing in S. meliloti from the perspective of the activity of Hfq and a recently discovered endoribonuclease (YbeY) exhibiting unprecedented catalytic versatility for the cleavage of single- and double-stranded RNA molecules.
Collapse
Affiliation(s)
- José I Jiménez-Zurdo
- a Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín , Consejo Superior de Investigaciones Científicas (CSIC) , Granada , Spain
| | - Marta Robledo
- a Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín , Consejo Superior de Investigaciones Científicas (CSIC) , Granada , Spain
| |
Collapse
|
73
|
Association of Metal Homeostasis and (p)ppGpp Regulation in the Pathophysiology of Enterococcus faecalis. Infect Immun 2017; 85:IAI.00260-17. [PMID: 28483855 DOI: 10.1128/iai.00260-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 01/30/2023] Open
Abstract
In Enterococcus faecalis, the regulatory nucleotides pppGpp and ppGpp, collectively, (p)ppGpp, are required for growth in blood, survival within macrophages, and virulence. However, a clear understanding of how (p)ppGpp promotes virulence in E. faecalis and other bacterial pathogens is still lacking. In the host, the essential transition metals iron (Fe) and manganese (Mn) are not readily available to invading pathogens because of a host-driven process called nutritional immunity. Considering its central role in adaptation to nutritional stresses, we hypothesized that (p)ppGpp mediates E. faecalis virulence through regulation of metal homeostasis. Indeed, supplementation of serum with either Fe or Mn restored growth and survival of the Δrel ΔrelQ [(p)ppGpp0] strain to wild-type levels. Using a chemically defined medium, we found that (p)ppGpp accumulates in response to either Fe depletion or Mn depletion and that the (p)ppGpp0 strain has a strong growth requirement for Mn that is alleviated by Fe supplementation. Although inactivation of the nutrient-sensing regulator codY restored some phenotypes of the (p)ppGpp0 strain, transcriptional analysis showed that the (p)ppGpp/CodY network does not promote transcription of known metal transporters. Interestingly, physiologic and enzymatic investigations suggest that the (p)ppGpp0 strain requires higher levels of Mn in order to cope with high levels of endogenously produced reactive oxygen species (ROS). Because (p)ppGpp mediates antibiotic persistence and virulence in several bacteria, our findings have broad implications and provide new leads for the development of novel therapeutic and preventive strategies against E. faecalis and beyond.
Collapse
|
74
|
Wedekind JE, Dutta D, Belashov IA, Jenkins JL. Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes. J Biol Chem 2017; 292:9441-9450. [PMID: 28455443 DOI: 10.1074/jbc.r117.787713] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Divalent ions fulfill essential cellular roles and are required for virulence by certain bacteria. Free intracellular Mg2+ can approach 5 mm, but at this level Mn2+, Ni2+, or Co2+ can be growth-inhibitory, and magnesium fluoride is toxic. To maintain ion homeostasis, many bacteria have evolved ion sensors embedded in the 5'-leader sequences of mRNAs encoding ion uptake or efflux channels. Here, we review current insights into these "metalloriboswitches," emphasizing ion-specific binding by structured RNA aptamers and associated conformational changes in downstream signal sequences. This riboswitch-effector interplay produces a layer of gene regulatory feedback that has elicited interest as an antibacterial target.
Collapse
Affiliation(s)
- Joseph E Wedekind
- From the Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Debapratim Dutta
- From the Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Ivan A Belashov
- From the Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jermaine L Jenkins
- From the Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
75
|
Mandal SK, Chandravanshi M, Gogoi P, Kanaujia SP. In silico characterization of TTHA0596: A potential Zn 2+ binding protein of ATP-binding cassette transporter. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
76
|
Hausmann S, Guimarães VA, Garcin D, Baumann N, Linder P, Redder P. Both exo- and endo-nucleolytic activities of RNase J1 from Staphylococcus aureus are manganese dependent and active on triphosphorylated 5'-ends. RNA Biol 2017; 14:1431-1443. [PMID: 28277929 DOI: 10.1080/15476286.2017.1300223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
RNA decay and RNA maturation are important steps in the regulation of bacterial gene expression. RNase J, which is present in about half of bacterial species, has been shown to possess both endo- and 5' to 3' exo-ribonuclease activities. The exonucleolytic activity is clearly involved in the degradation of mRNA and in the maturation of at least the 5' end of 16S rRNA in the 2 Firmicutes Staphylococcus aureus and Bacillus subtilis. The endoribonuclease activity of RNase J from several species has been shown to be weak in vitro and 3-D structural data of different RNase J orthologs have not provided a clear explanation for the molecular basis of this activity. Here, we show that S. aureus RNase J1 is a manganese dependent homodimeric enzyme with strong 5' to 3' exo-ribonuclease as well as endo-ribonuclease activity. In addition, we demonstrated that SauJ1 can efficiently degrade 5' triphosphorylated RNA. Our results highlight RNase J1 as an important player in RNA turnover in S. aureus.
Collapse
Affiliation(s)
- Stéphane Hausmann
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Vanessa Andrade Guimarães
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Dominique Garcin
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Natalia Baumann
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Patrick Linder
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Peter Redder
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland.,b Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse III Toulouse , France
| |
Collapse
|
77
|
Martin JE, Lisher JP, Winkler ME, Giedroc DP. Perturbation of manganese metabolism disrupts cell division in Streptococcus pneumoniae. Mol Microbiol 2017; 104:334-348. [PMID: 28127804 DOI: 10.1111/mmi.13630] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2017] [Indexed: 12/30/2022]
Abstract
Manganese (Mn) is an essential micronutrient and required cofactor in bacteria. Despite its importance, excess Mn can impair bacterial growth, the mechanism of which remains largely unexplored. Here, we show that proper Mn homeostasis is critical for cellular growth of the major human respiratory pathogen Streptococcus pneumoniae. Perturbations in Mn homeostasis genes, psaBCA, encoding the Mn importer, and mntE, encoding the Mn exporter, lead to Mn sensitivity during aerobiosis. Mn-stressed cells accumulate iron and copper, in addition to Mn. Impaired growth is a direct result of Mn toxicity and does not result from iron-mediated Fenton chemistry, since cells remain sensitive to Mn during anaerobiosis or when hydrogen peroxide biogenesis is significantly reduced. Mn-stressed cells are significantly elongated, whereas Mn-limitation imposed by zinc addition leads to cell shortening. We show that Mn accumulation promotes aberrant dephosphorylation of cell division proteins via hyperactivation of the Mn-dependent protein phosphatase PhpP, a key enzyme involved in the regulation of cell division. We discuss a mechanism by which cellular Mn:Zn ratios dictate PhpP specific activity thereby regulating pneumococcal cell division. We propose that Mn-metalloenzymes are particularly susceptible to hyperactivation or mismetallation, suggesting the need for exquisite cellular control of Mn-dependent metabolic processes.
Collapse
Affiliation(s)
- Julia E Martin
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - John P Lisher
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Graduate Program in Biochemistry Indiana University, Bloomington, IN, 47405, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
78
|
A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species. PLoS Pathog 2017; 13:e1006225. [PMID: 28212410 PMCID: PMC5333916 DOI: 10.1371/journal.ppat.1006225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/02/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in humans, is exposed to reactive oxygen and nitrogen species (ROS and RNS) in both the tick vector and vertebrate reservoir hosts. B. burgdorferi contains a limited repertoire of canonical oxidative stress response genes, suggesting that novel gene functions may be important for protection of B. burgdorferi against ROS or RNS exposure. Here, we use transposon insertion sequencing (Tn-seq) to conduct an unbiased search for genes involved in resistance to nitric oxide, hydrogen peroxide, and tertiary-butyl hydroperoxide in vitro. The screens identified 66 genes whose disruption resulted in increased susceptibility to at least one of the stressors. These genes include previously characterized mediators of ROS and RNS resistance (including components of the nucleotide excision repair pathway and a subunit of a riboflavin transporter), as well as novel putative resistance candidates. DNA repair mutants were among the most sensitive to RNS in the Tn-seq screen, and survival assays with individual Tn mutants confirmed that the putative ribonuclease BB0839 is involved in resistance to nitric oxide. In contrast, mutants lacking predicted inner membrane proteins or transporters were among the most sensitive to ROS, and the contribution of three such membrane proteins (BB0017, BB0164, and BB0202) to ROS sensitivity was confirmed using individual Tn mutants and complemented strains. Further analysis showed that levels of intracellular manganese are significantly reduced in the Tn::bb0164 mutant, identifying a novel role for BB0164 in B. burgdorferi manganese homeostasis. Infection of C57BL/6 and gp91phox-/- mice with a mini-library of 39 Tn mutants showed that many of the genes identified in the in vitro screens are required for infectivity in mice. Collectively, our data provide insight into how B. burgdorferi responds to ROS and RNS and suggests that this response is relevant to the in vivo success of the organism.
Collapse
|
79
|
Huang X, Shin JH, Pinochet-Barros A, Su TT, Helmann JD. Bacillus subtilis MntR coordinates the transcriptional regulation of manganese uptake and efflux systems. Mol Microbiol 2016; 103:253-268. [PMID: 27748968 DOI: 10.1111/mmi.13554] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2016] [Indexed: 01/01/2023]
Abstract
The Bacillus subtilis MntR metalloregulatory protein senses manganese, an essential element required for central metabolism, oxidative stress resistance and replication. An mntR null mutant is highly sensitive to Mn(II) intoxication, which is attributed in part to the constitutive expression of two importers: the proton-dependent NRAMP family transporter MntH and the ABC transporter MntABCD. Here, we show that an mntR null mutant is still sensitive to Mn(II) intoxication even if both of the import systems are absent. This Mn(II) sensitivity results from the requirement for MntR to activate the transcription of two genes encoding cation diffusion facilitator (CDF) family efflux pumps. Physiological studies indicate that MneP (formerly YdfM) serves as the primary Mn(II) efflux pump with MneS (formerly YeaB) playing a secondary role. Mutant strains lacking mneP are Mn(II) sensitive and accumulate elevated levels of Mn(II), and these effects are exacerbated in a mneP mneS double mutant. DNA-binding and in vitro transcription studies demonstrate that MntR binds to both the mneP and mneS regulatory regions and directly activates transcription in response to levels of Mn(II) several-fold higher than required for repression of import genes. These results highlight the delicate balance of Mn(II) uptake and efflux systems controlled by MntR.
Collapse
Affiliation(s)
- Xiaojuan Huang
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | - Jung-Ho Shin
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | | | - Tina T Su
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | - John D Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| |
Collapse
|
80
|
Schalk IJ, Cunrath O. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Environ Microbiol 2016; 18:3227-3246. [PMID: 27632589 DOI: 10.1111/1462-2920.13525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Biological metal ions, including Co, Cu, Fe, Mg, Mn, Mo, Ni and Zn ions, are necessary for the survival and the growth of all microorganisms. Their biological functions are linked to their particular chemical properties: they play a role in structuring macromolecules and/or act as co-factors catalyzing diverse biochemical reactions. These metal ions are also essential for microbial pathogens during infection: they are involved in bacterial metabolism and various virulence factor functions. Therefore, during infection, bacteria need to acquire biological metal ions from the host such that there is competition for these ions between the bacterium and the host. Evidence is increasingly emerging of "nutritional immunity" against pathogens in the hosts; this includes strategies making access to metals difficult for infecting bacteria. It is clear that biological metals play key roles during infection and in the battle between the pathogens and the host. Here, we summarize current knowledge about the strategies used by Pseudomonas aeruginosa to access the various biological metals it requires. P. aeruginosa is a medically significant Gram-negative bacterial opportunistic pathogen that can cause severe chronic lung infections in cystic fibrosis patients and that is responsible for nosocomial infections worldwide.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France.
| | - Olivier Cunrath
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France
| |
Collapse
|
81
|
Identification and Characterization of a Putative Manganese Export Protein in Vibrio cholerae. J Bacteriol 2016; 198:2810-7. [PMID: 27481926 DOI: 10.1128/jb.00215-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/23/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Manganese plays an important role in the cellular physiology and metabolism of bacterial species, including the human pathogen Vibrio cholerae The intracellular level of manganese ions is controlled through coordinated regulation of the import and export of this element. We have identified a putative manganese exporter (VC0022), named mneA (manganese exporter A), which is highly conserved among Vibrio spp. An mneA mutant exhibited sensitivity to manganese but not to other cations. Under high-manganese conditions, the mneA mutant showed an almost 50-fold increase in intracellular manganese levels and reduced intracellular iron relative to those of its wild-type parent, suggesting that the mutant's manganese sensitivity is due to the accumulation of toxic levels of manganese and reduced iron. Expression of mneA suppressed the manganese-sensitive phenotype of an Escherichia coli strain carrying a mutation in the nonhomologous manganese export gene, mntP, further supporting a manganese export function for V. cholerae MneA. The level of mneA mRNA was induced approximately 2.5-fold after addition of manganese to the medium, indicating regulation of this gene by manganese. This study offers the first insights into understanding manganese homeostasis in this important pathogen. IMPORTANCE Bacterial cells control intracellular metal concentrations by coordinating acquisition in metal-limited environments with export in metal-excess environments. We identified a putative manganese export protein, MneA, in Vibrio cholerae An mneA mutant was sensitive to manganese, and this effect was specific to manganese. The mneA mutant accumulated high levels of intracellular manganese with a concomitant decrease in intracellular iron levels when grown in manganese-supplemented medium. Expression of mneA in trans suppressed the manganese sensitivity of an E. coli mntP mutant. This study is the first to investigate manganese export in V. cholerae.
Collapse
|
82
|
Competition for Manganese at the Host-Pathogen Interface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:1-25. [PMID: 27571690 DOI: 10.1016/bs.pmbts.2016.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.
Collapse
|
83
|
Diaz-Ochoa VE, Lam D, Lee CS, Klaus S, Behnsen J, Liu JZ, Chim N, Nuccio SP, Rathi SG, Mastroianni JR, Edwards RA, Jacobo CM, Cerasi M, Battistoni A, Ouellette AJ, Goulding CW, Chazin WJ, Skaar EP, Raffatellu M. Salmonella Mitigates Oxidative Stress and Thrives in the Inflamed Gut by Evading Calprotectin-Mediated Manganese Sequestration. Cell Host Microbe 2016; 19:814-25. [PMID: 27281571 PMCID: PMC4901528 DOI: 10.1016/j.chom.2016.05.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/14/2016] [Accepted: 04/29/2016] [Indexed: 01/27/2023]
Abstract
Neutrophils hinder bacterial growth by a variety of antimicrobial mechanisms, including the production of reactive oxygen species and the secretion of proteins that sequester nutrients essential to microbes. A major player in this process is calprotectin, a host protein that exerts antimicrobial activity by chelating zinc and manganese. Here we show that the intestinal pathogen Salmonella enterica serovar Typhimurium uses specialized metal transporters to evade calprotectin sequestration of manganese, allowing the bacteria to outcompete commensals and thrive in the inflamed gut. The pathogen's ability to acquire manganese in turn promotes function of SodA and KatN, enzymes that use the metal as a cofactor to detoxify reactive oxygen species. This manganese-dependent SodA activity allows the bacteria to evade neutrophil killing mediated by calprotectin and reactive oxygen species. Thus, manganese acquisition enables S. Typhimurium to overcome host antimicrobial defenses and support its competitive growth in the intestine.
Collapse
Affiliation(s)
- Vladimir E Diaz-Ochoa
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Diana Lam
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Carlin S Lee
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Suzi Klaus
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Judith Behnsen
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Janet Z Liu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Nicholas Chim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Sean-Paul Nuccio
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Subodh G Rathi
- Department of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN 37232-8725, USA
| | - Jennifer R Mastroianni
- Department of Pathology and Laboratory Medicine, University of Southern California, Los Angeles, CA 90089-9092, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Christina M Jacobo
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA
| | - Mauro Cerasi
- Department of Biology, University of Rome, Tor Vergata, 00173 Roma, Italy
| | - Andrea Battistoni
- Department of Biology, University of Rome, Tor Vergata, 00173 Roma, Italy
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, University of Southern California, Los Angeles, CA 90089-9092, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-3958, USA
| | - Walter J Chazin
- Department of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN 37232-8725, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA; Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4120, USA.
| |
Collapse
|
84
|
Yaprak E, Yolcubal İ, Sinanoğlu A, Doğrul-Demiray A, Guzeldemir-Akcakanat E, Marakoğlu İ. High levels of heavy metal accumulation in dental calculus of smokers: a pilot inductively coupled plasma mass spectrometry study. J Periodontal Res 2016; 52:83-88. [DOI: 10.1111/jre.12371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2016] [Indexed: 12/26/2022]
Affiliation(s)
- E. Yaprak
- Department of Periodontology; Faculty of Dentistry; Kocaeli University; Kocaeli Turkey
| | - İ. Yolcubal
- Department of Geological Engineering; Faculty of Engineering; Kocaeli University; Kocaeli Turkey
| | - A. Sinanoğlu
- Department of Oral and Maxillofacial Radiology; Oral Diagnosis Clinic; Faculty of Dentistry; Kocaeli University; Kocaeli Turkey
| | - A. Doğrul-Demiray
- Department of Geological Engineering; Faculty of Engineering; Kocaeli University; Kocaeli Turkey
| | | | - İ. Marakoğlu
- Department of Periodontology; Faculty of Dentistry; Selcuk University; Konya Turkey
| |
Collapse
|
85
|
Perry RD, Bobrov AG, Fetherston JD. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Metallomics 2016; 7:965-78. [PMID: 25891079 DOI: 10.1039/c4mt00332b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
86
|
Shabayek S, Bauer R, Mauerer S, Mizaikoff B, Spellerberg B. A streptococcal NRAMP homologue is crucial for the survival of Streptococcus agalactiae under low pH conditions. Mol Microbiol 2016; 100:589-606. [PMID: 27150893 DOI: 10.1111/mmi.13335] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/25/2022]
Abstract
Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance-associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe(2+) and Mn(2+) and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH-regulated NRAMP Mn(2+) /Fe(2+) transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages.
Collapse
Affiliation(s)
- Sarah Shabayek
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany.,Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
87
|
Ganji R, Dhali S, Rizvi A, Rapole S, Banerjee S. Understanding HIV-Mycobacteria synergism through comparative proteomics of intra-phagosomal mycobacteria during mono- and HIV co-infection. Sci Rep 2016; 6:22060. [PMID: 26916387 PMCID: PMC4768096 DOI: 10.1038/srep22060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the most common co-infection in HIV patients and a serious co-epidemic. Apart from increasing the risk of reactivation of latent tuberculosis (TB), HIV infection also permits opportunistic infection of environmental non-pathogenic mycobacteria. To gain insights into mycobacterial survival inside host macrophages and identify mycobacterial proteins or processes that influence HIV propagation during co-infection, we employed proteomics approach to identify differentially expressed intracellular mycobacterial proteins during mono- and HIV co-infection of human THP-1 derived macrophage cell lines. Of the 92 proteins identified, 30 proteins were upregulated during mycobacterial mono-infection and 40 proteins during HIV-mycobacteria co-infection. We observed down-regulation of toxin-antitoxin (TA) modules, up-regulation of cation transporters, Type VII (Esx) secretion systems, proteins involved in cell wall lipid or protein metabolism, glyoxalate pathway and branched chain amino-acid synthesis during co-infection. The bearings of these mycobacterial factors or processes on HIV propagation during co-infection, as inferred from the proteomics data, were validated using deletion mutants of mycobacteria. The analyses revealed mycobacterial factors that possibly via modulating the host environment, increased viral titers during co-infection. The study provides new leads for investigations towards hitherto unknown molecular mechanisms explaining HIV-mycobacteria synergism, helping address diagnostics and treatment challenges for effective co-epidemic management.
Collapse
Affiliation(s)
- Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | - Snigdha Dhali
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Arshad Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
88
|
Vomacka J, Korotkov VS, Bauer B, Weinandy F, Kunzmann MH, Krysiak J, Baron O, Böttcher T, Lorenz-Baath K, Sieber SA. An Aromatic Hydroxyamide Attenuates MultiresistantStaphylococcus aureusToxin Expression. Chemistry 2016; 22:1622-30. [DOI: 10.1002/chem.201503981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Jan Vomacka
- Department of Chemistry; AVIRU, GO-Bio-project of the Federal Ministry of Education and Research, FKZ: 031A131; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Vadim S. Korotkov
- Department of Chemistry; AVIRU, GO-Bio-project of the Federal Ministry of Education and Research, FKZ: 031A131; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Bianca Bauer
- Department of Chemistry; AVIRU, GO-Bio-project of the Federal Ministry of Education and Research, FKZ: 031A131; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Franziska Weinandy
- Department of Chemistry; AVIRU, GO-Bio-project of the Federal Ministry of Education and Research, FKZ: 031A131; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Martin H. Kunzmann
- Department of Chemistry; Chair of Organic Chemistry II; Center for Integrated Protein Science (CIPSM); Institute of Advanced Studies (IAS); Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Joanna Krysiak
- Department of Chemistry; Chair of Organic Chemistry II; Center for Integrated Protein Science (CIPSM); Institute of Advanced Studies (IAS); Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Oliver Baron
- Department of Chemistry; Center for Integrated Protein Science (CIPSM); Ludwig-Maximilians-Universität München (LMU); Butenandtstrasse 5-13 81377 Munich Germany
| | - Thomas Böttcher
- Department of Chemistry; Universität Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Katrin Lorenz-Baath
- Department of Chemistry; AVIRU, GO-Bio-project of the Federal Ministry of Education and Research, FKZ: 031A131; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Stephan A. Sieber
- Department of Chemistry; Chair of Organic Chemistry II; Center for Integrated Protein Science (CIPSM); Institute of Advanced Studies (IAS); Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
89
|
Mandal B, Singha S, Dey SK, Mazumdar S, Mondal TK, Karmakar P, Kumar S, Das S. Synthesis, crystal structure from PXRD of a MnII(purp)2complex, interaction with DNA at different temperatures and pH and lack of stimulated ROS formation by the complex. RSC Adv 2016. [DOI: 10.1039/c6ra09387f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MnII(purpurin)2crystal structure done from PXRD is the second report on hydroxy-9,10-anthraquinone with a 3d-transition metal. DNA binding of complex is better and ROS generation less than purpurin. Complex maintains biological activity of purpurin.
Collapse
Affiliation(s)
- Bitapi Mandal
- Department of Chemistry (Inorganic Section)
- Jadavpur University
- Kolkata-700032
- India
| | - Soumen Singha
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | | | - Swagata Mazumdar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata-700032
- India
| | - Tapan Kumar Mondal
- Department of Chemistry (Inorganic Section)
- Jadavpur University
- Kolkata-700032
- India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata-700032
- India
| | - Sanjay Kumar
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section)
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
90
|
Microbial Virulence and Interactions With Metals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:27-49. [DOI: 10.1016/bs.pmbts.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
91
|
Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation. J Bacteriol 2015; 198:816-29. [PMID: 26712936 DOI: 10.1128/jb.00668-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/13/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability. Among the properties that are affected by both iron and manganese levels are those required for normal surface attachment and biofilm formation, but the requirement for each of these transition metals is mechanistically independent from the other.
Collapse
|
92
|
Bou-Abdallah F, Giffune TR. The thermodynamics of protein interactions with essential first row transition metals. Biochim Biophys Acta Gen Subj 2015; 1860:879-891. [PMID: 26569121 DOI: 10.1016/j.bbagen.2015.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The binding of metal ions to proteins is a crucial process required for their catalytic activity, structural stability and/or functional regulation. Isothermal titration calorimetry provides a wealth of fundamental information which when combined with structural data allow for a much deeper understanding of the underlying molecular mechanism. SCOPE OF REVIEW A rigorous understanding of any molecular interaction requires in part an in-depth quantification of its thermodynamic properties. Here, we provide an overview of recent studies that have used ITC to quantify the interaction of essential first row transition metals with relevant proteins and highlight major findings from these thermodynamic studies. GENERAL SIGNIFICANCE The thermodynamic characterization of metal ion-protein interactions is one important step to understanding the role that metal ions play in living systems. Such characterization has important implications not only to elucidating proteins' structure-function relationships and biological properties but also in the biotechnology sector, medicine and drug design particularly since a number of metal ions are involved in several neurodegenerative diseases. MAJOR CONCLUSIONS Isothermal titration calorimetry measurements can provide complete thermodynamic profiles of any molecular interaction through the simultaneous determination of the reaction binding stoichiometry, binding affinity as well as the enthalpic and entropic contributions to the free energy change thus enabling a more in-depth understanding of the nature of these interactions.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- State University of New York at Potsdam, Potsdam, NY 13676, United States.
| | - Thomas R Giffune
- State University of New York at Potsdam, Potsdam, NY 13676, United States
| |
Collapse
|
93
|
Nakashige TG, Zhang B, Krebs C, Nolan EM. Human calprotectin is an iron-sequestering host-defense protein. Nat Chem Biol 2015; 11:765-71. [PMID: 26302479 PMCID: PMC4575267 DOI: 10.1038/nchembio.1891] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/01/2015] [Indexed: 01/04/2023]
Abstract
Human calprotectin (CP) is a metal-chelating antimicrobial protein of the innate immune response. The current working model states that CP sequesters manganese and zinc from pathogens. We report the discovery that CP chelates iron and deprives bacteria of this essential nutrient. Elemental analysis of CP-treated growth medium establishes that CP reduces the concentrations of manganese, iron and zinc. Microbial growth studies reveal that iron depletion by CP contributes to the growth inhibition of bacterial pathogens. Biochemical investigations demonstrate that CP coordinates Fe(II) at an unusual hexahistidine motif, and the Mössbauer spectrum of (57)Fe(II)-bound CP is consistent with coordination of high-spin Fe(II) at this site (δ = 1.20 mm/s, ΔEQ = 1.78 mm/s). In the presence of Ca(II), CP turns on its iron-sequestering function and exhibits subpicomolar affinity for Fe(II). Our findings expand the biological coordination chemistry of iron and support a previously unappreciated role for CP in mammalian iron homeostasis.
Collapse
Affiliation(s)
- Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bo Zhang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Carsten Krebs
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
94
|
Coady A, Xu M, Phung Q, Cheung TK, Bakalarski C, Alexander MK, Lehar SM, Kim J, Park S, Tan MW, Nishiyama M. The Staphylococcus aureus ABC-Type Manganese Transporter MntABC Is Critical for Reinitiation of Bacterial Replication Following Exposure to Phagocytic Oxidative Burst. PLoS One 2015; 10:e0138350. [PMID: 26379037 PMCID: PMC4574778 DOI: 10.1371/journal.pone.0138350] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/31/2015] [Indexed: 01/04/2023] Open
Abstract
Manganese plays a central role in cellular detoxification of reactive oxygen species (ROS). Therefore, manganese acquisition is considered to be important for bacterial pathogenesis by counteracting the oxidative burst of phagocytic cells during host infection. However, detailed analysis of the interplay between bacterial manganese acquisition and phagocytic cells and its impact on bacterial pathogenesis has remained elusive for Staphylococcus aureus, a major human pathogen. Here, we show that a mntC mutant, which lacks the functional manganese transporter MntABC, was more sensitive to killing by human neutrophils but not murine macrophages, unless the mntC mutant was pre-exposed to oxidative stress. Notably, the mntC mutant formed strikingly small colonies when recovered from both type of phagocytic cells. We show that this phenotype is a direct consequence of the inability of the mntC mutant to reinitiate growth after exposure to phagocytic oxidative burst. Transcript and quantitative proteomics analyses revealed that the manganese-dependent ribonucleotide reductase complex NrdEF, which is essential for DNA synthesis and repair, was highly induced in the mntC mutant under oxidative stress conditions including after phagocytosis. Since NrdEF proteins are essential for S. aureus viability we hypothesize that cells lacking MntABC might attempt to compensate for the impaired function of NrdEF by increasing their expression. Our data suggest that besides ROS detoxification, functional manganese acquisition is likely crucial for S. aureus pathogenesis by repairing oxidative damages, thereby ensuring efficient bacterial growth after phagocytic oxidative burst, which is an attribute critical for disseminating and establishing infection in the host.
Collapse
Affiliation(s)
- Alison Coady
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, United States of America
| | - Min Xu
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Qui Phung
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Tommy K. Cheung
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Corey Bakalarski
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California, United States of America
- Department of Bioinformatics, Genentech Inc., South San Francisco, California, United States of America
| | - Mary Kate Alexander
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, United States of America
| | - Sophie M. Lehar
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, United States of America
| | - Janice Kim
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Summer Park
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, United States of America
| | - Mireille Nishiyama
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
95
|
Deplazes E, Begg SL, van Wonderen JH, Campbell R, Kobe B, Paton JC, MacMillan F, McDevitt CA, O'Mara ML. Characterizing the conformational dynamics of metal-free PsaA using molecular dynamics simulations and electron paramagnetic resonance spectroscopy. Biophys Chem 2015; 207:51-60. [PMID: 26379256 DOI: 10.1016/j.bpc.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022]
Abstract
Prokaryotic metal-ion receptor proteins, or solute-binding proteins, facilitate the acquisition of metal ions from the extracellular environment. Pneumococcal surface antigen A (PsaA) is the primary Mn(2+)-recruiting protein of the human pathogen Streptococcus pneumoniae and is essential for its in vivo colonization and virulence. The recently reported high-resolution structures of metal-free and metal-bound PsaA have provided the first insights into the mechanism of PsaA-facilitated metal binding. However, the conformational dynamics of metal-free PsaA in solution remain unknown. Here, we use continuous wave electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations to study the relative flexibility of the structural domains in metal-free PsaA and its distribution of conformations in solution. The results show that the crystal structure of metal-free PsaA is a good representation of the dominant conformation in solution, but the protein also samples structurally distinct conformations that are not captured by the crystal structure. Further, these results suggest that the metal binding site is both larger and more solvent exposed than indicated by the metal-free crystal structure. Collectively, this study provides atomic-resolution insight into the conformational dynamics of PsaA prior to metal binding and lays the groundwork for future EPR and MD based studies of PsaA in solution.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Stephanie L Begg
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Jessica H van Wonderen
- Henry Wellcome Unit for Biological EPR, School of Chemistry, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Rebecca Campbell
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Fraser MacMillan
- Henry Wellcome Unit for Biological EPR, School of Chemistry, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Megan L O'Mara
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia; Research School of Chemistry, The Australian National University, Canberra, Australia. megan.o'
| |
Collapse
|
96
|
Ferric Uptake Regulator Fur Control of Putative Iron Acquisition Systems in Clostridium difficile. J Bacteriol 2015; 197:2930-40. [PMID: 26148711 DOI: 10.1128/jb.00098-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Clostridium difficile is an anaerobic, Gram-positive, spore-forming opportunistic pathogen and is the most common cause of hospital-acquired infectious diarrhea. Although iron acquisition in the host is a key to survival of bacterial pathogens, high levels of intracellular iron can increase oxidative damage. Therefore, expression of iron acquisition mechanisms is tightly controlled by transcriptional regulators. We identified a C. difficile homologue of the master bacterial iron regulator Fur. Using targetron mutagenesis, we generated a fur insertion mutant of C. difficile. To identify the genes regulated by Fur in C. difficile, we used microarray analysis to compare transcriptional differences between the fur mutant and the wild type when grown in high-iron medium. The fur mutant had increased expression of greater than 70 transcriptional units. Using quantitative reverse transcriptase PCR (qRT-PCR), we analyzed several of the Fur-regulated genes identified by the microarray and verified that they are both iron and Fur regulated in C. difficile. Among those Fur- and iron-repressed genes were C. difficile genes encoding 7 putative cation transport systems of different classes. We found that Fur was able to bind the DNA upstream of three Fur-repressed genes in electrophoretic mobility shift assays. We also demonstrate that expression of Fur-regulated putative iron acquisition systems was increased during C. difficile infection using the hamster model. Our data suggest that C. difficile expresses multiple iron transport mechanisms in response iron depletion in vitro and in vivo. IMPORTANCE Clostridium difficile is the most common cause of hospital-acquired infectious diarrhea and has been recently classified as an "urgent" antibiotic resistance threat by the CDC. To survive and cause disease, most bacterial pathogens must acquire the essential enzymatic cofactor iron. While import of adequate iron is essential for most bacterial growth, excess intracellular iron can lead to extensive oxidative damage. Thus, bacteria must regulate iron import to maintain iron homeostasis. We demonstrate here that C. difficile regulates expression of several putative iron acquisition systems using the transcriptional regulator Fur. These import mechanisms are induced under iron-limiting conditions in vitro and during C. difficile infection of the host. This suggests that during a C. difficile infection, iron availability is limited in vivo.
Collapse
|
97
|
Vigonsky E, Fish I, Livnat-Levanon N, Ovcharenko E, Ben-Tal N, Lewinson O. Metal binding spectrum and model structure of the Bacillus anthracis virulence determinant MntA. Metallomics 2015; 7:1407-19. [PMID: 26106847 DOI: 10.1039/c5mt00100e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potentially lethal human pathogen Bacillus anthracis expresses a putative metal import system, MntBCA, which belongs to the large family of ABC transporters. MntBCA is essential for virulence of Bacillus anthracis: deletion of MntA, the system's substrate binding protein, yields a completely non-virulent strain. Here we determined the metal binding spectrum of MntA. In contrast to what can be inferred from growth complementation studies we find no evidence that MntA binds Fe(2+) or Fe(3+). Rather, MntA binds a variety of other metal ions, including Mn(2+), Zn(2+), Cd(2+), Co(2+), and Ni(2+) with affinities ranging from 10(-6) to 10(-8) M. Binding of Zn(2+) and Co(2+) have a pronounced thermo-stabilizing effect on MntA, with Mn(2+) having a milder effect. The thermodynamic stability of MntA, competition experiments, and metal binding and release experiments all suggest that Mn(2+) is the metal that is likely transported by MntBCA and is therefore the limiting factor for virulence of Bacillus anthracis. A homology-model of MntA shows a single, highly conserved metal binding site, with four residues that participate in metal coordination: two histidines, a glutamate, and an aspartate. The metals bind to this site in a mutually exclusive manner, yet surprisingly, mutational analysis shows that for proper coordination each metal requires a different subset of these four residues. ConSurf evolutionary analysis and structural comparison of MntA and its homologues suggest that substrate binding proteins (SBPs) of metal ions use a pair of highly conserved prolines to interact with their cognate ABC transporters. This proline pair is found exclusively in ABC import systems of metal ions.
Collapse
Affiliation(s)
- Elena Vigonsky
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
98
|
Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MC58 and Their Virulence Characterization. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:416-34. [PMID: 26076386 DOI: 10.1089/omi.2015.0032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neisseria meningitidis is a Gram-negative aerobic diplococcus, responsible for a variety of meningococcal diseases. The genome of N. meningitidis MC58 is comprised of 2114 genes that are translated into 1953 proteins. The 698 genes (∼35%) encode hypothetical proteins (HPs), because no experimental evidence of their biological functions are available. Analyses of these proteins are important to understand their functions in the metabolic networks and may lead to the discovery of novel drug targets against the infections caused by N. meningitidis. This study aimed at the identification and categorization of each HP present in the genome of N. meningitidis MC58 using computational tools. Functions of 363 proteins were predicted with high accuracy among the annotated set of HPs investigated. The reliably predicted 363 HPs were further grouped into 41 different classes of proteins, based on their possible roles in cellular processes such as metabolism, transport, and replication. Our studies revealed that 22 HPs may be involved in the pathogenesis caused by this microorganism. The top two HPs with highest virulence scores were subjected to molecular dynamics (MD) simulations to better understand their conformational behavior in a water environment. We also compared the MD simulation results with other virulent proteins present in N. meningitidis. This study broadens our understanding of the mechanistic pathways of pathogenesis, drug resistance, tolerance, and adaptability for host immune responses to N. meningitidis.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Krishna Bisetty
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Faizan Ahmad
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
99
|
Morey JR, McDevitt CA, Kehl-Fie TE. Host-imposed manganese starvation of invading pathogens: two routes to the same destination. Biometals 2015; 28:509-19. [PMID: 25836716 PMCID: PMC4430393 DOI: 10.1007/s10534-015-9850-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/24/2015] [Indexed: 01/07/2023]
Abstract
During infection invading pathogens must acquire all essential nutrients, including first row transition metals, from the host. To combat invaders, the host exploits this fact and restricts the availability of these nutrients using a defense mechanism known as nutritional immunity. While iron sequestration is the most well-known aspect of this defense, recent work has revealed that the host restricts the availability of other essential elements, notably manganese (Mn), during infection. Furthermore, these studies have revealed that the host utilizes multiple strategies that extend beyond metal sequestration to prevent bacteria from obtaining these metals. This review will discuss the mechanisms by which bacteria attempt to obtain the essential first row transition metal ion Mn during infection, and the approaches utilized by the host to prevent this occurrence. In addition, this review will discuss the impact of host-imposed Mn starvation on invading bacteria.
Collapse
Affiliation(s)
- Jacqueline R. Morey
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher A. McDevitt
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana IL, USA
| |
Collapse
|
100
|
Juttukonda LJ, Skaar EP. Manganese homeostasis and utilization in pathogenic bacteria. Mol Microbiol 2015; 97:216-28. [PMID: 25898914 DOI: 10.1111/mmi.13034] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 01/08/2023]
Abstract
Manganese (Mn) is a required cofactor for all forms of life. Given the importance of Mn to bacteria, the host has devised strategies to sequester Mn from invaders. In the macrophage phagosome, NRAMP1 removes Mn and other essential metals to starve intracellular pathogens; in the extracellular space, calprotectin chelates Mn and Zn. Calprotectin-mediated Mn sequestration is a newly appreciated host defense mechanism, and recent findings are highlighted herein. In order to acquire Mn when extracellular concentrations are low, bacteria have evolved efficient Mn acquisition systems that are under elegant transcriptional control. To counteract Mn overload, some bacteria possess Mn-specific export systems that are important in vivo, presumably for control of intracellular Mn levels. Mn transporters, their transcriptional regulators and some Mn-requiring enzymes are necessary for virulence of certain bacterial pathogens, as revealed by animal models of infection. Furthermore, Mn is an important facet of the cellular response to oxidative stress, a host antibacterial strategy. The battle for Mn between host and pathogen is now appreciated to be a major determinant of the outcome of infection. In this MicroReview, the contribution of Mn to the host-pathogen interaction is reviewed, and key questions are proposed for future study.
Collapse
Affiliation(s)
- Lillian J Juttukonda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|