51
|
Bénard CY, Blanchette C, Recio J, Hobert O. The secreted immunoglobulin domain proteins ZIG-5 and ZIG-8 cooperate with L1CAM/SAX-7 to maintain nervous system integrity. PLoS Genet 2012; 8:e1002819. [PMID: 22829780 PMCID: PMC3400552 DOI: 10.1371/journal.pgen.1002819] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/23/2012] [Indexed: 11/24/2022] Open
Abstract
During nervous system development, neuronal cell bodies and their axodendritic projections are precisely positioned through transiently expressed patterning cues. We show here that two neuronally expressed, secreted immunoglobulin (Ig) domain-containing proteins, ZIG-5 and ZIG-8, have no detectable role during embryonic nervous system development of the nematode Caenorhabditis elegans but are jointly required for neuronal soma and ventral cord axons to maintain their correct position throughout postembryonic life of the animal. The maintenance defects observed upon removal of zig-5 and zig-8 are similar to those observed upon complete loss of the SAX-7 protein, the C. elegans ortholog of the L1CAM family of adhesion proteins, which have been implicated in several neurological diseases. SAX-7 exists in two isoforms: a canonical, long isoform (SAX-7L) and a more adhesive shorter isoform lacking the first two Ig domains (SAX-7S). Unexpectedly, the normally essential function of ZIG-5 and ZIG-8 in maintaining neuronal soma and axon position is completely suppressed by genetic removal of the long SAX-7L isoform. Overexpression of the short isoform SAX-7S also abrogates the need for ZIG-5 and ZIG-8. Conversely, overexpression of the long isoform disrupts adhesion, irrespective of the presence of the ZIG proteins. These findings suggest an unexpected interdependency of distinct Ig domain proteins, with one isoform of SAX-7, SAX-7L, inhibiting the function of the most adhesive isoform, SAX-7S, and this inhibition being relieved by ZIG-5 and ZIG-8. Apart from extending our understanding of dedicated neuronal maintenance mechanisms, these findings provide novel insights into adhesive and anti-adhesive functions of IgCAM proteins. The structure of nervous systems is determined during embryonic development. After this developmental patterning phase, active maintenance mechanisms are required to uphold the structural integrity of the nervous system. This concept was revealed through the genetic elimination of factors in the nematode Caenorhabditis elegans, which left the initial establishment of the nervous system during embryogenesis unperturbed, but subsequently resulted in postembryonic defects in its structural integrity. The extent to which such maintenance mechanisms exist, the nature of the players involved, and the mechanisms through which they operate are subjects of active investigation. In this study, we reveal two novel, previously uncharacterized maintenance factors encoded by the zig-5 and zig-8 genes. Both genes are predicted to encode small secreted immunoglobulin domains. We show that the two proteins operate by counteracting the anti-adhesive effects of a specific isoform of the SAX-7 Ig domain protein, the C. elegans homolog of L1CAM, a human protein involved in various neurological diseases. This study therefore provides novel mechanistic insights into nervous system patterning and may help to better understand the function of an important human disease gene.
Collapse
Affiliation(s)
- Claire Y Bénard
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
52
|
Jannie KM, Stipp CS, Weiner JA. ALCAM regulates motility, invasiveness, and adherens junction formation in uveal melanoma cells. PLoS One 2012; 7:e39330. [PMID: 22745734 PMCID: PMC3383762 DOI: 10.1371/journal.pone.0039330] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/23/2012] [Indexed: 01/19/2023] Open
Abstract
ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM's role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature. To better understand how ALCAM might regulate cancer cell behavior, we utilized a panel of defined uveal melanoma cell lines with high or low ALCAM levels, and directly tested the effects of manipulating these levels on cell motility, invasiveness, and adhesion using multiple assays. ALCAM expression was stably silenced by shRNA knockdown in a high-ALCAM cell line (MUM-2B); the resulting cells displayed reduced motility in gap-closure assays and a reduction in invasiveness as measured by a transwell migration assay. Immunostaining revealed that the silenced cells were defective in the formation of adherens junctions, at which ALCAM colocalizes with N-cadherin and ß-catenin in native cells. Additionally, we stably overexpressed ALCAM in a low-ALCAM cell line (MUM-2C); intriguingly, these cells did not exhibit any increase in motility or invasiveness, indicating that ALCAM is necessary but not sufficient to promote metastasis-associated cell behaviors. In these ALCAM-overexpressing cells, however, recruitment of ß-catenin and N-cadherin to adherens junctions was enhanced. These data confirm a previously suggested role for ALCAM in the regulation of adherens junctions, and also suggest a mechanism by which ALCAM might differentially enhance or decrease invasiveness, depending on the type of cadherin adhesion complexes present in tissues surrounding the primary tumor, and on the cadherin status of the tumor cells themselves.
Collapse
Affiliation(s)
- Karry M. Jannie
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher S. Stipp
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Joshua A. Weiner
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
53
|
Synaptic functions of invertebrate varicosities: what molecular mechanisms lie beneath. Neural Plast 2012; 2012:670821. [PMID: 22655209 PMCID: PMC3359714 DOI: 10.1155/2012/670821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/27/2012] [Indexed: 11/26/2022] Open
Abstract
In mammalian brain, the cellular and molecular events occurring in both synapse formation and plasticity are difficult to study due to the large number of factors involved in these processes and because the contribution of each component is not well defined. Invertebrates, such as Drosophila, Aplysia, Helix, Lymnaea, and Helisoma, have proven to be useful models for studying synaptic assembly and elementary forms of learning. Simple nervous system, cellular accessibility, and genetic simplicity are some examples of the invertebrate advantages that allowed to improve our knowledge about evolutionary neuronal conserved mechanisms. In this paper, we present an overview of progresses that elucidates cellular and molecular mechanisms underlying synaptogenesis and synapse plasticity in invertebrate varicosities and their validation in vertebrates. In particular, the role of invertebrate synapsin in the formation of presynaptic terminals and the cell-to-cell interactions that induce specific structural and functional changes in their respective targets will be analyzed.
Collapse
|
54
|
Sandau US, Alderman Z, Corfas G, Ojeda SR, Raber J. Astrocyte-specific disruption of SynCAM1 signaling results in ADHD-like behavioral manifestations. PLoS One 2012; 7:e36424. [PMID: 22558465 PMCID: PMC3340339 DOI: 10.1371/journal.pone.0036424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022] Open
Abstract
SynCAM1 is an adhesion molecule involved in synaptic differentiation and organization. SynCAM1 is also expressed in astroglial cells where it mediates astrocyte-to astrocyte and glial-neuronal adhesive communication. In astrocytes, SynCAM1 is functionally linked to erbB4 receptors, which are involved in the control of both neuronal/glial development and mature neuronal and glial function. Here we report that mice carrying a dominant-negative form of SynCAM1 specifically targeted to astrocytes (termed GFAP-DNSynCAM1 mice) exhibit disrupted diurnal locomotor activity with enhanced and more frequent episodes of activity than control littermates during the day (when the animals are normally sleeping) accompanied by shorter periods of rest. GFAP-DNSynCAM1 mice also display high levels of basal activity in the dark period (the rodent's awake/active time) that are attenuated by the psychostimulant D,L-amphetamine, and reduced anxiety levels in response to both avoidable and unavoidable provoking stimuli. These results indicate that disruption of SynCAM1-dependent astroglial function results in behavioral abnormalities similar to those described in animals model of attention-deficit hyperactive disorder (ADHD), and suggest a hitherto unappreciated contribution of glial cells to the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Zefora Alderman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Gabriel Corfas
- F. M. Kirby Neurobiology Program, Harvard Medical School, Children's Hospital, Boston, Massachusetts, United States of America
| | - Sergio R. Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- * E-mail: (SRO); (JR)
| | - Jacob Raber
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Departments of Behavioral Neurosciences and Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (SRO); (JR)
| |
Collapse
|
55
|
Abstract
Previous studies in rodents showed that chronic stress induces structural and functional alterations in several brain regions, including shrinkage of the hippocampus and the prefrontal cortex, which are accompanied by cognitive and emotional disturbances. Reduced expression of the neural cell adhesion molecule (NCAM) following chronic stress has been proposed to be crucially involved in neuronal retraction and behavioral alterations. Since NCAM gene polymorphisms and altered expression of alternatively spliced NCAM isoforms have been associated with bipolar depression and schizophrenia in humans, we hypothesized that reduced expression of NCAM renders individuals more vulnerable to the deleterious effects of stress on behavior. Here, we specifically questioned whether mice in which the NCAM gene is inactivated in the forebrain by cre-recombinase under the control of the calcium-calmodulin-dependent kinase II promoter (conditional NCAM-deficient mice), display increased vulnerability to stress. We assessed the evolving of depressive-like behaviors and spatial learning and memory impairments following a subchronic stress protocol (2 weeks) that does not result in behavioral dysfunction, nor in altered NCAM expression, in wild-type mice. Indeed, while no behavioral alterations were detected in wild-type littermates after subchronic stress, conditional NCAM-deficient mice showed increased immobility in the tail suspension test and deficits in reversal spatial learning in the water maze. These findings indicate that diminished NCAM expression might be a critical vulnerability factor for the development of behavioral alterations by stress and further support a functional involvement of NCAM in stress-induced cognitive and emotional disturbances.
Collapse
Affiliation(s)
- Reto Bisaz
- Brain Mind Institute, Ecole Polytechnique Federale de LausanneCH-1015 Lausanne, Switzerland
| | | |
Collapse
|
56
|
Amoureux MC, Nicolas S, Rougon G. NCAM180 Regulates Ric8A Membrane Localization and Potentiates β-Adrenergic Response. PLoS One 2012; 7:e32216. [PMID: 22384181 PMCID: PMC3284568 DOI: 10.1371/journal.pone.0032216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/25/2012] [Indexed: 11/20/2022] Open
Abstract
Cooperation between receptors allows integrated intracellular signaling leading to appropriate physiological responses. The Neural Cell Adhesion Molecule (NCAM) has three main isoforms of 120, 140 and 180 kDa, with adhesive and signaling properties, but their respective functions remains to be fully identified. Here we show that the human NCAM180 intracellular domain is a novel interactor of the human guanosine exchange factor (GEF) Ric8A using the yeast two hybrid system and immunoprecipitation. Furthermore, NCAM, Ric8A and Gαs form a tripartite complex. Colocalization experiments by confocal microscopy revealed that human NCAM180 specifically induces the recruitment of Ric8A to the membrane. In addition, using an in vitro recombinant system, and in vivo by comparing NCAM knock-out mouse brain to NCAM heterozygous and wild type brains, we show that NCAM expression dose dependently regulates Ric8A redistribution in detergent resistent membrane microdomains (DRM). Previous studies have demonstrated essential roles for Ric8 in Gα protein activity at G protein coupled receptors (GPCR), during neurotransmitter release and for asymmetric cell division. We observed that inhibition of Ric8A by siRNA or its overexpression, decreases or increases respectively, cAMP production following β-adrenergic receptor stimulation. Furthermore, in human HEK293T recombinant cells, NCAM180 potentiates the Gαs coupled β-adrenergic receptor response, in a Ric8A dependent manner, whereas NCAM120 or NCAM140 do not. Finally, in mouse hippocampal neurons expressing endogenously NCAM, NCAM is required for the agonist isoproterenol to induce cAMP production, and this requirement depends on Ric8A. These data illustrate a functional crosstalk between a GPCR and an IgCAM in the nervous system.
Collapse
Affiliation(s)
- Marie-Claude Amoureux
- Institut de Biologie du Développement de Marseille-Luminy, Aix-Marseille Université CNRS 6216, Marseille, France.
| | | | | |
Collapse
|
57
|
|
58
|
Evidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patients. Mol Psychiatry 2011; 16:1189-202. [PMID: 20921955 DOI: 10.1038/mp.2010.100] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extensive research has been conducted on post-mortem brain tissue in schizophrenia (SCZ), particularly the dorsolateral prefrontal cortex (DLPFC). However, to what extent the reported changes are due to the disorder itself, and which are the cumulative effects of lifetime medication remains to be determined. In this study, we employed label-free liquid chromatography-mass spectrometry-based proteomic and proton nuclear magnetic resonance-based metabonomic profiling approaches to investigate DLPFC tissue from two cohorts of SCZ patients grouped according to their lifetime antipsychotic dose, together with tissue from bipolar disorder (BPD) subjects, and normal controls (n=10 per group). Both techniques showed profound changes in tissue from low-cumulative-medication SCZ subjects, but few changes in tissue from medium-cumulative-medication subjects. Protein expression changes were validated by Western blot and investigated further in a third group of subjects who were subjected to high-cumulative-medication over the course of their lifetime. Furthermore, key protein expression and metabolite level changes correlated significantly with lifetime antipsychotic dose. This suggests that the detected changes are present before antipsychotic therapy and, moreover, may be normalized with treatment. Overall, our analyses revealed novel protein and metabolite changes in low-cumulative-medication subjects associated with synaptogenesis, neuritic dynamics, presynaptic vesicle cycling, amino acid and glutamine metabolism, and energy buffering systems. Most of these markers were altered specifically in SCZ as determined by analysis of the same brain region from BPD patients.
Collapse
|
59
|
Telonis-Scott M, Gane M, DeGaris S, Sgrò CM, Hoffmann AA. High resolution mapping of candidate alleles for desiccation resistance in Drosophila melanogaster under selection. Mol Biol Evol 2011; 29:1335-51. [PMID: 22130970 DOI: 10.1093/molbev/msr294] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ability to counter periods of low humidity is an important determinant of distribution range in Drosophila. Climate specialists with low physiological tolerance to desiccation stress are restricted to the tropics and may lack the ability to further increase resistance through evolution. Although the physiological adaptations to desiccation stress are well studied in Drosophila and other ectotherms, factors underlying evolutionary responses remain unknown because of a paucity of genetic data. We address this issue by mapping evolutionary shifts in D. melanogaster under selection for desiccation resistance. Genomic DNA from five independent replicate selected, and control lines were hybridized to high density Affymetrix Drosophila tiling arrays resulting in the detection of 691 single feature polymorphisms (SFPs) differing between the treatments. While randomly distributed throughout the genome, the SFPs formed specific clusters according to gene ontology. These included genes involved in ion transport and respiratory system development that provide candidates for evolutionary changes involving excretory and respiratory water balance. Changes to genes related to neuronal control of cell signaling, development, and gene regulation provide candidates to explore novel biological processes in stress resistance. Sequencing revealed the nucleotide shifts in a subset of the SFPs and highlighted larger regions of genomic diversity surrounding SFPs. The association between natural desiccation resistance and a 463-bp region of the 5' promoter region of the Dys gene undergoing allele frequency changes in response to selection in the experimental evolution lines was tested in an independent population from Coffs Harbour, Australia. The allele frequencies of 23 SNPs common to the two populations were inferred from the parents of the 10% most and 10% least resistant Coffs Harbour flies. The frequencies of the selected alleles were higher at all sites, with three sites significantly associated with the resistant Coffs Harbour flies. This study illustrates how rapid mapping can be used for discovering natural molecular variants associated with survival to low humidity and provides a wealth of candidate alleles to explore the genetic basis of physiological differences among resistant and susceptible Drosophila populations and species.
Collapse
Affiliation(s)
- Marina Telonis-Scott
- Department of Genetics, Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
60
|
Patino GA, Brackenbury WJ, Bao Y, Lopez-Santiago LF, O'Malley HA, Chen C, Calhoun JD, Lafrenière RG, Cossette P, Rouleau GA, Isom LL. Voltage-gated Na+ channel β1B: a secreted cell adhesion molecule involved in human epilepsy. J Neurosci 2011; 31:14577-91. [PMID: 21994374 PMCID: PMC3212034 DOI: 10.1523/jneurosci.0361-11.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 12/19/2022] Open
Abstract
Scn1b-null mice have a severe neurological and cardiac phenotype. Human mutations in SCN1B result in epilepsy and cardiac arrhythmia. SCN1B is expressed as two developmentally regulated splice variants, β1 and β1B, that are each expressed in brain and heart in rodents and humans. Here, we studied the structure and function of β1B and investigated a novel human SCN1B epilepsy-related mutation (p.G257R) unique to β1B. We show that wild-type β1B is not a transmembrane protein, but a soluble protein expressed predominantly during embryonic development that promotes neurite outgrowth. Association of β1B with voltage-gated Na+ channels Na(v)1.1 or Na(v)1.3 is not detectable by immunoprecipitation and β1B does not affect Na(v)1.3 cell surface expression as measured by [(3)H]saxitoxin binding. However, β1B coexpression results in subtle alteration of Na(v)1.3 currents in transfected cells, suggesting that β1B may modulate Na+ current in brain. Similar to the previously characterized p.R125C mutation, p.G257R results in intracellular retention of β1B, generating a functional null allele. In contrast, two other SCN1B mutations associated with epilepsy, p.C121W and p.R85H, are expressed at the cell surface. We propose that β1B p.G257R may contribute to epilepsy through a mechanism that includes intracellular retention resulting in aberrant neuronal pathfinding.
Collapse
Affiliation(s)
| | | | - Yangyang Bao
- Department of Pharmacology and Program in Neuroscience, and
| | | | | | - Chunling Chen
- Department of Pharmacology and Program in Neuroscience, and
| | - Jeffrey D. Calhoun
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ron G. Lafrenière
- Centre of Excellence in Neuromics and
- Emerillon Therapeutics, Inc., Montréal, Québec H3A IL2, Canada, and
| | - Patrick Cossette
- Department of Medicine, Université de Montréal, Montréal, Québec H2L 2W5, Canada
- Centre Hospitalier de l'Université de Montréal–Hôpital Notre-Dame, Montréal, Québec H2L 4M1, Canada
| | - Guy A. Rouleau
- Centre of Excellence in Neuromics and
- Emerillon Therapeutics, Inc., Montréal, Québec H3A IL2, Canada, and
| | - Lori L. Isom
- Department of Pharmacology and Program in Neuroscience, and
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
61
|
Abstract
Understanding restricted functional recovery and designing efficient treatments to alleviate dysfunction after injury of the nervous system remain major challenges in neuroscience and medicine. Numerous molecules of potential significance in neural repair have been identified in vitro, but only few of these have proved to be of major importance in vivo up to now. Among the molecules involved in regeneration are several members of the immunoglobulin superfamily, most notably the neural cell adhesion molecules L1, its close homologue CHL1, and NCAM and, in particular, its polysialic acid glycan moiety. Sufficient evidence is now available to justify the statement that these molecules are major players not only in nervous system development but also in the adult during neural repair and synaptic plasticity. Importantly, insights into the functions of these molecules in promoting or inhibiting functional recovery have allowed the design and assessment of therapeutic approaches in animal models of central nervous system injury that could prove to be applicable in clinical settings.
Collapse
Affiliation(s)
- Andrey Irintchev
- Neuroscience Laboratory, Department of Otorhinolaryngology, University of Jena, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
62
|
OPCML gene as a schizophrenia susceptibility locus in Thai population. J Mol Neurosci 2011; 46:373-7. [PMID: 21833655 DOI: 10.1007/s12031-011-9595-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
Opioid-binding protein/cell adhesion molecule (OPCML) gene has been recently identified as a susceptibility gene for schizophrenia in Europeans. This study aims to investigate the association between single nucleotide polymorphisms (SNPs) in the OPCML gene and risk of schizophrenia in a Thai population. DNA samples of 115 schizophrenia patients and 173 normal controls were genotyped using high-resolution melting analysis and analyzed by chi-square test of SPSS software. We observed a strong association between an intronic SNP of the OPCML gene (rs1784519) and the risk of schizophrenia in the Thai population [P = 0.00036; odds ratio for the minor A allele, 2.11(1.57-2.84)]. The previously discovered SNP associated with schizophrenia in Europeans, rs3016384, also showed significant association with schizophrenia in the Thai population [P = 0.01; odds ratio of the minor T allele, 0.59 (0.44-0.79)]. Therefore, the OPCML gene is considered to be a schizophrenia-susceptible gene in the Thai population.
Collapse
|
63
|
Babu K, Hu Z, Chien SC, Garriga G, Kaplan JM. The immunoglobulin super family protein RIG-3 prevents synaptic potentiation and regulates Wnt signaling. Neuron 2011; 71:103-16. [PMID: 21745641 PMCID: PMC3134796 DOI: 10.1016/j.neuron.2011.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 11/15/2022]
Abstract
Cell surface Ig superfamily proteins (IgSF) have been implicated in several aspects of neuron development and function. Here, we describe the function of a Caenorhabditis elegans IgSF protein, RIG-3. Mutants lacking RIG-3 have an exaggerated paralytic response to a cholinesterase inhibitor, aldicarb. Although RIG-3 is expressed in motor neurons, heightened drug responsiveness was caused by an aldicarb-induced increase in muscle ACR-16 acetylcholine receptor (AChR) abundance, and a corresponding potentiation of postsynaptic responses at neuromuscular junctions. Mutants lacking RIG-3 also had defects in the anteroposterior polarity of the ALM mechanosensory neurons. The effects of RIG-3 on synaptic transmission and ALM polarity were both mediated by changes in Wnt signaling, and in particular by inhibiting CAM-1, a Ror-type receptor tyrosine kinase that binds Wnt ligands. These results identify RIG-3 as a regulator of Wnt signaling, and suggest that RIG-3 has an anti-plasticity function that prevents activity-induced changes in postsynaptic receptor fields.
Collapse
Affiliation(s)
- Kavita Babu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Zhitao Hu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Shih-Chieh Chien
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720
| | - Gian Garriga
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
64
|
Sandau US, Mungenast AE, Alderman Z, Sardi SP, Fogel AI, Taylor B, Parent AS, Biederer T, Corfas G, Ojeda SR. SynCAM1, a synaptic adhesion molecule, is expressed in astrocytes and contributes to erbB4 receptor-mediated control of female sexual development. Endocrinology 2011; 152:2364-76. [PMID: 21486934 PMCID: PMC3100629 DOI: 10.1210/en.2010-1435] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Female sexual maturation requires erythroblastosis B (erbB)4 signaling in hypothalamic astrocytes; however, the mechanisms by which erbB4 contributes to this process are incompletely understood. Here we show that SynCAM1, a synaptic adhesion molecule with signaling capabilities, is not only expressed highly in neurons, but also in hypothalamic astrocytes and is functionally associated with erbB4 receptor activity. Whereas SynCAM1 expression is diminished in astrocytes with impaired erbB4 signaling, ligand-dependent activation of astroglial erbB4 receptors results in rapid association of erbB4 with SynCAM1 and activation of SynCAM1 gene transcription. To determine whether astrocytic SynCAM1-dependent intracellular signaling is required for normal female reproductive function, we generated transgenic mice that express in an astrocyte-specific manner a dominant-negative form of SynCAM1 lacking the intracellular domain. The mutant protein was correctly targeted to the cell membrane and was functionally viable as shown by its ability to block intracellular calcium/calmodulin-dependent serine protein kinase redistribution, a major SynCAM1-mediated event. Dominant-negative-SynCAM1 female mice had a delayed onset of puberty, disrupted estrous cyclicity, and reduced fecundity. These deficits were associated with a reduced capacity of neuregulin-dependent erbB4 receptor activation to elicit prostaglandin E2 release from astrocytes and GnRH release from the hypothalamus. We conclude that one of the mechanisms underlying erbB4 receptor-mediated facilitation of glial-neuronal interactions in the neuroendocrine brain involves SynCAM1-dependent signaling and that this interaction is required for normal female reproductive function.
Collapse
Affiliation(s)
- Ursula S Sandau
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kommadath A, Woelders H, Beerda B, Mulder HA, de Wit AAC, Veerkamp RF, te Pas MFW, Smits MA. Gene expression patterns in four brain areas associate with quantitative measure of estrous behavior in dairy cows. BMC Genomics 2011; 12:200. [PMID: 21504592 PMCID: PMC3110153 DOI: 10.1186/1471-2164-12-200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 04/19/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The decline noticed in several fertility traits of dairy cattle over the past few decades is of major concern. Understanding of the genomic factors underlying fertility, which could have potential applications to improve fertility, is very limited. Here, we aimed to identify and study those genes that associated with a key fertility trait namely estrous behavior, among genes expressed in four bovine brain areas (hippocampus, amygdala, dorsal hypothalamus and ventral hypothalamus), either at the start of estrous cycle, or at mid cycle, or regardless of the phase of cycle. RESULTS An average heat score was calculated for each of 28 primiparous cows in which estrous behavior was recorded for at least two consecutive estrous cycles starting from 30 days post-partum. Gene expression was then measured in brain tissue samples collected from these cows, 14 of which were sacrificed at the start of estrus and 14 around mid cycle. For each brain area, gene expression was modeled as a function of the orthogonally transformed average heat score values using a Bayesian hierarchical mixed model. Genes whose expression patterns showed significant linear or quadratic relationships with heat scores were identified. These included genes expected to be related to estrous behavior as they influence states like socio-sexual behavior, anxiety, stress and feeding motivation (OXT, AVP, POMC, MCHR1), but also genes whose association with estrous behavior is novel and warrants further investigation. CONCLUSIONS Several genes were identified whose expression levels in the bovine brain associated with the level of expression of estrous behavior. The genes OXT and AVP play major roles in regulating estrous behavior in dairy cows. Genes related to neurotransmission and neuronal plasticity are also involved in estrous regulation, with several genes and processes expressed in mid-cycle probably contributing to proper expression of estrous behavior in the next estrus. Studying these genes and the processes they control improves our understanding of the genomic regulation of estrous behavior expression.
Collapse
Affiliation(s)
- Arun Kommadath
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Thalamocortical pathfinding defects precede degeneration of the reticular thalamic nucleus in polysialic acid-deficient mice. J Neurosci 2011; 31:1302-12. [PMID: 21273415 DOI: 10.1523/jneurosci.5609-10.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The modification of the neural cell adhesion molecule (NCAM) with polysialic acid (polySia) is tightly linked to neural development. Genetic ablation of the polySia-synthesizing enzymes ST8SiaII and ST8SiaIV generates polySia-negative but NCAM-positive (II(-/-)IV(-/-)) mice characterized by severe defects of major brain axon tracts, including internal capsule hypoplasia. Here, we demonstrate that misguidance of thalamocortical fibers and deficiencies of corticothalamic connections contribute to internal capsule defects in II(-/-)IV(-/-) mice. Thalamocortical fibers cross the primordium of the reticular thalamic nucleus (Rt) at embryonic day 14.5, before they fail to turn into the ventral telencephalon, thus deviating from their normal trajectory without passing through the internal capsule. At postnatal day 1, a reduction and massive disorganization of fibers traversing the Rt was observed, whereas terminal deoxynucleotidyl transferase dUTP nick end labeling and cleaved caspase-3 staining indicated abundant apoptotic cell death of Rt neurons at postnatal day 5. Furthermore, during postnatal development, the number of Rt neurons was drastically reduced in 4-week-old II(-/-)IV(-/-) mice, but not in the NCAM-deficient N(-/-) or II(-/-)IV(-/-)N(-/-) triple knock-out animals displaying no internal capsule defects. Thus, degeneration of the Rt in II(-/-)IV(-/-) mice may be a consequence of malformation of thalamocortical and corticothalamic fibers providing major excitatory input into the Rt. Indeed, apoptotic death of Rt neurons could be induced by lesioning corticothalamic fibers on whole-brain slice cultures. We therefore propose that anterograde transneuronal degeneration of the Rt in polysialylation-deficient, NCAM-positive mice is caused by defective afferent innervation attributable to thalamocortical pathfinding defects.
Collapse
|
67
|
Expression of the IgSF protein Kirre in the rat central nervous system. Life Sci 2011; 88:590-7. [DOI: 10.1016/j.lfs.2011.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 12/17/2010] [Accepted: 01/14/2011] [Indexed: 11/23/2022]
|
68
|
A single immunoglobulin-domain protein required for clustering acetylcholine receptors in C. elegans. EMBO J 2011; 30:706-18. [PMID: 21252855 DOI: 10.1038/emboj.2010.355] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 12/16/2010] [Indexed: 11/08/2022] Open
Abstract
At Caenorhabditis elegans neuromuscular junctions (NMJs), synaptic clustering of the levamisole-sensitive acetylcholine receptors (L-AChRs) relies on an extracellular scaffold assembled in the synaptic cleft. It involves the secreted protein LEV-9 and the ectodomain of the transmembrane protein LEV-10, which are both expressed by muscle cells. L-AChRs, LEV-9 and LEV-10 are part of a physical complex, which localizes at NMJs, yet none of its components localizes independently at synapses. In a screen for mutants partially resistant to the cholinergic agonist levamisole, we identified oig-4, which encodes a small protein containing a single immunoglobulin domain. The OIG-4 protein is secreted by muscle cells and physically interacts with the L-AChR/LEV-9/LEV-10 complex. Removal of OIG-4 destabilizes the complex and causes a loss of L-AChR clusters at the synapse. Interestingly, OIG-4 partially localizes at NMJs independently of LEV-9 and LEV-10, thus providing a potential link between the L-AChR-associated scaffold and local synaptic cues. These results add a novel paradigm for the immunoglobulin super-family as OIG-4 is a secreted protein required for clustering ionotropic receptors independently of synapse formation.
Collapse
|
69
|
Bisaz R, Schachner M, Sandi C. Causal evidence for the involvement of the neural cell adhesion molecule, NCAM, in chronic stress-induced cognitive impairments. Hippocampus 2010; 21:56-71. [DOI: 10.1002/hipo.20723] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
70
|
Patino GA, Isom LL. Electrophysiology and beyond: multiple roles of Na+ channel β subunits in development and disease. Neurosci Lett 2010; 486:53-9. [PMID: 20600605 PMCID: PMC2964441 DOI: 10.1016/j.neulet.2010.06.050] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/02/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na+ channel (VGSC) β Subunits are not "auxiliary." These multi-functional molecules not only modulate Na+ current (I(Na)), but also function as cell adhesion molecules (CAMs)-playing roles in aggregation, migration, invasion, neurite outgrowth, and axonal fasciculation. β subunits are integral members of VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac intercalated disks, regulating action potential propagation through critical intermolecular and cell-cell communication events. At least in vitro, many β subunit cell adhesive functions occur both in the presence and absence of pore-forming VGSC α subunits, and in vivo β subunits are expressed in excitable as well as non-excitable cells, thus β subunits may play important functional roles on their own, in the absence of α subunits. VGSC β1 subunits are essential for life and appear to be especially important during brain development. Mutations in β subunit genes result in a variety of human neurological and cardiovascular diseases. Moreover, some cancer cells exhibit alterations in β subunit expression during metastasis. In short, these proteins, originally thought of as merely accessory to α subunits, are critical players in their own right in human health and disease. Here we discuss the role of VGSC β subunits in the nervous system.
Collapse
Affiliation(s)
- Gustavo A. Patino
- Department of Pharmacology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| | - Lori L. Isom
- Department of Pharmacology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
71
|
Martin S, Söllner C, Charoensawan V, Adryan B, Thisse B, Thisse C, Teichmann S, Wright GJ. Construction of a large extracellular protein interaction network and its resolution by spatiotemporal expression profiling. Mol Cell Proteomics 2010; 9:2654-65. [PMID: 20802085 PMCID: PMC3101854 DOI: 10.1074/mcp.m110.004119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular interactions involving both secreted and membrane-tethered receptor proteins are essential to initiate signaling pathways that orchestrate cellular behaviors within biological systems. Because of the biochemical properties of these proteins and their interactions, identifying novel extracellular interactions remains experimentally challenging. To address this, we have recently developed an assay, AVEXIS (avidity-based extracellular interaction screen) to detect low affinity extracellular interactions on a large scale and have begun to construct interaction networks between zebrafish receptors belonging to the immunoglobulin and leucine-rich repeat protein families to identify novel signaling pathways important for early development. Here, we expanded our zebrafish protein library to include other domain families and many more secreted proteins and performed our largest screen to date totaling 16,544 potential unique interactions. We report 111 interactions of which 96 are novel and include the first documented extracellular ligands for 15 proteins. By including 77 interactions from previous screens, we assembled an expanded network of 188 extracellular interactions between 92 proteins and used it to show that secreted proteins have twice as many interaction partners as membrane-tethered receptors and that the connectivity of the extracellular network behaves as a power law. To try to understand the functional role of these interactions, we determined new expression patterns for 164 genes within our clone library by using whole embryo in situ hybridization at five key stages of zebrafish embryonic development. These expression data were integrated with the binding network to reveal where each interaction was likely to function within the embryo and were used to resolve the static interaction network into dynamic tissue- and stage-specific subnetworks within the developing zebrafish embryo. All these data were organized into a freely accessible on-line database called ARNIE (AVEXIS Receptor Network with Integrated Expression; www.sanger.ac.uk/arnie) and provide a valuable resource of new extracellular signaling interactions for developmental biology.
Collapse
Affiliation(s)
- Stephen Martin
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB101HH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Jiang FX, Yurke B, Schloss RS, Firestein BL, Langrana NA. Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel. Tissue Eng Part A 2010; 16:1873-89. [PMID: 20067396 DOI: 10.1089/ten.tea.2009.0574] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Central nervous system tissues, like other tissue types, undergo constant remodeling, which potentially leads to changes in their mechanical stiffness. Moreover, mechanical compliance of central nervous system tissues can also be modified under external load such as that experienced in traumatic brain or spinal cord injury, and during pathological processes. Thus, the neuronal responses to the dynamic stiffness of the microenvironment are of significance. In this study, we induced decrease in stiffness by using a DNA-crosslinked hydrogel, and subjected rat spinal cord neurons to such dynamic stiffness. The neurons respond to the dynamic cues as evidenced by the primary neurite structure, and the response from each neurite property (e.g., axonal length and primary dendrite number) is consistent with the behavior on static gels of same substrate rigidity, with one exception of mean primary dendrite length. The results on cell population distribution confirm the neuronal responses to the dynamic stiffness. Quantification on the focal adhesion kinase expression in the neuronal cell body on dynamic gels suggests that neurons also modify adhesion in coping with the dynamic stiffnesses. The results reported here extend the neuronal mechanosensing capability to dynamic stiffness of extracellular matrix, and give rise to a novel way of engineering neurite outgrowth in time dimension.
Collapse
Affiliation(s)
- Frank Xue Jiang
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
Axons follow highly stereotyped and reproducible trajectories to their targets. In this review we address the properties of the first pioneer neurons to grow in the developing nervous system and what has been learned over the past several decades about the extracellular and cell surface substrata on which axons grow. We then discuss the types of guidance cues and their receptors that influence axon extension, what determines where cues are expressed, and how axons respond to the cues they encounter in their environment.
Collapse
Affiliation(s)
- Jonathan Raper
- Department of Neurosciences, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
74
|
Quemelo PRV, Simões DLC, Peres LC. Beta1 integrin and VEGF expression in an experimental model of brain tissue heterotopia in the lung. Childs Nerv Syst 2010; 26:807-10. [PMID: 20012059 DOI: 10.1007/s00381-009-1053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 11/16/2009] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Integrins and vascular endothelial growth factor (VEGF) are crucially involved in interaction, proliferation, migration, and survival of the cells. However, there is no report in the literature about beta1 integrin and VEGF expression in heterotopic brain tissue. PURPOSE The aim of this study was to assess beta1 integrin and VEGF expression in experimental brain tissue heterotopia in the lung during both fetal and neonatal periods. MATERIALS AND METHODS Twenty-four pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated, and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation were collected on the 18th gestational day (group E18) and six other on the eighth postnatal day (group P8). RESULTS Immunohistochemistry of the fetal trunks showed implantation of glial fibrillary acidic protein- and neuronal nuclei-positive heterotopic brain tissue, which were also positive for beta1 integrin and VEGF in both groups E18 and P8. CONCLUSION These results indicate that brain tissue heterotopia during fetal and postnatal period is able to complete integration with the lung tissue as well as to induce vascular proliferation which are the necessary steps for a successful implantation.
Collapse
Affiliation(s)
- Paulo Roberto Veiga Quemelo
- Department of Pathology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | |
Collapse
|
75
|
Krauss RS. Regulation of promyogenic signal transduction by cell-cell contact and adhesion. Exp Cell Res 2010; 316:3042-9. [PMID: 20471976 DOI: 10.1016/j.yexcr.2010.05.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/07/2010] [Accepted: 05/08/2010] [Indexed: 01/25/2023]
Abstract
Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
76
|
Zeev-Ben-Mordehai T, Mylonas E, Paz A, Peleg Y, Toker L, Silman I, Svergun DI, Sussman JL. The quaternary structure of amalgam, a Drosophila neuronal adhesion protein, explains its dual adhesion properties. Biophys J 2010; 97:2316-26. [PMID: 19843464 DOI: 10.1016/j.bpj.2009.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022] Open
Abstract
Amalgam (Ama) is a secreted neuronal adhesion protein that contains three tandem immunoglobulin domains. It has both homophilic and heterophilic cell adhesion properties, and is required for axon guidance and fasciculation during early stages of Drosophila development. Here, we report its biophysical characterization and use small-angle x-ray scattering to determine its low-resolution structure in solution. The biophysical studies revealed that Ama forms dimers in solution, and that its secondary and tertiary structures are typical for the immunoglobulin superfamily. Ab initio and rigid-body modeling by small-angle x-ray scattering revealed a distinct V-shaped dimer in which the two monomer chains are aligned parallel to each other, with the dimerization interface being formed by domain 1. These data provide a structural basis for the dual adhesion characteristics of Ama. Thus, the dimeric structure explains its homophilic adhesion properties. Its V shape suggests a mechanism for its interaction with its receptor, the single-pass transmembrane adhesion protein neurotactin, in which each "arm" of Ama binds to the extracellular domain of neurotactin, thus promoting its clustering on the outer face of the plasma membrane.
Collapse
|
77
|
Sugimoto C, Maekawa S, Miyata S. OBCAM, an immunoglobulin superfamily cell adhesion molecule, regulates morphology and proliferation of cerebral astrocytes. J Neurochem 2010; 112:818-28. [DOI: 10.1111/j.1471-4159.2009.06513.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
78
|
Gene expression patterns in anterior pituitary associated with quantitative measure of oestrous behaviour in dairy cows. Animal 2010; 4:1297-307. [PMID: 22444649 DOI: 10.1017/s1751731110000303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
79
|
Regulation of Complex Brain Wiring via Diverse Ig Receptor Arising from a Single Gene. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Brusés JL. Identification of gene transcripts expressed by postsynaptic neurons during synapse formation encoding cell surface proteins with presumptive synaptogenic activity. Synapse 2010; 64:47-60. [PMID: 19728367 PMCID: PMC2783745 DOI: 10.1002/syn.20702] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synapse formation is a well-programmed developmental process involving a variety of cell-cell interactions carried out by distinct groups of molecules. Various molecules that contribute to the assembly of synaptic contacts have been characterized; however, the repertoire of identified proteins expressed by postsynaptic neurons capable of inducing presynaptic differentiation is quite limited. To identify gene transcripts encoding cell surface proteins expressed by postsynaptic cells with molecular features suggestive of synaptogenic activity, this study carried out a genome-wide expression analysis in the chick ciliary ganglion during the different phases of synapse formation. It was found that from the 21,493 gene-probes detected throughout development, 302 protein-coding transcripts were upregulated during the initiation of synapse formation. Analysis of this pool of transcripts showed that 51 of them encoded cell surface proteins (27 membrane-bound and 24 secreted) with protein-protein interacting domains. This includes twelve cell adhesion molecules, six ligand-receptors, six proteins with ligand-like domains, three membrane bound enzymes, eight components of the extracellular matrix, three neuropeptides, three cytokines and growth factors, five extracellular modulators of cell signaling, and five unrelated secreted proteins. Furthermore, the role of synaptic transmission during the initiation of synapse formation was evaluated by assessing the effect of synaptic activity blockade with d-tubocurarine on the expression levels of the pool of 51 transcripts encoding cell surface proteins. Treatment with d-tubocurarine reduced the expression levels of 22% of the selected genes, while the expression levels of 78% of the genes was not affected or was enhanced.
Collapse
Affiliation(s)
- Juan L Brusés
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160, USA.
| |
Collapse
|
81
|
Kiselyov VV. NCAM and the FGF-Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:67-79. [DOI: 10.1007/978-1-4419-1170-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
82
|
Feige MJ, Hendershot LM, Buchner J. How antibodies fold. Trends Biochem Sci 2009; 35:189-98. [PMID: 20022755 DOI: 10.1016/j.tibs.2009.11.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
Abstract
B cells use unconventional strategies for the production of a seemingly unlimited number of antibodies from a very limited amount of DNA. These methods dramatically increase the likelihood of producing proteins that cannot fold or assemble appropriately. B cells are therefore particularly dependent on 'quality control' mechanisms to oversee antibody production. Recent in vitro experiments demonstrate that Ig domains have evolved diverse folding strategies ranging from robust spontaneous folding to intrinsically disordered domains that require assembly with their partner domains to fold; in vivo experiments reveal that these different folding characteristics form the basis for cellular checkpoints in Ig transport. Taken together, these reports provide a detailed understanding of how B cells monitor and ensure the functional fidelity of Ig proteins.
Collapse
Affiliation(s)
- Matthias J Feige
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
83
|
Brown KE, Keller PJ, Ramialison M, Rembold M, Stelzer EHK, Loosli F, Wittbrodt J. Nlcam modulates midline convergence during anterior neural plate morphogenesis. Dev Biol 2009; 339:14-25. [PMID: 20005219 DOI: 10.1016/j.ydbio.2009.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 01/13/2023]
Abstract
During development, different cell types must undergo distinct morphogenetic programs so that tissues develop the right dimensions in the appropriate place. In early eye morphogenesis, retinal progenitor cells (RPCs) move first towards the midline, before turning around to migrate out into the evaginating optic vesicles. Neighbouring forebrain cells, however, converge rapidly and then remain at the midline. These differential behaviours are regulated by the transcription factor Rx3. Here, we identify a downstream target of Rx3, the Ig-domain protein Nlcam, and characterise its role in regulating cell migration during the initial phase of optic vesicle morphogenesis. Through sophisticated live imaging and comprehensive cell tracking experiments in zebrafish, we show that ectopic expression of Nlcam in RPCs, as is observed in Rx3 mutants, causes enhanced convergence of these cells. Expression levels of Nlcam therefore regulate the migratory properties of RPCs. Our results provide evidence that the two phases of optic vesicle morphogenesis: slowed convergence and outward-directed migration, are under different genetic control. We propose that Nlcam forms part of the guidance machinery directing rapid midline migration of forebrain precursors, where it is normally expressed, and that its ectopic expression upon loss of Rx3 imparts these migratory characteristics upon RPCs.
Collapse
Affiliation(s)
- Katherine E Brown
- Developmental Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
84
|
Sano S, Takashima S, Niwa H, Yokoi H, Shimada A, Arenz A, Wittbrodt J, Takeda H. Characterization of teleost Mdga1 using a gene-trap approach in medaka (Oryzias latipes). Genesis 2009; 47:505-13. [PMID: 19422017 DOI: 10.1002/dvg.20528] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MAM domain containing glycosilphosphatidilinositol anchor 1 (MDGA1) is an IgCAM protein present in many vertebrate species including humans. In mammals, MDGA1 is expressed by a subset of neurons in the developing brain and thought to function in neural cell migration. We identified a fish ortholog of mdga1 by a gene-trap screen utilizing the Frog Prince transposon in medaka (Japanese killifish, Oryzias latipes). The gene-trap vector was inserted into an intronic region of mdga1 to form a chimeric protein with green fluorescent protein, allowing us to monitor mdga1 expression in vivo. Expression of medaka mdga1 was seen in various types of embryonic brain neurons, and specifically in neurons migrating toward their target sites, supporting the proposed function of MDGA1. We also isolated the closely related mdga2 gene, whose expression partially overlapped with that of mdga1. Despite the fact that the gene-trap event eliminated most of the functional domains of the Mdga1 protein, homozygous embryos developed normally without any morphological abnormality, suggesting a functional redundancy of Mdga1 with other related proteins. High sequential homology of MDGA proteins between medaka and other vertebrate species suggests an essential role of the MDGA gene family in brain development among the vertebrate phylum.
Collapse
Affiliation(s)
- Shinya Sano
- Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
85
|
The small, secreted immunoglobulin protein ZIG-3 maintains axon position in Caenorhabditis elegans. Genetics 2009; 183:917-27. [PMID: 19737747 DOI: 10.1534/genetics.109.107441] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate and invertebrate genomes contain scores of small secreted or transmembrane proteins with two immunoglobulin (Ig) domains. Many of them are expressed in the nervous system, yet their function is not well understood. We analyze here knockout alleles of all eight members of a family of small secreted or transmembrane Ig domain proteins, encoded by the Caenorhabditis elegans zig ("zwei Ig Domänen") genes. Most of these family members display the unusual feature of being coexpressed in a single neuron, PVT, whose axon is located along the ventral midline of C. elegans. One of these genes, zig-4, has previously been found to be required for maintaining axon position postembryonically in the ventral nerve cord of C. elegans. We show here that loss of zig-3 function results in similar postdevelopmental axon maintenance defects. The maintenance function of both zig-3 and zig-4 serves to counteract mechanical forces that push axons around, as well as various intrinsic attractive forces between axons that cause axon displacement if zig genes like zig-3 or zig-4 are deleted. Even though zig-3 is expressed only in a limited number of neurons, including PVT, transgenic rescue experiments show that zig-3 can function irrespective of which cell or tissue type it is expressed in. Double mutant analysis shows that zig-3 and zig-4 act together to affect axon maintenance, yet they are not functionally interchangeable. Both genes also act together with other, previously described axon maintenance factors, such as the Ig domain proteins DIG-1 and SAX-7, the C. elegans ortholog of the human L1 protein. Our studies shed further light on the use of dedicated factors to maintain nervous system architecture and corroborate the complexity of the mechanisms involved.
Collapse
|
86
|
Mühlenhoff M, Oltmann-Norden I, Weinhold B, Hildebrandt H, Gerardy-Schahn R. Brain development needs sugar: the role of polysialic acid in controlling NCAM functions. Biol Chem 2009; 390:567-74. [PMID: 19426138 DOI: 10.1515/bc.2009.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polysialic acid (polySia) is a major regulator of cell-cell interactions in the developing nervous system and a key factor in maintaining neural plasticity. As a polyanionic molecule with high water binding capacity, polySia increases the intercellular space and creates conditions that are permissive for cellular plasticity. While the prevailing model highlights polySia as a non-specific regulator of cell-cell contacts, this review concentrates on recent studies in knockout mice indicating that a crucial function of polySia resides in controlling interactions mediated by its predominant protein carrier, the neural cell adhesion molecule NCAM.
Collapse
Affiliation(s)
- Martina Mühlenhoff
- Institute of Cellular Chemistry, OE 4330, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
87
|
Murrey HE, Ficarro SB, Krishnamurthy C, Domino SE, Peters EC, Hsieh-Wilson LC. Identification of the plasticity-relevant fucose-alpha(1-2)-galactose proteome from the mouse olfactory bulb. Biochemistry 2009; 48:7261-70. [PMID: 19527073 PMCID: PMC2717711 DOI: 10.1021/bi900640x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/15/2009] [Indexed: 01/29/2023]
Abstract
Fucose-alpha(1-2)-galactose [Fucalpha(1-2)Gal] sugars have been implicated in the molecular mechanisms that underlie neuronal development, learning, and memory. However, an understanding of their precise roles has been hampered by a lack of information regarding Fucalpha(1-2)Gal glycoproteins. Here, we report the first proteomic studies of this plasticity-relevant epitope. We identify five classes of putative Fucalpha(1-2)Gal glycoproteins: cell adhesion molecules, ion channels and solute carriers/transporters, ATP-binding proteins, synaptic vesicle-associated proteins, and mitochondrial proteins. In addition, we show that Fucalpha(1-2)Gal glycoproteins are enriched in the developing mouse olfactory bulb (OB) and exhibit a distinct spatiotemporal expression that is consistent with the presence of a "glycocode" to help direct olfactory sensory neuron (OSN) axonal pathfinding. We find that expression of Fucalpha(1-2)Gal sugars in the OB is regulated by the alpha(1-2)fucosyltransferase FUT1. FUT1-deficient mice exhibit developmental defects, including fewer and smaller glomeruli and a thinner olfactory nerve layer, suggesting that fucosylation contributes to OB development. Our findings significantly expand the number of Fucalpha(1-2)Gal glycoproteins and provide new insights into the molecular mechanisms by which fucosyl sugars contribute to neuronal processes.
Collapse
Affiliation(s)
- Heather E. Murrey
- Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Scott B. Ficarro
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121
| | - Chithra Krishnamurthy
- Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Eric C. Peters
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121
| | - Linda C. Hsieh-Wilson
- Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
88
|
Feige MJ, Groscurth S, Marcinowski M, Shimizu Y, Kessler H, Hendershot LM, Buchner J. An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol Cell 2009; 34:569-79. [PMID: 19524537 PMCID: PMC2908990 DOI: 10.1016/j.molcel.2009.04.028] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/05/2009] [Accepted: 04/28/2009] [Indexed: 01/24/2023]
Abstract
A prerequisite for antibody secretion and function is their assembly into a defined quaternary structure, composed of two heavy and two light chains for IgG. Unassembled heavy chains are actively retained in the endoplasmic reticulum (ER). Here, we show that the C(H)1 domain of the heavy chain is intrinsically disordered in vitro, which sets it apart from other antibody domains. It folds only upon interaction with the light-chain C(L) domain. Structure formation proceeds via a trapped intermediate and can be accelerated by the ER-specific peptidyl-prolyl isomerase cyclophilin B. The molecular chaperone BiP recognizes incompletely folded states of the C(H)1 domain and competes for binding to the C(L) domain. In vivo experiments demonstrate that requirements identified for folding the C(H)1 domain in vitro, including association with a folded C(L) domain and isomerization of a conserved proline residue, are essential for antibody assembly and secretion in the cell.
Collapse
Affiliation(s)
- Matthias J. Feige
- Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Sandra Groscurth
- Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Moritz Marcinowski
- Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Yuichiro Shimizu
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Horst Kessler
- Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Linda M. Hendershot
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Johannes Buchner
- Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
89
|
Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ. Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 2009; 69:235-54. [PMID: 19170043 DOI: 10.1002/dneu.20698] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nematostella vectensis, an anthozoan cnidarian, whose genome has been sequenced and is suitable for developmental and ecological studies, has a complex neural morphology that is modified during development from the larval to adult form. N. vectensis' nervous system is a diffuse nerve net with both ectodermal sensory and effector cells and endodermal multipolar ganglion cells. This nerve net consists of several distinct neural territories along the oral-aboral axis including the pharyngeal and oral nerve rings, and the larval apical tuft. These neuralized regions correspond to expression of conserved bilaterian neural developmental regulatory genes including homeodomain transcription factors and NCAMs. Early neurons and stem cell populations identified with NvMsi, NvELAV, and NvGCM, indicate that neural differentiation occurs throughout the animal and initiates prior to the conclusion of gastrulation. Neural specification in N. vectensis appears to occur through an independent mechanism from that in the classical cnidarian model Hydra.
Collapse
Affiliation(s)
- Heather Q Marlow
- Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | | | | | | | |
Collapse
|
90
|
Hildebrandt H, Mühlenhoff M, Oltmann-Norden I, Röckle I, Burkhardt H, Weinhold B, Gerardy-Schahn R. Imbalance of neural cell adhesion molecule and polysialyltransferase alleles causes defective brain connectivity. Brain 2009; 132:2831-8. [DOI: 10.1093/brain/awp117] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
91
|
Bisaz R, Conboy L, Sandi C. Learning under stress: A role for the neural cell adhesion molecule NCAM. Neurobiol Learn Mem 2009; 91:333-42. [DOI: 10.1016/j.nlm.2008.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/19/2008] [Accepted: 11/07/2008] [Indexed: 12/19/2022]
|
92
|
Schwarz V, Pan J, Voltmer-Irsch S, Hutter H. IgCAMs redundantly control axon navigation in Caenorhabditis elegans. Neural Dev 2009; 4:13. [PMID: 19341471 PMCID: PMC2672934 DOI: 10.1186/1749-8104-4-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 04/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) form one of the largest and most diverse families of adhesion molecules and receptors in the nervous system. Many members of this family mediate contact and communication among neurons during development. The Caenorhabditis elegans genome contains a comparatively small number of IgCAMs, most of which are evolutionarily conserved and found across all animal phyla. Only some of these have been functionally characterized so far. RESULTS We systematically analyzed previously uncharacterized IgCAMs in C. elegans. Green fluorescent protein reporter constructs of 12 IgCAMs revealed that expression generally is not confined to a single tissue and that all tissues express at least one of the IgCAMs. Most IgCAMs were expressed in neurons. Within the nervous system significant overlap in expression was found in central components of the motor circuit, in particular the command interneurons, ventral cord motoneurons as well as motoneurons innervating head muscles. Sensory neurons are underrepresented among the cells expressing these IgCAMs. We isolated mutations for eight of the genes showing neuronal expression. Phenotypic analysis of single mutants revealed limited neuronal defects, in particular axon navigation defects in some of the mutants. Systematic genetic interaction studies uncovered two cases of functional overlap among three and four genes, respectively. A strain combining mutations in all eight genes is viable and shows no additional defects in the neurons that were analyzed, suggesting that genetic interactions among those genes are limited. CONCLUSION Genetic interactions involving multiple IgCAMs affecting axon outgrowth demonstrate functional overlap among IgCAMs during nervous system development.
Collapse
|
93
|
Diekmann H, Stuermer CAO. Zebrafish neurolin-a and -b, orthologs of ALCAM, are involved in retinal ganglion cell differentiation and retinal axon pathfinding. J Comp Neurol 2009; 513:38-50. [PMID: 19107846 DOI: 10.1002/cne.21928] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurolin-a and Neurolin-b (also called alcam and nlcam, respectively) are zebrafish orthologs of human ALCAM, an adhesion protein of the immunoglobulin superfamily with functions in axon growth and guidance. Within the developing zebrafish retina, onset and progression of Neurolin-a expression parallels the pattern of retinal ganglion cell (RGC) differentiation. By using a morpholino-based knockdown approach, we show that Neurolin-a (but not Neurolin-b) is necessary for a crucial step in RGC differentiation. Without Neurolin-a, a large proportion of RGCs fail to develop, and RGC axons are absent or reduced in number. Subsequently, Neurolin-a is required for RGC survival and for the differentiation of all other retinal neurons. Neurolin-b is expressed later in well-differentiated RGCs and is required for RGC axon pathfinding. Without Neurolin-b, RGC axons grow in highly aberrant routes along the optic tract and/or fail to reach the optic tectum. Thus, the zebrafish Neurolin paralogs are involved in distinct steps of retinotectal development.
Collapse
Affiliation(s)
- Heike Diekmann
- Department of Biology, Universität Konstanz, Konstanz, Germany
| | | |
Collapse
|
94
|
Katidou M, Vidaki M, Strigini M, Karagogeos D. The immunoglobulin superfamily of neuronal cell adhesion molecules: lessons from animal models and correlation with human disease. Biotechnol J 2009; 3:1564-80. [PMID: 19072911 DOI: 10.1002/biot.200800281] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuronal cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in the formation of neural circuits at different levels: cell migration, axonal and dendritic targeting as well as synapse formation. Furthermore, in perinatal and adult life, neuronal IgCAMs are required for the formation and maintenance of specialized axonal membrane domains, synaptic plasticity and neurogenesis. Mutations in the corresponding human genes have been correlated to several human neuronal disorders. Perturbing neuronal IgCAMs in animal models provides powerful means to understand the molecular and cellular basis of such human disorders. In this review, we concentrate on the NCAM, L1 and contactin subfamilies of neuronal IgCAMs summarizing recent functional studies from model systems and highlighting their links to disease pathogenesis.
Collapse
Affiliation(s)
- Markella Katidou
- University of Crete, Faculty of Medicine, Vassilika Vouton, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
95
|
Bonfanti L, Theodosis DT. Polysialic acid and activity-dependent synapse remodeling. Cell Adh Migr 2009; 3:43-50. [PMID: 19372729 PMCID: PMC2675148 DOI: 10.4161/cam.3.1.7258] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/23/2008] [Indexed: 02/06/2023] Open
Abstract
Polysialic acid (PSA) is a large carbohydrate added post-translationally to the extracellular domain of the Neural Cell Adhesion Molecule (NCAM) that influences its adhesive and other functional properties. PSA-NCAM is widely distributed in the developing nervous system where it promotes dynamic cell interactions, like those responsible for axonal growth, terminal sprouting and target innervation. Its expression becomes restricted in the adult nervous system where it is thought to contribute to various forms of neuronal and glial plasticity. We here review evidence, obtained mainly from hypothalamic neuroendocrine centers and the olfactory system, that it intervenes in structural synaptic plasticity and accompanying neuronal-glial transformations, making possible the formation and elimination of synapses that occur under particular physiological conditions. While the mechanism of action of this complex sugar is unknown, it is now clear that it is a necessary molecular component of various cell transformations, including those responsible for activity-dependent synaptic remodeling.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Morphophysiology, University of Turin, Turin, Italy
| | | |
Collapse
|
96
|
Abstract
Neuronal circuitries established in development must persist throughout life. This poses a serious challenge to the structural integrity of an embryonically patterned nervous system as an animal dramatically increases its size postnatally, remodels parts of its anatomy, and incorporates new neurons. In addition, body movements, injury, and ageing generate physical stress on the nervous system. Specific molecular pathways maintain intrinsic properties of neurons in the mature nervous system. Other factors ensure that the overall organization of entire neuronal ensembles into ganglia and fascicles is appropriately maintained upon external challenges. Here, we discuss different molecules underlying these neuronal maintenance mechanisms, with a focus on lessons learned from the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Claire Bénard
- Department of Biochemistry, Howard Hughes Medical Institute, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
97
|
Komori T, Gyobu H, Ueno H, Kitamura T, Senba E, Morikawa Y. Expression of kin of irregular chiasm-like 3/mKirre in proprioceptive neurons of the dorsal root ganglia and its interaction with nephrin in muscle spindles. J Comp Neurol 2008; 511:92-108. [DOI: 10.1002/cne.21838] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
98
|
Fiorilli P, Partridge D, Staniszewska I, Wang JY, Grabacka M, So K, Marcinkiewicz C, Reiss K, Khalili K, Croul SE. Integrins mediate adhesion of medulloblastoma cells to tenascin and activate pathways associated with survival and proliferation. J Transl Med 2008; 88:1143-56. [PMID: 18794852 PMCID: PMC2679155 DOI: 10.1038/labinvest.2008.89] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Medulloblastoma spreads by leptomeningeal dissemination rather than by infiltration that characterizes other CNS tumors, eg, gliomas. This study represents an initial attempt to identify both the molecules that mediate medulloblastoma adhesion to leptomeninges and the pathways that are key to survival and proliferation of tumor following adhesion. As a first step in molecule identification, we produced adhesion of D283 medulloblastoma cells to the extracellular matrix (ECM) of H4 glioma cells in vitro. Within this context, D283 cells preferentially expressed the alpha9 and beta1 integrin subunits; antibody and disintegrin blockade of alpha9 and beta1 binding eliminated the adhesion. The H4 ECM was enriched in tenascin, a binding partner for the alpha9beta1 integrin heterodimer. Purified tenascin-C supported D283 cell adhesion. The adhesion was blocked by antibodies to alpha9 and beta1 integrin. In vivo data were similar; immunohistochemistry of primary human medulloblastomas with leptomeningeal extension demonstrated increased expression of alpha9 and beta1 integrins as well as tenascin at the interface of brain and leptomeningeal tumor. These data suggest that tumor-cell expressions of alpha9 and beta1 integrins in combination with extracellular tenascin are necessary for medulloblastoma adhesion to the leptomeninges. As a first step in the identification of pathways that mediate survival and proliferation of tumor following adhesion, we demonstrated that adhesion to H4 ECM was associated with survival and proliferation of D283 cells as well as activation of the MAPK pathway in a growth factor deficient environment. Antibody blockade of alpha9 and beta1 integrin binding that eliminated adhesion also eliminated the in vitro survival benefit. These data suggest that adhesion of medulloblastoma to the meninges is necessary for the survival and proliferation of these tumor cells at the secondary site.
Collapse
Affiliation(s)
- Paul Fiorilli
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Kochoyan A, Poulsen FM, Berezin V, Bock E, Kiselyov VV. Structural basis for the activation of FGFR by NCAM. Protein Sci 2008; 17:1698-705. [PMID: 18593816 PMCID: PMC2548372 DOI: 10.1110/ps.035964.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 12/28/2022]
Abstract
The fibroblast growth factor receptor (FGFR) can be activated through direct interaction with the neural cell adhesion molecule (NCAM). The extracellular part of the FGFR consists of three immunoglobulin-like (Ig) modules, and that of the NCAM consists of five Ig and two fibronectin type III (F3) modules. NCAM-FGFR interactions are mediated by the third FGFR Ig module and the second NCAM F3 module. Using surface plasmon resonance and nuclear magnetic resonance analyses, the present study demonstrates that the second Ig module of FGFR also is involved in binding to the NCAM. The second Ig module residues involved in binding were identified and shown to be localized on the "opposite sides" of the module, indicating that when NCAMs are clustered (e.g., due to homophilic binding), high-affinity FGFR binding sites may be formed by the neighboring NCAMs.
Collapse
Affiliation(s)
- Arthur Kochoyan
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
100
|
Gordon T, Ly V, Hegedus J, Tyreman N. Early detection of denervated muscle fibers in hindlimb muscles after sciatic nerve transection in wild type mice and in the G93A mouse model of amyotrophic lateral sclerosis. Neurol Res 2008; 31:28-42. [PMID: 18768111 DOI: 10.1179/174313208x332977] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The cell adhesion molecule N-CAM is localized to the adult neuromuscular junction but is also expressed in the extrajunctional membrane of denervated muscles concurrent with extrajunctional acetylcholine receptors. Here we used N-CAM immunohistochemistry to determine whether we could detect early denervation in hindlimb muscles of the G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS). In denervated wild type mouse muscles, N-CAM immunoreactivity on the sarcolemma of all fiber types and within the sarcoplasm of only type IIA fibers was detected at day 2: approximately 30% of the muscle fibers in cross-section were fully circumscribed by N-CAM immunoreactivity and approximately 25% of fibers were incompletely circumscribed. The proportion of the latter fibers remained constant over the next 8 days as the proportions of the former fibers increased exponentially. Thereafter, fully circumscribed muscle fibers increased to a maximum by 30 days with a concomitant fall in the incompletely circumscribed fibers. Hence, early muscle denervation was detected by the incomplete circumscription of fiber membranes by N-CAM immunoreactivity with full circumscription and intracellular localization indicating more long-term denervation. In the G93A transgenic mouse, rapid denervation of fast-twitch muscles was readily detected by a corresponding proportion of muscle fibers in cross-section with positive N-CAM immunoreactivity. The proportions of incompletely and completely circumscribed muscle fibers corresponded well with the rate of decline in intact motor units and reduced muscle contractile forces. Progressively more fully circumscribed muscle fibers became evident with age. We conclude that the N-CAM immunoreactivity on muscle fiber membranes in muscle cross-sections provides a sensitive means of detecting early muscle fiber denervation.
Collapse
Affiliation(s)
- T Gordon
- Division of Physical Medicine and Rehabilitation/Centre for Neuroscience, Faculty of Medicine, University of Alberta, Edmonton, Alta T6G 2S2, Canada.
| | | | | | | |
Collapse
|