51
|
Abioye RO, Okagu IU, Udenigwe CC. Targeting Glucose Transport Proteins for Diabetes Management: Regulatory Roles of Food-Derived Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5284-5290. [PMID: 35439410 DOI: 10.1021/acs.jafc.2c00817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the rapid rise in prevalence, diabetes mellitus is one of the leading causes of mortality worldwide. Impaired cellular glucose transport is a major contributor to diabetes progression and, thus, an important target for treatment. Functional foods are a rich source of antidiabetic agents. These compounds target multiple physiological contributors to diabetes with lower risk for side effects. This perspective highlights recent advances in food-derived compounds that regulate the gene expression or activity of glucose transport proteins (SGLT1, SGLT2, GLUT1, GLUT2, and GLUT4) and provides insights for future research on targeting the transporters as a promising antidiabetic mechanism of nutraceutical compounds.
Collapse
Affiliation(s)
- Raliat O Abioye
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Innocent U Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria
| | - Chibuike C Udenigwe
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
52
|
Li Y, Thelen KM, Fernández KM, Nelli R, Fardisi M, Rajput M, Trottier NL, Contreras GA, Moeser AJ. Developmental alterations of intestinal SGLT1 and GLUT2 induced by early weaning coincides with persistent low-grade metabolic inflammation in female pigs. Am J Physiol Gastrointest Liver Physiol 2022; 322:G346-G359. [PMID: 34984921 PMCID: PMC9076411 DOI: 10.1152/ajpgi.00207.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Early-life adversity (ELA) is linked with the increased risk for inflammatory and metabolic diseases in later life, but the mechanisms remain poorly understood. Intestinal epithelial glucose transporters sodium-glucose-linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) are the major route for intestinal glucose uptake but have also received increased attention as modulators of inflammatory and metabolic diseases. Here, we tested the hypothesis that early weaning (EW) in pigs, an established model of ELA, alters the development of epithelial glucose transporters and coincides with elevated markers of metabolic inflammation. The jejunum and ileum of 90-day-old pigs previously exposed to EW (16 days wean age), exhibited reduced SGLT1 activity (by ∼ 30%, P < 0.05) than late weaned (LW, 28 days wean age) controls. In contrast, GLUT2-mediated glucose transport was increased (P = 0.003) in EW pigs than in LW pigs. Reciprocal changes in SGLT1- and GLUT2-mediated transport coincided with transporter protein expression in the intestinal brush-border membranes (BBMs) that were observed at 90 days and 150 days of age. Ileal SGLT1-mediated glucose transport and BBM expression were inhibited by the β-adrenergic receptor (βAR) blocker propranolol in EW and LW pigs. In contrast, propranolol enhanced ileal GLUT2-mediated glucose transport (P = 0.015) and brush-border membrane vesicle (BBMV) abundance (P = 0.035) in LW pigs, but not in EW pigs. Early-weaned pigs exhibited chronically elevated blood glucose and C-reactive protein (CRP) levels, and adipocyte hypertrophy and upregulated adipogenesis-related gene expression in visceral adipose tissue. Altered development of intestinal glucose transporters by EW could underlie the increased risk for later life inflammatory and metabolic diseases.NEW & NOTEWORTHY These studies reveal that early-life adversity in the form of early weaning in pigs causes a developmental shift in intestinal glucose transport from SGLT1 toward GLUT2-mediated transport. Early weaning also induced markers of metabolic inflammation including persistent elevations in blood glucose and the inflammatory marker CRP, along with increased visceral adiposity. Altered intestinal glucose transport might contribute to increased risk for inflammatory and metabolic diseases associated with early-life adversity.
Collapse
Affiliation(s)
- Yihang Li
- 1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Kyan M. Thelen
- 1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Karina Matos Fernández
- 1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Rahul Nelli
- 1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Mahsa Fardisi
- 1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Mrigendra Rajput
- 1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Nathalie L. Trottier
- 3Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Genaro A. Contreras
- 1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Adam J. Moeser
- 1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan,2Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
53
|
Jing XP, Wang WJ, Degen AA, Guo YM, Kang JP, Liu PP, Ding LM, Shang ZH, Zhou JW, Long RJ. Small intestinal morphology and sugar transporters expression when consuming diets of different energy levels: comparison between Tibetan and small-tailed Han sheep. Animal 2022; 16:100463. [PMID: 35193064 DOI: 10.1016/j.animal.2022.100463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022] Open
Abstract
Some non-structural carbohydrates, especially starch, escape ruminal fermentation, are converted into glucose, and are absorbed from the small intestine. This glucose provides an important source of energy, and its usage is more efficient than glucose from carbohydrates which are fermented as short chain fatty acids in the rumen and, subsequently, undergo hepatic gluconeogenesis. Tibetan sheep graze on the harsh Qinghai-Tibetan Plateau (QTP) all year round and their carbohydrate and energy intakes fluctuate greatly with seasonal forage availability. Consequently, a high capacity to absorb glucose from the small intestine would be particularly beneficial for Tibetan sheep to allow them to cope with the inconsistent dietary intakes. This study examined how the small intestinal morphology and sugar transporters' expression of Tibetan and Small-tailed Han (Han) sheep respond to fluctuating energy intakes under the harsh conditions of the QTP. Han sheep graze on the QTP only in summer and are generally raised in feedlots. Twenty-four Tibetan sheep and 24 Han sheep, all wethers, were assigned randomly to four groups (n = 6 per breed/group), with each group offered a diet differing in digestible energy content: 8.21, 9.33, 10.45 and 11.57 MJ/kg DM. After 49 d, all sheep were slaughtered, tissues of the small intestine were collected, and measurements were made of the morphology and glucose transporters and the related regulation gene expressions. At intakes of low energy levels, Tibetan sheep had a greater villus surface area in the duodenum, jejunum and ileum and higher mRNA expression of sodium-dependent glucose transporter 1 in the duodenum and ileum (P < 0.05) than Han sheep. In the glucose transporter 2 (GLUT2) mediated glucose absorption pathway, Tibetan sheep had higher GLUT2 and taste receptor family 1 member 2 and 3 mRNA expressions than Han sheep in the duodenum, jejunum and ileum (P < 0.05). We concluded that the differences between breeds indicated a greater glucose absorption capacity in the small intestine of Tibetan than Han sheep, which would confer an advantage to Tibetan over Han sheep to an inconsistent energy intake on the harsh QTP. These findings suggested that ruminants raised under harsh environmental conditions with highly fluctuating dietary intakes, as is often the case in grazing ruminants worldwide, are able to absorb glucose from the small intestine to a greater extent than ruminants raised under more moderate conditions.
Collapse
Affiliation(s)
- X P Jing
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - W J Wang
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - A A Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Y M Guo
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - J P Kang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - P P Liu
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - L M Ding
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Z H Shang
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - J W Zhou
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - R J Long
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
54
|
Rhodes RS, Singh SK, Rajendran VM, Walk ST, Coon SD. Regulation of Glucose Insulinotropic Peptide and Intestinal Glucose Transporters in the Diet-Induced Obese Mouse. J Diabetes Res 2022; 2022:5636499. [PMID: 35224107 PMCID: PMC8872650 DOI: 10.1155/2022/5636499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Our recent studies have shown that glucose-dependent insulinotropic polypeptide (GIP), but not glucagon-like peptide 1 (GLP-1), augments Na-glucose transporter 1- (SGLT1-) mediated glucose absorption in mouse jejunum. Na-dependent glucose absorption sharply rose and peaked in 3 months of high-fat (i.e., obese) compared to normal (i.e., normal weight) diet fed animals. Previous studies have shown that GIP-augmented SGLT1 and PEPT1 (peptide transporter 1) are regulated by protein kinase A (PKA) signaling in mouse jejunum. Additional studies have indicated that cAMP and PI3 kinase signaling augment PEPT1 through EPAC and AKT activation pathways, respectively, through increased apical PEPT1 trafficking in intestinal epithelial cells. However, little is known about how the signaling glucose transport paradigm is altered over a long period. Early on, increased glucose absorption occurs through SGLT1, but as the obesity and diabetes progress, there is a dramatic shift towards a Na-independent mechanism. Surprisingly, at the peak of glucose absorption during the fifth month of the progression of obesity, the SGLT1 activity was severely depressed, while a Na-independent glucose absorptive process begins to appear. Since glucose transporter 2 (GLUT2) is expressed on the apical membrane of the small intestine in obese patients and animal models of obesity, it was hypothesized to be the new more efficient route. Western blot analyses and biotinylation of the apical membrane revealed that the GIP expression increases in the obese animals and its trafficking to the apical membrane increases with the GIP treatment.
Collapse
Affiliation(s)
| | - Satish K. Singh
- Section of Gastroenterology, Boston University School of Medicine, USA
- Section of Gastroenterology Veterans Affairs Boston Healthcare System Boston, Massachusetts, USA
| | - Vazhaikkurichi M. Rajendran
- Department of Biochemistry Robert C Byrd Health Sciences Center and Section of Digestive Diseases, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Steven D. Coon
- Fort Peck Community College, Poplar, Montana, USA
- Section of Gastroenterology, Boston University School of Medicine, USA
- Section of Gastroenterology Veterans Affairs Boston Healthcare System Boston, Massachusetts, USA
- Boston University Clinical and Translational Science Institute, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Ipema AF, Gerrits WJJ, Bokkers EAM, van Marwijk MA, Laurenssen BFA, Kemp B, Bolhuis JE. Assessing the Effectiveness of Providing Live Black Soldier Fly Larvae ( Hermetia illucens) to Ease the Weaning Transition of Piglets. Front Vet Sci 2022; 9:838018. [PMID: 35252425 PMCID: PMC8890697 DOI: 10.3389/fvets.2022.838018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
Weaning is a stressful event for piglets, involving substantial changes to their nutritional and social environment. Providing edible enrichment around weaning may ease the weaning transition by increasing pre-weaning feed intake and improving post-weaning performance, health, behavior, and affective state. In this study, we investigated the effects of providing live black soldier fly larvae (BSFL) as edible enrichment pre- and/or post-weaning. Pre-weaning, piglets received either only creep feed (Pre-C, n = 14 litters) or creep feed and live BSFL (Pre-L, n = 15 litters) ad libitum, and post-weaning piglets either had no access to live BSFL (Post-C, n = 24 pens) or they could rotate tubes that released BSFL (Post-L, n = 24 pens) at levels up to 20% of their expected daily dry matter intake, resulting in treatments CC, CL, LC, and LL. No interaction between pre- and post-weaning treatment was found for any of the measured parameters. Before weaning, Pre-L piglets preferred to interact with larvae over creep feed, and Pre-C piglets interacted more with creep feed than Pre-L piglets. Total time spent on feed-directed behaviors did not differ. Continuous larvae provisioning increased caecum length and proximal stomach digesta pH, while it decreased the passage of glucose and fluorescein isothiocyanate through the colon wall on d3 post-weaning (CC vs. LL, n = 12 piglets/treatment). Post-weaning diarrhea and final body weight were not affected by treatment. After weaning, Pre-C piglets tended to eat more and grew marginally faster than Pre-L piglets. Post-C piglets spent more time eating and had a higher feed intake post-weaning than Post-L piglets. Based on home-pen behavioral observations, Post-L piglets actively explored and ate the larvae. Post-C piglets spent more time on exploring the environment and nosing pen mates, and they spent more time on manipulating pen mates on d8 and played more on d8 & 15 compared to Post-L piglets. Piglet responses to a novel environment and an attention bias test on d4 & 5 post-weaning were not influenced by larvae provisioning. In conclusion, pre-weaning larvae provisioning did not improve pre-weaning feed intake and post-weaning performance, however post-weaning larvae provisioning did benefit piglet behavior as less manipulation of pen mates was observed.
Collapse
Affiliation(s)
- Allyson F. Ipema
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Walter J. J. Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Eddie A. M. Bokkers
- Animal Production Systems Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Manon A. van Marwijk
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Bjorge F. A. Laurenssen
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
56
|
Overduin TS, Page AJ, Young RL, Gatford KL. Adaptations in gastrointestinal nutrient absorption and its determinants during pregnancy in monogastric mammals: a scoping review protocol. JBI Evid Synth 2022; 20:640-646. [PMID: 35165214 DOI: 10.11124/jbies-21-00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of this review is to characterize the current state of literature and knowledge regarding adaptations of gastrointestinal nutrient absorption, and the determinants of this absorption during pregnancy in monogastric mammals. INTRODUCTION Energy demands increase significantly during pregnancy due to the metabolic demands associated with placental and fetal growth, and the deposition of fat stores that support postnatal lactation. Previous studies have examined anatomical changes within the small intestine, but have focused on specific pregnancy stages or specific regions of the small intestine. Importantly, little is known about changes in nutrient absorption during pregnancy, and the underlying mechanisms that lead to these changes. An understanding of these adaptations will inform research to improve pregnancy outcomes for both mothers and newborns in the future. INCLUSION CRITERIA This review will include primary literature that describes gastrointestinal nutrient absorption and/or its determinants during pregnancy in monogastric mammals, including humans and rodents. Only data for normal pregnancies will be included, and models of pathology and illness will be excluded. Studies must include comparisons between pregnant animals at known stages of pregnancy, and non-pregnant controls, or compare animals at different stages of pregnancy. METHODS The following databases will be searched for literature on this topic: PubMed, Scopus, Web of Science, Embase, MEDLINE, and ProQuest Dissertations and Theses. Evidence screening and selection will be carried out independently by two reviewers, and conflicts will be resolved through discussion with additional members of the review team. Data will be extracted and presented in tables and/or figures, together with a narrative summary.
Collapse
Affiliation(s)
- Teunis Sebastian Overduin
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Amanda J Page
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Richard L Young
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Kathryn L Gatford
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
57
|
Dextrose 10% drink is superior to sodium-dextrose drink in increasing blood glucose and sprint speed in soccer players: A double-blinded randomized crossover trial study. Sci Sports 2022. [DOI: 10.1016/j.scispo.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
58
|
Gromova LV, Polozov AS, Savochkina EV, Alekseeva AS, Dmitrieva YV, Kornyushin OV, Gruzdkov AA. Effect of Type 2 Diabetes and Impaired Glucose Tolerance on Digestive Enzymes and Glucose Absorption in the Small Intestine of Young Rats. Nutrients 2022; 14:nu14020385. [PMID: 35057569 PMCID: PMC8779211 DOI: 10.3390/nu14020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The reactions of intestinal functional parameters to type 2 diabetes at a young age remain unclear. The study aimed to assess changes in the activity of intestinal enzymes, glucose absorption, transporter content (SGLT1, GLUT2) and intestinal structure in young Wistar rats with type 2 diabetes (T2D) and impaired glucose tolerance (IGT). To induce these conditions in the T2D (n = 4) and IGT (n = 6) rats, we used a high-fat diet and a low dose of streptozotocin. Rats fed a high-fat diet (HFD) (n = 6) or a standard diet (SCD) (n = 6) were used as controls. The results showed that in T2D rats, the ability of the small intestine to absorb glucose was higher in comparison to HFD rats (p < 0.05). This was accompanied by a tendency towards an increase in the number of enterocytes on the villi of the small intestine in the absence of changes in the content of SGLT1 and GLUT2 in the brush border membrane of the enterocytes. T2D rats also showed lower maltase and alkaline phosphatase (AP) activity in the jejunal mucosa compared to the IGT rats (p < 0.05) and lower AP activity in the colon contents compared to the HFD (p < 0.05) and IGT (p < 0.05) rats. Thus, this study provides insights into the adaptation of the functional and structural parameters of the small intestine in the development of type 2 diabetes and impaired glucose tolerance in young representatives.
Collapse
Affiliation(s)
- Lyudmila V. Gromova
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Alexandr S. Polozov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Elizaveta V. Savochkina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Anna S. Alekseeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Yulia V. Dmitrieva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Oleg V. Kornyushin
- Almazov National Medical Research Center, Ministry of Health of the Russian Federation, 2 Akkuratova Str., 197341 Saint-Petersburg, Russia;
| | - Andrey A. Gruzdkov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
- Correspondence: ; Tel.: +7-960-276-3000
| |
Collapse
|
59
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
60
|
Zhang M, Yang H, Yang E, Li J, Dong L. Berberine Decreases Intestinal GLUT2 Translocation and Reduces Intestinal Glucose Absorption in Mice. Int J Mol Sci 2021; 23:327. [PMID: 35008753 PMCID: PMC8745600 DOI: 10.3390/ijms23010327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Postprandial hyperglycemia is an important causative factor of type 2 diabetes mellitus, and permanent localization of intestinal GLUT2 in the brush border membrane is an important reason of postprandial hyperglycemia. Berberine, a small molecule derived from Coptidis rhizome, has been found to be potent at lowering blood glucose, but how berberine lowers postprandial blood glucose is still elusive. Here, we investigated the effect of berberine on intestinal glucose transporter 2 (GLUT2) translocation and intestinal glucose absorption in type 2 diabetes mouse model. Type 2 diabetes was induced by feeding of a high-fat diet and injection of streptozotocin and diabetic mice were treated with berberine for 6 weeks. The effects of berberine on intestinal glucose transport and GLUT2 translocation were accessed in isolated intestines and intestinal epithelial cells (IEC-6), respectively. We found that berberine treatment improved glucose tolerance and systemic insulin sensitivity in diabetic mice. Furthermore, berberine decreased intestinal glucose transport and inhibited GLUT2 translocation from cytoplasm to brush border membrane in intestinal epithelial cells. Mechanistically, berberine inhibited intestinal insulin-like growth factor 1 (IGF-1R) phosphorylation and thus reduced localization of PLC-β2 in the membrane, leading to decreased GLUT2 translocation. These results suggest that berberine reduces intestinal glucose absorption through inhibiting IGF-1R-PLC-β2-GLUT2 signal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Military Medical University, Xi’an 710032, China; (M.Z.); (H.Y.); (E.Y.); (J.L.)
| |
Collapse
|
61
|
Bordier V, Teysseire F, Schlotterbeck G, Senner F, Beglinger C, Meyer-Gerspach AC, Wölnerhanssen BK. Effect of a Chronic Intake of the Natural Sweeteners Xylitol and Erythritol on Glucose Absorption in Humans with Obesity. Nutrients 2021; 13:nu13113950. [PMID: 34836205 PMCID: PMC8618859 DOI: 10.3390/nu13113950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In patients with obesity, accelerated nutrients absorption is observed. Xylitol and erythritol are of interest as alternative sweeteners, and it has been shown in rodent models that their acute ingestion reduces intestinal glucose absorption. This study aims to investigate whether a chronic intake of xylitol and erythritol impacts glucose absorption in humans with obesity. Forty-six participants were randomized to take either 8 g of xylitol or 12 g of erythritol three times a day for five to seven weeks, or to be part of the control group (no substance). Before and after the intervention, intestinal glucose absorption was assessed during an oral glucose tolerance test with 3-Ortho-methyl-glucose (3-OMG). The effect of xylitol or erythritol intake on the area under the curve for 3-OMG concentration was not significant. Neither the time (pre or post intervention), nor the group (control, xylitol, or erythritol), nor the time-by-group interaction effects were significant (p = 0.829, p = 0.821, and p = 0.572, respectively). Therefore, our results show that a chronic intake of the natural sweeteners xylitol and erythritol does not affect intestinal glucose absorption in humans with obesity.
Collapse
Affiliation(s)
- Valentine Bordier
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Fabienne Teysseire
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Götz Schlotterbeck
- Institute for Chemistry and Bioanalytics, School of Life Science, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland; (G.S.); (F.S.)
| | - Frank Senner
- Institute for Chemistry and Bioanalytics, School of Life Science, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland; (G.S.); (F.S.)
| | - Christoph Beglinger
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Anne Christin Meyer-Gerspach
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: (A.C.M.-G.); (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G. & B.K.W.)
| | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: (A.C.M.-G.); (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G. & B.K.W.)
| |
Collapse
|
62
|
Fiorentino TV, Suraci E, De Vito F, Cimellaro A, Hribal ML, Sciacqua A, Andreozzi F, Luzza F, Sesti G. One-hour post-load hyperglycemia combined with HbA1c identifies individuals with augmented duodenal levels of sodium/glucose co-transporter 1. Diabetes Res Clin Pract 2021; 181:109094. [PMID: 34662689 DOI: 10.1016/j.diabres.2021.109094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
AIMS Individuals with HbA1c-defined prediabetes (HbA1c 5.7-6.4%) and 1-hour post-load plasma glucose (1hPG) ≥ 155 mg/dl have an increased risk to develop type 2 diabetes (T2DM). T2DM is associated with a higher intestinal expression of sodium/glucose co-transporter 1 (SGLT-1) and glucose transporter 2 (GLUT-2). It is currently unsettled whether HbA1c-defined dysglycemic conditions combined to 1hPG ≥ 155 mg/dl are associated with changes in SGLT-1 and GLUT-2 duodenal abundance. METHODS SGLT-1 and GLUT-2 protein levels were assessed by western blot on duodenal mucosa biopsies of 57 individuals underwent an upper gastrointestinal endoscopy. RESULTS Compared with the normal group (HbA1c < 5.7%), individuals with HbA1c-defined pre-diabetes and diabetes exhibit no significant change in duodenal SGLT-1 abundance. Conversely, duodenal GLUT-2 levels were progressively increased in subjects with prediabetes and diabetes. Stratifying participants according to HbA1c and 1hPG we found that amongst subjects with HbA1c-defined normal or prediabetes condition those having 1hPG ≥ 155 mg/dl displayed higher duodenal levels of SGLT-1 as compared to their counterparts with 1hPG < 155 mg/dl; in contrast to GLUT-2 levels, which were similar between normal and with prediabetes subjects, regardless of 1hPG value. CONCLUSION A value of 1hPG ≥ 155 mg/dl may identify a subset of individuals within HbA1c-defined glycemic categories having a higher duodenal abundance of SGLT-1.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Antonio Cimellaro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome 00189, Italy.
| |
Collapse
|
63
|
Zietek T, Boomgaarden WAD, Rath E. Drug Screening, Oral Bioavailability and Regulatory Aspects: A Need for Human Organoids. Pharmaceutics 2021; 13:1280. [PMID: 34452240 PMCID: PMC8399541 DOI: 10.3390/pharmaceutics13081280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelium critically contributes to oral bioavailability of drugs by constituting an important site for drug absorption and metabolism. In particular, intestinal epithelial cells (IEC) actively serve as gatekeepers of drug and nutrient availability. IECs' transport processes and metabolism are interrelated to the whole-body metabolic state and represent potential points of origin as well as therapeutic targets for a variety of diseases. Human intestinal organoids represent a superior model of the intestinal epithelium, overcoming limitations of currently used in vitro models. Caco-2 cells or rodent explant models face drawbacks such as their cancer and non-human origin, respectively, but are commonly used to study intestinal nutrient absorption, enterocyte metabolism and oral drug bioavailability, despite poorly correlative data. In contrast, intestinal organoids allow investigating distinct aspects of bioavailability including spatial resolution of transport, inter-individual differences and high-throughput screenings. As several countries have already developed strategic roadmaps to phase out animal experiments for regulatory purposes, intestinal organoid culture and organ-on-a-chip technology in combination with in silico approaches are roads to go in the preclinical and regulatory setup and will aid implementing the 3Rs (reduction, refinement and replacement) principle in basic science.
Collapse
Affiliation(s)
- Tamara Zietek
- Doctors against Animal Experiments, 51143 Köln, Germany
| | | | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
64
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|
65
|
Liang H, Ge X, Ren M, Zhang L, Xia D, Ke J, Pan L. Molecular characterization and nutritional regulation of sodium-dependent glucose cotransporter 1 (Sglt1) in blunt snout bream (Megalobrama amblycephala). Sci Rep 2021; 11:13962. [PMID: 34234240 PMCID: PMC8263726 DOI: 10.1038/s41598-021-93534-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Fish has poor utilization capacity for glucose metabolism. The possible reasons are related to the core regulatory elements of glucose metabolism: transport proteins. Studies on the species and functions of Sglt1 in aquatic animals are scarce, therefore further studies are needed. In this study, the full length of blunt snout bream (Megalobrama amblycephala) sglt1 (Masglt1) was 2965 bp including 5′-UTR region of 168 bp and a 3′-UTR region of 820 bp. Masglt1 have a highest sequence homology in Cypriniformes fish. MaSglt1 protein was identified as a transmembrane protein with 14 α-helix structures locating plasma membrane by the methods of predicted tertiary structure and immunohistochemical staining. MaSglt1 protein has a hollow channel forms which could be specifically coupled with two Na+ ions to recognize glucose and carry out transmembrane transport. High sglt1 mRNA was found in the intestine and kidney. The mRNA levels of intestinal sglt1 had a positive correlation with dietary starch levels at 3 h after feeding, and the mRNA was significantly higher than that at 24 h, however, the mRNA levels of renal sglt1 presented results opposite to those of intestinal sglt1. The mRNA levels of renal sglt1 had a positive correlation with dietary starch levels at 24 h after feeding, and the expression was significantly higher than that at 3 h. These results confirmed that Masglt11 was mainly found in the intestine and kidney and was located in the cell membrane, playing a role in glucose homeostasis.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Xianping Ge
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Mingchun Ren
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, 610093, China. .,Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610093, China.
| | - Dong Xia
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Ji Ke
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| |
Collapse
|
66
|
Muriel P, López-Sánchez P, Ramos-Tovar E. Fructose and the Liver. Int J Mol Sci 2021; 22:6969. [PMID: 34203484 PMCID: PMC8267750 DOI: 10.3390/ijms22136969] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic diseases represent a major challenge in world health. Metabolic syndrome is a constellation of disturbances affecting several organs, and it has been proposed to be a liver-centered condition. Fructose overconsumption may result in insulin resistance, oxidative stress, inflammation, elevated uric acid levels, increased blood pressure, and increased triglyceride concentrations in both the blood and liver. Non-alcoholic fatty liver disease (NAFLD) is a term widely used to describe excessive fatty infiltration in the liver in the absence of alcohol, autoimmune disorders, or viral hepatitis; it is attributed to obesity, high sugar and fat consumption, and sedentarism. If untreated, NAFLD can progress to nonalcoholic steatohepatitis (NASH), characterized by inflammation and mild fibrosis in addition to fat infiltration and, eventually, advanced scar tissue deposition, cirrhosis, and finally liver cancer, which constitutes the culmination of the disease. Notably, fructose is recognized as a major mediator of NAFLD, as a significant correlation between fructose intake and the degree of inflammation and fibrosis has been found in preclinical and clinical studies. Moreover, fructose is a risk factor for liver cancer development. Interestingly, fructose induces a number of proinflammatory, fibrogenic, and oncogenic signaling pathways that explain its deleterious effects in the body, especially in the liver.
Collapse
Affiliation(s)
- Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City 07300, Mexico;
| | - Pedro López-Sánchez
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| |
Collapse
|
67
|
Staubach P, Koch AK, Langhorst J, Schreiber S, Röcken C, Helwig U. Expression of the fructose transporter GLUT5 in patients with fructose malabsorption. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:531-539. [PMID: 34130330 DOI: 10.1055/a-1156-4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients with abdominal symptoms are frequently diagnosed with fructose malabsorption (FM). Fructose is absorbed by monosaccharide transporters located in the brush border of the human small intestine. The aim of this study was to investigate the histoanatomical distribution of the main fructose transporter GLUT5. MATERIALS AND METHODS We studied 223 patients diagnosed with FM by a hydrogen breath test and grouped according to their response to a fructose-free diet. The control group were 42 healthy individuals and 29 patients with celiac disease (CD). The fructose breath test was done with 50 g fructose. The expression of Glut5 in duodenal biopsy specimens was studied by immunohistochemistry. The Kruskal-Wallis-test and Mann-Whitney U-test were used to carry out the statistical analysis. RESULTS The histoanatomical expression pattern of GLUT5 did not differ significantly between those patients with FM who responded completely to a fructose-free diet (n = 183) and healthy individuals (n = 42); nor did it correlate to H2 production measured in fructose breath testing. In patients with FM, the GLUT5 expression pattern did not differ between those individuals responding to a fructose-free diet and those who did not. However, GLUT5 expression pattern was significantly different in patients with CD (n = 29) compared to patients with FM and to healthy individuals (p = 0.009). CONCLUSION GLUT5 expression patterns are not be related to adult patients with FM. However, in secondary malabsorption, a decreased GLUT5 expression was found. Further investigation is needed to understand the essential factors in FM and the influence on functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Pia Staubach
- Department of Pathology, Christian-Albrechts-University Kiel, Germany
| | - Anna Katharina Koch
- Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, University of Duisburg-Essen, Germany
| | - Jost Langhorst
- Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, University of Duisburg-Essen, Germany
| | - Stefan Schreiber
- Department of Internal Medicine, Christian-Albrechts-University Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University Kiel, Germany
| | - Ulf Helwig
- Specialist Practice for Internal Medicine, Oldenburg, Oldenburg Germany.,Department of Internal Medicine, Christian-Albrechts-University Kiel, Germany
| |
Collapse
|
68
|
Geng L, Wang X, Wu X, Zhou Z, Mu W, Ye B, Ma L. The IGF-1/GH-GLUTs-plasma glucose regulating axis in hybrid grouper (Epinephelus fuscoguttatus♀ × epinephelus lanceolatus♂) fed a high-carbohydrate diet. Gen Comp Endocrinol 2021; 307:113744. [PMID: 33705742 DOI: 10.1016/j.ygcen.2021.113744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
The carnivorous teleost fish is often intolerant to high levels of postprandial plasma glucose. This study aimed to evaluate the effects of insulin-like growth factor-1 (IGF-1) and growth hormone (GH) administrations on plasma glucose levels and expression of glucose transporters (GLUTs) in various tissues of hybrid grouper, and hence to further clarify the hormone-GLUTs-plasma glucose regulating axis. Twenty-four experimental fish (average body weight: 77.5 ± 5.4 g) were selected and injected with recombinant human IGF-1 (0.2 μg/g body weight) and PBS (0.01 mol/L) in enterocoelia, respectively, and in the GH injected experiment, the same quantity of fish (average body weight: 103.8 ± 5.8 g) were administrated with GH at a dose of 0.5 μg/g body weight or with PBS at a dose of 0.01 mol/L. Results showed that plasma glucose level was significantly (P < 0.05) declined by the IGF-1 administration but elevated by the GH administration. Plasma IGF-1 concentration was significantly (P < 0.01) elevated by the IGF-1 administration, while GH concentration did not significantly (P ≥ 0.05) respond to the GH administration. The relative mRNA levels of insulin-like growth factor-1 receptor a (IGF-Ra) in liver and muscle were decreased significantly with the IGF-1 administration, and a similar variation tendency was also found in insulin-like growth factor-1 receptor b (IGF-Rb) in liver, muscle and adipose tissues. Besides, the relative mRNA level of insulin receptor (IRS) in liver was significantly increased in the IGF-1 administrated group. After the GH administration, the mRNA levels of hepatic growth factor receptor 2 (GHR2) and IGF-1 were significantly elevated. As for GLUTs, the relative mRNA levels of GLUT1 and GLUT2 in liver were obviously elevated by the IGF-1 administration, while the mRNA level of GLUT4 in muscle was reduced. In liver, the protein levels of GLUT1, 2 and 4 were significantly elevated by the IGF-1 administration, and in adipose, only GLUT1 was observed to have a significantly increased protein level. The mRNA expression of GLUTs was less affected by the GH administration. The protein level of GLUT1 in liver was significantly reduced by the GH administration, while in adipose, it was significantly increased. The protein level of GLUT2 in liver or adipose showed an opposite variation as that of GLUT1. Overall, IGF-1 had a hypoglycemic effect on hybrid grouper, and this probably was through up-regulating the protein levels of hepatic GLUT1, 2 and 4 and adipose GLUT1. GH showed an opposite role in regulating plasma glucose level as IGF-1.
Collapse
Affiliation(s)
- Lina Geng
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Xiao Wang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Xiaoyi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Zhiyu Zhou
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Wei Mu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Bo Ye
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Lei Ma
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
69
|
Michonneau P, Fleurat-Lessard P, Cantereau A, Crépin A, Roblin G, Berjeaud JM. Implication of actin in the uptake of sucrose and valine in the tap root and leaf of sugar beet. PHYSIOLOGIA PLANTARUM 2021; 172:218-232. [PMID: 33421161 DOI: 10.1111/ppl.13322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Actin microfilaments (F-actin) are major components of the cytoskeleton essential for many cellular dynamic processes (vesicle trafficking, cytoplasmic streaming, organelle movements). The aim of this study was to examine whether cortical actin microfilaments might be implicated in the regulation of nutrient uptake in root and leaf cells of Beta vulgaris. Using antibodies raised against actin and the AtSUC1 sucrose transporter, immunochemical assays demonstrated that the expression of actin and a sucrose transporter showed different characteristics, when detected on plasma membrane vesicles (PMVs) purified from roots and from leaves. The in situ immunolabeling of actin and AtSUC1 sites in PMVs and tissues showed their close proximity to the plasma membrane. Using co-labeling in protoplasts, actin and sucrose transporters were localized along the internal border and in the outermost part of the plasma membrane, respectively. This respective membrane co-localization was confirmed on PMVs and in tissues using transmission electronic microscopy. The possible functional role of actin in sucrose uptake (and valine uptake, comparatively) by PMVs and tissues from roots and leaves was examined using the pharmacological inhibitors, cytochalasin B (CB), cytochalasin D (CD), and phalloidin (PH). CB and CD inhibited the sucrose and valine uptake by root tissues in a concentration-dependent manner above 1 μM, whereas PH had no such effect. Comparatively, the toxins inhibited the sucrose and valine uptake in leaf discs to a lesser extent. The inhibition was not due to a hindering of the proton pumping and H+ -ATPase catalytic activity determined in PMVs incubated in presence of these toxins.
Collapse
Affiliation(s)
- Philippe Michonneau
- Pôle Agronomie Innovation Services, SCARA, Villette-sur-Aube, France
- Laboratoire EBI (Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | | | - Anne Cantereau
- Plateforme ImageUP, Signalisation & Transports Ioniques Membranaires CNRS 6187, Poitiers, France
| | - Alexandre Crépin
- Laboratoire EBI (Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Gabriel Roblin
- Laboratoire EBI (Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Jean-Marc Berjeaud
- Laboratoire EBI (Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| |
Collapse
|
70
|
Sampah MES, Hackam DJ. Prenatal Immunity and Influences on Necrotizing Enterocolitis and Associated Neonatal Disorders. Front Immunol 2021; 12:650709. [PMID: 33968047 PMCID: PMC8097145 DOI: 10.3389/fimmu.2021.650709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Prior to birth, the neonate has limited exposure to pathogens. The transition from the intra-uterine to the postnatal environment initiates a series of complex interactions between the newborn host and a variety of potential pathogens that persist over the first few weeks of life. This transition is particularly complex in the case of the premature and very low birth weight infant, who may be susceptible to many disorders as a result of an immature and underdeveloped immune system. Chief amongst these disorders is necrotizing enterocolitis (NEC), an acute inflammatory disorder that leads to necrosis of the intestine, and which can affect multiple systems and have the potential to result in long term effects if the infant is to survive. Here, we examine what is known about the interplay of the immune system with the maternal uterine environment, microbes, nutritional and other factors in the pathogenesis of neonatal pathologies such as NEC, while also taking into consideration the effects on the long-term health of affected children.
Collapse
Affiliation(s)
| | - David J. Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, United States
| |
Collapse
|
71
|
Piscitiello E, Herwig A, Haugg E, Schröder B, Breves G, Steinlechner S, Diedrich V. Acclimation of intestinal morphology and function in Djungarian hamsters ( Phodopus sungorus) related to seasonal and acute energy balance. J Exp Biol 2021; 224:jeb232876. [PMID: 33376143 DOI: 10.1242/jeb.232876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/17/2020] [Indexed: 02/01/2023]
Abstract
Small mammals exhibit seasonal changes in intestinal morphology and function via increased intestine size and resorptive surface and/or nutrient transport capacity to increase energy yield from food during winter. This study investigated whether seasonal or acute acclimation to anticipated or actual energetic challenges in Djungarian hamsters also resulted in higher nutrient resorption capacities owing to changes in small intestine histology and physiology. The hamsters show numerous seasonal energy-saving adjustments in response to short photoperiod. As spontaneous daily torpor represents one of these adjustments related to food quality and quantity, it was hypothesized that the hamsters' variable torpor expression patterns are influenced by their individual nutrient uptake capacity. Hamsters under short photoperiod showed longer small intestines and higher mucosal electrogenic transport capacities for glucose relative to body mass. Similar observations were made in hamsters under long photoperiod and food restriction. However, this acute energetic challenge caused a stronger increase of glucose transport capacity. Apart from that, neither fasting-induced torpor in food-restricted hamsters nor spontaneous daily torpor in short photoperiod-exposed hamsters clearly correlated with mucosal glucose transport capacity. Both seasonally anticipated and acute energetic challenges caused adjustments in the hamsters' small intestine. Short photoperiod appeared to induce an integration of these and other acclimation processes in relation to body mass to achieve a long-term adjustment of energy balance. Food restriction seemed to result in a more flexible, short-term strategy of maximizing energy uptake possibly via mucosal glucose transport and reducing energy consumption via torpor expression as an emergency response.
Collapse
Affiliation(s)
- Emiliana Piscitiello
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Elena Haugg
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Schröder
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Gerhard Breves
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Stephan Steinlechner
- Department of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Victoria Diedrich
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
72
|
Zamanizadeh A, Mirakzehi MT, Agah MJ, Saleh H, Baranzehi T. A comparison of two probiotics Aspergillus oryzae and, Saccharomyces cerevisiae on productive performance, egg quality, small intestinal morphology, and gene expression in laying Japanese quail. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1878944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abbas Zamanizadeh
- Department of Animal Science, Higher Education Complex of Saravan, Sistan and Baluchestan, Saravan, Iran
| | - Mohammad Taher Mirakzehi
- Department of Animal Science, Higher Education Complex of Saravan, Sistan and Baluchestan, Saravan, Iran
| | - Mohammad Javad Agah
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Hassan Saleh
- Department of Animal Science, Higher Education Complex of Saravan, Sistan and Baluchestan, Saravan, Iran
| | - Tayebeh Baranzehi
- Departement of biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
73
|
Abstract
SGLT2 inhibitors are antihyperglycemic drugs that protect kidneys and the heart of patients with or without type 2 diabetes and preserved or reduced kidney function from failing. The involved protective mechanisms include blood glucose-dependent and -independent mechanisms: SGLT2 inhibitors prevent both hyper- and hypoglycemia, with expectedly little net effect on HbA1C. Metabolic adaptations to induced urinary glucose loss include reduced fat mass and more ketone bodies as additional fuel. SGLT2 inhibitors lower glomerular capillary hypertension and hyperfiltration, thereby reducing the physical stress on the filtration barrier, albuminuria, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity, may preserve tubular function and glomerular filtration rate in the long term. SGLT2 inhibitors may mimic systemic hypoxia and stimulate erythropoiesis, which improves organ oxygen delivery. SGLT2 inhibitors are proximal tubule and osmotic diuretics that reduce volume retention and blood pressure and preserve heart function, potentially in part by overcoming the resistance to diuretics and atrial-natriuretic-peptide and inhibiting Na-H exchangers and sympathetic tone.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
- VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada;
- Departments of Surgery and Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
74
|
Low-Calorie Sweeteners with Carbohydrate Do Not Impair Insulin Sensitivity in Humans: Re-analysis Highlighting the Importance of the Comparator. Cell Metab 2021; 33:225-226. [PMID: 33535094 DOI: 10.1016/j.cmet.2020.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
The lack of appropriate comparator can lead to incorrect interpretation of results regarding low-calorie sweeteners. The result of a re-analysis of the study by Dalenberg et al. shows that the impairment of insulin sensitivity by sucralose in combination with carbohydrate may be explained by the carbohydrate component rather than the low-calorie sweetener.
Collapse
|
75
|
Pang MD, Goossens GH, Blaak EE. The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front Nutr 2021; 7:598340. [PMID: 33490098 PMCID: PMC7817779 DOI: 10.3389/fnut.2020.598340] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
A poor diet is one of the leading causes for non-communicable diseases. Due to the increasing prevalence of overweight and obesity, there is a strong focus on dietary overconsumption and energy restriction. Many strategies focus on improving energy balance to achieve successful weight loss. One of the strategies to lower energy intake is refraining from sugars and replacing them with artificial sweeteners, which maintain the palatability without ingesting calories. Nevertheless, the safety and health benefits of artificial sweeteners consumption remain a topic of debate within the scientific community and society at large. Notably, artificial sweeteners are metabolized differently from each other due to their different properties. Therefore, the difference in metabolic fate of artificial sweeteners may underlie conflicting findings that have been reported related to their effects on body weight control, glucose homeostasis, and underlying biological mechanisms. Thus, extrapolation of the metabolic effects of a single artificial sweetener to all artificial sweeteners is not appropriate. Although many rodent studies have assessed the metabolic effects of artificial sweeteners, long-term studies in humans are scarce. The majority of clinical studies performed thus far report no significant effects or beneficial effects of artificial sweeteners on body weight and glycemic control, but it should be emphasized that the study duration of most studies was limited. Clearly, further well-controlled, long-term human studies investigating the effects of different artificial sweeteners and their impact on gut microbiota, body weight regulation and glucose homeostasis, as well as the underlying mechanisms, are warranted.
Collapse
Affiliation(s)
- Michelle D. Pang
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | | | | |
Collapse
|
76
|
Long-Term Dietary Changes in Subjects with Glucose Galactose Malabsorption Secondary to Biallelic Mutations of SLC5A1. Dig Dis Sci 2021; 66:4414-4422. [PMID: 33433815 PMCID: PMC8273183 DOI: 10.1007/s10620-020-06792-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Glucose galactose malabsorption (GGM) is a congenital diarrheal disorder of intestinal Na+/glucose cotransport (SGLT1/SLC5A1). The required glucose and galactose-restricted diet has been well described in infancy, but long-term nutrition follow-up is limited. AIM To perform a comprehensive nutritional assessment on a cohort of patients with GGM to gain insights into the consumption patterns within the population. METHODS A cross-sectional study examining dietary intake of a GGM cohort using prospective food records. The calories and nutrients of all foods, beverages, and condiments were analyzed with descriptive statistics and compared to intake patterns of age- and sex-matched NHANES groups. RESULTS The six patients were 0.7-26 years old. Whole foods and vegetable fats were major parts of the diet, while dairy and added sweeteners were restricted. Compared to typical US intakes, mean macronutrient distribution was 88th percentile from fat, 18th percentile from carbohydrates, and 78th percentile from protein. Fructose consumption, as a proportion of total sugar intake, decreased with age, from 86.1 to 50.4%. Meanwhile, glucose consumption increased with age, from 13.8 to 48.6% of sugar intake. However, the actual amount of glucose consumed remained low, equivalent to 4th percentile of US consumption level. Galactose intake was marginal throughout life. CONCLUSIONS A GGM diet is a high-fat and high-protein/low-carbohydrate diet that is rich in fruits and vegetables but limited in dairy and added sugar. Relatively less fructose but more glucose is incorporated into the diet with age. Future studies should investigate the effects of the GGM diet on gut microbiome and long-term health.
Collapse
|
77
|
Differential expression of intestinal genes in necrotic enteritis challenged broiler chickens with 2 different Clostridium perfringens strains. Poult Sci 2020; 100:100886. [PMID: 33516477 PMCID: PMC7936145 DOI: 10.1016/j.psj.2020.11.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The primary cause of necrotic enteritis (NE) disease in chickens is the NetB-positive Clostridium perfringens bacterium. Many factors are known to affect the severity of NE in the challenge models of broiler chickens, and one of these factors is the virulence of C. perfringens strain. This study was conducted to evaluate the effect of 2 pathogenic C. perfringens strains in a NE challenge model on gut health and mRNA expression of genes encoding apoptosis, tight junction, immunity, and nutrient transporters in broilers. Day-old Ross-308 male broilers (n = 468) were allocated in a 2 × 3 factorial arrangement of treatments with in-feed antibiotics (no or yes) and challenge (Non, C. perfringens strain NE18, and C. perfringens strain NE36) as the factors. The birds in the challenged groups were inoculated with Eimeria species on day 9 and with a fresh suspension of C. perfringens NE18 or NE36 on day 14 and 15. Sample collection was performed on 2 birds of each pen on day 16. Necrotic enteritis challenge, impaired feed conversion ratio during day 0 to 16 compared with the control group where the effect of the NE36 challenge was more severe than that with NE18 (P < 0.001). The mRNA expression of mucin-2, immunoglobulin-G, occludin (P < 0.001), and tight junction protein-1 (P < 0.05) genes were downregulated in both challenged groups compared with the nonchallenged counterparts. Antibiotic supplementation, on the other hand, increased weight gain, and feed intake in all challenged birds (P < 0.01), but upregulated mucin-5ac and alanine, serine, cysteine, and threonine transporter-1 (P < 0.05) only in the NE18 challenged birds. The challenge with NE36 significantly upregulated caspase-8 and claudin-1 (P < 0.001), but downregulated glucose transporter-2 (P < 0.001) compared with the NE18 challenge. These results suggest that NE challenge is detrimental to the performance of broilers through compromised intestinal health, and different C. perfringens strains can affect the severity of the disease through modulating the expression of intestinal genes encoding proteins responsible for apoptosis, gut integrity, immunity, mucus production, and nutrient transporters.
Collapse
|
78
|
Yasumatsu K, Ohkuri T, Yoshida R, Iwata S, Margolskee RF, Ninomiya Y. Sodium-glucose cotransporter 1 as a sugar taste sensor in mouse tongue. Acta Physiol (Oxf) 2020; 230:e13529. [PMID: 32599649 DOI: 10.1111/apha.13529] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
AIM We investigated potential neuron types that code sugar information and how sodium-glucose cotransporters (SGLTs) and T1Rs are involved. METHODS Whole-nerve recordings in the chorda tympani (CT) and the glossopharyngeal (GL) nerves and single-fibre recordings in the CT were performed in T1R3-KO and wild-type (WT) mice. Behavioural response measurements were conducted in T1R3-KO mice using phlorizin (Phl), a competitive inhibitor of SGLTs. RESULTS Results indicated that significant enhancement occurred in responses to sucrose and glucose (Glc) by adding 10 mmol/L NaCl but not in responses to KCl, monopotassium glutamate, citric acid, quinine sulphate, SC45647(SC) or polycose in both CT and GL nerves. These enhancements were abolished by lingual application of Phl. In single-fibre recording, fibres showing maximal response to sucrose could be classified according to responses to SC and Glc with or without 10 mmol/L NaCl in the CT of WT mice, namely, Phl-insensitive type, Phl-sensitive Glc-type and Mixed (Glc and SC responding)-type fibres. In T1R3-KO mice, Phl-insensitive-type fibres disappeared. Results from behavioural experiments showed that the number of licks and amount of intake for Glc with or without 10 mmol/L NaCl were significantly suppressed by Phl. CONCLUSION We found evidence for the contribution of SGLTs in sugar sensing in taste cells of mouse tongue. Moreover, we found T1R-dependent (Phl-insensitive) type, Glc-type and Mixed (SGLTs and T1Rs)-type fibres. SGLT1 may be involved in the latter two types and may play important roles in the glucose-specific cephalic phase of digestion and palatable food intake.
Collapse
Affiliation(s)
- Keiko Yasumatsu
- Tokyo Dental Junior College Chiyoda‐ku Tokyo Japan
- Division of Sensory Physiology and Medical Application Sensing, Research and Development Centre for Five‐Sense Devices Kyushu University Fukuoka Japan
| | - Tadahiro Ohkuri
- Section of Oral Neuroscience Graduate School of Dental Sciences Kyushu University Fukuoka Japan
| | - Ryusuke Yoshida
- Section of Oral Neuroscience Graduate School of Dental Sciences Kyushu University Fukuoka Japan
- Department of Oral Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Shusuke Iwata
- Division of Sensory Physiology and Medical Application Sensing, Research and Development Centre for Five‐Sense Devices Kyushu University Fukuoka Japan
- Section of Oral Neuroscience Graduate School of Dental Sciences Kyushu University Fukuoka Japan
| | | | - Yuzo Ninomiya
- Division of Sensory Physiology and Medical Application Sensing, Research and Development Centre for Five‐Sense Devices Kyushu University Fukuoka Japan
- Monell Chemical Senses Centre Philadelphia PA USA
| |
Collapse
|
79
|
Sharma R, Martins N, Chaudhary A, Garg N, Sharma V, Kuca K, Nepovimova E, Tuli HS, Bishayee A, Chaudhary A, Prajapati PK. Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
80
|
Hasan NM, Johnson KF, Yin J, Baetz NW, Fayad L, Sherman V, Blutt SE, Estes MK, Kumbhari V, Zachos NC, Kovbasnjuk O. Intestinal stem cell-derived enteroids from morbidly obese patients preserve obesity-related phenotypes: Elevated glucose absorption and gluconeogenesis. Mol Metab 2020; 44:101129. [PMID: 33246140 PMCID: PMC7770968 DOI: 10.1016/j.molmet.2020.101129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Objective The mechanisms behind the efficacy of bariatric surgery (BS) for treating obesity and type 2 diabetes, particularly with respect to the influence of the small bowel, remain poorly understood. In vitro and animal models are suboptimal with respect to their ability to replicate the human intestinal epithelium under conditions induced by obesity. Human enteroids have the potential to accelerate the development of less invasive anti-obesity therapeutics if they can recapitulate the pathophysiology of obesity. Our aim was to determine whether adult stem cell-derived enteroids preserve obesity-characteristic patient-specific abnormalities in carbohydrate absorption and metabolism. Methods We established 24 enteroid lines representing 19 lean, overweight, or morbidly obese patients, including post-BS cases. Dietary glucose absorption and gluconeogenesis in enteroids were measured. The expression of carbohydrate transporters and gluconeogenic enzymes was assessed and a pharmacological approach was used to dissect the specific contribution of each transporter or enzyme to carbohydrate absorption and metabolism, respectively. Results Four phenotypes representing the relationship between patients’ BMI and intestinal dietary sugar absorption were found, suggesting that human enteroids retain obese patient phenotype heterogeneity. Intestinal glucose absorption and gluconeogenesis were significantly elevated in enteroids from a cohort of obese patients. Elevated glucose absorption was associated with increased expression of SGLT1 and GLUT2, whereas elevated gluconeogenesis was related to increased expression of GLUT5, PEPCK1, and G6Pase. Conclusions Obesity phenotypes preserved in human enteroids provide a mechanistic link to aberrant dietary carbohydrate absorption and metabolism. Enteroids can be used as a preclinical platform to understand the pathophysiology of obesity, study the heterogeneity of obesity mechanisms, and identify novel therapeutics. Human stem cell-derived enteroids preserve the heterogeneity of obesity-related phenotypes. Four phenotypes representing the relationship between patients' BMI and intestinal dietary glucose absorption were found. Glucose absorption and gluconeogenesis were elevated in enteroids from a cohort of obese patients. Elevated glucose absorption was associated with increased expression of SGLT1 and GLUT2 in enteroids. Elevated gluconeogenesis was associated with increased expression of GLUT5, PEPCK1, and G6Pase in enteroids.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kelli F Johnson
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Jianyi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas W Baetz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Lea Fayad
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Vadim Sherman
- Department of Surgery, Minimally Invasive Bariatric and General Division, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Vivek Kumbhari
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
81
|
A Review on Oxidative Stress, Diabetic Complications, and the Roles of Honey Polyphenols. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8878172. [PMID: 33299532 PMCID: PMC7704201 DOI: 10.1155/2020/8878172] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Despite the availability of various antidiabetic drugs, diabetes mellitus (DM) remains one of the world's most prevalent chronic diseases and is a global burden. Hyperglycaemia, a characteristic of type 2 diabetes mellitus (T2DM), substantially leads to the generation of reactive oxygen species (ROS), triggering oxidative stress as well as numerous cellular and molecular modifications such as mitochondrial dysfunction affecting normal physiological functions in the body. In mitochondrial-mediated processes, oxidative pathways play an important role, although the responsible molecular mechanisms remain unclear. The impaired mitochondrial function is evidenced by insulin insensitivity in various cell types. In addition, the roles of master antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/antioxidant response elements (ARE) are being deciphered to explain various molecular pathways involved in diabetes. Dietary factors are known to influence diabetes, and many natural dietary factors have been studied to improve diabetes. Honey is primarily rich in carbohydrates and is also abundant in flavonoids and phenolic acids; thus, it is a promising therapeutic antioxidant for various disorders. Various research has indicated that honey has strong wound-healing properties and has antibacterial, anti-inflammatory, antifungal, and antiviral effects; thus, it is a promising antidiabetic agent. The potential antidiabetic mechanisms of honey were proposed based on its major constituents. This review focuses on the various prospects of using honey as an antidiabetic agent and the potential insights.
Collapse
|
82
|
Anthocyanin Bioactivity in Obesity and Diabetes: The Essential Role of Glucose Transporters in the Gut and Periphery. Cells 2020; 9:cells9112515. [PMID: 33233708 PMCID: PMC7699863 DOI: 10.3390/cells9112515] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity and type-2 diabetes trends continue to worsen in the United States. Dietary anthocyanins (typically provided by berries and other fruits) are reported to have protective effects against both conditions using a variety of experimental research models including animal and human feeding studies. This review highlights studies that explore the biochemical pathways in both tissue and rodent models which could explain clinical improvements noted with anthocyanin consumption. First, the primary mode of intestinal absorption of anthocyanins is through both sGLT1 and GLUT2 glucose transporters. Stronger binding affinities may allow anthocyanins to be more inhibitive to glucose absorption compared to the reverse, where GLUT2 expression may also be affected. Genetic or chemical inhibition of sGLT1 or GLUT2 demonstrate their essential function in anthocyanin absorption across the enterocyte, where the former interacts with a greater variety of anthocyanins but the latter is the major transporter for specific anthocyanin-glycosides. Once absorbed, anthocyanins positively modulate GLUT4 density and function in both skeletal muscle and adipose tissues via the upregulation of AMPK and restoration of insulin sensitivity. Antioxidant properties and phosphodiesterase inhibition by anthocyanins promote both mitochondrial function and density which could be novel targets for dietary management of obesity and its complications.
Collapse
|
83
|
Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G589-G608. [PMID: 32902315 PMCID: PMC8087346 DOI: 10.1152/ajpgi.00245.2020] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Altered intestinal permeability plays a role in many pathological conditions. Intestinal permeability is a component of the intestinal barrier. This barrier is a dynamic interface between the body and the food and pathogens that enter the gastrointestinal tract. Therefore, dietary components can directly affect this interface, and many metabolites produced by the host enzymes or the gut microbiota can act as signaling molecules or exert direct effects on this barrier. Our aim was to examine the effects of diet components on the intestinal barrier in health and disease states. Herein, we conducted an in-depth PubMed search based on specific key words (diet, permeability, barrier, health, disease, and disorder), as well as cross references from those articles. The normal intestinal barrier consists of multiple components in the lumen, epithelial cell layer and the lamina propria. Diverse methods are available to measure intestinal permeability. We focus predominantly on human in vivo studies, and the literature is reviewed to identify dietary factors that decrease (e.g., emulsifiers, surfactants, and alcohol) or increase (e.g., fiber, short-chain fatty acids, glutamine, and vitamin D) barrier integrity. Effects of these dietary items in disease states, such as metabolic syndrome, liver disease, or colitis are documented as examples of barrier dysfunction in the multifactorial diseases. Effects of diet on intestinal barrier function are associated with precise mechanisms in some instances; further research of those mechanisms has potential to clarify the role of dietary interventions in treating diverse pathologic states.
Collapse
Affiliation(s)
- Katayoun Khoshbin
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
84
|
Fakhlaei R, Selamat J, Khatib A, Razis AFA, Sukor R, Ahmad S, Babadi AA. The Toxic Impact of Honey Adulteration: A Review. Foods 2020; 9:E1538. [PMID: 33114468 PMCID: PMC7692231 DOI: 10.3390/foods9111538] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Honey is characterized as a natural and raw foodstuff that can be consumed not only as a sweetener but also as medicine due to its therapeutic impact on human health. It is prone to adulterants caused by humans that manipulate the quality of honey. Although honey consumption has remarkably increased in the last few years all around the world, the safety of honey is not assessed and monitored regularly. Since the number of consumers of honey adulteration have increased in recent years, their trust and interest in this valuable product has decreased. Honey adulterants are any substances that are added to the pure honey. In this regard, this paper provides a comprehensive and critical review of the different types of adulteration, common sugar adulterants and detection methods, and draws a clear perspective toward the impact of honey adulteration on human health. Adulteration increases the consumer's blood sugar, which can cause diabetes, abdominal weight gain, and obesity, raise the level of blood lipids and can cause high blood pressure. The most common organ affected by honey adulterants is the liver followed by the kidney, heart, and brain, as shown in several in vivo research designs.
Collapse
Affiliation(s)
- Rafieh Fakhlaei
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Jinap Selamat
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.F.A.R.); (R.S.)
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia;
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.F.A.R.); (R.S.)
- Natural Medicines and Products Research Laboratory, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rashidah Sukor
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.F.A.R.); (R.S.)
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Arman Amani Babadi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
85
|
Zhao L, Xuan Z, Song W, Zhang S, Li Z, Song G, Zhu X, Xie H, Zheng S, Song P. A novel role for farnesoid X receptor in the bile acid-mediated intestinal glucose homeostasis. J Cell Mol Med 2020; 24:12848-12861. [PMID: 33029898 PMCID: PMC7686993 DOI: 10.1111/jcmm.15881] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
The farnesoid X receptor (FXR), as a bile acid (BA) sensor, plays an important role in the regulation of lipid metabolism. However, the effects and underlying molecular mechanisms of FXR on intestinal glucose homeostasis remain elusive. Herein, we demonstrated that FXR and glucose transporter 2 (GLUT2) are essential for BA‐mediated glucose homeostasis in the intestine. BA‐activated FXR enhanced glucose uptake in intestinal epithelial cells by increasing the expression of GLUT2, which depended on ERK1/2 phosphorylation via S1PR2. However, it also reduced the cell energy generation via inhibition of oxidative phosphorylation, which is crucial for intestinal glucose transport. Moreover, BA‐activated FXR signalling potently inhibited specific glucose flux through the intestinal epithelium to the circulation, which reduced the increase in blood glucose levels in mice following oral glucose administration. This trend was supported by the changed ratio of GLUT2 to SGLT1 in the brush border membrane (BBM), including especially decreased GLUT2 abundance in the BBM. Furthermore, impaired intestinal FXR signalling was observed in the patients with intestinal bile acid deficiency (IBAD). These findings uncover a novel function by which FXR sustains the intestinal glucose homeostasis and provide a rationale for FXR agonists in the treatment of IBAD‐related hyperglycaemia.
Collapse
Affiliation(s)
- Long Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Zefeng Xuan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Wenfeng Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Shiyu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Zequn Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Guangyuan Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xingxin Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
86
|
Zietek T, Giesbertz P, Ewers M, Reichart F, Weinmüller M, Urbauer E, Haller D, Demir IE, Ceyhan GO, Kessler H, Rath E. Organoids to Study Intestinal Nutrient Transport, Drug Uptake and Metabolism - Update to the Human Model and Expansion of Applications. Front Bioeng Biotechnol 2020; 8:577656. [PMID: 33015026 PMCID: PMC7516017 DOI: 10.3389/fbioe.2020.577656] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Intestinal transport and sensing processes and their interconnection to metabolism are relevant to pathologies such as malabsorption syndromes, inflammatory diseases, obesity and type 2 diabetes. Constituting a highly selective barrier, intestinal epithelial cells absorb, metabolize, and release nutrients into the circulation, hence serving as gatekeeper of nutrient availability and metabolic health for the whole organism. Next to nutrient transport and sensing functions, intestinal transporters including peptide transporter 1 (PEPT1) are involved in the absorption of drugs and prodrugs, including certain inhibitors of angiotensin-converting enzyme, protease inhibitors, antivirals, and peptidomimetics like β-lactam antibiotics. Here, we verify the applicability of 3D organoids for in vitro investigation of intestinal biochemical processes related to transport and metabolism of nutrients and drugs. Establishing a variety of methodologies including illustration of transporter-mediated nutrient and drug uptake and metabolomics approaches, we highlight intestinal organoids as robust and reliable tool in this field of research. Currently used in vitro models to study intestinal nutrient absorption, drug transport and enterocyte metabolism, such as Caco-2 cells or rodent explant models are of limited value due to their cancer and non-human origin, respectively. Particularly species differences result in poorly correlative data and findings obtained in these models cannot be extrapolated reliably to humans, as indicated by high failure rates in drug development pipelines. In contrast, human intestinal organoids represent a superior model of the intestinal epithelium and might help to implement the 3Rs (Reduction, Refinement and Replacement) principle in basic science as well as the preclinical and regulatory setup.
Collapse
Affiliation(s)
- Tamara Zietek
- Chair of Nutritional Physiology, Technische Universität München, Munich, Germany
| | - Pieter Giesbertz
- Chair of Nutritional Physiology, Technische Universität München, Munich, Germany
| | - Maren Ewers
- Pediatric Nutritional Medicine, Klinikum Rechts der Isar, Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Munich, Germany
| | - Florian Reichart
- Institute for Advanced Study, Department of Chemistry and Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany
| | - Michael Weinmüller
- Institute for Advanced Study, Department of Chemistry and Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany
| | - Elisabeth Urbauer
- Chair of Nutrition and Immunology, Technische Universität München, Munich, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Munich, Germany.,ZIEL Institute for Food and Health, Technische Universität München, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,German Cancer Consortium (DKTK), Munich, Germany.,CRC 1321 Modeling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry and Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Munich, Germany
| |
Collapse
|
87
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
88
|
Gyimesi G, Pujol-Giménez J, Kanai Y, Hediger MA. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflugers Arch 2020; 472:1177-1206. [PMID: 32767111 PMCID: PMC7462921 DOI: 10.1007/s00424-020-02433-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Sodium glucose transporters (SGLTs) belong to the mammalian solute carrier family SLC5. This family includes 12 different members in human that mediate the transport of sugars, vitamins, amino acids, or smaller organic ions such as choline. The SLC5 family belongs to the sodium symporter family (SSS), which encompasses transporters from all kingdoms of life. It furthermore shares similarity to the structural fold of the APC (amino acid-polyamine-organocation) transporter family. Three decades after the first molecular identification of the intestinal Na+-glucose cotransporter SGLT1 by expression cloning, many new discoveries have evolved, from mechanistic analysis to molecular genetics, structural biology, drug discovery, and clinical applications. All of these advances have greatly influenced physiology and medicine. While SGLT1 is essential for fast absorption of glucose and galactose in the intestine, the expression of SGLT2 is largely confined to the early part of the kidney proximal tubules, where it reabsorbs the bulk part of filtered glucose. SGLT2 has been successfully exploited by the pharmaceutical industry to develop effective new drugs for the treatment of diabetic patients. These SGLT2 inhibitors, termed gliflozins, also exhibit favorable nephroprotective effects and likely also cardioprotective effects. In addition, given the recent finding that SGLT2 is also expressed in tumors of pancreas and prostate and in glioblastoma, this opens the door to potential new therapeutic strategies for cancer treatment by specifically targeting SGLT2. Likewise, further discoveries related to the functional association of other SGLTs of the SLC5 family to human pathologies will open the door to potential new therapeutic strategies. We furthermore hope that the herein summarized information about the physiological roles of SGLTs and the therapeutic benefits of the gliflozins will be useful for our readers to better understand the molecular basis of the beneficial effects of these inhibitors, also in the context of the tubuloglomerular feedback (TGF), and the renin-angiotensin system (RAS). The detailed mechanisms underlying the clinical benefits of SGLT2 inhibition by gliflozins still warrant further investigation that may serve as a basis for future drug development.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland.
| |
Collapse
|
89
|
Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch 2020; 472:1345-1370. [PMID: 32144488 PMCID: PMC7483786 DOI: 10.1007/s00424-020-02361-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
90
|
Sharari S, Abou-Alloul M, Hussain K, Ahmad Khan F. Fanconi-Bickel Syndrome: A Review of the Mechanisms That Lead to Dysglycaemia. Int J Mol Sci 2020; 21:E6286. [PMID: 32877990 PMCID: PMC7504390 DOI: 10.3390/ijms21176286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
Accumulation of glycogen in the kidney and liver is the main feature of Fanconi-Bickel Syndrome (FBS), a rare disorder of carbohydrate metabolism inherited in an autosomal recessive manner due to SLC2A2 gene mutations. Missense, nonsense, frame-shift (fs), in-frame indels, splice site, and compound heterozygous variants have all been identified in SLC2A2 gene of FBS cases. Approximately 144 FBS cases with 70 different SLC2A2 gene variants have been reported so far. SLC2A2 encodes for glucose transporter 2 (GLUT2) a low affinity facilitative transporter of glucose mainly expressed in tissues playing important roles in glucose homeostasis, such as renal tubular cells, enterocytes, pancreatic β-cells, hepatocytes and discrete regions of the brain. Dysfunctional mutations and decreased GLUT2 expression leads to dysglycaemia (fasting hypoglycemia, postprandial hyperglycemia, glucose intolerance, and rarely diabetes mellitus), hepatomegaly, galactose intolerance, rickets, and poor growth. The molecular mechanisms of dysglycaemia in FBS are still not clearly understood. In this review, we discuss the physiological roles of GLUT2 and the pathophysiology of mutants, highlight all of the previously reported SLC2A2 mutations associated with dysglycaemia, and review the potential molecular mechanisms leading to dysglycaemia and diabetes mellitus in FBS patients.
Collapse
Affiliation(s)
- Sanaa Sharari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar;
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar;
| | - Mohamad Abou-Alloul
- Department of Pediatric Medicine, Saida Governmental University Hospital, Beirut Arab University, Beirut 115020, Lebanon;
| | - Khalid Hussain
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar;
| | - Faiyaz Ahmad Khan
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar;
| |
Collapse
|
91
|
Sucralose can improve glucose tolerance and upregulate expression of sweet taste receptors and glucose transporters in an obese rat model. Eur J Nutr 2020; 60:1809-1817. [PMID: 32860125 DOI: 10.1007/s00394-020-02375-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Non-nutritive sweeteners (NNS) are widely used as replacements for table sugar in beverages and dessert. However, the metabolic effects of NNS remain controversial. This study aimed to investigate the effects of various sucralose loads on glucose metabolism and expression of sweet taste receptors (STR) and glucose transporters in a high-fat diet (HFD) rats. METHODS Four-week-old male Sprague Dawley rats were fed a HFD for 8 weeks, then randomly divided into eight groups (6 in each group). All were gavaged with either saline, sucralose (0.54 mM or 0.78 mM), or sucrose (324 mM) with/without gurmarin, a sweet taste inhibitor, for 4 weeks, followed by an intragastric glucose tolerance test (IGGTT) with blood glucose, and plasma insulin, GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) measurements. In the following week, the rats were sacrificed and the small intestine was removed for measurement of sweet taste receptor and glucose transporter expression by quantitative Reverse Transcription-Polymerase Chain Reaction. RESULTS In HFD rats, blood glucose levels were decreased at 30, 60, and 120 min during the IGGTT after 4 weeks supplementation with 0.78 mM sucralose. TIR3 expression was increased in the duodenum and TIR2 was increased in the ileum after 324 mM sucrose supplementation. T1R3 expression was increased after 0.54 mM and 0.78 mM sucralose in the ileum, but there was no change in the expression of TIRs in the duodenum after sucralose treatments. SGLT-1 expression was increased after both 0.78 mM sucralose and 324 mM sucrose in the ileum, and only increased in the duodenum after 324 mM sucrose supplementation. CONCLUSIONS The effects of sucralose on glucose metabolism in HFD rats are dose-dependent and related to enhanced expression of sweet taste receptors and glucose transporters. Further studies are needed to clarify the molecular mechanisms involved.
Collapse
|
92
|
Rambaran TF, Nembhard N, Bowen-Forbes CS, Alexander-Lindo RL. Hypoglycemic effect of the fruit extracts of two varieties of Rubus rosifolius. J Food Biochem 2020; 44:e13365. [PMID: 32638412 DOI: 10.1111/jfbc.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Oral glucose tolerance test on male Sprague-Dawley rats was done to determine the hypoglycemic effect of the n-hexane, ethyl acetate and methanol fruit extracts (50 mg/kg BW; oral administration) of two varieties of Rubus rosifolius. Metformin was used as a positive control (15 mg/kg BW; intravenous administration). The n-hexane extract was most potent and was investigated phytochemically to yield compound 1, a mixture of triacylglycerols. In its oxidized state compound 1 produced a significant hypoglycemic effect which was more effective than metformin for the first 30 min of the assay (p = .03) and not significantly different for up to 120 min. Mechanisms through which the oxidized triacylglycerol species could form were explored and presented. This is the first account of the hypoglycemic activity of R. rosifolius and it is also the first account of this activity being credited to compounds other than polyphenols and terpenes in Rubus plants. PRACTICAL APPLICATIONS: A significant percentage of the world's population is affected by diabetes and diabetes-related illnesses. One of the most popular antidiabetic drug on the market is metformin which is used to lower blood glucose concentrations. The findings of this study indicate that an oxidized mixture of triacylglycerols is more fast-acting than metformin for the first 30 min of an oral glucose tolerance test. This effect was also not significantly different from that of the popular drug up to 120 min. These results demonstrate the hypoglycemic activity of an oxidized R. rosifolius fruit extract and indicate its potential use in applications such as functional food product development and drug discovery. Therapeutic applications can also include the plant extract as a potential primary treatment or as adjunct therapy to conventional medications.
Collapse
Affiliation(s)
- Theresa F Rambaran
- Department of Chemistry, Faculty of Science and Technology, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Nyron Nembhard
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Camille S Bowen-Forbes
- Department of Chemistry, Faculty of Science and Technology, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Ruby L Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| |
Collapse
|
93
|
Rambaran TF, Bergman J, Nordström P, Nordström A. Effect of Berry Polyphenols on Glucose Metabolism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Dev Nutr 2020; 4:nzaa100. [PMID: 32666033 PMCID: PMC7326477 DOI: 10.1093/cdn/nzaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
The effect of berry polyphenols on glucose metabolism has been evaluated in several studies; however, the results are conflicting. A systematic review and meta-analysis was therefore conducted to evaluate the effect of berry polyphenol consumption on glucose metabolism in adults with impaired glucose tolerance or insulin resistance. PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, CINAHL (EBSCO), and Scopus were searched for randomized controlled trials published by June 2019. Of the 3240 articles found, 21 met inclusion criteria. Study-specific effects were calculated as mean differences, which were pooled using fixed-effect, inverse-variance weighting. Overall, berry polyphenol consumption did not have a clear effect on biomarkers of glucose metabolism compared with placebo or no treatment. Although some analyses showed statistically significant effects, these effects were too small to be of clinical relevance. The review protocol was registered in the PROSPERO International Prospective Register of Systematic Reviews as CRD42019130811.
Collapse
Affiliation(s)
- Theresa F Rambaran
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Jonathan Bergman
- Department of Community Medicine and Rehabilitation, Unit of Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Peter Nordström
- Department of Community Medicine and Rehabilitation, Unit of Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Anna Nordström
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
- School of Sport Sciences, UiT Arctic University of Norway, Tromsö, Norway
| |
Collapse
|
94
|
Bergman M, Abdul-Ghani M, DeFronzo RA, Manco M, Sesti G, Fiorentino TV, Ceriello A, Rhee M, Phillips LS, Chung S, Cravalho C, Jagannathan R, Monnier L, Colette C, Owens D, Bianchi C, Del Prato S, Monteiro MP, Neves JS, Medina JL, Macedo MP, Ribeiro RT, Filipe Raposo J, Dorcely B, Ibrahim N, Buysschaert M. Review of methods for detecting glycemic disorders. Diabetes Res Clin Pract 2020; 165:108233. [PMID: 32497744 PMCID: PMC7977482 DOI: 10.1016/j.diabres.2020.108233] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Prediabetes (intermediate hyperglycemia) consists of two abnormalities, impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) detected by a standardized 75-gram oral glucose tolerance test (OGTT). Individuals with isolated IGT or combined IFG and IGT have increased risk for developing type 2 diabetes (T2D) and cardiovascular disease (CVD). Diagnosing prediabetes early and accurately is critical in order to refer high-risk individuals for intensive lifestyle modification. However, there is currently no international consensus for diagnosing prediabetes with HbA1c or glucose measurements based upon American Diabetes Association (ADA) and the World Health Organization (WHO) criteria that identify different populations at risk for progressing to diabetes. Various caveats affecting the accuracy of interpreting the HbA1c including genetics complicate this further. This review describes established methods for detecting glucose disorders based upon glucose and HbA1c parameters as well as novel approaches including the 1-hour plasma glucose (1-h PG), glucose challenge test (GCT), shape of the glucose curve, genetics, continuous glucose monitoring (CGM), measures of insulin secretion and sensitivity, metabolomics, and ancillary tools such as fructosamine, glycated albumin (GA), 1,5- anhydroglucitol (1,5-AG). Of the approaches considered, the 1-h PG has considerable potential as a biomarker for detecting glucose disorders if confirmed by additional data including health economic analysis. Whether the 1-h OGTT is superior to genetics and omics in providing greater precision for individualized treatment requires further investigation. These methods will need to demonstrate substantially superiority to simpler tools for detecting glucose disorders to justify their cost and complexity.
Collapse
Affiliation(s)
- Michael Bergman
- NYU School of Medicine, NYU Diabetes Prevention Program, Endocrinology, Diabetes, Metabolism, VA New York Harbor Healthcare System, Manhattan Campus, 423 East 23rd Street, Room 16049C, NY, NY 10010, USA.
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Ralph A DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children Hospital, Rome, Italy.
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome Sapienza, Rome 00161, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Antonio Ceriello
- Department of Cardiovascular and Metabolic Diseases, Istituto Ricerca Cura Carattere Scientifico Multimedica, Sesto, San Giovanni (MI), Italy.
| | - Mary Rhee
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Lawrence S Phillips
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Stephanie Chung
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Celeste Cravalho
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ram Jagannathan
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Louis Monnier
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - Claude Colette
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - David Owens
- Diabetes Research Group, Institute of Life Science, Swansea University, Wales, UK.
| | - Cristina Bianchi
- University Hospital of Pisa, Section of Metabolic Diseases and Diabetes, University Hospital, University of Pisa, Pisa, Italy.
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Endocrinology, Diabetes and Metabolism, São João University Hospital Center, Porto, Portugal.
| | | | - Maria Paula Macedo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Rogério Tavares Ribeiro
- Institute for Biomedicine, Department of Medical Sciences, University of Aveiro, APDP Diabetes Portugal, Education and Research Center (APDP-ERC), Aveiro, Portugal.
| | - João Filipe Raposo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Brenda Dorcely
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Nouran Ibrahim
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University Clinic Saint-Luc, Brussels, Belgium.
| |
Collapse
|
95
|
Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J Control Release 2020; 323:151-160. [DOI: 10.1016/j.jconrel.2020.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022]
|
96
|
Sano R, Shinozaki Y, Ohta T. Sodium-glucose cotransporters: Functional properties and pharmaceutical potential. J Diabetes Investig 2020; 11:770-782. [PMID: 32196987 PMCID: PMC7378437 DOI: 10.1111/jdi.13255] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose is the most abundant monosaccharide, and an essential source of energy for most living cells. Glucose transport across the cell membrane is mediated by two types of transporters: facilitative glucose transporters (gene name: solute carrier 2A) and sodium-glucose cotransporters (SGLTs; gene name: solute carrier 5A). Each transporter has its own substrate specificity, distribution, and regulatory mechanisms. Recently, SGLT1 and SGLT2 have attracted much attention as therapeutic targets for various diseases. This review addresses the basal and functional properties of glucose transporters and SGLTs, and describes the pharmaceutical potential of SGLT1 and SGLT2.
Collapse
Affiliation(s)
- Ryuhei Sano
- Biological/Pharmacological Research LaboratoriesCentral Pharmaceutical Research InstituteJapan Tobacco IncTakatsukiJapan
| | - Yuichi Shinozaki
- Biological/Pharmacological Research LaboratoriesCentral Pharmaceutical Research InstituteJapan Tobacco IncTakatsukiJapan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional AnatomyGraduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
97
|
Seto Y, Yoshihashi T, Tomonari M, To H. Absorption of glucosamine is improved by considering circadian rhythm and feeding time in rats. Chronobiol Int 2020; 37:1528-1537. [PMID: 32576047 DOI: 10.1080/07420528.2020.1784189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although many basic and clinical studies have shown that glucosamine (GlcN) improves osteoarthritis, it has not been widely used in the clinic because its bioavailability is only 6%. We investigated the influence of dosing-time factors, which influence pharmacokinetics and food intake in rats to improve its bioavailability. When GlcN was orally administered to rats housed under conditions of free access to food for 12 h or fasting conditions, no significant differences in GlcN concentration were observed in the rat plasma between the two groups. There were no significant differences in the plasma GlcN concentrations among the dosing-time groups when GlcN was orally administered at 4:00, 10:00, 16:00, or 22:00 h to rats. However, the plasma concentration in the fasted group was significantly higher than that in the fed group after GlcN was orally administered at 22:00 h in rats and the AUC of the fasted group was 1.7-fold higher than that of the fed group. In conclusion, the pharmacokinetics of GlcN was improved by considering not only food intake but also the circadian rhythm of its transporter, which is a major factor influencing pharmacokinetic changes.
Collapse
Affiliation(s)
- Yoshihiro Seto
- Medical Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama , Toyama, Japan
| | - Takuya Yoshihashi
- Medical Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama , Toyama, Japan
| | - Mari Tomonari
- Medical Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama , Toyama, Japan
| | - Hideto To
- Medical Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama , Toyama, Japan
| |
Collapse
|
98
|
Ni D, Ai Z, Munoz-Sandoval D, Suresh R, Ellis PR, Yuqiong C, Sharp PA, Butterworth PJ, Yu Z, Corpe CP. Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. FASEB J 2020; 34:9995-10010. [PMID: 32564472 DOI: 10.1096/fj.202000057rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023]
Abstract
Tea polyphenolics have been suggested to possess blood glucose lowering properties by inhibiting sugar transporters in the small intestine and improving insulin sensitivity. In this report, we studied the effects of teas and tea catechins on the small intestinal sugar transporters, SGLT1 and GLUTs (GLUT1, 2 and 5). Green tea extract (GT), oolong tea extract (OT), and black tea extract (BT) inhibited glucose uptake into the intestinal Caco-2 cells with GT being the most potent inhibitor (IC50 : 0.077 mg/mL), followed by OT (IC50 : 0.136 mg/mL) and BT (IC50 : 0.56 mg/mL). GT and OT inhibition of glucose uptake was partial non-competitive, with an inhibitor constant (Ki ) = 0.0317 and 0.0571 mg/mL, respectively, whereas BT was pure non-competitive, Ki = 0.36 mg/mL. Oocytes injected to express small intestinal GLUTs were inhibited by teas, but SGLT1 was not. Furthermore, catechins present in teas were the predominant inhibitor of glucose uptake into Caco-2 cells, and gallated catechins the most potent: CG > ECG > EGCG ≥ GCG when compared to the non-gallated catechins (C, EC, GC, and EGC). In Caco-2 cells, individual tea catechins reduced the SGLT1 gene, but not protein expression levels. In contrast, GLUT2 gene and protein expression levels were reduced after 2 hours exposure to catechins but increased after 24 hours. These in vitro studies suggest teas containing catechins may be useful dietary supplements capable of blunting postprandial glycaemia in humans, including those with or at risk to Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China.,Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China.,Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing City, China
| | - Diana Munoz-Sandoval
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Reshma Suresh
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Peter R Ellis
- Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Chen Yuqiong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China
| | - Paul A Sharp
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Peter J Butterworth
- Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Zhi Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China
| | - Christopher P Corpe
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
99
|
Li S, Liu J, Li Z, Wang L, Gao W, Zhang Z, Guo C. Sodium-dependent glucose transporter 1 and glucose transporter 2 mediate intestinal transport of quercetrin in Caco-2 cells. Food Nutr Res 2020; 64:3745. [PMID: 32612490 PMCID: PMC7307431 DOI: 10.29219/fnr.v64.3745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background The role of glucose transporters in the transport of flavonoids remains ambiguous. Objective In this study, we examined whether quercitrin would be absorbed intactly in modeled Caco-2 cells, as well as determined the involvement of sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) in its transmembrane transport. Design The first experiment was conducted to examine the uptake of quercitrin into Caco-2 cells 24 h after they were seeded and the second experiment was conducted to determine the transport across the apical and basolateral membrane of Caco-2 cells after they were cultured for 21 days in a Millicell system. Quercitrin was administered at 3, 9, or 18 μg/mL; and the time points of sampling were 30, 60, 90, 120, and 150 min. Results In the uptake experiment, the highest intracellular quercitrin concentration was observed in the cells treated with 18 μg/mL quercitrin at 60 min, with a bell-shaped kinetic curve. Quercetin, isorhamnetin, and tamarixetin were detected inside the cells, particularly when treated with a high dose. In the transport experiment, quercitrin was transported from the apical to basolateral side and vice versa; its concentrations depended on dose, time, and transport direction (P < 0.0001). Only trace amounts of isorhamnetin and tamarixetin were detected in the apical chamber when quercitrin was added to the basolateral chamber. Phloridzin and phloretin, potent inhibitors of SGLT1 and GLUT2, respectively, significantly diminished quercitrin transport from the apical to basolateral side; and phloretin had a greater inhibitory effect compared to phloridzin. Conclusion Our results demonstrate that quercitrin is absorbed intactly and then effluxed out of Caco-2 cells through both apical and basolateral membranes probably via SGLT1 and GLUT2.
Collapse
Affiliation(s)
- Suyun Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, P R China.,Department of Nutrition, Tianjin Institute of Environmental and Operational Medicine, Tianjing, P R China
| | - Jin Liu
- Systems Engineering Research Institute, Beijing, PR China
| | - Zheng Li
- Beijing Institute of Pharmacology & Toxicology, Beijing, PR China
| | - Liqin Wang
- Department of Epidemiology and Statistics, Hebei Medical University, Shijiazhuang, PR China
| | - Weina Gao
- Department of Nutrition, Tianjin Institute of Environmental and Operational Medicine, Tianjing, P R China
| | - Zhenqing Zhang
- Beijing Institute of Pharmacology & Toxicology, Beijing, PR China
| | - Changjiang Guo
- Department of Nutrition, Tianjin Institute of Environmental and Operational Medicine, Tianjing, P R China
| |
Collapse
|
100
|
In vitro anti-hyperglycemic, antioxidant activities and intestinal glucose uptake evaluation of Endiandra kingiana extracts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|