51
|
Oyouni AAA, Al-Amer OM, Ali FAZ, Altayar MA, Jalal MM, Albalawi RSM, Abuderman AA, Alsharif KF, AlZamzami W, Albrakati A, Elmahallawy EK. Melatonin ameliorates the adrenal and pancreatic alterations in streptozotocin-induced diabetic rats: Clinical, biochemical, and descriptive histopathological studies. Front Vet Sci 2022; 9:1016312. [PMID: 36337190 PMCID: PMC9634159 DOI: 10.3389/fvets.2022.1016312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies have demonstrated the beneficial effects of melatonin in diabetic rats. However, limited studies have been conducted on the potential effects of melatonin on the descriptive histopathological and morphometric findings in different compartments of the adrenal glands in diabetic animal models. In this study, using a streptozotocin (STZ)-induced diabetic rat model, we sought to examine histological alterations in the pancreas and adrenal glands and observe the effect of the administration of melatonin on the histopathology and morphology of the pancreas and the adrenal gland cortex and medulla that are altered by STZ-induced hyperglycemia. Rats were randomly assigned to four different groups: Group I, normal control; Group II, melatonin group (MT) (10 mg/kg/day); Group III, (diabetic STZ group), and Group IV, diabetic (STZ) + melatonin group (MT). Throughout the experiment, the animals' fasting blood sugar levels were measured. Blood was obtained to determine the animals' cumulative blood sugar levels after sacrification. For histological and morphometrical evaluations, the pancreatic and adrenal gland tissues were dissected and processed. Our results showed that diabetic rats receiving melatonin significantly (P < 0.05) improved their fasting blood sugar and cumulative blood sugar levels compared to the diabetic group not receiving melatonin. Furthermore, histopathological examinations of the pancreatic and adrenal tissues of the diabetic rats indicated the occurrence of severe histopathological and morphometric changes. Morphometric analysis of the adrenals indicated a significant increase (P < 0.05) in the thickness of the cortex zones [zona glomerulosa (ZG), zona fasciculata (ZF), and zona reticularis (ZR)] for the diabetic STZ group compared with other groups, and a significant decrease (P < 0.05) in the diameter of the in adrenal gland medullas in the diabetic STZ rats compared to the other groups. Furthermore, treatment with melatonin restored these changes in both the pancreatic and adrenal gland tissues and produced a significant (P < 0.05) improvement in the cortex and medulla thickness compared to the untreated diabetic rats. Overall, melatonin significantly reduced the hyperglycemic levels of glucose in diabetic rats and reversed the majority of histopathological alterations in the tissues of the pancreas and adrenals, demonstrating its anti-diabetic activity.
Collapse
Affiliation(s)
- Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama M. Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Malik A. Altayar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed M. Jalal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Abdulwahab Ali Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Waseem AlZamzami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
52
|
Verma H, Shivavedi N, Tej GNVC, Kumar M, Nayak PK. Prophylactic administration of rosmarinic acid ameliorates depression-associated cardiac abnormalities in Wistar rats: Evidence of serotonergic, oxidative, and inflammatory pathways. J Biochem Mol Toxicol 2022; 36:e23160. [PMID: 35838106 DOI: 10.1002/jbt.23160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/05/2022] [Accepted: 07/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders and associated cardiac comorbidities have increased the risk of mortality worldwide. Researchers reported that depression increases the possibility of future cardiac abnormalities by approximately 30%. Therefore, there is an unmet need to develop therapeutic interventions to treat depression and associated cardiac abnormalities. The present study was conducted to evaluate the prophylactic effect of rosmarinic acid (RA) against chronic unpredictable stress (CUS)-induced depression associated cardiac abnormalities in Wistar rats. The CUS paradigm, which comprised several stressors, was employed for 40 days to induce depressive-like behavior and associated cardiac abnormalities in rats. Along with CUS, RA at a dose of 25 and 50 mg/kg was administered orally to two groups of animals for 40 days. Behavioral tests (forced swim test and sucrose consumption test) and molecular biomarkers (corticosterone and serotonin) were performed. Electrocardiography was performed before CUS (Day 0), Day 20, and Day 40 to study electrocardiogram parameters. Furthermore, changes in body weight, organ weight, tissue lipid peroxidation, glutathione, catalase, cTn-I, MMP-2, and proinflammatory cytokines (TNF-α and IL-6) were estimated. Our results showed that RA treatment caused a reduction in immobility period, adrenal hyperplasia, corticosterone level, tissue lipid peroxidation, cTn-I, MMP-2, proinflammatory cytokines, and QRS complex duration, while an increase in sucrose consumption, brain serotonin level, T-wave width, glutathione, and catalase activity as compared with the CUS-control group. The results of our study proved that RA administration ameliorates CUS-induced depression-associated cardiac abnormalities in rats via serotonergic, oxidative, and inflammatory pathways.
Collapse
Affiliation(s)
- Himanshu Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Naveen Shivavedi
- Shri Ram Group Of Institutions, Faculty of Pharmacy, Jabalpur, Madhya Pradesh, India
| | - Gullanki N V C Tej
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Prasanta K Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
53
|
Lalli E, Figueiredo BC. Prolactin as an adrenocorticotropic hormone: Prolactin signalling is a conserved key regulator of sexually dimorphic adrenal gland function in health and disease. Bioessays 2022; 44:e2200109. [PMID: 36000778 DOI: 10.1002/bies.202200109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
A large number of previous reports described an effect of the pituitary hormone prolactin (PRL) on steroid hormone production by the adrenal cortex. However, those studies remained anecdotal and were never converted into a conceptual and mechanistic framework, let alone being translated into clinical care. In the light of our recently published landmark study where we described PRL signalling as a pivotal regulator of the sexually dimorphic adrenal phenotype in mouse and of adrenal androgen production in humans, we present here the overarching hypothesis that PRL signalling increases the activity of Steroidogenic Factor-1 (SF-1/NR5A1), a transcription factor that has an essential role in adrenal gland development and function, to regulate adrenal cortex growth and hormonal production in physiological and pathological conditions. PRL can then be considered as a bona fide adrenocorticotropic hormone synergizing with ACTH in the endocrine control of adrenal cortex function.
Collapse
Affiliation(s)
- Enzo Lalli
- EXPOGEN-CANCER CNRS International Research Project, 660 route des Lucioles, Sophia Antipolis, Valbonne, 06560, France
- Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Pelé Pequeno Principe Research Institute, Curitiba, PR, Brazil
| | - Bonald C Figueiredo
- EXPOGEN-CANCER CNRS International Research Project, 660 route des Lucioles, Sophia Antipolis, Valbonne, 06560, France
- Pelé Pequeno Principe Research Institute, Curitiba, PR, Brazil
| |
Collapse
|
54
|
Role of sirtuin1 in impairments of emotion-related behaviors in mice with chronic mild unpredictable stress during adolescence. Physiol Behav 2022; 257:113971. [PMID: 36183852 DOI: 10.1016/j.physbeh.2022.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Long-term exposure to physical and/or psychosocial stress during early life and/or adolescence increases the risk of psychiatric disorders such as major depressive disorder and anxiety disorders. However, the molecular mechanisms underlying early stress-induced brain dysfunction are poorly understood. In the present study, mice at 4 weeks old were subjected to chronic mild unpredictable stress (CMUS) for 4 weeks, and subsequently to assays of emotion-related behaviors. Thereafter, they were sacrificed and their brains were collected for real-time quantitative polymerase chain reaction (RT-qPCR). Mice with CMUS during adolescence showed despair behavior, anxiety-like behavior, social behavior deficits, and anhedonia in forced-swim, marble-burying, social interaction, and sucrose preference tests, respectively. Additionally, RT-qPCR revealed that the expression levels of sirtuin1 (SIRT1), a NAD+-dependent deacetylase that mediates stress responses, were down-regulated in the prefrontal cortex and hippocampus of mice with CMUS compared with control mice. Next, to investigate the pathophysiological role of decreased Sirt1 expression levels in stress-induced behavioral deficits, we assessed the effects of resveratrol, a pharmacological activator of SIRT1, in mice exposed to CMUS. Chronic treatment with resveratrol prevented -induced social behavior deficits and depression-like behaviors. These results suggest that CMUS during adolescence decreases Sirt1 expression in the brain, leading to deficits in emotional behavior. Accordingly, SIRT1 activators, such as resveratrol, may be preventive agents against abnormalities in emotional behavior following stress during an immature period.
Collapse
|
55
|
Sucrose Preference Test as a Measure of Anhedonic Behavior in a Chronic Unpredictable Mild Stress Model of Depression: Outstanding Issues. Brain Sci 2022; 12:brainsci12101287. [PMID: 36291221 PMCID: PMC9599556 DOI: 10.3390/brainsci12101287] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022] Open
Abstract
Despite numerous studies on the neurobiology of depression, the etiological and pathophysiological mechanisms of this disorder remain poorly understood. A large number of animal models and tests to evaluate depressive-like behavior have been developed. Chronic unpredictable mild stress (CUMS) is the most common and frequently used model of depression, and the sucrose preference test (SPT) is one of the most common tests for assessing anhedonia. However, not all laboratories can reproduce the main effects of CUMS, especially when this refers to a decrease in sucrose preference. It is also unknown how the state of anhedonia, assessed by the SPT, relates to the state of anhedonia in patients with depression. We analyzed the literature available in the PubMed database using keywords relevant to the topic of this narrative review. We hypothesize that the poor reproducibility of the CUMS model may be due to differences in sucrose consumption, which may be influenced by such factors as differences in sucrose preference concentration threshold, water and food deprivation, and differences in animals’ susceptibility to stress. We also believe that comparisons between animal and human states of anhedonia should be made with caution because there are many inconsistencies between the two, including in assessment methods. We also tried to offer some recommendations that should improve the reproducibility of the CUMS model and provide a framework for future research.
Collapse
|
56
|
Dearing C, Handa RJ, Myers B. Sex differences in autonomic responses to stress: implications for cardiometabolic physiology. Am J Physiol Endocrinol Metab 2022; 323:E281-E289. [PMID: 35793480 PMCID: PMC9448273 DOI: 10.1152/ajpendo.00058.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Chronic stress is a significant risk factor for negative health outcomes. Furthermore, imbalance of autonomic nervous system control leads to dysregulation of physiological responses to stress and contributes to the pathogenesis of cardiometabolic and psychiatric disorders. However, research on autonomic stress responses has historically focused on males, despite evidence that females are disproportionality affected by stress-related disorders. Accordingly, this mini-review focuses on the influence of biological sex on autonomic responses to stress in humans and rodent models. The reviewed literature points to sex differences in the consequences of chronic stress, including cardiovascular and metabolic disease. We also explore basic rodent studies of sex-specific autonomic responses to stress with a focus on sex hormones and hypothalamic-pituitary-adrenal axis regulation of cardiovascular and metabolic physiology. Ultimately, emerging evidence of sex differences in autonomic-endocrine integration highlights the importance of sex-specific studies to understand and treat cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Carley Dearing
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
57
|
Best C, Gilmour KM. Regulation of cortisol production during chronic social stress in rainbow trout. Gen Comp Endocrinol 2022; 325:114056. [PMID: 35594954 DOI: 10.1016/j.ygcen.2022.114056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/01/2023]
Abstract
Chronic stress resulting from social interactions impacts the endocrine stress response in many vertebrates, including teleost fishes. Juvenile rainbow trout held in pairs form a dominance hierarchy with the subordinate individual exhibiting chronic elevation of plasma cortisol and an attenuated cortisol response to an additional acute stressor. The current study investigated the mechanisms underlying this apparent dichotomy in cortisol production at the level of the head kidney (adrenal homolog). Following four days of chronic social stress, subordinate rainbow trout exhibited elevated plasma cortisol levels that correlated with basal cortisol production by the head kidney in vitro. Subordinate trout had higher transcript abundances of steroidogenic acute regulatory protein and cytochrome p450 side chain cleavage enzyme, which facilitate key steps in steroidogenesis, as well as two paralogs of steroidogenic factor 1. Despite elevation of basal steroidogenesis, acute cortisol production in response to ACTH (in vivo and in vitro) was lower in subordinate trout. Transcript abundances of the ACTH receptor accessory proteins were elevated in subordinate fish, but head kidney cortisol production in response to a cAMP analogue was lower than in dominant fish. Together, the data suggest that the attenuated acute cortisol response of subordinate trout reflects limitations on cortisol production downstream of cAMP signalling in steroidogenic cells of the head kidney, despite the increased basal abundance of key components of the steroidogenic pathway.
Collapse
Affiliation(s)
- Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | |
Collapse
|
58
|
Anxiolytic Effect of Carvedilol in Chronic Unpredictable Stress Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6906722. [PMID: 36035219 PMCID: PMC9417788 DOI: 10.1155/2022/6906722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Anxiety disorders are the most prevalent psychiatric disorders being also a comorbid state of other diseases. We aimed to evaluate the anxiolytic-like effects of carvedilol (CVD), a drug used to treat high blood pressure and heart failure with potent antioxidant effects, in animals exposed to chronic unpredictable stress (CUS). To do this, female Swiss mice were exposed to different stressors for 21 days. Between days 15 and 21, the animals received oral CVD (5 or 10 mg/kg) or the antidepressant desvenlafaxine (DVS 10 mg/kg). On the 22nd day, behavioral tests were conducted to evaluate locomotor activity (open field) and anxiety-like alterations (elevated plus-maze—EPM and hole board—HB tests). After behavioral determinations, the animals were euthanized, and the adrenal gland, blood and brain areas, prefrontal cortex (PFC), and hippocampus were removed for biochemical analysis. CUS reduced the crossings while increased rearing and grooming, an effect reversed by both doses of CVD and DVS. CUS decreased the number of entries and permanence time in the open arms of the EPM, while all treatments reversed this effect. CUS reduced the number of head dips in the HB, an effect reversed by CVD. The CUS reduced weight gain, while only CVD5 reversed this effect. A reduction in the cortical layer size of the adrenal gland was observed in stressed animals, which CVD reversed. Increased myeloperoxidase activity (MPO) and interferon-γ (IFN-γ), as well as reduction of interleukin-4 (IL-4) induced by CUS, were reversed by CVD. DVS and CVD increased IL-6 in both brain areas. In the hippocampus, DVS caused an increase in IFN-γ. Our data show that CVD presents an anxiolytic effect partially associated with immune-inflammatory mechanism regulation.
Collapse
|
59
|
Divergent Neural and Endocrine Responses in Wild-Caught and Laboratory-Bred Rattus Norvegicus. Behav Brain Res 2022; 432:113978. [PMID: 35753530 DOI: 10.1016/j.bbr.2022.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Although rodents have represented the most intensely studied animals in neurobiological investigations for more than a century, few studies have systematically compared neural and endocrine differences between wild rodents in their natural habitats and laboratory strains raised in traditional laboratory environments. In the current study, male and female Rattus norvegicus rats were trapped in an urban setting and compared to weight-and sex-matched conspecifics living in standard laboratory housing conditions. Brains were extracted for neural assessments and fecal boli were collected for endocrine [corticosterone and dehydroepiandrosterone (DHEA)] assays. Additionally, given their role in immune and stress functions, spleen and adrenal weights were recorded. A separate set of wild rats was trapped at a dairy farm and held in captivity for one month prior to assessments; in these animals, brains were processed but no hormone data were available. The results indicated that wild-trapped rats exhibited 31% heavier brains, including higher densities of cerebellar neurons and glial cells in the bed nucleus of the stria terminalis. The wild rats also had approximately 300% greater spleen and adrenal weights, and more than a six-fold increase in corticosterone levels than observed in laboratory rats. Further research on neurobiological variables in wild vs. lab animals will inform the extensive neurobiological knowledge base derived from laboratory investigations using selectively bred rodents in laboratory environments, knowledge that will enhance the translational value of preclinical laboratory rodent studies.
Collapse
|
60
|
Miller L, Bodemeier Loayza Careaga M, Handa RJ, Wu TJ. The Effects of Chronic Variable Stress and Photoperiod Alteration on the Hypothalamic-Pituitary-Adrenal Axis Response and Behavior of Mice. Neuroscience 2022; 496:105-118. [PMID: 35700818 DOI: 10.1016/j.neuroscience.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological response to stressors and also synchronizes different physiological systems to environmental cues. Changes in day length (i.e., photoperiod) as well as chronic exposure to stressors are known to impact the HPA axis activity regulating the levels of glucocorticoid hormones. Over-exposure to inappropriate levels of glucocorticoids has been implicated in increased disease risk. In the present study, we examined the impact of chronic stress, using a chronic variable stress (CVS) paradigm, in combination with changes in photoperiod on physiological and behavioral measures, as well as on the reactivity and regulation of the HPA axis, in male and female mice. Six weeks of CVS, regardless of the photoperiod condition, decreased the body weight and attenuated the HPA axis reactivity to an acute stressor in both sexes. The attenuated HPA axis reactivity observed in stressed animals was related to reduced Pro-opiomelanocortin (POMC) mRNA levels in the pituitary of females. The gene expression analyses of key regulators of the HPA axis also indicated a sex-dependent effect with opposite patterns in the pituitary and adrenal glands. CVS effects on behavior were limited and related to an anxiety-like phenotype in both sexes, regardless of photoperiod condition. Our findings highlight sex-specific differences in the HPA axis and also sex-dependent effects of CVS on physiological parameters.
Collapse
Affiliation(s)
- Lauren Miller
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mariella Bodemeier Loayza Careaga
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - T John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
61
|
Shanebeck KM, Besson AA, Lagrue C, Green SJ. The energetic costs of sub-lethal helminth parasites in mammals: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:1886-1907. [PMID: 35678252 DOI: 10.1111/brv.12867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Parasites, by definition, have a negative effect on their host. However, in wild mammal health and conservation research, sub-lethal infections are commonly assumed to have negligible health effects unless parasites are present in overwhelming numbers. Here, we propose a definition for host health in mammals that includes sub-lethal effects of parasites on the host's capacity to adapt to the environment and maintain homeostasis. We synthesized the growing number of studies on helminth parasites in mammals to assess evidence for the relative magnitude of sub-lethal effects of infection across mammal taxa based on this expanded definition. Specifically, we develop and apply a framework for organizing disparate metrics of parasite effects on host health and body condition according to their impact on an animal's energetic condition, defined as the energetic burden of pathogens on host physiological and behavioural functions that relate directly to fitness. Applying this framework within a global meta-analysis of helminth parasites in wild, laboratory and domestic mammal hosts produced 142 peer-reviewed studies documenting 599 infection-condition effects. Analysing these data within a multiple working hypotheses framework allowed us to evaluate the relative weighted contribution of methodological (study design, sampling protocol, parasite quantification methods) and biological (phylogenetic relationships and host/parasite life history) moderators to variation in the magnitude of health effects. We found consistently strong negative effects of infection on host energetic condition across taxonomic groups, with unusually low heterogeneity in effect sizes when compared with other ecological meta-analyses. Observed effect size was significantly lower within cross-sectional studies (i.e. observational studies that investigated a sub-set of a population at a single point in time), the most prevalent methodology. Furthermore, opportunistic sampling led to a weaker negative effect compared to proactive sampling. In the model of host taxonomic group, the effect of infection on energetic condition in carnivores was not significant. However, when sampling method was included, it explained substantial inter-study variance; proactive sampling showing a strongly significant negative effect while opportunistic sampling detected only a weak, non-significant effect. This may partly underlie previous assumptions that sub-lethal parasites do not have significant effects on host health. We recommend future studies adopt energetic condition as the framework for assessing parasite effects on wildlife health and provide guidelines for the selection of research protocols, health proxies, and relating infection to fitness.
Collapse
Affiliation(s)
- Kyle M Shanebeck
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| | - Anne A Besson
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Clement Lagrue
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.,Department of Conservation, 265 Princes Street, Dunedin, 9016, New Zealand
| | - Stephanie J Green
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| |
Collapse
|
62
|
Proteomic and microbiota analyses of the oral cavity during psychological stress. PLoS One 2022; 17:e0268155. [PMID: 35613108 PMCID: PMC9132284 DOI: 10.1371/journal.pone.0268155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023] Open
Abstract
Psychological stress is associated with various oral diseases such as aphthous stomatitis, oral lichen planus, taste disturbances and glossodynia. However, the underlying mechanism is still unknown. The aim of this study was to determine the effect of psychological stress on salivary proteins and the oral microbiota in a rat model of chronic restraint stress. Six-week-old Sprague Dawley rats were subjected to restraint stress for four hours daily for 1 month. The behavior, weights of the adrenal glands, and serum corticosterone levels were evaluated as stress markers. Proteomic analysis of the saliva was performed using two-dimensional gel electrophoresis followed by mass spectrometry and Western blotting. Analysis of the oral microbiota was performed via 16S rRNA next-generation sequencing. The low mean body weights, lower number of entries and time spent in the open arm of elevated plus maze, high adrenal gland/body weight ratios, and high serum corticosterone levels confirmed the high levels of stress in the stress group of rats compared to the controls. Thirty-three protein spots were found to be significantly altered between the two groups. After silver staining, seven visible spots were subjected for mass spectrometry, and the expression levels of the two most significantly altered proteins, BPI fold containing family A member 2 and von Ebner’s gland protein, were confirmed by Western blotting. 16S rRNA sequencing analysis revealed a significant reduction in alpha diversity in the stress group compared to the controls. The abundances of oral bacteria, such as Facklamia and Corynebacterium, were significantly altered between the two groups. Additionally, analysis with PICRUSt2 software predicted 37 different functional pathways to be altered between the groups. In conclusion, the present study identified altered salivary proteins and oral microbiota due to psychological stress. These findings might aid in understanding the pathogenesis of stress-related oral diseases.
Collapse
|
63
|
Effects of stress on endophenotypes of suicide across species: A role for ketamine in risk mitigation. Neurobiol Stress 2022; 18:100450. [PMID: 35685678 PMCID: PMC9170747 DOI: 10.1016/j.ynstr.2022.100450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
Suicide is a leading cause of death and morbidity worldwide, yet few interventions are available to mitigate its risk. Barriers to effective treatments involve a limited understanding of factors that predict the onset of suicidal thoughts and behaviors. In the context of suicide risk, stress is a precipitating factor that is largely overlooked in the literature. Indeed, the pathophysiology of stress and suicide are heavily interconnected, underscoring the need to target the stress system in suicide prevention. In this review, we integrate findings from the preclinical and clinical literature that links stress and suicide. We focus specifically on the effects of stress on underlying biological functions and processes associated with suicide, allowing for the review of research using animal models. Owing to the rapid anti-suicidal effects of (R,S)-ketamine, we discuss its ability to modulate various stress-related endophenotypes of suicide, as well as its potential role in preventing suicide in those with a history of chronic life stress (e.g., early life adversity). We highlight future research directions that could advance our understanding of stress-related effects on suicide risk, advocating a dimensional, endophenotype approach to suicide research. Suicide and chronic stress pathophysiology are interconnected. Chronic stress has profound impacts on several endophenotypes of suicide. Animal and human research points to stress as a precipitating factor in suicide. Ketamine modulates specific biological processes associated with stress and suicide. Suicide research into endophenotypes can help inform risk-mitigation strategies.
Collapse
|
64
|
Bolton JL, Short AK, Othy S, Kooiker CL, Shao M, Gunn BG, Beck J, Bai X, Law SM, Savage JC, Lambert JJ, Belelli D, Tremblay MÈ, Cahalan MD, Baram TZ. Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Rep 2022; 38:110600. [PMID: 35354026 PMCID: PMC9014810 DOI: 10.1016/j.celrep.2022.110600] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Several mental illnesses, characterized by aberrant stress reactivity, often arise after early-life adversity (ELA). However, it is unclear how ELA affects stress-related brain circuit maturation, provoking these enduring vulnerabilities. We find that ELA increases functional excitatory synapses onto stress-sensitive hypothalamic corticotropin-releasing hormone (CRH)-expressing neurons, resulting from disrupted developmental synapse pruning by adjacent microglia. Microglial process dynamics and synaptic element engulfment were attenuated in ELA mice, associated with deficient signaling of the microglial phagocytic receptor MerTK. Accordingly, selective chronic chemogenetic activation of ELA microglia increased microglial process dynamics and reduced excitatory synapse density to control levels. Notably, selective early-life activation of ELA microglia normalized adult acute and chronic stress responses, including stress-induced hormone secretion and behavioral threat responses, as well as chronic adrenal hypertrophy of ELA mice. Thus, microglial actions during development are powerful contributors to mechanisms by which ELA sculpts the connectivity of stress-regulating neurons, promoting vulnerability to stress and stress-related mental illnesses.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA.
| | - Annabel K Short
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Cassandra L Kooiker
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Manlin Shao
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Benjamin G Gunn
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Division of Neuroscience, Medical Research Institute, Dundee University, Ninewells Hospital and Medical School, Dundee, UK
| | - Jaclyn Beck
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Xinglong Bai
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Stephanie M Law
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Julie C Savage
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de recherche du CHU de Québec, Québec City, QC, Canada
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Dundee University, Ninewells Hospital and Medical School, Dundee, UK
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Dundee University, Ninewells Hospital and Medical School, Dundee, UK
| | - Marie-Ève Tremblay
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de recherche du CHU de Québec, Québec City, QC, Canada
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
65
|
Torres ERS, Luo J, Boehnlein JK, Towns D, Kinzie JD, DeBarber AE, Raber J. Apolipoprotein E Isoform-specific changes related to stress and trauma exposure. Transl Psychiatry 2022; 12:125. [PMID: 35347119 PMCID: PMC8960860 DOI: 10.1038/s41398-022-01848-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a highly prevalent mental health disorder. Due to the high level of variability in susceptibility and severity, PTSD therapies are still insufficient. In addition to environmental exposures, genetic risks play a prominent role and one such factor is apolipoprotein E. The protein (apoE) is functionally involved in cholesterol transport and metabolism and exists as 3 major isoforms in humans: E2, E3, and E4. To model the role of apolipoprotein E isoform in stress-related changes in behavior and cognition, female and male mice (3-5 months of age) expressing E2, E3, or E4 were used. Mice were either placed into control groups or exposed to chronic variable stress (CVS), which has been shown to induce PTSD-like behavioral and neuroendocrine changes. E2 mice showed a unique response to CVS compared to E3 and E4 mice that included impaired spatial learning and memory, increased adrenal gland weight, and no increase in glucocorticoid receptor protein levels (normalized to apoE levels). In addition, the cholesterol metabolite 7-ketocholesterol was elevated in the cortex after CVS in E3 and E4, but not E2 female mice. E2 confers unique changes in behavioral, cognitive, and biomarker profiles after stress exposure and identify 7-ketocholesterol as a possible novel biomarker of the traumatic stress response. We further explored the relationship between E2 and PTSD in an understudied population by genotyping 102 patients of Cambodian and Vietnamese ethnicity. E2 carriers demonstrated a higher odds ratio of having a PTSD diagnosis compared to E3/E3 carriers, supporting that the E2 genotype is associated with PTSD diagnosis after trauma exposure in this population.
Collapse
Affiliation(s)
- Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181SW Sam Jackson Park Road, L470, Portland, OR, 97239, USA
| | - Jenny Luo
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - James K Boehnlein
- Department of Psychiatry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHN-80, Portland, OR, 97201-3098, USA
- VA Northwest Mental Illness Research, Education and Clinical Center (MIRECC), Washington DC, USA
| | - Daniel Towns
- Department of Psychiatry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHN-80, Portland, OR, 97201-3098, USA
| | - J David Kinzie
- Department of Psychiatry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHN-80, Portland, OR, 97201-3098, USA
| | - Andrea E DeBarber
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181SW Sam Jackson Park Road, L470, Portland, OR, 97239, USA.
- Departments of Neurology, Psychiatry, and Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
66
|
Herman JP. The neuroendocrinology of stress: Glucocorticoid signaling mechanisms. Psychoneuroendocrinology 2022; 137:105641. [PMID: 34954409 DOI: 10.1016/j.psyneuen.2021.105641] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023]
Abstract
Glucocorticoid signaling plays major roles in energy homeostasis and adaptation to adversity, and dysregulation of this process is linked to systemic and psychological pathology. Over the last several decades, new work has challenged many of the long-standing assumptions regarding regulation of glucocorticoid secretion and glucocorticoid signaling mechanisms, revealing an exquisite complexity that accompanies the important and perhaps global role of these hormones in physiological and psychological regulation. New findings have included discovery of membrane signaling, direct neural control of the adrenal, a role for pulsatile glucocorticoid release in glucocorticoid receptor signaling, marked sex differences in brain glucocorticoid biology, and salutary as well as deleterious roles for glucocorticoids in long- and short-term adaptations to stress. This review covers some of the major lessons learned in the area of mechanisms of glucocorticoid signaling, and discusses how these may inform the field moving forward.
Collapse
Affiliation(s)
- James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cincinnati Veterans Administration Medical Center, USA
| |
Collapse
|
67
|
Mundorf A, Bölükbas I, Freund N. Maternal separation: Does it hold the potential to model consequences of postpartum depression? Dev Psychobiol 2022; 64:e22219. [PMID: 35050513 DOI: 10.1002/dev.22219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
The postpartum period is a sensitive time where women are especially vulnerable to develop postpartum depression (PPD), with 10%-15% of women affected. This review investigates whether the maternal separation (MS) paradigm in rodents holds the potential to help to understand mothers suffering from PPD. MS is a well-established stress model to investigate effects on infants, whereas effects on the dam are often overlooked. The database PubMed was searched for studies investigating effects of daily MS within the first weeks after parturition on dams in rats and mice and compared to findings in PPD mothers. MS was categorized as brief MS (5-45 min) with or without handling of pups and long MS (3-4 h and longer). MS alters maternal care, depressive-like behavior, anxiety, and aggression; leads to alterations in neuronal gene expression; and affects hormone and neurotransmitter levels similar to observations in PPD patients. Even though there are disparities between human and rodent mothers, with some results differing in directionality, as well as the reason for separation (self-induced in PPD, externally induced in MS), the overall effects found on neurobiological, hormonal, and behavioral levels mostly coincide. Thus, the MS paradigm can add relevant knowledge to existing PPD animal models, further advancing the study of PPD.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany.,Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Ibrahim Bölükbas
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
68
|
Parameswaran G, Ray DW. Sleep, circadian rhythms, and type 2 diabetes mellitus. Clin Endocrinol (Oxf) 2022; 96:12-20. [PMID: 34637144 PMCID: PMC8939263 DOI: 10.1111/cen.14607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023]
Abstract
Over the last 60 years we have seen a significant rise in metabolic disease, especially type 2 diabetes. In the same period, the emergence of electricity and artificial lighting has allowed our behavioural cycles to be independent of external patterns of sunlight. This has led to a corresponding increase in sleep deprivation, estimated to be about 1 hour per night, as well as circadian misalignment (living against the clock). Evidence from experimental animals as well as controlled human subjects have shown that sleep deprivation and circadian misalignment can both directly drive metabolic dysfunction, causing diabetes. However, the precise mechanism by which these processes contribute to insulin resistance remains poorly understood. In this article, we will review the new literature in the field and propose a model attempting to reconcile the experimental observations made. We believe our model will serve as a useful point of reference to understand how metabolic dysfunction can emerge from sleep or circadian rhythm disruptions, providing new directions for research and therapy.
Collapse
Affiliation(s)
- Gokul Parameswaran
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
| | - David W. Ray
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
| |
Collapse
|
69
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
70
|
Short AK, Thai CW, Chen Y, Kamei N, Pham AL, Birnie MT, Bolton JL, Mortazavi A, Baram TZ. Single-Cell Transcriptional Changes in Hypothalamic Corticotropin-Releasing Factor-Expressing Neurons After Early-Life Adversity Inform Enduring Alterations in Vulnerabilities to Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 3:99-109. [PMID: 36712559 PMCID: PMC9874075 DOI: 10.1016/j.bpsgos.2021.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor (CRF)-expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic mechanisms. Methods Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow threat task. Results Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations, characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked expression changes were selective to specific subpopulations and affected genes involved in neuronal differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly, these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral responses to stress in adulthood. Conclusions We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Christina W. Thai
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Yuncai Chen
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Noriko Kamei
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Aidan L. Pham
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Matthew T. Birnie
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Jessica L. Bolton
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California,Department of Neurology, University of California Irvine, Irvine, California,Address correspondence to Tallie Z. Baram, M.D., Ph.D.
| |
Collapse
|
71
|
Almohaimeed HM, Hamed S, Seleem HS, Batawi AH, Mohammedsaleh ZM, Balgoon MJ, Ali SS, Al Jaouni S, Ayuob N. An Ethanolic Extract of Cucurbita pepo L. Seeds Modifies Neuroendocrine Disruption in Chronic Stressed Rats and Adrenal Expression of Inflammatory Markers and HSP70. Front Pharmacol 2021; 12:749766. [PMID: 34867356 PMCID: PMC8636010 DOI: 10.3389/fphar.2021.749766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pumpkins (Cucurbita pepo L.) were described to have antioxidant, anti-inflammatory, anti-fatigue, and antidepressant-like effect. The adrenal gland is an important stress-responsive organ that maintains homeostasis during stress. Objectives: This study aimed to assess the efficacy of the administration of Cucurbita pepo L. (CP) extract in relieving behavioral, biochemical, and structural changes in the adrenal gland induced by exposure to chronic unpredictable mild stress (CUMS) and to explore the mechanism behind this impact. Materials and Methods: Forty male albino rats were divided into 4 groups (n = 10): control, CUMS, fluoxetine-treated, and CP-treated groups. Behavioral changes, corticosterone level, pro-inflammatory cytokines TNF-α and IL-6, and oxidant/antioxidant profile were assessed in the serum at the end of the experiment. Adrenal glands were processed for histopathological and immunohistochemical assessment. Gene expression of caspase-3 and Ki67 and heat shock protein 70 (HSP70) were assessed in adrenal glands using RT-PCR. Results: The CP extract significantly reduced the corticosterone level (p < 0.001), immobility time (p < 0.001), and inflammatory and oxidative changes associated with CUMS-induced depression compared to the untreated group. The CP extract alleviated CUMS-induced adrenal histopathological changes and significantly reduced apoptosis (p < 0.001) and significantly upregulated antioxidant levels in the serum. Conclusion:Cucurbita pepo L. effectively ameliorated the chronic stress-induced behavioral, biochemical, and adrenal structural changes mostly through its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Saudi Arabia
| | - Shereen Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hanan S Seleem
- Histology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum, Egypt.,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ashwaq H Batawi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Maha Jameal Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad S Ali
- Department of Histology and Cell Biology, Faculty of Medicine, Assuit University, Asyut, Egypt.,Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Al Jaouni
- Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Hematology/Pediatric Oncology, King Abdulaziz University Hospital (KAUH), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasra Ayuob
- Department of Medical Histology, Faculty of Medicine, Damietta University, Damietta, Egypt
| |
Collapse
|
72
|
Buckinx A, Van Schuerbeek A, Bossuyt J, Allaoui W, Van Den Herrewegen Y, Smolders I, De Bundel D. Exploring Refinement Strategies for Single Housing of Male C57BL/6JRj Mice: Effect of Cage Divider on Stress-Related Behavior and Hypothalamic-Pituitary-Adrenal-Axis Activity. Front Behav Neurosci 2021; 15:743959. [PMID: 34776890 PMCID: PMC8581484 DOI: 10.3389/fnbeh.2021.743959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Single housing of laboratory mice is a common practice to meet experimental needs, or to avoid intermale aggression. However, single housing is considered to negatively affect animal welfare and may compromise the scientific validity of experiments. The aim of this study was to investigate whether the use of a cage with a cage divider, which avoids physical contact between mice while maintaining sensory contact, may be a potential refinement strategy for experiments in which group housing of mice is not possible. Methods: Eight-week-old male C57BL/6JRj mice were single housed, pair housed or pair housed with a cage divider for four (experiment 1) or ten (experiment 2) weeks, after which we performed an open field test, Y-maze spontaneous alternation test, elevated plus maze test, an auditory fear conditioning task, and assessed responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis. Results: Housing conditions did not affect body weight, exploratory activity, anxiety, working memory, fear memory processing or markers for HPA-axis functioning in either experiment 1 or experiment 2. There was an increased distance traveled in mice housed with a cage divider compared to pair housed mice after 4 weeks, and after 10 weeks mice housed with a cage divider made significantly more arm entries in the Y-maze spontaneous alternation test. Conclusion: Taken together, our study did not provide evidence for robust differences in exploratory activity, anxiety, working memory and fear memory processing in male C57BL/6JRj mice that were single housed, pair housed or pair housed with a cage divider.
Collapse
Affiliation(s)
- An Buckinx
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andries Van Schuerbeek
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo Bossuyt
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wissal Allaoui
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yana Van Den Herrewegen
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
73
|
Chen R, Weitzner AS, McKennon LA, Fonken LK. Chronic circadian phase advance in male mice induces depressive-like responses and suppresses neuroimmune activation. Brain Behav Immun Health 2021; 17:100337. [PMID: 34589820 PMCID: PMC8474595 DOI: 10.1016/j.bbih.2021.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/26/2022] Open
Abstract
Altered working and sleeping schedules during the COVID-19 pandemic likely impact our circadian systems. At the molecular level, clock genes form feedback inhibition loops that control 24-hr oscillations throughout the body. Importantly, core clock genes also regulate microglia, the brain resident immune cell, suggesting circadian regulation of neuroimmune function. To assess whether circadian disruption induces neuroimmune and associated behavioral changes, we mimicked chronic jetlag with a chronic phase advance (CPA) model. 32 adult male C57BL/6J mice underwent 6-hr light phase advance shifts every 3 light/dark cycles (CPA) 14 times or were maintained in standard light/dark cycles (control). CPA mice showed higher behavioral despair but not anhedonia in forced swim and sucrose preferences tests, respectively. Changes in behavior were accompanied by altered hippocampal circadian genes in CPA mice. Further, CPA suppressed expression of brain-derived neurotrophic factor (BDNF) and pro-inflammatory cytokine interleukin-1 beta in the hippocampus. Plasma corticosterone concentrations were elevated by CPA, suggesting that CPA may suppress neuroimmune pathways via glucocorticoids. These results demonstrate that chronic circadian disruption alters mood and neuroimmune function, which may have implications for shift working populations such as frontline health workers.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aidan S. Weitzner
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Lara A. McKennon
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Laura K. Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
74
|
Insulin-Induced Cardiomyocytes Hypertrophy That Is Prevented by Taurine via β-alanine-Sensitive Na +-Taurine Symporter. Nutrients 2021; 13:nu13113686. [PMID: 34835942 PMCID: PMC8623107 DOI: 10.3390/nu13113686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
Although insulin-induced cardiac hypertrophy is reported, very little information is available on the hypertrophic effect of insulin on ventricular cardiomyocytes and the regulation of sodium and calcium homeostasis. Taurine is a non-essential amino acid synthesized by cardiomyocytes and the brain and is present in low quantities in many foods, particularly seafood. The purpose of this study was to investigate whether chronic exposure to insulin induces hypertrophy of ventricular cardiomyocytes that are associated with changes in Na+ and Ca2+ homeostasis and whether taurine pre-treatment prevents these effects. Our results showed that chronic treatment with insulin leads to cardiomyocyte hypertrophy that is associated with an increase in basal intracellular Na+ and Ca2+ levels. Furthermore, long-term taurine treatment prevents morphological and ionic remodeling induced by insulin. In addition, blocking the Na+-taurine co-transporter prevented the taurine antihypertrophic effect. Finally, the insulin-induced remodeling of cardiomyocytes was associated with a decrease in the ratio of phospho-CREB (pCREB) to total cAMP response element binding protein (CREB); taurine prevented this effect. In conclusion, our results show that insulin induces ventricular cardiomyocyte hypertrophy via downregulation of the pCREB/tCREB level and that chronic taurine treatment prevents this effect.
Collapse
|
75
|
Bravo-Tobar ID, Fernández P, Sáez JC, Dagnino-Subiabre A. Long-term effects of stress resilience: Hippocampal neuroinflammation and behavioral approach in male rats. J Neurosci Res 2021; 99:2493-2510. [PMID: 34184764 DOI: 10.1002/jnr.24902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 01/28/2023]
Abstract
Resilience to stress is the ability to quickly adapt to adversity. There is evidence that exposure to prolonged stress triggers neuroinflammation what produces individual differences in stress vulnerability. However, the relationship between stress resilience, neuroinflammation, and depressive-like behaviors remains unknown. The aim of this study was to analyze the long-term effects of social defeat stress (SDS) on neuroinflammation in the hippocampus and depressive-like behaviors. Male rats were subjected to the SDS paradigm. Social interaction was analyzed 1 and 2 weeks after ending the SDS to determine which animals were susceptible or resilient to stress. Neuroinflammation markers glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, and elevated membrane permeability in astrocytes and microglia, as well as depressive-like behaviors in the sucrose preference test and forced swim test were evaluated in all rats. One week after SDS, resilient rats increased their sucrose preference, and time spent in the floating behavior decreased in the forced swim test compared to susceptible rats. Surprisingly, resilient rats became susceptible to stress, and presented neuroinflammation 2 weeks after SDS. These findings suggest that SDS-induced hippocampal neuroinflammation persists in post-stress stages, regardless of whether rats were initially resilient or not. Our study opens a new approach to understanding the neurobiology of stress resilience.
Collapse
Affiliation(s)
- Iván D Bravo-Tobar
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Paola Fernández
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Centre for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
76
|
El Marzouki H, Aboussaleh Y, Najimi M, Chigr F, Ahami A. Effect of Cold Stress on Neurobehavioral and Physiological Parameters in Rats. Front Physiol 2021; 12:660124. [PMID: 34603068 PMCID: PMC8485037 DOI: 10.3389/fphys.2021.660124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Cold stress is an important current issue and implementing control strategies to limit its sometimes harmful effects is crucial. Cold is a common stressor that can occur in our work and our occupational or leisure time activities every day. There are substantial studies on the effects of chronic stress on memory and behavior, although, the cognitive changes and anxiety disorders that can occur after exposure to chronic intermittent cold stress are not completely characterized. Therefore, the present study was undertaken with an aim to investigate the effects of chronic intermittent cold stress on body weight, food intake and working memory, and to elucidate cold stress related anxiety disorders using cognitive and behavioral test batteries. Methods: We generated a cold stress model by exposing rats to chronic intermittent cold stress for 5 consecutive days and in order to test for the potential presence of sex differences, a comparable number of male and female rats were tested in the current study. Then, we measured the body weights, food intake and the adrenal glands weight. Working memory and recognition memory were assessed using the Y maze and the Novel Object Recognition (NOR) tasks. While, sex differences in the effects of chronic stress on behavior were evaluated by the elevated plus maze (EPM), open field maze (OF), and Marble burying (MB) tests. Results: We found that 2 h exposure to cold (4°C) resulted in an increase in the relative weight of the adrenal glands in male rats. Given the same chronic stress 5 days of cold exposure (2 h per day), increased weight gain in male rats, while females showed decreased food intake and no change in body weight. Both sexes successfully performed the Y maze and object recognition (OR) tasks, indicating intact spatial working memory performance and object recognition abilities in both male and female rats. In addition, we have shown that stress caused an increase in the level of anxiety in male rats. In contrast, the behavior of the female rats was not affected by cold exposure. Conclusion: Overall, the current results provide preliminary evidence that chronic intermittent cold stress model may not be an efficient stressor to female rats. Females exhibit resilience to cold exposure that causes an increase in the level of anxiety in male rats, which demonstrates that they are affected differently by stress and the gender is an important consideration in experimental design.
Collapse
Affiliation(s)
- Hajar El Marzouki
- Biology and Health Laboratory, Unit of Clinical and Cognitive-Behavioural Neurosciences and Applied Nutrition Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Youssef Aboussaleh
- Biology and Health Laboratory, Unit of Clinical and Cognitive-Behavioural Neurosciences and Applied Nutrition Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Najimi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan MoulaySlimane University, Beni Mellal, Morocco
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan MoulaySlimane University, Beni Mellal, Morocco
| | - Ahmed Ahami
- Biology and Health Laboratory, Unit of Clinical and Cognitive-Behavioural Neurosciences and Applied Nutrition Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
77
|
Abstract
Chronic stress evokes wide-ranging behavioral alterations, including risk avoidance, increased motoric output, and reduced consummatory behaviors. These are often interpreted as dysfunctions, but they may subserve adaptations for coping with existential threats. We tested this in a cohort of rats previously exposed to mild unpredictable stress for 5 weeks. Previously stressed rats exhibited the typically increased avoidance of open field and altered responses to predator odor, suggesting enhanced sensitivity to threatening contexts and cues. Interestingly, these animals collected rewards at a higher rate than controls, because they locomoted faster, spent less time in off-task (exploratory) behavior, and committed fewer licks at feeders. Further, they were not impaired in flexibly shifting choice as reward probabilities changed among feeders, suggesting that behavioral adaptations are not simply of transference to behavioral control to neural systems insensitive to reward (e.g. habits). These data add to a small but growing body of evidence indicating that stress shifts responses away from exploration and toward exploitation of resources, possibly to reduce threat exposure.HighlightsRats with a history of stress collected reward at a higher rate than controls on an operant task, owing to increase locomotion speed, reduced off-task behavior, and reduced time licking at feeders.Previously stressed rats exhibited increased win-stay responses than controls, suggesting the involvement of neural circuits related to goal-directed responding.Previously stressed rats performed equally to controls on a task requiring a shift of preferences based on reward probability, suggesting that they are not simply relying more on habit-based neural systems.
Collapse
Affiliation(s)
- C E Matisz
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - C A Badenhorst
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - A J Gruber
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
78
|
Pérez-López L, Wägner AM, Saavedra P, Jaber JR, Melián C. Ultrasonographic evaluation of adrenal gland size in two body weight categories of healthy adult cats. J Feline Med Surg 2021; 23:804-808. [PMID: 33236660 PMCID: PMC10812194 DOI: 10.1177/1098612x20974962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Adrenal gland size and its association with body weight have been rarely evaluated in cats. This study was undertaken to assess the association between feline body weight and adrenal gland thickness, and to propose reference intervals (RIs) for adrenal gland thickness in healthy cats. METHODS This was a cross-sectional study in which 39 healthy cats were included. The cats were divided into two weight categories, classified as ⩽4.0 kg and >4-8 kg of ideal body weight (with 13 and 26 cats in each group, respectively), which took into consideration the body condition score of the cats. All cats underwent an ultrasound examination that was taken from a subcostal position. Maximum dorsoventral thicknesses of the left (MTL) and right (MTR) adrenal glands were measured in a sagittal plane. RIs were obtained for the maximum thickness (MT), which included the MTLs and MTRs of each cat. RIs with the 90% confidence intervals were calculated according to American Society for Veterinary Clinical Pathology guidelines on RIs. RESULTS No statistical differences for adrenal gland thickness were observed between the left and right (P = 0.543) adrenal glands or between male and female cats (P = 0.943). Mean MT was significantly greater in the group of cats weighing >4-8 kg compared with the group of cats weighing ⩽4 kg (3.7 ± 0.6 vs 3.2 ± 0.4 mm; P <0.005). The lower limit of the RI for MT was 2.4 mm (range 2.2-2.6 mm) in the group weighing ⩽4 kg and 2.6 mm (range 2.4-2.8 mm) in the group weighing >4-8 kg. The upper limit of the RI for MT was 3.9 mm (range 3.7-4.1 mm) in the group of cats weighing ⩽4 kg and 4.8 mm (range 4.6-5.1 mm) in the group of cats weighing >4-8 kg. CONCLUSIONS AND RELEVANCE The use of RIs based on two group sizes allows for a more accurate ultrasonographic evaluation of adrenal gland thickness in cats. The maximum normal adrenal gland thickness is lower in smaller cats (3.9 mm for those weighing ⩽4 kg and 4.8 mm for those weighing >4-8 kg).
Collapse
Affiliation(s)
- Laura Pérez-López
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Ana María Wägner
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Pedro Saavedra
- Mathematics Department, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Arucas, Spain
| | - Jose Raduan Jaber
- Department of Morphology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Carlos Melián
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
- Department of Animal Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| |
Collapse
|
79
|
Lamontagne SJ, Pizzagalli DA, Olmstead MC. Does inflammation link stress to poor COVID-19 outcome? Stress Health 2021; 37:401-414. [PMID: 33315291 DOI: 10.1002/smi.3017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continues to ravage communities across the world. Despite its primary effect on the respiratory system, the virus does not solely impact those with underlying lung conditions as initially predicted. Indeed, prognosis is worsened (often fatal) in patients with pre-existing hyperinflammatory responses (e.g., hypertension, obesity and diabetes), yet the mechanisms by which this occurs are unknown. A number of psychological conditions are associated with inflammation, suggesting that these may also be significant risk factors for negative outcomes of COVID-19. In this review, we evaluate preclinical and clinical literature suggesting that chronic stress-induced hyperinflammation interacts synergistically with COVID-19-related inflammation, contributing to a potentially fatal cytokine storm syndrome. In particular, we hypothesize that both chronic stress and COVID-19-related hyperinflammation are a product of glucocorticoid insufficiency. We discuss the devastating effects of SARS-CoV-2 on structural and functional aspects of the biological stress response and how these induce exaggerated inflammatory responses, particularly interleukin (IL)-6 hypersecretion. We postulate that chronic stress should be considered a significant risk factor for adverse COVID-19-related health outcomes, given overlapping peripheral and central immune dysregulation in both conditions. We conclude by discussing how people with a history of chronic stress could mitigate their risk for COVID-19 complications, identifying specific strategies that can be implemented during self-isolation.
Collapse
Affiliation(s)
- Steven J Lamontagne
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Center for Depression, Anxiety and Stress Research, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - Mary C Olmstead
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
80
|
Vavřínová A, Behuliak M, Vaněčková I, Zicha J. The abnormalities of adrenomedullary hormonal system in genetic hypertension: Their contribution to altered regulation of blood pressure. Physiol Res 2021; 70:307-326. [PMID: 33982588 PMCID: PMC8820560 DOI: 10.33549/physiolres.934687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
It is widely accepted that sympathetic nervous system plays a crucial role in the development of hypertension. On the other hand, the role of adrenal medulla (the adrenomedullary component of the sympathoadrenal system) in the development and maintenance of high blood pressure in man as well as in experimental models of hypertension is still controversial. Spontaneously hypertensive rats (SHR) are the most widely used animal model of human essential hypertension characterized by sympathetic hyperactivity. However, the persistence of moderately elevated blood pressure in SHR subjected to sympathectomy neonatally as well as the resistance of adult SHR to the treatment by sympatholytic drugs suggests that other factors (including enhanced activity of the adrenomedullary hormonal system) are involved in the pathogenesis of hypertension of SHR. This review describes abnormalities in adrenomedullary hormonal system of SHR rats starting with the hyperactivity of brain centers regulating sympathetic outflow, through the exaggerated activation of sympathoadrenal preganglionic neurons, to the local changes in chromaffin cells of adrenal medulla. All the above alterations might contribute to the enhanced release of epinephrine and/or norepinephrine from adrenal medulla. Special attention is paid to the alterations in the expression of genes involved in catecholamine biosynthesis, storage, release, reuptake, degradation and adrenergic receptors in chromaffin cells of SHR. The contribution of the adrenomedullary hormonal system to the development and maintenance of hypertension as well as its importance during stressful conditions is also discussed.
Collapse
Affiliation(s)
- A Vavřínová
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
81
|
Abstract
Resident progenitor and/or stem cell populations in the adult adrenal cortex enable cortical cells to undergo homeostatic renewal and regeneration after injury. Renewal occurs predominantly in the outer layers of the adrenal gland but newly formed cells undergo centripetal migration, differentiation and lineage conversion in the process of forming the different functional steroidogenic zones. Over the past 10 years, advances in the genetic characterization of adrenal diseases and studies of mouse models with altered adrenal phenotypes have helped to elucidate the molecular pathways that regulate adrenal tissue renewal, several of which are fine-tuned via complex paracrine and endocrine influences. Moreover, the adrenal gland is a sexually dimorphic organ, and testicular androgens have inhibitory effects on cell proliferation and progenitor cell recruitment in the adrenal cortex. This Review integrates these advances, including the emerging role of sex hormones, into existing knowledge on adrenocortical cell renewal. An in-depth understanding of these mechanisms is expected to contribute to the development of novel therapies for severe endocrine diseases, for which current treatments are unsatisfactory.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France
| | - Andreas Schedl
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
82
|
Kawatake-Kuno A, Murai T, Uchida S. The Molecular Basis of Depression: Implications of Sex-Related Differences in Epigenetic Regulation. Front Mol Neurosci 2021; 14:708004. [PMID: 34276306 PMCID: PMC8282210 DOI: 10.3389/fnmol.2021.708004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
83
|
Wulsin AC, Kraus KL, Gaitonde KD, Suru V, Arafa SR, Packard BA, Herman JP, Danzer SC. The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Exp Neurol 2021; 341:113703. [PMID: 33745919 PMCID: PMC8169587 DOI: 10.1016/j.expneurol.2021.113703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glucocorticoid levels rise rapidly following status epilepticus and remain elevated for weeks after the injury. To determine whether glucocorticoid receptor activation contributes to the pathological sequelae of status epilepticus, mice were treated with a novel glucocorticoid receptor modulator, C108297. METHODS Mice were treated with either C108297 or vehicle for 10 days beginning one day after pilocarpine-induced status epilepticus. Baseline and stress-induced glucocorticoid secretion were assessed to determine whether hypothalamic-pituitary-adrenal axis hyperreactivity could be controlled. Status epilepticus-induced pathology was assessed by quantifying ectopic hippocampal granule cell density, microglial density, astrocyte density and mossy cell loss. Neuronal network function was examined indirectly by determining the density of Fos immunoreactive neurons following restraint stress. RESULTS Treatment with C108297 attenuated corticosterone hypersecretion after status epilepticus. Treatment also decreased the density of hilar ectopic granule cells and reduced microglial proliferation. Mossy cell loss, on the other hand, was not prevented in treated mice. C108297 altered the cellular distribution of Fos protein but did not restore the normal pattern of expression. INTERPRETATION Results demonstrate that baseline corticosterone levels can be normalized with C108297, and implicate glucocorticoid signaling in the development of structural changes following status epilepticus. These findings support the further development of glucocorticoid receptor modulators as novel therapeutics for the prevention of brain pathology following status epilepticus.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kimberly L Kraus
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kevin D Gaitonde
- University of Cincinnati, Medical Scientist Training Program, USA
| | - Venkat Suru
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Salwa R Arafa
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Benjamin A Packard
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - James P Herman
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - Steve C Danzer
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA.
| |
Collapse
|
84
|
Akin S, Bastug M, Colak R, Ficicilar H, Saglam BS, Kosar NS, Demirel H. Possible Adaptation of the Adrenal Gland Hsp72 Expression to Hypoxic Stress. High Alt Med Biol 2021; 22:293-299. [PMID: 34191602 DOI: 10.1089/ham.2021.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Akin, Senay, Metin Bastug, Ridvan Colak, Hakan Ficicilar, Betul Simten Saglam, Nazan S. Kosar, and Haydar Demirel. Possible adaptation of the adrenal gland Hsp72 expression to hypoxic stress. High Alt Med Biol. 00:000-000, 2021. Background: Adrenal glands play a central role in the general response to stress and controlling wholebody homeostasis. One of the most severe environmental stresses encountered by high-altitude climbers is hypoxia. Since the 72 kDa heat shock protein (Hsp72) has a critical role in cellular homeostasis, regulation of Hsp72 in adrenal glands seems to be crucial for maintaining cellular integrity of the gland and sustaining an adequate whole-body stress response in a hypoxic environment. Therefore, this study investigated if 15 days of hypoxia results in the induction of Hsp72 in adrenal glands. In addition, we examined whether heat treatment had any effect on adrenal Hsp72 expression to hypoxia, as cellular and systemic physiological cross-adaptation was suggested between heat stress and hypoxic stress. Materials and Methods: Male 4-month-old Wistar rats were randomly assigned to one of the four experimental groups (n = 8 each group): (1) control (C), (2) heat treatment (15H), (3) heat treatment and 15 days of normobaric hypoxia (15HHp), and (4) 15 days of normobaric hypoxia (15Hp). Three one-hour heat treatment sessions at 41°C were applied on the first two days before hypoxic exposure and on the day 7. Hypoxic exposure was consisting of normobaric hypoxia containing 9.7% O2. Results: Fifteen days of hypoxia did not increase the adrenal Hsp72 levels (p = 0.99). Furthermore, when hypoxia was added to the heat treatment, heat-related increases in adrenal Hsp72 levels disappeared. Adrenal weight to body weight ratio was not different among groups (p = 0.11). Plasma corticosterone levels were significantly lower in all experimental groups compared with control (p < 0.05), and addition of hypoxia resulted in further significant reduction of the plasma corticosterone levels (C > 15H>15HHp >15Hp; p < 0.05). Conclusions: These data demonstrate the adaptation of the adrenal gland to 15-day chronic normobaric hypoxic stress as well as possible cross-adaptation between heat and hypoxic stress in the adrenal gland.
Collapse
Affiliation(s)
- Senay Akin
- Department of Exercise and Sport Physiology, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Metin Bastug
- Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ridvan Colak
- School of Physical Education and Sport, Ardahan University, Ardahan, Turkey
| | - Hakan Ficicilar
- Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | - Nazan S Kosar
- Department of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Haydar Demirel
- Department of Exercise and Sport Physiology, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
85
|
Milligan Armstrong A, Porter T, Quek H, White A, Haynes J, Jackaman C, Villemagne V, Munyard K, Laws SM, Verdile G, Groth D. Chronic stress and Alzheimer's disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc 2021; 96:2209-2228. [PMID: 34159699 DOI: 10.1111/brv.12750] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022]
Abstract
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic-pituitary-adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals' risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.
Collapse
Affiliation(s)
- Ayeisha Milligan Armstrong
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Hazel Quek
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - Anthony White
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - John Haynes
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Victor Villemagne
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Kylie Munyard
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Simon M Laws
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Giuseppe Verdile
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - David Groth
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| |
Collapse
|
86
|
Pellegrino F, Scabbia F, Merlo A, Perrucci L, Aliberti L, Urso A, Ambrosio MR, Cuneo A, Galeotti R, Giganti M. Spontaneously reversible adrenal nodules in primary diffuse large B-cell testicular lymphoma mimicking an extranodal involvement: A case report. Radiol Case Rep 2021; 16:2168-2173. [PMID: 34168717 PMCID: PMC8209649 DOI: 10.1016/j.radcr.2021.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
In the staging of cancer patients, transient and spontaneously reversible bilateral adrenal hypertrophy may mimic a secondary localization of the disease. We discuss the case of an 82-year-old male patient with suspected testicular neoplasia in which abdominal CT examination reveals the onset of a bilateral macronodular adrenal enlargement, suggesting the diagnostic hypothesis of primary testicular neoplasia with secondary adrenal localization. The subsequent 18FDG-PET/CT study showed hyper-metabolism of the testicular mass, while the adrenal glands, surprisingly, did not show increased uptake of the radiotracer. After right orchifunicolectomy, primary testicular diffuse large B-cell lymphoma was diagnosed. The subsequent staging PET/CT study with iodine contrast medium, three months after the first CT examination, showed spontaneous complete regression of the adrenal hypertrophy without any use of drug therapy. The differential diagnosis of this finding considered the lack of hypermetabolism and the densitometric characteristics of the adrenal glands, the absence of possible pharmacological interactions throughout the time of the diagnostic procedures, and the available clinical-laboratory data. By excluding the main causes of adrenal hypertrophy, the most likely diagnostic hypothesis was transient adrenal hypertrophy due to stress induced by testicular lymphoma, meaning by stress a disturbance not only emotional but also an alteration of organic homeostasis. Our case suggests that the analysis of adrenal lesions appeared in cancer patients should take into account non-metastatic conditions that must be studied with a multimodal approach and with serial investigations.
Collapse
Affiliation(s)
| | - Francesca Scabbia
- Department of Morphology, Section of Diagnostic Imaging, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Annalisa Merlo
- Department of Morphology, Section of Diagnostic Imaging, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Luca Perrucci
- Ferrara Department of Interventional and Diagnostic Radiology, Ospedale di Lagosanto, Azienda AUSL, Ferrara, Italy
| | - Ludovica Aliberti
- Department of Medical Sciences, Section of Endocrinology and Internal Medicine, University of Ferrara, Italy
| | - Antonio Urso
- Section of Hematology, St. Anna University Hospital, Ferrara, Italy
| | - Maria Rosaria Ambrosio
- Department of Medical Sciences, Section of Endocrinology and Internal Medicine, University of Ferrara, Italy
| | - Antonio Cuneo
- Section of Hematology, St. Anna University Hospital, Ferrara, Italy
| | - Roberto Galeotti
- Department of Morphology, Section of Diagnostic Imaging, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Melchiore Giganti
- Department of Morphology, Section of Diagnostic Imaging, Surgery and Experimental Medicine, University of Ferrara, Italy
| |
Collapse
|
87
|
Ghaffari-Nasab A, Badalzadeh R, Mohaddes G, Alipour MR. Young plasma administration mitigates depression-like behaviours in chronic mild stress-exposed aged rats by attenuating apoptosis in prefrontal cortex. Exp Physiol 2021; 106:1621-1630. [PMID: 34018261 DOI: 10.1113/ep089415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
NEW FINDINGS What is the central question of this study? Young plasma contains several rejuvenating factors that exert beneficial effects in ageing and neurodegenerative diseases: can repeated transfusion of young plasma improve depressive behaviour in aged rats? What is the main finding and its importance? Following chronic transfusion of young plasma, depressive behaviour was improved in the depression model of aged rats, which was associated with reduced apoptosis process in the prefrontal cortex. ABSTRACT Brain ageing alters brain responses to stress, playing an essential role in the pathophysiology of late-life depression. Moreover, apoptotic activity is up-regulated in the prefrontal cortex in ageing and stress-related mood disorders. Considerable evidence suggests that factors in young blood could reverse age-related dysfunctions in organs, especially in the brain. Therefore, this study investigated the effect of young plasma administration on depressive behaviours in aged rats exposed to chronic unpredictable mild stress (CUMS), with a focus on the apoptosis process. Young (3 months old) and aged (22 months old) male rats were randomly assigned into four groups: young control (YC), aged control (AC), aged rats subjected to CUMS (A+CUMS) and aged rats subjected to CUMS and treated with young plasma (A+CUMS+YP). In the A+CUMS and A+CUMS+YP groups, CUMS was used to generate the depression rat model. Moreover, the A+CUMS+YP group received pooled plasma (1 ml, intravenously), collected from young rats, three times per week for 4 weeks. Young plasma administration significantly improved CUMS-induced depression-like behaviours, including decreased sucrose consumption ratio, reduced locomotor activity and prolonged immobility time. Importantly, young plasma reduced neuronal apoptosis in the prefrontal cortex that was associated with reduced TUNEL-positive cells and cleaved caspase-3 protein levels in the A+CUMS+YP compared with the A+CUMS group. Young plasma can partially improve the neuropathology of late-life depression through the apoptotic signalling pathways.
Collapse
Affiliation(s)
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
88
|
Meade GM, Charron LS, Kilburn LW, Pei Z, Wang HY, Robinson S. A model of negative emotional contagion between male-female rat dyads: Effects of voluntary exercise on stress-induced behavior and BDNF-TrkB signaling. Physiol Behav 2021; 234:113286. [DOI: 10.1016/j.physbeh.2020.113286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
|
89
|
Petrowski K, Bührer S, Albus C, Schmalbach B. Increase in cortisol concentration due to standardized bright and blue light exposure on saliva cortisol in the morning following sleep laboratory. Stress 2021; 24:331-337. [PMID: 32723201 DOI: 10.1080/10253890.2020.1803265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Research studies on LED light exposure and cortisol are inconsistent and not comparable due to different types of light, exposure times, and sample sizes. Therefore, one hour of standardized exposure LED light at different intensities and the spectral composition during the post-awakening phase at 7:30 were compared. A sample of 23 (Study 1) and 26 (Study 2) healthy males were randomly assigned to: 1) bright white light (414 lux) and 2) dim darkened light (<2 lux) as well as 3) red light (235 lux) and 4) blue light (201 lux) exposure conditions. Results from repeated measures ANOVA confirm that light exposure affects the cortisol concentration. Study 1 revealed an increase in the saliva cortisol concentration after bright light exposure compared to dim light. An increase in the cortisol concentration of blue light compared to red light (Study 2) and dim light was found. This study shows that bright light and blue light affect the cortisol response in contrast to dim light and red light conditions. The HPA axis showed a stimulatory effect by bright versus dim light and different wavelengths of light exposure.Lay summaryThe effects of LED light exposure on the stress hormone cortisol were investigated. The light exposure took place during the hours people would start working at the office. The results showed that after one hour of exposure to bright light or blue light the stress hormones increase in contrast to dim light and red light conditions. Thus, stress hormones can be altered by the types of light people are exposed to.
Collapse
Affiliation(s)
- Katja Petrowski
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan Bührer
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christian Albus
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of University Cologne, Cologne, Germany
| | - Bjarne Schmalbach
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
90
|
André A, Michaux J, Gaitan J, Millien V. Long-term stress level in a small mammal species undergoing range expansion. MAMMALIA 2021. [DOI: 10.1515/mammalia-2020-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rapid climate change is currently altering species distribution ranges. Evaluating the long-term stress level in wild species undergoing range expansion may help better understanding how species cope with the changing environment. Here, we focused on the white-footed mouse (Peromyscus leucopus), a widespread small mammal species in North-America whose distribution range is rapidly shifting northward. We evaluated long-term stress level in several populations of P. leucopus in Quebec (Canada), from the northern edge of the species distribution to more core populations in Southern Quebec. We first tested the hypothesis that populations at the range margin are under higher stress than more established populations in the southern region of our study area. We then compared four measures of long-term stress level to evaluate the congruence between these commonly used methods. We did not detect any significant geographical trend in stress level across our study populations of P. leucopus. Most notably, we found no clear congruence between the four measures of stress level we used, and conclude that these four commonly used methods are not equivalent, thereby not comparable across studies.
Collapse
Affiliation(s)
- Adrien André
- Redpath Museum , McGill University , Montreal , QC H3A 0C4 , Canada
- Conservation Genetics Laboratory , University of Liège , Boulevard du rectorat 26 , 4000 Liège , Belgium
| | - Johan Michaux
- Conservation Genetics Laboratory , University of Liège , Boulevard du rectorat 26 , 4000 Liège , Belgium
- Animal Santé Territoire Risque Environnement, Institut National de la Recherche Agronomique , Unité Mixe de Recherche 117 (ASTRE) Univ. Montpellier, Centre International de Recherche Agronomique pour le Développement (CIRAD) , 34398 Montpellier , France
| | - Jorge Gaitan
- Redpath Museum , McGill University , Montreal , QC H3A 0C4 , Canada
| | - Virginie Millien
- Redpath Museum , McGill University , Montreal , QC H3A 0C4 , Canada
| |
Collapse
|
91
|
Chronic Inhibition of FAAH Reduces Depressive-Like Behavior and Improves Dentate Gyrus Proliferation after Chronic Unpredictable Stress Exposure. Behav Neurol 2021; 2021:6651492. [PMID: 33833828 PMCID: PMC8016565 DOI: 10.1155/2021/6651492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023] Open
Abstract
Symptoms of depressive disorders such as anhedonia and despair can be a product of an aberrant adaptation to stress conditions. Chronic unpredictable stress model (CUS) can generate an increase in the activity of the hypothalamic-pituitary-adrenal axis (HPA) and induce a reduction of neurotrophin signaling and the proliferation of neural progenitors in the adult dentate gyrus, together with increased oxidative stress. Levels of the endocannabinoid anandamide (AEA) seem to affect these depression-by-stress-related features and could be modulated by fatty acid amide hydrolase (FAAH). We aimed to evaluate the effects of FAAH inhibitor, URB597, on depressive-like behavior and neural proliferation of mice subjected to a model of CUS. URB597 was administered intraperitoneally at a dose of 0.2 mg/kg for 14 days after CUS. Depressive-like behaviors, anhedonia, and despair were evaluated in the splash and forced swimming tests, respectively. Alterations at the HPA axis level were analyzed using the relative weight of adrenal glands and serum corticosterone levels. Oxidative stress and brain-derived neurotrophic factor (BDNF) were also evaluated. Fluorescence immunohistochemistry tests were performed for the immunoreactivity of BrdU and Sox2 colabeling for comparison of neural precursors. The administration of URB597 was able to reverse the depressive-like behavior generated in mice after the model. Likewise, other physiological responses associated with CUS were reduced in the treated group, among them, increase in the relative weight of the adrenal glands, increased oxidative stress, and decreased BDNF and number of neural precursors. Most of these auspicious responses to enzyme inhibitor administration were blocked by employing a cannabinoid receptor antagonist. In conclusion, the chronic inhibition of FAAH generated an antidepressant effect, promoting neural progenitor proliferation and BDNF expression, while reducing adrenal gland weight and oxidative stress in mice under the CUS model.
Collapse
|
92
|
Karin O, Raz M, Alon U. An opponent process for alcohol addiction based on changes in endocrine gland mass. iScience 2021; 24:102127. [PMID: 33665551 PMCID: PMC7903339 DOI: 10.1016/j.isci.2021.102127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/27/2021] [Indexed: 12/03/2022] Open
Abstract
Consuming addictive drugs is often initially pleasurable, but escalating drug intake eventually recruits physiological anti-reward systems called opponent processes that cause tolerance and withdrawal symptoms. Opponent processes are fundamental for the addiction process, but their physiological basis is not fully characterized. Here, we propose an opponent processes mechanism centered on the endocrine stress response, the hypothalamic-pituitary-adrenal (HPA) axis. We focus on alcohol addiction, where the HPA axis is activated and secretes β-endorphin, causing euphoria and analgesia. Using a mathematical model, we show that slow changes in the functional mass of HPA glands act as an opponent process for β-endorphin secretion. The model explains hormone dynamics in alcohol addiction and experiments on alcohol preference in rodents. The opponent process is based on fold-change detection (FCD) where β-endorphin responses are relative rather than absolute; FCD confers vulnerability to addiction but has adaptive roles for learning. Our model suggests gland mass changes as potential targets for intervention in addiction. Addiction involves tolerance and withdrawal over weeks Model of the HPA-axis and β-endorphins explains tolerance and withdrawal Effects due to changes in the functional mass of endocrine glands Fold-change detection makes circuit prone to addiction but boosts learning
Collapse
Affiliation(s)
- Omer Karin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moriya Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
93
|
Stoneham ET, McHail DG, Samipour-Biel S, Liehr N, Lee CM, Evans JC, Boggs K, Dumas TC. Spatial Learning Is Impaired in Male Pubertal Rats Following Neonatal Daily but Not Randomly Spaced Maternal Deprivation. Front Cell Dev Biol 2021; 9:621308. [PMID: 33816470 PMCID: PMC8012507 DOI: 10.3389/fcell.2021.621308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Severe early life stress has long been associated with neuropsychological disorders in adulthood, including depression, schizophrenia, post-traumatic stress disorder, and memory dysfunction. To some extent, all of these conditions involve dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and reduced negative feedback inhibition of cortisol release in adulthood. However, the time course for mental health and hormonal outcomes across life stages and the attributes of early life stress that direct the behavioral and biological alterations is not fully understood. We designed our studies to compare outcomes of the two most common maternal deprivation schedules on cognitive ability prior to adulthood. We exposed rat pups to daily or randomly spaced maternal separation bouts within the first 3 weeks of life and examined cognitive performance, neurotrophic signaling, and stress and immune system markers during puberty. We found that the daily separation schedule impaired spatial learning while the randomly spaced schedule did not alter maze performance relative to normally reared control animals. Animals that underwent daily separation showed a tendency for reduced body weight compared to the randomly spaced condition, but there were no differences in adrenal weight. Thymus weight normalized by body weight was increased following daily separation compared to random separation and control conditions. Plasma corticosterone levels measured after behavior testing did not differ amongst experimental groups and there was no impact of TrKB receptor inhibition. Combined, the results show that different early life stress schedules produce different behavioral and biological outcomes when measured at puberty. Combined with prior findings from more mature animals, the results presented here suggest that daily neonatal stress produces varied alterations in spatial cognition at different life stages with a transient learning deficit at puberty preceding a more persistent and a progressive memory impairment through adulthood and into aging.
Collapse
Affiliation(s)
- Emily T Stoneham
- Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| | - Daniel G McHail
- Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| | | | - Nicole Liehr
- George Mason University, Fairfax, VA, United States
| | | | | | | | - Theodore C Dumas
- Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| |
Collapse
|
94
|
Svishcheva MV, Mishina YS, Medvedeva OA, Bobyntsev II, Mukhina AY, Kalutskii PV, Andreeva LA, Myasoedov NF. Morphofunctional State of the Large Intestine in Rats under Conditions of Restraint Stress and Administration of Peptide ACTH (4-7)-PGP (Semax). Bull Exp Biol Med 2021; 170:384-388. [PMID: 33459919 DOI: 10.1007/s10517-021-05072-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/25/2022]
Abstract
We studied the effect of intraperitoneal administration ACTH(4-7)-PGP in doses of 5, 50, 150, and 450 μg/kg to Wistar male rats 12-15 min before modeling restraint stress on the morphofunctional state of the colon. In rats exposed to restraint stress, signs of atrophy and inflammatory reaction in the colon wall, changes in functional activity and number of mast cells, and increased serum level of corticosterone were observed. Administration of the peptide led to a decrease in corticosterone concentration, alleviated stress-induced pathomorphological changes, and promoted adaptation of the intestinal wall to stress. The positive effects of ACTH(4-7)-PGP can be determined by multifunctional nature of the physiological and pharmacological effects of the neuropeptide.
Collapse
Affiliation(s)
- M V Svishcheva
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - Ye S Mishina
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - O A Medvedeva
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - I I Bobyntsev
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia.
| | - A Y Mukhina
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - P V Kalutskii
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - L A Andreeva
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - N F Myasoedov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
95
|
Angoa-Pérez M, Zagorac B, Francescutti DM, Theis KR, Kuhn DM. Responses to chronic corticosterone on brain glucocorticoid receptors, adrenal gland, and gut microbiota in mice lacking neuronal serotonin. Brain Res 2021; 1751:147190. [PMID: 33152342 PMCID: PMC8650149 DOI: 10.1016/j.brainres.2020.147190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Dysregulation of the stress-induced activation of the hypothalamic-pituitary-adrenocortical axis can result in disease. Bidirectional communication exists between the brain and the gut, and alterations in these interactions appear to be involved in stress regulation and in the pathogenesis of neuropsychiatric diseases, such as depression. Serotonin (5HT) plays a crucial role in the functions of these two major organs but its direct influence under stress conditions remains unclear. To investigate the role of neuronal 5HT on chronic stress responses and its influence on the gut microbiome, mice lacking the gene for tryptophan hydroxylase-2 were treated with the stress hormone corticosterone (CORT) for 21 days. The intake of fluid and food, as well as body weights were recorded daily. CORT levels, expression of glucocorticoid receptors (GR) in the brain and the size of the adrenal gland were evaluated. Caecum was used for 16S rRNA gene characterization of the gut microbiota. Results show that 5HT depletion produced an increase in food intake and a paradoxical reduction in body weight that were enhanced by CORT. Neuronal 5HT depletion impaired the feedback regulation of CORT levels but had no putative effect on the CORT-induced decrease in hippocampal GR expression and the reduction of the adrenal cortex size. Finally, the composition and structure of the gut microbiota were significantly impacted by the absence of neuronal 5HT, and these alterations were enhanced by chronic CORT treatment. Therefore, we conclude that neuronal 5HT influences the stress-related responses at different levels involving CORT levels regulation and the gut microbiome.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
96
|
Algamal M, Pearson AJ, Hahn-Townsend C, Burca I, Mullan M, Crawford F, Ojo JO. Repeated unpredictable stress and social isolation induce chronic HPA axis dysfunction and persistent abnormal fear memory. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110035. [PMID: 32682873 DOI: 10.1016/j.pnpbp.2020.110035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/19/2022]
Abstract
The lack of progress in the psychopharmacological treatment of stress-related disorders such as PTSD is an ongoing crisis due to its negative socioeconomic implications. Current PTSD pharmacotherapy relies on a few FDA approved medications used primarily for depression which offer only symptomatic relief and show limited efficacy. As the population of PTSD patients is growing, the identification of effective etiology-based treatments for the condition is a high priority. This requires an in-depth understanding of the neurobiological and behavioral outcomes of stress in translationally relevant animal models. In this study, we use neuroendocrine, biochemical and behavioral measures to assess the HPA axis function and fear-memory deficits in a mouse model of chronic stress. The chronic stress procedures involved exposure to 21 days of repeated unpredictable stress (RUS), including predator stress, restraint and foot shock, followed by chronic social isolation. We show that mice exposed to our stress paradigm demonstrate exaggerated fear memory recall and blunted HPA axis functionality at one month after RUS. Our neuroendocrinal testing suggests that the attenuated stress response in our model may be related to an alteration in the adrenal MC2 receptor reactivity. While there was no noticeable change in pituitary negative feedback regulation mechanisms, CRH and phosphorylated Glucocorticoid receptors levels were altered in the hypothalamus. We also show that chronic supplementation with a peripheral glucocorticoid receptor agonist (low-dose dexamethasone) after RUS partially restores a number of stress-related behavioral deficits in the RUS model. This suggests a direct relationship between HPA axis function and behavior in our model. Our findings emphasize the importance of the adrenal receptors as a target for HPA axis dysfunction in stress and fear-related disorders.
Collapse
Affiliation(s)
- Moustafa Algamal
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, FL, United States.
| | - Andrew J Pearson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, FL, United States.
| | | | - Ioana Burca
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA.
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom.
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, FL, United States.
| | - Joseph O Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, FL, United States.
| |
Collapse
|
97
|
Zimmerman AD, Mackay L, Kemppainen RJ, Jones MA, Read CC, Schwartz D, Foradori CD. The Herbicide Atrazine Potentiates Angiotensin II-Induced Aldosterone Synthesis and Release From Adrenal Cells. Front Endocrinol (Lausanne) 2021; 12:697505. [PMID: 34335472 PMCID: PMC8317615 DOI: 10.3389/fendo.2021.697505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 12/06/2022] Open
Abstract
Atrazine is one of the most commonly used pre-emergence and early post-emergence herbicides in the world. We have shown previously that atrazine does not directly stimulate the pituitary or adrenal to trigger hormone release but acts centrally to activate a stress-like activation of the hypothalamic-pituitary-adrenal axis. In doing so, atrazine treatment has been shown to cause adrenal morphology changes characteristic of repeated stress. In this study, adrenals from atrazine treated and stressed animals were directly compared after 4 days of atrazine treatment or restraint stress. Both atrazine and stressed animals displayed reduced adrenocortical zona glomerulosa thickness and aldosterone synthase (CYP11B2) expression, indicative of repeated adrenal stimulation by adrenocorticotropic hormone. To determine if reduced CYP11B2 expression resulted in attenuated aldosterone synthesis, stressed and atrazine treated animals were challenged with angiotensin II (Ang II). As predicted, stressed animals produced less aldosterone compared to control animals when stimulated. However, atrazine treated animals had higher circulating aldosterone concentrations compared to both stressed and control groups. Ang II-induced aldosterone release was also potentiated in atrazine pretreated human adrenocortical carcinoma cells (H295R). Atrazine pretreated did not alter the expression of the rate limiting steroidogenic StAR protein or angiotensin II receptor 1. Atrazine treated animals also presented with higher basal blood pressure than vehicle treated control animals suggesting sustained elevations in circulating aldosterone levels. Our results demonstrate that treatment with the widely used herbicide, atrazine, directly increases stimulated production of aldosterone in adrenocortical cells independent of expression changes to rate limiting steroidogenic enzymes.
Collapse
|
98
|
Lopez JP, Brivio E, Santambrogio A, De Donno C, Kos A, Peters M, Rost N, Czamara D, Brückl TM, Roeh S, Pöhlmann ML, Engelhardt C, Ressle A, Stoffel R, Tontsch A, Villamizar JM, Reincke M, Riester A, Sbiera S, Fassnacht M, Mayberg HS, Craighead WE, Dunlop BW, Nemeroff CB, Schmidt MV, Binder EB, Theis FJ, Beuschlein F, Andoniadou CL, Chen A. Single-cell molecular profiling of all three components of the HPA axis reveals adrenal ABCB1 as a regulator of stress adaptation. SCIENCE ADVANCES 2021; 7:eabe4497. [PMID: 33571131 PMCID: PMC7840126 DOI: 10.1126/sciadv.abe4497] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/09/2020] [Indexed: 05/03/2023]
Abstract
Chronic activation and dysregulation of the neuroendocrine stress response have severe physiological and psychological consequences, including the development of metabolic and stress-related psychiatric disorders. We provide the first unbiased, cell type-specific, molecular characterization of all three components of the hypothalamic-pituitary-adrenal axis, under baseline and chronic stress conditions. Among others, we identified a previously unreported subpopulation of Abcb1b+ cells involved in stress adaptation in the adrenal gland. We validated our findings in a mouse stress model, adrenal tissues from patients with Cushing's syndrome, adrenocortical cell lines, and peripheral cortisol and genotyping data from depressed patients. This extensive dataset provides a valuable resource for researchers and clinicians interested in the organism's nervous and endocrine responses to stress and the interplay between these tissues. Our findings raise the possibility that modulating ABCB1 function may be important in the development of treatment strategies for patients suffering from metabolic and stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
- The Max Planck Society-Weizmann Institute of Science Laboratory for Experimental Neuropsychiatry and Behavioral Neurogenetics, Rehovot 76100, Israel and Munich, Bavaria 80804, Germany
| | - Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
- The Max Planck Society-Weizmann Institute of Science Laboratory for Experimental Neuropsychiatry and Behavioral Neurogenetics, Rehovot 76100, Israel and Munich, Bavaria 80804, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Bavaria 80804, Germany
| | - Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE11UL, UK
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Saxony 01307, Germany
| | - Carlo De Donno
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
- The Max Planck Society-Weizmann Institute of Science Laboratory for Experimental Neuropsychiatry and Behavioral Neurogenetics, Rehovot 76100, Israel and Munich, Bavaria 80804, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria 85764, Germany
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
- The Max Planck Society-Weizmann Institute of Science Laboratory for Experimental Neuropsychiatry and Behavioral Neurogenetics, Rehovot 76100, Israel and Munich, Bavaria 80804, Germany
| | - Miriam Peters
- Department for Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Bavaria 80336, Germany
| | - Nicolas Rost
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Bavaria 80804, Germany
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Tanja M Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Simone Roeh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Max L Pöhlmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Clara Engelhardt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Andrea Ressle
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Alina Tontsch
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Javier M Villamizar
- Department for Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Bavaria 80336, Germany
| | - Martin Reincke
- Department for Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Bavaria 80336, Germany
| | - Anna Riester
- Department for Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Bavaria 80336, Germany
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Bavaria 97080, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Bavaria 97080, Germany
| | - Helen S Mayberg
- Departments of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - W Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Charles B Nemeroff
- Department of Psychiatry, University of Texas at Austin Dell Medical School, Austin, TX 78738, USA
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria 85764, Germany
- Department of Mathematics, Technische Universität München, Munich, Bavaria 85748, Germany
| | - Felix Beuschlein
- Department for Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Bavaria 80336, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich 8091, Switzerland
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE11UL, UK
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Saxony 01307, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Bavaria 80804, Germany.
- The Max Planck Society-Weizmann Institute of Science Laboratory for Experimental Neuropsychiatry and Behavioral Neurogenetics, Rehovot 76100, Israel and Munich, Bavaria 80804, Germany
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
99
|
Malkani S, Chin CR, Cekanaviciute E, Mortreux M, Okinula H, Tarbier M, Schreurs AS, Shirazi-Fard Y, Tahimic CGT, Rodriguez DN, Sexton BS, Butler D, Verma A, Bezdan D, Durmaz C, MacKay M, Melnick A, Meydan C, Li S, Garrett-Bakelman F, Fromm B, Afshinnekoo E, Langhorst BW, Dimalanta ET, Cheng-Campbell M, Blaber E, Schisler JC, Vanderburg C, Friedländer MR, McDonald JT, Costes SV, Rutkove S, Grabham P, Mason CE, Beheshti A. Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure Development. Cell Rep 2020; 33:108448. [PMID: 33242410 PMCID: PMC8441986 DOI: 10.1016/j.celrep.2020.108448] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
We have identified and validated a spaceflight-associated microRNA (miRNA) signature that is shared by rodents and humans in response to simulated, short-duration and long-duration spaceflight. Previous studies have identified miRNAs that regulate rodent responses to spaceflight in low-Earth orbit, and we have confirmed the expression of these proposed spaceflight-associated miRNAs in rodents reacting to simulated spaceflight conditions. Moreover, astronaut samples from the NASA Twins Study confirmed these expression signatures in miRNA sequencing, single-cell RNA sequencing (scRNA-seq), and single-cell assay for transposase accessible chromatin (scATAC-seq) data. Additionally, a subset of these miRNAs (miR-125, miR-16, and let-7a) was found to regulate vascular damage caused by simulated deep space radiation. To demonstrate the physiological relevance of key spaceflight-associated miRNAs, we utilized antagomirs to inhibit their expression and successfully rescue simulated deep-space-radiation-mediated damage in human 3D vascular constructs.
Collapse
Affiliation(s)
- Sherina Malkani
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hazeem Okinula
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Sofie Schreurs
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Candice G T Tahimic
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniela Bezdan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tubingen, Germany
| | - Ceyda Durmaz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Sheng Li
- The Jackson Laboratories, Farmington, CT, USA
| | - Francine Garrett-Bakelman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Margareth Cheng-Campbell
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Elizabeth Blaber
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Mountain View, CA 94035, USA
| | - Jonathan C Schisler
- McAllister Heart Institute, Department of Pharmacology, and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington DC 20007, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter Grabham
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
100
|
Shanker S, Saroj N, Cordova EJ, Jarillo-Luna RA, López-Sánchez P, Terrón JA. Chronic restraint stress induces serotonin transporter expression in the rat adrenal glands. Mol Cell Endocrinol 2020; 518:110935. [PMID: 32659440 DOI: 10.1016/j.mce.2020.110935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Chronic restraint stress (CRS) magnifies restraint-induced corticosterone secretion through a mechanism involving increased adrenocortical 5-HT content and turnover. We analysed the impact of CRS on serotonin transporter (SERT) expression and distribution in rat adrenal glands. Male Wistar rats were submitted to CRS (20 min/day) or undisturbed control conditions for 14 days. Exposure to CRS induced a remarkable increase in SERT-like immunoreactivity in the adrenal cortex, which closely matched that of chromogranin A immunostaining, along with a significant increase in SERT protein and mRNA levels in whole adrenals as determined by immunohistochemistry, Western blot and RT-PCR assays, respectively; all these CRS-induced changes occurred almost exclusively in left adrenals. Closely similar results were obtained in animals that received a 14-day chronic corticosterone treatment. These results unravel an interesting association between chronic stress exposure and SERT expression in adrenocortical chromogranin A-positive cells, which seems to be a glucocorticoid-dependent phenomenon.
Collapse
Affiliation(s)
- Shiv Shanker
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, CP 11340, CDMX, Mexico
| | - Neeshu Saroj
- Departamento de Farmacología, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, col. La Laguna Ticomán, CP 07360, CDMX, Mexico
| | - Emilio J Cordova
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, col. Arenal Tepepan, CP 14610, CDMX, Mexico
| | - Rosa A Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, CP 11340, CDMX, Mexico
| | - Pedro López-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, CP 11340, CDMX, Mexico
| | - José A Terrón
- Departamento de Farmacología, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, col. La Laguna Ticomán, CP 07360, CDMX, Mexico.
| |
Collapse
|