51
|
Parrish JM, Jenkins NW, Hrynewycz NM, Brundage TS, Singh K. The influence of gender on postoperative PROMIS physical function outcomes following minimally invasive transforaminal lumbar interbody fusion. J Clin Orthop Trauma 2020; 11:910-915. [PMID: 32879580 PMCID: PMC7452261 DOI: 10.1016/j.jcot.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Our aim is to examine the gender performance of Patient-Reported Outcome Measurement Information System Physical Function (PROMIS-PF) scores among patients undergoing minimally invasive transforaminal lumbar fusion (MIS TLIF). METHODS A prospectively collected surgical dataset was retrospectively assessed for eligible patients from March 2015-June 2019. We included patients if they underwent primary MIS TLIF procedures on one or two vertebral levels. We collected baseline demographics, perioperative characteristics, and PROMIS-PF scores for each subject at pre and postoperative timepoints (e.g., 6-weeks, 3-months, 6-months, and 1-year). Chi-squared analyses were utilized to assess categorical variables and a Student's t-tests analyzed continuous variables. A linear regression was used to analyze PROMIS-PF scores from baseline through all postoperative time points. Finally, we evaluated the PROMIS PF achievement of minimal clinically important difference (MCID) among gender. RESULTS 192 patients were included: 77 were females and 115 were males. No significant differences were observed among gender subgroups for PROMIS-PF scores at pre- or postoperative evaluations. Compared to males, females experienced significantly greater postoperative improvement with PROMIS-PF scores at the 3-month assessments, though no significant gender differences were observed during later follow-up evaluations at 6-months or one year. Females were observed to have significant PROMIS-PF score improvement from their preoperative evaluation to each postoperative score. Males were assessed to have statistically significant postoperative (e.g., at 3-months, 6-months, and 1-year) PROMIS-PF score improvement from their preoperative PROMIS-PF scores. There were no significant differences among gender in achieving MCID at any postoperative time interval. CONCLUSION Among gender, we observed no statistically significant difference in PROMIS-PF scores during the pre- or postoperative evaluations. Additionally, with no difference in the rate of achieving PROMIS-PF MCID postoperatively, this study established that both genders should experience similar functional outcomes following MIS TLIF.
Collapse
|
52
|
" Bridging the Gap" Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. Int J Mol Sci 2019; 21:ijms21010296. [PMID: 31906252 PMCID: PMC6982247 DOI: 10.3390/ijms21010296] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gender medicine is the first step of personalized medicine and patient-centred care, an essential development to achieve the standard goal of a holistic approach to patients and diseases. By addressing the interrelation and integration of biological markers (i.e., sex) with indicators of psychological/cultural behaviour (i.e., gender), gender medicine represents the crucial assumption for achieving the personalized health-care required in the third millennium. However, ‘sex’ and ‘gender’ are often misused as synonyms, leading to frequent misunderstandings in those who are not deeply involved in the field. Overall, we have to face the evidence that biological, genetic, epigenetic, psycho-social, cultural, and environmental factors mutually interact in defining sex/gender differences, and at the same time in establishing potential unwanted sex/gender disparities. Prioritizing the role of sex/gender in physiological and pathological processes is crucial in terms of efficient prevention, clinical signs’ identification, prognosis definition, and therapy optimization. In this regard, the omics-approach has become a powerful tool to identify sex/gender-specific disease markers, with potential benefits also in terms of socio-psychological wellbeing for each individual, and cost-effectiveness for National Healthcare systems. “Being a male or being a female” is indeed important from a health point of view and it is no longer possible to avoid “sex and gender lens” when approaching patients. Accordingly, personalized healthcare must be based on evidence from targeted research studies aimed at understanding how sex and gender influence health across the entire life span. The rapid development of genetic tools in the molecular medicine approaches and their impact in healthcare is an example of highly specialized applications that have moved from specialists to primary care providers (e.g., pharmacogenetic and pharmacogenomic applications in routine medical practice). Gender medicine needs to follow the same path and become an established medical approach. To face the genetic, molecular and pharmacological bases of the existing sex/gender gap by means of omics approaches will pave the way to the discovery and identification of novel drug-targets/therapeutic protocols, personalized laboratory tests and diagnostic procedures (sex/gender-omics). In this scenario, the aim of the present review is not to simply resume the state-of-the-art in the field, rather an opportunity to gain insights into gender medicine, spanning from molecular up to social and psychological stances. The description and critical discussion of some key selected multidisciplinary topics considered as paradigmatic of sex/gender differences and sex/gender inequalities will allow to draft and design strategies useful to fill the existing gap and move forward.
Collapse
|
53
|
Lei X, Liu L, Terrillion CE, Karuppagounder SS, Cisternas P, Lay M, Martinelli DC, Aja S, Dong X, Pletnikov MV, Wong GW. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors. FASEB J 2019; 33:14734-14747. [PMID: 31689372 DOI: 10.1096/fj.201901232rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines and chemokines play diverse roles in different organ systems. Family with sequence similarity 19, member A1-5 (FAM19A1-A5; also known as TAFA1-5) is a group of conserved chemokine-like proteins enriched in the CNS of mice and humans. Their functions are only beginning to emerge. Here, we show that the expression of Fam19a1-a5 in different mouse brain regions are induced or suppressed by unfed and refed states. The striking nutritional regulation of Fam19a family members in the brain suggests a potential central role in regulating metabolism. Using a knockout (KO) mouse model, we show that loss of FAM19A1 results in sexually dimorphic phenotypes. In male mice, FAM19A1 deficiency alters food intake patterns during the light and dark cycle. Fam19a1 KO mice are hyperactive, and locomotor hyperactivity is more pronounced in female KO mice. Behavior tests indicate that Fam19a1 KO female mice have reduced anxiety and sensitivity to pain. Spatial learning and exploration, however, is preserved in Fam19a1 KO mice. Altered behaviors are associated with elevated norepinephrine and dopamine turnover in the striatum. Our results establish an in vivo function of FAM19A1 and highlight central roles for this family of neurokines in modulating animal physiology and behavior.-Lei, X., Liu, L., Terrillion, C. E., Karuppagounder, S. S., Cisternas, P., Lay, M., Martinelli, D. C., Aja, S., Dong, X., Pletnikov, M. V., Wong, G. W. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors.
Collapse
Affiliation(s)
- Xia Lei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lili Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,College of Life Science, Hunan University of Science and Technology, Hunan, China
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Senthilkumar S Karuppagounder
- Department of Neurology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pedro Cisternas
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mark Lay
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David C Martinelli
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
54
|
Casanova R, Miller V, Cheon J, Gilmore L, Barron R, Cannaday R, Case G, Digre K, Jensen J, McGregor AJ, Pippitt K, Davidge-Pitts C, Pomeroy B, Webster D, Jenkins M. Field Test Results of Sex- and Gender-Specific Health Multimedia Case-Based Learning Modules. J Womens Health (Larchmt) 2019; 28:1755-1761. [PMID: 31373877 DOI: 10.1089/jwh.2018.7504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The sex- and gender-specific health (SGSH) multimedia case-based learning modules (MCBLMs) were developed to address the absence of validated or peer-reviewed material that incorporates topics of sex and gender differences into medical curricula. This article provides the methodology for development of the modules and reports the results of a field test of the modules in different medical educational settings. Methods: MCBLMs were created by a multidisciplinary committee of scientists, health profession educators, and students. Two modules, osteoporosis and diabetes, were tested in various settings based on the curricular needs at each of the five accredited institutions. Each module consisted of a pretest and three interactive, multimedia stand-alone sections with post-tests. Scores on the tests were compared using a paired-samples t-test. A postmodule survey was used to evaluate the format. Results: Four hundred eighteen students participated in the field testing. For the 194 who completed the osteoporosis module, the post-test scores (M = 13.71, standard deviation [SD] = 2.09) were significantly higher than the pretest scores (M = 10.54, SD = 2.41), p < 0.001. Post-test scores for the 285 who completed the diabetes module (M = 16.55, SD = 2.46) were also significantly higher than the pretest scores (M = 13.71, SD = 2.09), p < 0.001. The postmodule survey showed positive acceptance of the format with an average score of 3.54/4 for osteoporosis and 3.45/4 for diabetes. Conclusion: The SGSH MCBLM field testing results show that the modules have a positive effect on content knowledge in multiple settings and are well accepted by learners.
Collapse
Affiliation(s)
- Robert Casanova
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | | | - Linda Gilmore
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Rebecca Barron
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Rania Cannaday
- Texas A&M University Health Sciences Center, Bryan, Texas
| | - Gretchen Case
- University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Jani Jensen
- Mayo Clinic School of Medicine, Rochester, Minnesota
| | - Alyson J McGregor
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Karly Pippitt
- University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Brian Pomeroy
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Dan Webster
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | | |
Collapse
|
55
|
Sanchis-Segura C, Ibañez-Gual MV, Adrián-Ventura J, Aguirre N, Gómez-Cruz ÁJ, Avila C, Forn C. Sex differences in gray matter volume: how many and how large are they really? Biol Sex Differ 2019; 10:32. [PMID: 31262342 PMCID: PMC6604149 DOI: 10.1186/s13293-019-0245-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/06/2019] [Indexed: 11/17/2022] Open
Abstract
Background Studies assessing volumetric sex differences have provided contradictory results. Total intracranial volume (TIV) is a major confounding factor when estimating local volumes of interest (VOIs). We investigated how the number, size, and direction of sex differences in gray matter volume (GMv) vary depending on how TIV variation is statistically handled. Methods Sex differences in the GMv of 116 VOIs were assessed in 356 participants (171 females) without correcting for TIV variation or after adjusting the data with 5 different methods (VBM8 non-linear-only modulation, proportions, power-corrected-proportions, covariation, and the residuals method). The outcomes obtained with these procedures were compared to each other and to those obtained in three criterial subsamples, one comparing female-male pairs matched on their TIV and two others comparing groups of either females or males with large/small TIVs. Linear regression was used to quantify TIV effects on raw GMv and the efficacy of each method in controlling for them. Results Males had larger raw GMv than females in all brain areas, but these differences were driven by direct TIV-VOIs relationships and more closely resembled the differences observed between individuals with large/small TIVs of sex-specific subsamples than the sex differences observed in the TIV-matched subsample. All TIV-adjustment methods reduced the number of sex differences but their results were very different. The VBM8- and the proportions-adjustment methods inverted TIV-VOIs relationships and resulted in larger adjusted volumes in females, promoting sex differences largely attributable to TIV variation and very distinct from those observed in the TIV-matched subsample. The other three methods provided results unrelated to TIV and very similar to those of the TIV-matched subsample. In these datasets, sex differences were bidirectional and achieved satisfactory replication rates in 19 VOIs, but they were “small” (d < ∣0.38∣) and most of them faded away after correcting for multiple comparisons. Conclusions There is not just one answer to the question of how many and how large the sex differences in GMv are, but not all the possible answers are equally valid. When TIV effects are ruled out using appropriate adjustment methods, few sex differences (if any) remain statistically significant, and their size is quite reduced. Electronic supplementary material The online version of this article (10.1186/s13293-019-0245-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Sanchis-Segura
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain.
| | | | - Jesús Adrián-Ventura
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain
| | - Naiara Aguirre
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain
| | | | - César Avila
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain
| | - Cristina Forn
- Departament de Psicologia bàsica, clínica i psicobiologia, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
56
|
Day S, Wu W, Mason R, Rochon PA. Measuring the data gap: inclusion of sex and gender reporting in diabetes research. Res Integr Peer Rev 2019; 4:9. [PMID: 31080635 PMCID: PMC6503434 DOI: 10.1186/s41073-019-0068-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/27/2019] [Indexed: 01/11/2023] Open
Abstract
Background Important sex and gender differences have been found in research on diabetes complications and treatment. Reporting on whether and how sex and gender impact research findings is crucial for developing tailored diabetes care strategies. To analyze the extent to which this information is available in current diabetes research, we examined original investigations on diabetes for the integration of sex and gender in study reporting. Methods We examined original investigations on diabetes published between January 1 and December 31, 2015, in the top five general medicine journals and top five diabetes-specific journals (by 2015 impact factor). Data were extracted on sex and gender integration across seven article sections: title, abstract, introduction, methods, results, discussion, and limitations. Results We identified 155 original investigations on diabetes, including 115 randomized controlled trials (RCTs) and 40 observational studies. Sex and gender were rarely incorporated in article titles, abstracts and introductions. Most methods sections did not describe plans for sex/gender analyses; 47 (30.3%) articles described plans to control for sex/gender in the analysis and 12 (7.7%) described plans to stratify results by sex/gender. While most articles (151, 97.4%) reported the sex/gender of study participants, only 10 (6.5%) of all articles reported all study outcomes separately by sex/gender. Discussion of sex-related issues was incorporated into 21 (13.5%) original investigations; however, just 1 (0.6%) discussed gender-related issues. Comparison by journal type (general medicine vs. diabetes specific) yielded only minor differences from the overall integration results. In contrast, RCTs performed more poorly on multiple sex/gender assessment metrics compared to observational studies. Conclusions Sex and gender are poorly integrated in current diabetes original investigations, suggesting that substantial improvements in sex and gender data reporting are needed to inform the evidence to support sex- and gender-specific diabetes care.
Collapse
Affiliation(s)
- Suzanne Day
- 1Women's Xchange, Women's College Hospital, 76 Grenville Street, Toronto, Ontario M5S 1B2 Canada.,2Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, 130 Mason Farm Road, 2nd Floor, Campus Box #7030, Chapel Hill, NC 27599-7030 USA
| | - Wei Wu
- 3Women's College Research Institute, Women's College Hospital, 76 Grenville Street, Toronto, Ontario M5S 1B2 Canada
| | - Robin Mason
- 1Women's Xchange, Women's College Hospital, 76 Grenville Street, Toronto, Ontario M5S 1B2 Canada.,3Women's College Research Institute, Women's College Hospital, 76 Grenville Street, Toronto, Ontario M5S 1B2 Canada.,4Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, Ontario M5T 3M7 Canada
| | - Paula A Rochon
- 1Women's Xchange, Women's College Hospital, 76 Grenville Street, Toronto, Ontario M5S 1B2 Canada.,3Women's College Research Institute, Women's College Hospital, 76 Grenville Street, Toronto, Ontario M5S 1B2 Canada.,5Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
57
|
Gautam Y, Afanador Y, Abebe T, López JE, Mersha TB. Genome-wide analysis revealed sex-specific gene expression in asthmatics. Hum Mol Genet 2019; 28:2600-2614. [PMID: 31095684 DOI: 10.1093/hmg/ddz074] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 01/08/2023] Open
Abstract
Global gene-expression analysis has shown remarkable difference between males and females in response to exposure to many diseases. Nevertheless, gene expression studies in asthmatics have so far focused on sex-combined analysis, ignoring inherent variabilities between the sexes, which potentially drive disparities in asthma prevalence. The objectives of this study were to identify (1) sex-specific differentially expressed genes (DEGs), (2) genes that show sex-interaction effects and (3) sex-specific pathways and networks enriched in asthma risk. We analyzed 711 males and 689 females and more than 2.8 million transcripts covering 20 000 genes leveraged from five different tissues and cell types (i.e. epithelial, blood, induced sputum, T cells and lymphoblastoids). Using tissue-specific meta-analysis, we identified 439 male- and 297 female-specific DEGs in all cell types, with 32 genes in common. By linking DEGs to the genome-wide association study (GWAS) catalog and the lung and blood eQTL annotation data from GTEx, we identified four male-specific genes (FBXL7, ITPR3 and RAD51B from epithelial tissue and ALOX15 from blood) and one female-specific gene (HLA-DQA1 from epithelial tissue) that are disregulated during asthma. The hypoxia-inducible factor 1 signaling pathway was enriched only in males, and IL-17 and chemokine signaling pathways were enriched in females. The cytokine-cytokine signaling pathway was enriched in both sexes. The presence of sex-specific genes and pathways demonstrates that sex-combined analysis does not identify genes preferentially expressed in each sex in response to diseases. Linking DEG and molecular eQTLs to GWAS catalog represents an important avenue for identifying biologically and clinically relevant genes.
Collapse
Affiliation(s)
- Yadu Gautam
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Yashira Afanador
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Tilahun Abebe
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - Javier E López
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Tesfaye B Mersha
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
58
|
Shin JH, Park YH, Sim M, Kim SA, Joung H, Shin DM. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res Microbiol 2019; 170:192-201. [PMID: 30940469 DOI: 10.1016/j.resmic.2019.03.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Gut microbiota plays roles in host physiology including endocrine function. Although some data suggest a potential connection between biological sex differences and gut microbiota, the connection between sex steroid hormones and gut microbes remained unexplored. The current study investigates the relationship between gut microbes and serum levels of testosterone in men and estradiol in women. Fecal microbiota from a total of 57 men (n = 31) and women (n = 26) were assessed using 16s rRNA gene sequencing. Based on the levels of serum testosterone and estradiol in men and women, respectively, participants were stratified into three groups of Low, Medium, and High. Microbiome communities were analyzed as a function of the steroid hormone within sex. Men and women in the High group harbored more diverse gut microbial communities than others. In men, the abundance of Acinetobacter, Dorea, Ruminococcus, and Megamonas correlated significantly with testosterone levels. Women in the High group have more Bacteroidetes and less Firmicutes phyla than those in the Low group. Genera Slackia and Butyricimonas were significantly correlated with estradiol levels. These results demonstrate that sex steroid hormone levels are correlated with diversity and gut microbial composition, and provide fundamental information helpful for developing communication networks between human and microbial communities.
Collapse
Affiliation(s)
- Ji-Hee Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Research Group of Healthcare, Reserach Division of Food Functionality, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Young-Hee Park
- Department of Agro-food Resources, National Institute of Agricultural Science, Rural Development Administration, 166 Nongsaengmyeong-ro Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Minju Sim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Seong-Ah Kim
- Department of Public Health, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Hyojee Joung
- Department of Public Health, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Dong-Mi Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Research Institution of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
59
|
Does Gender Influence Postoperative Outcomes in Minimally Invasive Transforaminal Lumbar Interbody Fusion? Clin Spine Surg 2019; 32:E107-E111. [PMID: 30407263 DOI: 10.1097/bsd.0000000000000735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
STUDY DESIGN Retrospective cohort. OBJECTIVE The objective of this study was to determine if an association exists between gender and postoperative improvements in patient-reported outcomes (PRO) measures following minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). SUMMARY OF BACKGROUND DATA Current spine literature presents conflicting findings regarding the influence of gender on clinical outcomes. METHODS Patients undergoing primary, single-level MIS TLIF were retrospectively reviewed. PRO measures including Oswestry Disability Index (ODI) and Visual Analog Scale (VAS) back and leg pain scores were collected preoperatively and 6-week, 12-week, and 6-month postoperatively. Rates of minimum clinically important difference (MCID) achievement were determined at 6-months postoperative. Statistical analysis was performed using Pearson χ analysis or Student t test. RESULTS In total, 169 patients, 40.83% females and 59.17% males, were included. Females experienced greater inpatient pain scores than males (POD 0: 5.30 vs. 4.69, P=0.041; POD 1: 4.80 vs. 4.13, P=0.019). Females demonstrated significantly greater ODI (43.77 vs. 36.22; P=0.002) and VAS leg (6.20 vs. 5.27; P=0.039) scores than males. No differences in postoperative improvements in ODI, VAS back or VAS leg pain scores were identified between genders, with exception to females demonstrating greater improvement in VAS leg pain at 6 months postoperatively (female: -4.40 vs. male: -3.32; P=0.033). Furthermore, no differences in MCID achievement for PROs were identified between cohorts. CONCLUSIONS Females demonstrated greater preoperative pain and disability as well as inpatient VAS pain scores compared to males. Furthermore, gender was not associated with differences in length of stay, perioperative complication rates, or narcotics consumption. Improvements in pain and disability, as well as rates of MCID achievement were similar between genders. These findings suggest that gender is not associated with surgical or clinical outcomes and should not be used as a predictor of outcomes following MIS TLIF. LEVEL OF EVIDENCE Level III.
Collapse
|
60
|
Guo S, Zhou Y, Zeng P, Xu G, Wang G, Cui Q. Identification and analysis of the human sex-biased genes. Brief Bioinform 2019; 19:188-198. [PMID: 28028006 DOI: 10.1093/bib/bbw125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/28/2023] Open
Abstract
Tremendous differences between human sexes are universally observed. Therefore, identifying and analyzing the sex-biased genes are becoming basically important for uncovering the mystery of sex differences and personalized medicine. Here, we presented a computational method to identify sex-biased genes from public gene expression databases. We obtained 1407 female-biased genes (FGs) and 1096 male-biased genes (MGs) across 14 different tissues. Bioinformatics analysis revealed that compared with MGs, FGs have higher evolutionary rate, higher single-nucleotide polymorphism density, less homologous gene numbers and smaller phyletic age. FGs have lower expression level, higher tissue specificity and later expressed stage in body development. Moreover, FGs are highly involved in immune-related functions, whereas MGs are more enriched in metabolic process. In addition, cellular network analysis revealed that MGs have higher degree, more cellular activating signaling and tend to be located in cellular inner space, whereas FGs have lower degree, more cellular repressing signaling and tend to be located in cellular outer space. Finally, the identified sex-biased genes and the discovered biological insights together can be a valuable resource helpful for investigating sex-biased physiology and medicine, for example sex-biased disease diagnosis and therapy, which represents one important aspect of personalized and precision medicine.
Collapse
Affiliation(s)
- Sisi Guo
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Pan Zeng
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Guoheng Xu
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Guoqing Wang
- Department of Pathogenobiology, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| |
Collapse
|
61
|
Derruau S, Gobinet C, Mateu A, Untereiner V, Lorimier S, Piot O. Shedding light on confounding factors likely to affect salivary infrared biosignatures. Anal Bioanal Chem 2019; 411:2283-2290. [DOI: 10.1007/s00216-019-01669-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 01/21/2023]
|
62
|
|
63
|
Chaudhari S, Cushen SC, Osikoya O, Jaini PA, Posey R, Mathis KW, Goulopoulou S. Mechanisms of Sex Disparities in Cardiovascular Function and Remodeling. Compr Physiol 2018; 9:375-411. [PMID: 30549017 DOI: 10.1002/cphy.c180003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies demonstrate disparities between men and women in cardiovascular disease prevalence, clinical symptoms, treatments, and outcomes. Enrollment of women in clinical trials is lower than men, and experimental studies investigating molecular mechanisms and efficacy of certain therapeutics in cardiovascular disease have been primarily conducted in male animals. These practices bias data interpretation and limit the implication of research findings in female clinical populations. This review will focus on the biological origins of sex differences in cardiovascular physiology, health, and disease, with an emphasis on the sex hormones, estrogen and testosterone. First, we will briefly discuss epidemiological evidence of sex disparities in cardiovascular disease prevalence and clinical manifestation. Second, we will describe studies suggesting sexual dimorphism in normal cardiovascular function from fetal life to older age. Third, we will summarize and critically discuss the current literature regarding the molecular mechanisms underlying the effects of estrogens and androgens on cardiac and vascular physiology and the contribution of these hormones to sex differences in cardiovascular disease. Fourth, we will present cardiovascular disease risk factors that are positively associated with the female sex, and thus, contributing to increased cardiovascular risk in women. We conclude that inclusion of both men and women in the investigation of the role of estrogens and androgens in cardiovascular physiology will advance our understanding of the mechanisms underlying sex differences in cardiovascular disease. In addition, investigating the role of sex-specific factors in the development of cardiovascular disease will reduce sex and gender disparities in the treatment and diagnosis of cardiovascular disease. © 2019 American Physiological Society. Compr Physiol 9:375-411, 2019.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Paresh A Jaini
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rachel Posey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
64
|
Nebel RA, Aggarwal NT, Barnes LL, Gallagher A, Goldstein JM, Kantarci K, Mallampalli MP, Mormino EC, Scott L, Yu WH, Maki PM, Mielke MM. Understanding the impact of sex and gender in Alzheimer's disease: A call to action. Alzheimers Dement 2018; 14:1171-1183. [PMID: 29907423 PMCID: PMC6400070 DOI: 10.1016/j.jalz.2018.04.008] [Citation(s) in RCA: 500] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Precision medicine methodologies and approaches have advanced our understanding of the clinical presentation, development, progression, and management of Alzheimer's disease (AD) dementia. However, sex and gender have not yet been adequately integrated into many of these approaches. METHODS The Society for Women's Health Research Interdisciplinary Network on AD, comprised of an expert panel of scientists and clinicians, reviewed ongoing and published research related to sex and gender differences in AD. RESULTS The current review is a result of this Network's efforts and aims to: (1) highlight the current state-of-the-science in the AD field on sex and gender differences; (2) address knowledge gaps in assessing sex and gender differences; and (3) discuss 12 priority areas that merit further research. DISCUSSION The exclusion of sex and gender has impeded faster advancement in the detection, treatment, and care of AD across the clinical spectrum. Greater attention to these differences will improve outcomes for both sexes.
Collapse
Affiliation(s)
- Rebecca A Nebel
- Scientific Programs, Society for Women's Health Research (SWHR®), Washington, DC, USA.
| | - Neelum T Aggarwal
- Department of Neurological Sciences and the Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lisa L Barnes
- Department of Neurological Sciences and the Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Aimee Gallagher
- Scientific Programs, Society for Women's Health Research (SWHR®), Washington, DC, USA
| | - Jill M Goldstein
- Department of Psychiatry, Harvard Medical School, and Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, and Massachusetts General Hospital, Boston, MA, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Monica P Mallampalli
- Scientific Programs, Society for Women's Health Research (SWHR®), Washington, DC, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Laura Scott
- Cellular and Molecular Medicine Program, Johns Hopkins University, Baltimore, MD, USA
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Pauline M Maki
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Michelle M Mielke
- Department of Epidemiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
65
|
Tannenbaum C, van Hoof K. Effectiveness of online learning on health researcher capacity to appropriately integrate sex, gender, or both in grant proposals. Biol Sex Differ 2018; 9:39. [PMID: 30157942 PMCID: PMC6114804 DOI: 10.1186/s13293-018-0197-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND To describe the effectiveness of online learning to augment academic capacity to consider sex and gender in the conduct of basic science, clinical research, and population health studies. METHOD The analysis compares pre- and post-test scores from 1441 individuals who completed the Canadian Institutes of Health Research Institute of Gender and Health's interactive e-learning modules between February 2016 and May 2017. The tests measured knowledge, self-efficacy, and self-reported intent to change behavior for three competencies: (1) the ability to appropriately define and distinguish between sex-related versus gender-related variables, (2) the application of methods for integrating sex and gender, and (3) the critical appraisal of sex and gender integration in the design, methods, and analysis plan of research proposals and publications. RESULTS Of the 543 individuals who completed the basic science module, 62% demonstrated improved knowledge, and 86% increased self-efficacy across all competencies. Gains in knowledge and self-efficacy also occurred among 84% and 77% of completers of the human data collection module (n = 463) and among 73% and 82% of those who completed the secondary data analysis module (n = 435). In aggregate, 95% of participants reported an intent to change their behavior with respect to sex and gender in health research. CONCLUSIONS Interactive online learning combined with feedback and self-assessment results in improved knowledge and self-efficacy for integrating sex and gender in health research.
Collapse
Affiliation(s)
- Cara Tannenbaum
- Institute of Gender and Health, Canadian Institutes of Health Research, 4545 Queen Mary Road, Montreal, Quebec, H3W 1W5, Canada.
- Faculties of Medicine and Pharmacy, Université de Montréal, Montreal, Canada.
| | - Krystle van Hoof
- Institute of Gender and Health, Canadian Institutes of Health Research, 4545 Queen Mary Road, Montreal, Quebec, H3W 1W5, Canada
| |
Collapse
|
66
|
Pinares-Garcia P, Stratikopoulos M, Zagato A, Loke H, Lee J. Sex: A Significant Risk Factor for Neurodevelopmental and Neurodegenerative Disorders. Brain Sci 2018; 8:E154. [PMID: 30104506 PMCID: PMC6120011 DOI: 10.3390/brainsci8080154] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Males and females sometimes significantly differ in their propensity to develop neurological disorders. Females suffer more from mood disorders such as depression and anxiety, whereas males are more susceptible to deficits in the dopamine system including Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD) and autism. Despite this, biological sex is rarely considered when making treatment decisions in neurological disorders. A better understanding of the molecular mechanism(s) underlying sex differences in the healthy and diseased brain will help to devise diagnostic and therapeutic strategies optimal for each sex. Thus, the aim of this review is to discuss the available evidence on sex differences in neuropsychiatric and neurodegenerative disorders regarding prevalence, progression, symptoms and response to therapy. We also discuss the sex-related factors such as gonadal sex hormones and sex chromosome genes and how these might help to explain some of the clinically observed sex differences in these disorders. In particular, we highlight the emerging role of the Y-chromosome gene, SRY, in the male brain and its potential role as a male-specific risk factor for disorders such as PD, autism, and ADHD in many individuals.
Collapse
Affiliation(s)
- Paulo Pinares-Garcia
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Marielle Stratikopoulos
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Alice Zagato
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Hannah Loke
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | - Joohyung Lee
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
67
|
Cui C, Yang W, Shi J, Zhou Y, Yang J, Cui Q, Zhou Y. Identification and Analysis of Human Sex-biased MicroRNAs. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:200-211. [PMID: 30005964 PMCID: PMC6076379 DOI: 10.1016/j.gpb.2018.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/09/2018] [Accepted: 03/02/2018] [Indexed: 12/27/2022]
Abstract
Sex differences are widely observed under various circumstances ranging from physiological processes to therapeutic responses, and a myriad of sex-biased genes have been identified. In recent years, transcriptomic datasets of microRNAs (miRNAs), an important class of non-coding RNAs, become increasingly accessible. However, comprehensive analysis of sex difference in miRNA expression has not been performed. Here, we identified the differentially-expressed miRNAs between males and females by examining the transcriptomic datasets available in public databases and conducted a systemic analysis of their biological characteristics. Consequently, we identified 73 female-biased miRNAs (FmiRs) and 163 male-biased miRNAs (MmiRs) across four tissues including brain, colorectal mucosa, peripheral blood, and cord blood. Our results suggest that compared to FmiRs, MmiRs tend to be clustered in the human genome and exhibit higher evolutionary rate, higher expression tissue specificity, and lower disease spectrum width. In addition, functional enrichment analysis of miRNAs show that FmiR genes are significantly associated with metabolism process and cell cycle process, whereas MmiR genes tend to be enriched for functions like histone modification and circadian rhythm. In all, the identification and analysis of sex-biased miRNAs together could provide new insights into the biological differences between females and males and facilitate the exploration of sex-biased disease susceptibility and therapy.
Collapse
Affiliation(s)
- Chunmei Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiangcheng Shi
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Zhou
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Yuan Zhou
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
68
|
Advancing Sex- and Gender-Informed Approaches to Health in an Academic Medical Center. Womens Health Issues 2018; 28:117-121. [DOI: 10.1016/j.whi.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 02/03/2023]
|
69
|
Červenka L, Škaroupková P, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the course of chronic kidney disease and congestive heart failure: a study in 5/6 nephrectomized Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula. Clin Exp Pharmacol Physiol 2017; 43:883-95. [PMID: 27385471 DOI: 10.1111/1440-1681.12619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/24/2016] [Accepted: 07/03/2016] [Indexed: 01/13/2023]
Abstract
The role of hypertension and the renin-angiotensin system (RAS) in sex-related differences in the course of chronic kidney disease (CKD) and congestive heart failure (CHF) remain unclear, especially when the two diseases are combined. In male and female Ren-2 transgenic rats (TGR), a model of hypertension with activation of endogenous RAS, CKD was induced by 5/6 renal mass reduction (5/6 NX) and CHF was elicited by volume overload achieved by creation of an aorto-caval fistula (ACF). The primary aim of the study was to examine long-term CKD- and CHF-related mortality, especially in animals with CKD and CHF combined, with particular interest in the potential sex-related differences. The follow-up period was 23 weeks after the first intervention (5/6 NX). We found, first, that TGR did not exhibit sexual dimorphism in the course of 5/6 NX-induced CKD. Second, in contrast, TGR exhibited important sex-related differences in the course of ACF-induced CHF-related mortality: intact female TGR showed higher survival rate than male TGR. This situation is reversed in the course of combined 5/6 NX-induced CKD and ACF-induced CHF-related mortality: intact female TGR exhibited poorer survival than male TGR. Third, the survival rate in animals with combined 5/6 NX-induced CKD and ACF-induced CHF was significantly worsened as compared with rat groups that were exposed to 'single organ disease'. Collectively, our present results clearly show that CKD aggravates long-term mortality of animals with CHF. In addition, TGR exhibit remarkable sexual dimorphism with respect to CKD- and CHF-related mortality, especially in animals with combined CKD and CHF.
Collapse
Affiliation(s)
- Luděk Červenka
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Škaroupková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
70
|
Day S, Mason R, Tannenbaum C, Rochon PA. Essential metrics for assessing sex & gender integration in health research proposals involving human participants. PLoS One 2017; 12:e0182812. [PMID: 28854192 PMCID: PMC5576646 DOI: 10.1371/journal.pone.0182812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023] Open
Abstract
Integrating sex and gender in health research is essential to produce the best possible evidence to inform health care. Comprehensive integration of sex and gender requires considering these variables from the very beginning of the research process, starting at the proposal stage. To promote excellence in sex and gender integration, we have developed a set of metrics to assess the quality of sex and gender integration in research proposals. These metrics are designed to assist both researchers in developing proposals and reviewers in making funding decisions. We developed this tool through an iterative three-stage method involving 1) review of existing sex and gender integration resources and initial metrics design, 2) expert review and feedback via anonymous online survey (Likert scale and open-ended questions), and 3) analysis of feedback data and collective revision of the metrics. We received feedback on the initial metrics draft from 20 reviewers with expertise in conducting sex- and/or gender-based health research. The majority of reviewers responded positively to questions regarding the utility, clarity and completeness of the metrics, and all reviewers provided responses to open-ended questions about suggestions for improvements. Coding and analysis of responses identified three domains for improvement: clarifying terminology, refining content, and broadening applicability. Based on this analysis we revised the metrics into the Essential Metrics for Assessing Sex and Gender Integration in Health Research Proposals Involving Human Participants, which outlines criteria for excellence within each proposal component and provides illustrative examples to support implementation. By enhancing the quality of sex and gender integration in proposals, the metrics will help to foster comprehensive, meaningful integration of sex and gender throughout each stage of the research process, resulting in better quality evidence to inform health care for all.
Collapse
Affiliation(s)
- Suzanne Day
- Women’s Xchange, Women’s College Hospital, Toronto, Ontario, Canada
- * E-mail:
| | - Robin Mason
- Women’s Xchange, Women’s College Hospital, Toronto, Ontario, Canada
- Women’s College Research Institute, Women’s College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Cara Tannenbaum
- Institute of Gender and Health, Canadian Institutes of Health Research, Montreal, Quebec, Canada
| | - Paula A. Rochon
- Women’s Xchange, Women’s College Hospital, Toronto, Ontario, Canada
- Women’s College Research Institute, Women’s College Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
71
|
Abstract
Performance fatigability differs between men and women for a range of fatiguing tasks. Women are usually less fatigable than men, and this is most widely described for isometric fatiguing contractions and some dynamic tasks. The sex difference in fatigability is specific to the task demands so that one mechanism is not universal, including any sex differences in skeletal muscle physiology, muscle perfusion, and voluntary activation. However, there are substantial knowledge gaps about the task dependency of the sex differences in fatigability, the involved mechanisms, and the relevance to clinical populations and with advanced age. The knowledge gaps are in part due to the significant deficits in the number of women included in performance fatigability studies despite a gradual increase in the inclusion of women for the last 20 yr. Therefore, this review 1) provides a rationale for the limited knowledge about sex differences in performance fatigability, 2) summarizes the current knowledge on sex differences in fatigability and the potential mechanisms across a range of tasks, 3) highlights emerging areas of opportunity in clinical populations, and 4) suggests strategies to close the knowledge gap and understanding the relevance of sex differences in performance fatigability. The limited understanding about sex differences in fatigability in healthy and clinical populations presents as a field ripe with opportunity for high-impact studies. Such studies will inform on the limitations of men and women during athletic endeavors, ergonomic tasks, and daily activities. Because fatigability is required for effective neuromuscular adaptation, sex differences in fatigability studies will also inform on optimal strategies for training and rehabilitation in both men and women.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| |
Collapse
|
72
|
Ioannidou E. The Sex and Gender Intersection in Chronic Periodontitis. Front Public Health 2017; 5:189. [PMID: 28824898 PMCID: PMC5543279 DOI: 10.3389/fpubh.2017.00189] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 12/30/2022] Open
Abstract
Periodontitis, a complex polymicrobial inflammatory disease, is a public health burden affecting more than 100 million people and being partially responsible for tooth loss. Interestingly, periodontitis has a documented higher prevalence in men as compared to women signifying a possible sex/gender entanglement in the disease pathogenesis. Although relevant evidence has treated sex/gender in a simplistic dichotomous manner, periodontitis may represent a complex inflammatory disease model, in which sex biology may interfere with gender social and behavioral constructs affecting disease clinical phenotype. Even when it became clear that experimental oral health research needed to incorporate gender (and/or sex) framework in the hypothesis, researchers overwhelmingly ignored it unless the research question was directly related to reproductive system or sex-specific cancer. With the recognition of gender medicine as an independent field of research, this study challenged the current notion regarding sex/gender roles in periodontal disease. We aimed to develop the methodological and analytical framework with the recognition of sex/gender as important determinants of disease pathogenesis that require special attention. First, we aim to present relevant sex biologic evidence to understand the plausibility of the epidemiologic data. In periodontitis pathogenesis, sex dimorphism has been implicated in the disease etiology possibly affecting the bacterial component and the host immune response both in the innate and adaptive levels. With the clear distinction between sex and gender, gender oral health disparities have been explained by socioeconomic factors, cultural attitudes as well as access to preventive and regular care. Economic inequality and hardship for women have resulted in limited access to oral care. As a result, gender emerged as a complex socioeconomic and behavioral factor influencing oral health outcomes. Taken together, as disease phenotypic presentation is a multifactorial product of biology, behavior and the environment, sex dimorphism in immunity as well as gender socio-behavioral construct might play a role in the above model. Therefore, this paper will provide the conceptual framework and principles intergrading sex and gender within periodontal research in a complex biologic and socio-behavioral dimension.
Collapse
|
73
|
Preclinical models in the study of sex differences. Clin Sci (Lond) 2017; 131:449-469. [PMID: 28265036 DOI: 10.1042/cs20160847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/13/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023]
Abstract
The biology of sex differences deals with the study of the disparities between females and males and the related biological mechanisms. Gender medicine focuses on the impact of gender and sex on human physiology, pathophysiology and clinical features of diseases that are common to women and men. The term gender refers to a complex interrelation and integration of sex-as a biological and functional determinant-and psychological and cultural behaviours (due to ethnical, social or religious background). The attention to the impact of gender differences on the pathophysiology and, therefore, on the clinical management of the most common diseases, such as cardiovascular diseases (CVD), neurodegenerative disorders, immune and autoimmune diseases as well as several tumours, is in fact often neglected. Hence, studies covering different fields of investigation and including sex differences in the pathogenesis, in diagnostic and prognostic criteria as well as in response to therapy appear mandatory. However, prerequisites for this development are preclinical studies, including in vitro and in vivo approaches. They represent the first step in the development of a drug or in the comprehension of the pathogenetic mechanisms of diseases, in turn a necessary step for the development of new or more appropriate therapeutic strategies. However, sex differences are still poorly considered and the great majority of preclinical studies do not take into account the relevance of such disparities. In this review, we describe the state of the art of these studies and provide some paradigmatic examples of key fields of investigation, such as oncology, neurology and CVD, where preclinical models should be improved.
Collapse
|
74
|
Pillai S, Lo CY, Liew V, Lalloz M, Smith RA, Gopalan V, Lam AKY. MicroRNA 183 family profiles in pheochromocytomas are related to clinical parameters and SDHB expression. Hum Pathol 2017; 64:91-97. [PMID: 28412207 DOI: 10.1016/j.humpath.2017.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 11/25/2022]
Abstract
This study aims to examine the expression profiles of the miR-183 cluster (miR-96/182/183) in pheochromocytoma. Pheochromocytoma tissues were prospectively collected from 50 patients with pheochromocytoma. Expression of miR-183 cluster members and SDHB protein expression were analyzed in these tissues by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. The expression of miR-183 cluster members in pheochromocytomas was correlated with the clinical and pathological parameters of these patients. The expression levels of miR-183 cluster members were predominantly downregulated or deleted in pheochromocytoma. Low expression or deletion of miR-96 was predominantly noted in younger patients with pheochromocytoma (<50 years, P=.01). Female patients in the study group showed marked deletion of miR-182 (P=.05). Deletion of the cluster was also associated with SDHB protein expression in pheochromocytoma. Moreover, patients with low miR-183 cluster expression had a slightly better survival rate when compared with patients with high expression. To conclude, the findings indicate a role for miR-183 cluster members in the pathogenesis and clinical progression of pheochromocytoma.
Collapse
Affiliation(s)
- Suja Pillai
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia
| | - Chung Y Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Victor Liew
- Department of Surgery, Gold Coast Private Hospital, Gold Coast, Southport, Q4215, Australia
| | - Minella Lalloz
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia
| | - Robert A Smith
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Kelvin Grove, Q4059, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia.
| |
Collapse
|
75
|
Casamento-Moran A, Hunter SK, Chen YT, Kwon MH, Fox EJ, Yacoubi B, Christou EA. Sex differences in spatial accuracy relate to the neural activation of antagonistic muscles in young adults. Exp Brain Res 2017; 235:2425-2436. [DOI: 10.1007/s00221-017-4968-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/24/2017] [Indexed: 12/20/2022]
|
76
|
Kandhi S, Zhang B, Froogh G, Qin J, Alruwaili N, Le Y, Yang YM, Hwang SH, Hammock BD, Wolin MS, Huang A, Sun D. EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids. Am J Physiol Lung Cell Mol Physiol 2017; 313:L350-L359. [PMID: 28450284 DOI: 10.1152/ajplung.00038.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
To test the hypothesis that epoxyeicosatrienoic acids (EETs) facilitate pulmonary responses to hypoxia, male wild-type (WT) and soluble-epoxide hydrolase knockout (sEH-KO) mice, and WT mice chronically fed a sEH inhibitor (t-TUCB; 1 mg·kg-1·day-1) were used. Right ventricular systolic pressure (RVSP) was recorded under control and hypoxic conditions. The control RVSP was comparable among all groups. However, hypoxia elicited increases in RVSP in all groups with predominance in sEH-KO and t-TUCB-treated mice. 14,15-EEZE (an EET antagonist) attenuated the hypoxia-induced greater elevation of RVSP in sEH-deficient mice, suggesting an EET-mediated increment. Exogenous 5,6-; 8,9-, or 14,15-EET (0.05 ng/g body wt) did not change RVSP in any conditions, but 11,12-EET enhanced RVSP under hypoxia. Isometric tension was recorded from pulmonary arteries isolated from WT and sEH-KO mice, vessels that behaved identically in their responsiveness to vasoactive agents and vessel stretch. Hypoxic pulmonary vasoconstriction (HPV, expressed as increases in hypoxic force) was significantly greater in vessels of sEH-KO than WT vessels; the enhanced component was inhibited by EEZE. Treatment of WT vessels with 11,12-EET enhanced HPV to the same level as sEH-KO vessels, confirming EETs as primary players. Inhibition of cyclooxygenases (COXs) significantly enhanced HPV in WT vessels, but attenuated HPV in sEH-KO vessels. Blocking/inhibiting COX-1, prostaglandin H2 (PGH2)/thromboxane A2 (TXA2) receptors and TXA synthase prevented the enhanced HPV in sEH-KO vessels but had no effects on WT vessels. In conclusion, an EET-dependent alteration in PG metabolism that favors the action of vasoconstrictor PGH2 and TXA2 potentiates HPV and hypoxia-induced elevation of RVSP in sEH-deficient mice.
Collapse
Affiliation(s)
- Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Bin Zhang
- Department of Physiology, New York Medical College, Valhalla, New York.,Department of GI Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China; and
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York.,Department of GI Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China; and
| | - Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Yicong Le
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Yang-Ming Yang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and University of California Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, and University of California Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York;
| |
Collapse
|
77
|
Petersen PS, Lei X, Wolf RM, Rodriguez S, Tan SY, Little HC, Schweitzer MA, Magnuson TH, Steele KE, Wong GW. CTRP7 deletion attenuates obesity-linked glucose intolerance, adipose tissue inflammation, and hepatic stress. Am J Physiol Endocrinol Metab 2017; 312:E309-E325. [PMID: 28223291 PMCID: PMC5406989 DOI: 10.1152/ajpendo.00344.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/10/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes.
Collapse
Affiliation(s)
- Pia S Petersen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xia Lei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Risa M Wolf
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah C Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Schweitzer
- Department of Surgery, Johns Hopkins Center for Bariatric Surgery, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Thomas H Magnuson
- Department of Surgery, Johns Hopkins Center for Bariatric Surgery, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Kimberley E Steele
- Department of Surgery, Johns Hopkins Center for Bariatric Surgery, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland;
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
78
|
Ables ET, Drummond-Barbosa D. Steroid Hormones and the Physiological Regulation of Tissue-Resident Stem Cells: Lessons from the Drosophila Ovary. CURRENT STEM CELL REPORTS 2017; 3:9-18. [PMID: 28458991 PMCID: PMC5407287 DOI: 10.1007/s40778-017-0070-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Stem cells respond to local paracrine signals; more recently, however, systemic hormones have also emerged as key regulators of stem cells. This review explores the role of steroid hormones in stem cells, using the Drosophila germline stem cell as a centerpiece for discussion. RECENT FINDINGS Stem cells sense and respond directly and indirectly to steroid hormones, which regulate diverse sets of target genes via interactions with nuclear hormone receptors. Hormone-regulated networks likely integrate the actions of multiple systemic signals to adjust the activity of stem cell lineages in response to changes in physiological status. SUMMARY Hormones are inextricably linked to animal physiology, and can control stem cells and their local niches. Elucidating the molecular mechanisms of hormone signaling in stem cells is essential for our understanding of the fundamental underpinnings of stem cell biology, and for informing new therapeutic interventions against cancers or for regenerative medicine.
Collapse
Affiliation(s)
- Elizabeth T. Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
79
|
Das SK, Patel VB, Basu R, Wang W, DesAulniers J, Kassiri Z, Oudit GY. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress. J Am Heart Assoc 2017; 6:JAHA.116.003456. [PMID: 28115312 PMCID: PMC5523622 DOI: 10.1161/jaha.116.003456] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Sex‐related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron‐overload cardiomyopathy is poorly understood. Methods and Results Male and female wild‐type and hemojuvelin‐null mice were injected and fed with a high‐iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron‐overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron‐overloaded mice based on echocardiographic and invasive pressure‐volume analyses. Female mice demonstrated a marked suppression of iron‐mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron‐overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron‐induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β‐Estradiol therapy rescued the iron‐overload cardiomyopathy in male wild‐type mice. The responses in wild‐type and hemojuvelin‐null female mice were remarkably similar, highlighting a conserved mechanism of sex‐dependent protection from iron‐overload‐mediated cardiac injury. Conclusions Male and female mice respond differently to iron‐overload‐mediated effects on heart structure and function, and females are markedly protected from iron‐overload cardiomyopathy. Ovariectomy in female mice exacerbated iron‐induced myocardial injury and precipitated severe cardiac dysfunction during iron‐overload conditions, whereas 17β‐estradiol therapy was protective in male iron‐overloaded mice.
Collapse
Affiliation(s)
- Subhash K Das
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Wang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica DesAulniers
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada .,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
80
|
Maga-Nteve C, Vasilopoulou CG, Constantinou C, Margarity M, Klapa MI. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC–MS metabolomic data normalization in meta-analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1041-1042:158-166. [DOI: 10.1016/j.jchromb.2016.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023]
|
81
|
Briant LJB, Charkoudian N, Hart EC. Sympathetic regulation of blood pressure in normotension and hypertension: when sex matters. Exp Physiol 2016; 101:219-29. [PMID: 26682826 DOI: 10.1113/ep085368] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the topic of this review? Hypertension is a major problem in Western society. Risk of hypertension increases with age, especially in women, who have lower risk compared with men until menopause. This review outlines the sex differences in the sympathetic control of blood pressure and how these mechanisms change with age. What advances does it highlight? It has recently been recognized that men and women regulate blood pressure by different physiological mechanisms. This is important for both the understanding and the clinical management of individual patients with hypertension. This review summarizes recent advances in understanding how the regulation of blood pressure in hypertension by the sympathetic nervous system differs between men and women. The sympathetic nervous system has a central role in the regulation of arterial blood pressure (BP) and in the development of hypertension in humans. Recent evidence points to differences between the sexes in the integrative mechanisms by which BP is controlled, suggesting that the development of hypertension may follow distinct pathways in women compared with men. An important aspect of sympathetic control of BP is its substantial interindividual variability. In healthy young men, the variability in sympathetic nerve activity (SNA) is balanced by variability in cardiac output and vascular adrenergic responses, such that BP remains similar, and normal, across a severalfold range of resting SNA values. In young women, variability in resting SNA is similar to that seen in men, but the 'balancing' mechanisms are strikingly different; women exhibit greater β-adrenergic vasodilatation compared with men, which minimizes the pressor effects of a given level of SNA. Ageing is associated with increased SNA and a loss of the balancing factors seen in younger people, leading to an increased risk of hypertension in older people. Loss of oestrogen with menopause in women appears to be linked mechanistically with the decrease in β-adrenergic vasodilatation and the increased risk of hypertension in older women. Other important factors contributing to hypertension via sympathetic mechanisms are obesity and arterial stiffening, both of which increase with ageing. We conclude with a discussion of important areas in which more work is needed to understand and manage appropriately the sex-specific mechanisms in the development and maintenance of hypertension.
Collapse
Affiliation(s)
- L J B Briant
- Clinical Research and Imaging Centre, Cardionomics Group, University of Bristol, Bristol, UK
| | - N Charkoudian
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - E C Hart
- Clinical Research and Imaging Centre, Cardionomics Group, University of Bristol, Bristol, UK
| |
Collapse
|
82
|
Souza GMPR, Bonagamba LGH, Amorim MR, Moraes DJA, Machado BH. Inspiratory modulation of sympathetic activity is increased in female rats exposed to chronic intermittent hypoxia. Exp Physiol 2016; 101:1345-1358. [DOI: 10.1113/ep085850] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- George Miguel P. R. Souza
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| | - Leni G. H. Bonagamba
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| | - Mateus R. Amorim
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| | - Davi J. A. Moraes
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| | - Benedito H. Machado
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| |
Collapse
|
83
|
Plank-Bazinet JL, Sampson A, Miller LR, Fadiran EO, Kallgren D, Agarwal RK, Barfield W, Brooks CE, Begg L, Mistretta AC, Scott PE, Clayton JA, Cornelison TL. The science of sex and gender in human health: online courses to create a foundation for sex and gender accountability in biomedical research and treatment. Biol Sex Differ 2016; 7:47. [PMID: 27785349 PMCID: PMC5073879 DOI: 10.1186/s13293-016-0100-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Sex and gender differences play a significant role in the course and outcome of conditions that affect specific organ systems in the human body. Research on differences in the effects of medical intervention has helped scientists develop a number of sex- and gender-specific guidelines on the treatment and management of these conditions. An online series of courses, "The Science of Sex and Gender in Human Health," developed by the National Institutes of Health Office of Research on Women's Health and the U.S. Food and Drug Administration Office of Women's Health, examines sex and gender differences and their implications. Thus far, three online courses have been generated. The first course offers an overview of the scientific and biological basis for sex- and gender-related differences. The second course is focused on disease-specific sex and gender differences in health and behavior and their implications. Finally, the third course covers the influence of sex and gender on disease manifestation, treatment, and outcome. METHODS Data were obtained using website analytics and post-course surveys. RESULTS To date, over 1000 individuals have completed at least one course. Additionally, 600 users have received continuing education credit for completing a course in the series. Finally, the majority of respondents to the online course survey have indicated that the courses considerably enhanced their professional effectiveness. CONCLUSIONS "The Science of Sex and Gender in Human Health" online courses are freely available sources of information that provide healthcare providers and researchers with the resources to successfully account for sex and gender in their medical practice and research programs.
Collapse
Affiliation(s)
- Jennifer L. Plank-Bazinet
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| | - Annie Sampson
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| | - Leah R. Miller
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| | - Emmanuel O. Fadiran
- Food and Drug Administration Office of Women’s Health, 10903 New Hampshire Avenue, W032-2333, Silver Spring, MD 20993 USA
| | - Deborah Kallgren
- Food and Drug Administration Office of Women’s Health, 10903 New Hampshire Avenue, W032-2333, Silver Spring, MD 20993 USA
| | - Rajeev K. Agarwal
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| | - Whitney Barfield
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| | - Claudette E. Brooks
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| | - Lisa Begg
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| | - Amy C. Mistretta
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| | - Pamela E. Scott
- Food and Drug Administration Office of Women’s Health, 10903 New Hampshire Avenue, W032-2333, Silver Spring, MD 20993 USA
| | - Janine Austin Clayton
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| | - Terri L. Cornelison
- National Institutes of Health Office of Research on Women’s Health, 6707 Democracy Blvd, Suite 400, Bethesda, MD 20817 USA
| |
Collapse
|
84
|
Rodriguez S, Lei X, Petersen PS, Tan SY, Little HC, Wong GW. Loss of CTRP1 disrupts glucose and lipid homeostasis. Am J Physiol Endocrinol Metab 2016; 311:E678-E697. [PMID: 27555298 PMCID: PMC5241556 DOI: 10.1152/ajpendo.00087.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022]
Abstract
C1q/TNF-related protein 1 (CTRP1) is a conserved plasma protein of the C1q family with notable metabolic and cardiovascular functions. We have previously shown that CTRP1 infusion lowers blood glucose and that transgenic mice with elevated circulating CTRP1 are protected from diet-induced obesity and insulin resistance. Here, we used a genetic loss-of-function mouse model to address the requirement of CTRP1 for metabolic homeostasis. Despite similar body weight, food intake, and energy expenditure, Ctrp1 knockout (KO) mice fed a low-fat diet developed insulin resistance and hepatic steatosis. Impaired glucose metabolism in Ctrp1 KO mice was associated with increased hepatic gluconeogenic gene expression and decreased skeletal muscle glucose transporter glucose transporter 4 levels and AMP-activated protein kinase activation. Loss of CTRP1 enhanced the clearance of orally administered lipids but did not affect intestinal lipid absorption, hepatic VLDL-triglyceride export, or lipoprotein lipase activity. In contrast to triglycerides, hepatic cholesterol levels were reduced in Ctrp1 KO mice, paralleling the reduced expression of cholesterol synthesis genes. Contrary to expectations, when challenged with a high-fat diet to induce obesity, Ctrp1 KO mice had increased physical activity and reduced body weight, adiposity, and expression of lipid synthesis and fibrotic genes in adipose tissue; these phenotypes were linked to elevated FGF-21 levels. Due in part to increased hepatic AMP-activated protein kinase activation and reduced expression of lipid synthesis genes, Ctrp1 KO mice fed a high-fat diet also had reduced liver and serum triglyceride and cholesterol levels. Taken together, these results provide genetic evidence to establish the significance of CTRP1 to systemic energy metabolism in different metabolic and dietary contexts.
Collapse
Affiliation(s)
- Susana Rodriguez
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xia Lei
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pia S Petersen
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y Tan
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah C Little
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
85
|
Ip WTK, McAlindon A, Miller SE, Bell JR, Curl CL, Huggins CE, Mellor KM, Raaijmakers AJA, Bienvenu LA, McLennan PL, Pepe S, Delbridge LMD. Dietary omega-6 fatty acid replacement selectively impairs cardiac functional recovery after ischemia in female (but not male) rats. Am J Physiol Heart Circ Physiol 2016; 311:H768-80. [PMID: 27422989 DOI: 10.1152/ajpheart.00690.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 07/12/2016] [Indexed: 02/05/2023]
Abstract
A definitive understanding of the role of dietary lipids in determining cardioprotection (or cardiodetriment) has been elusive. Randomized trial findings have been variable and sex specificity of dietary interventions has not been determined. In this investigation the sex-selective cardiac functional effects of three diets enriched by omega-3 or omega-6 polyunsaturated fatty acids (PUFA) or enriched to an equivalent extent in saturated fatty acid components were examined in rats after an 8-wk treatment period. In females the myocardial membrane omega-6:omega-3 PUFA ratio was twofold higher than males in the omega-6 diet replacement group. In diets specified to be high in omega-3 PUFA or in saturated fat, this sex difference was not apparent. Isolated cardiomyocyte and heart Langendorff perfusion experiments were performed, and molecular measures of cell viability were assessed. Under basal conditions the contractile performance of omega-6 fed female cardiomyocytes and hearts was reduced compared with males. Omega-6 fed females exhibited impaired systolic resilience after ischemic insult. This response was associated with increased postischemia necrotic cell damage evaluated by coronary lactate dehydrogenase during reperfusion in omega-6 fed females. Cardiac and myocyte functional parameters were not different between omega-3 and saturated fat dietary groups and within these groups there were no discernible sex differences. Our data provide evidence at both the cardiac and cardiomyocyte levels that dietary saturated fatty acid intake replacement with an omega-6 (but not omega-3) enriched diet has selective adverse cardiac effect in females. This finding has potential relevance in relation to women, cardiac risk, and dietary management.
Collapse
Affiliation(s)
- Wendy T K Ip
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Andrew McAlindon
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Sarah E Miller
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - James R Bell
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Claire L Curl
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Catherine E Huggins
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Kimberley M Mellor
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Antonia J A Raaijmakers
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Laura A Bienvenu
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Peter L McLennan
- Graduate School of Medicine, Centre for Human Applied Physiology, University of Wollongong, Wollongong, Australia; and
| | - Salvatore Pepe
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lea M D Delbridge
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia;
| |
Collapse
|
86
|
Bell JR, Curl CL, Harding TW, Vila Petroff M, Harrap SB, Delbridge LMD. Male and female hypertrophic rat cardiac myocyte functional responses to ischemic stress and β-adrenergic challenge are different. Biol Sex Differ 2016; 7:32. [PMID: 27390618 PMCID: PMC4936311 DOI: 10.1186/s13293-016-0084-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/22/2016] [Indexed: 01/19/2023] Open
Abstract
Background Cardiac hypertrophy is the most potent cardiovascular risk factor after age, and relative mortality risk linked with cardiac hypertrophy is greater in women. Ischemic heart disease is the most common form of cardiovascular pathology for both men and women, yet significant differences in incidence and outcomes exist between the sexes. Cardiac hypertrophy and ischemia are frequently occurring dual pathologies. Whether the cellular (cardiomyocyte) mechanisms underlying myocardial damage differ in women and men remains to be determined. In this study, utilizing an in vitro experimental approach, our goal was to examine the proposition that responses of male/female cardiomyocytes to ischemic (and adrenergic) stress may be differentially modulated by the presence of pre-existing cardiac hypertrophy. Methods We used a novel normotensive custom-derived hypertrophic heart rat (HHR; vs control strain normal heart rat (NHR)). Cardiomyocyte morphologic and electromechanical functional studies were performed using microfluorimetric techniques involving simulated ischemia/reperfusion protocols. Results HHR females exhibited pronounced cardiac/cardiomyocyte enlargement, equivalent to males. Under basal conditions, a lower twitch amplitude in female myocytes was prominent in normal but not in hypertrophic myocytes. The cardiomyocyte Ca2+ responses to β-adrenergic challenge differed in hypertrophic male and female cardiomyocytes, with the accentuated response in males abrogated in females—even while contractile responses were similar. In simulated ischemia, a marked and selective elevation of end-ischemia Ca2+ in normal female myocytes was completely suppressed in hypertrophic female myocytes—even though all groups demonstrated similar shifts in myocyte contractile performance. After 30 min of simulated reperfusion, the Ca2+ desensitization characterizing the male response was distinctively absent in female cardiomyocytes. Conclusions Our data demonstrate that cardiac hypertrophy produces dramatically different basal and stress-induced pathophenotypes in female- and male-origin cardiomyocytes. The lower Ca2+ operational status characteristic of female (vs male) cardiomyocytes comprising normal hearts is not exhibited by myocytes of hypertrophic hearts. After ischemia/reperfusion, availability of activator Ca2+ is suppressed in female hypertrophic myocytes, whereas sensitivity to Ca2+ is blunted in male hypertrophic myocytes. These findings demonstrate that selective intervention strategies should be pursued to optimize post-ischemic electromechanical support for male and female hypertrophic hearts. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0084-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James R Bell
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia
| | - Claire L Curl
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia
| | - Tristan W Harding
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, Centro Cientifico Tecnologico La Plata, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Stephen B Harrap
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia.,Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Melbourne, Victoria 3010 Australia
| |
Collapse
|
87
|
Zakiniaeiz Y, Cosgrove KP, Potenza MN, Mazure CM. Balance of the Sexes: Addressing Sex Differences in Preclinical Research. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:255-9. [PMID: 27354851 PMCID: PMC4918870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Preclinical research is fundamental for the advancement of biomedical sciences and enhancing healthcare. Considering sex differences in all studies throughout the entire biomedical research pipeline is necessary to adequately inform clinical research and improve health outcomes. However, there is a paucity of information to date on sex differences in preclinical work. As of 2009, most (about 80 percent) rodent studies across 10 fields of biology were still conducted with only male animals. In 2016, the National Institutes of Health implemented a policy aimed to address this concern by requiring the consideration of sex as a biological variable in preclinical research grant applications. This perspective piece aims to (1) provide a brief history of female inclusion in biomedical research, (2) describe the importance of studying sex differences, (3) explain possible reasons for opposition of female inclusion, and (4) present potential additional solutions to reduce sex bias in preclinical research.
Collapse
Affiliation(s)
- Yasmin Zakiniaeiz
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT,To whom all correspondence should be addressed: Yasmin Zakiniaeiz, 1 Church Street, Suite 721, New Haven, CT 06510; Tel: 203-737-3448;
| | - Kelly P. Cosgrove
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT,Department of Radiology and Bioimaging, Yale University, New Haven, CT,Department of Psychiatry, Yale University, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Marc N. Potenza
- Department of Psychiatry, Yale University, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT,Child Study Center, Yale University School of Medicine, New Haven, CT,CASAColumbia, Yale University School of Medicine, New Haven, CT,Connecticut Mental Health Center, New Haven, CT,Women’s Health Research at Yale, New Haven, CT
| | - Carolyn M. Mazure
- Department of Psychiatry, Yale University, New Haven, CT,Women’s Health Research at Yale, New Haven, CT
| |
Collapse
|
88
|
Vasilopoulou CG, Margarity M, Klapa MI. Metabolomic Analysis in Brain Research: Opportunities and Challenges. Front Physiol 2016; 7:183. [PMID: 27252656 PMCID: PMC4878281 DOI: 10.3389/fphys.2016.00183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results.
Collapse
Affiliation(s)
- Catherine G Vasilopoulou
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT)Patras, Greece; Human and Animal Physiology Laboratory, Department of Biology, University of PatrasPatras, Greece
| | - Marigoula Margarity
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras Patras, Greece
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT)Patras, Greece; Departments of Chemical and Biomolecular Engineering and Bioengineering, University of MarylandCollege Park, MD, USA
| |
Collapse
|
89
|
Abstract
This article is intended to illuminate several important changes in our concept of gender-specific medicine in the genomic era. It reviews the history of gender-specific medicine, pointing out the changes in our perception of the nature of biological sex and our expanding knowledge of how it affects the phenotype. The old debate about 'nature versus nurture' is now largely resolved; the two are inextricably intertwined as a result of epigenomic regulation of gene expression; many of the resulting phenotypic changes are inherited and affect future generations. More accurate, rapid and cheaper methods of editing genomic composition are implementing a more sophisticated understanding of how genes function and how individual components of the genome might be added or eliminated to maintain health and prevent disease. As Venter predicted, the new discipline of synthetic biology, based on the creation and use of novel 'designer' chromosomes is an inevitable expansion of our ability to decipher the naturally occurring genome and the factors that control its expression. As we move with unexpected and stunning rapidity into our exploration and manipulation of the genetic code, our investigations must acknowledge the solidly established fact that biological sex will have a profound impact on the interventions we have made and will make in the future. Unfortunately, in spite of the recent urging of the National Institutes of Health (NIH) that sex be included as an essential variable in all levels of scientific investigation, genuine issues remain to be resolved before all scientists accept not only the importance of doing this, but also how to implement it.
Collapse
|
90
|
Maney DL. Perils and pitfalls of reporting sex differences. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150119. [PMID: 26833839 PMCID: PMC4785904 DOI: 10.1098/rstb.2015.0119] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2015] [Indexed: 12/21/2022] Open
Abstract
The idea of sex differences in the brain both fascinates and inflames the public. As a result, the communication and public discussion of new findings is particularly vulnerable to logical leaps and pseudoscience. A new US National Institutes of Health policy to consider both sexes in almost all preclinical research will increase the number of reported sex differences and thus the risk that research in this important area will be misinterpreted and misrepresented. In this article, I consider ways in which we might reduce that risk, for example, by (i) employing statistical tests that reveal the extent to which sex explains variation, rather than whether or not the sexes 'differ', (ii) properly characterizing the frequency distributions of scores or dependent measures, which nearly always overlap, and (iii) avoiding speculative functional or evolutionary explanations for sex-based variation, which usually invoke logical fallacies and perpetuate sex stereotypes. Ultimately, the factor of sex should be viewed as an imperfect, temporary proxy for yet-unknown factors, such as hormones or sex-linked genes, that explain variation better than sex. As scientists, we should be interested in discovering and understanding the true sources of variation, which will be more informative in the development of clinical treatments.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
91
|
Elhai M, Avouac J, Walker UA, Matucci-Cerinic M, Riemekasten G, Airò P, Hachulla E, Valentini G, Carreira PE, Cozzi F, Balbir Gurman A, Braun-Moscovici Y, Damjanov N, Ananieva LP, Scorza R, Jimenez S, Busquets J, Li M, Müller-Ladner U, Kahan A, Distler O, Allanore Y. A gender gap in primary and secondary heart dysfunctions in systemic sclerosis: a EUSTAR prospective study. Ann Rheum Dis 2016; 75:163-9. [PMID: 25342760 DOI: 10.1136/annrheumdis-2014-206386] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/05/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVES In agreement with other autoimmune diseases, systemic sclerosis (SSc) is associated with a strong sex bias. However, unlike lupus, the effects of sex on disease phenotype and prognosis are poorly known. Therefore, we aimed to determine sex effects on outcomes. METHOD We performed a prospective observational study using the latest 2013 data extract from the EULAR scleroderma trials and research (EUSTAR) cohort. We looked at (i) sex influence on disease characteristics at baseline and (ii) then focused on patients with at least 2 years of follow-up to estimate the effects of sex on disease progression and survival. RESULTS 9182 patients with SSc were available (1321 men) for the baseline analyses. In multivariate analysis, male sex was independently associated with a higher risk of diffuse cutaneous subtype (OR: 1.68, (1.45 to 1.94); p<0.001), a higher frequency of digital ulcers (OR: 1.28 (1.11 to 1.47); p<0.001) and pulmonary hypertension (OR: 3.01 (1.47 to 6.20); p<0.003). In the longitudinal analysis (n=4499), after a mean follow-up of 4.9 (±2.7) years, male sex was predictive of new onset of pulmonary hypertension (HR: 2.66 (1.32 to 5.36); p=0.006) and heart failure (HR: 2.22 (1.06 to 4.63); p=0.035). 908 deaths were recorded, male sex predicted deaths of all origins (HR: 1.48 (1.19 to 1.84); p<0.001), but did not significantly account for SSc-related deaths. CONCLUSIONS Although more common in women, SSc appears as strikingly more severe in men. Our results obtained through the largest worldwide database demonstrate a higher risk of severe cardiovascular involvement in men. These results raise the point of including sex in the management and the decision-making process.
Collapse
Affiliation(s)
- Muriel Elhai
- Department of Rheumatology A, Paris Descartes University, Cochin Hospital, Paris, France
| | - Jérôme Avouac
- Department of Rheumatology A, Paris Descartes University, Cochin Hospital, Paris, France
| | - Ulrich A Walker
- Department of Rheumatology, Basel University, Unispital Basel, Basel, Switzerland
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Section of Internal Medicine and Division of Rheumatology, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Gabriela Riemekasten
- Department of Rheumatology, Charitè University Hospital, Berlin, German Rheumatism Research Centre Berlin (DRFZ), a Leibniz institute, Berlin, Germany
| | - Paolo Airò
- UO Reumatologia ed Immunologia Clinica Spedali Civili Brescia, Brescia, Italy
| | - Eric Hachulla
- Department of Internal Medicine, Hôpital Claude Huriez, University Lille Nord-de-France, Lille cedex, France
| | - Gabriele Valentini
- Department of Clinical and Experimental Medicine "F-Magrassi" II, Naples, Italy
| | - Patricia E Carreira
- Servicio de Reumatologia, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Franco Cozzi
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Alexandra Balbir Gurman
- B. Shine Department of Rheumatology, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
| | - Yolanda Braun-Moscovici
- B. Shine Department of Rheumatology, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
| | - Nemanja Damjanov
- Institute of Rheumatology, University of Belgrade Medical School, Belgrade, Serbia
| | - Lidia P Ananieva
- Institute of Rheumatology, Russian Academy of Medical Science, Moscow, Russia
| | - Raffaella Scorza
- U.O. Immunologia Clinica-Centro di Riferimento per le Malattie Autoimmuni Sistemiche, Milano, Italy
| | - Sergio Jimenez
- Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joanna Busquets
- Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital (West Campus), Chinese Academy of Medical Sciences, Beijing, China
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Justus-Liebig University Giessen, Kerckhoff Clinic, Bad Nauheim, Germany
| | - André Kahan
- Department of Rheumatology A, Paris Descartes University, Cochin Hospital, Paris, France
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Yannick Allanore
- Department of Rheumatology A, Paris Descartes University, Cochin Hospital, Paris, France
| |
Collapse
|
92
|
Brandt JE, Priori R, Valesini G, Fairweather D. Sex differences in Sjögren's syndrome: a comprehensive review of immune mechanisms. Biol Sex Differ 2015; 6:19. [PMID: 26535108 PMCID: PMC4630965 DOI: 10.1186/s13293-015-0037-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/17/2015] [Indexed: 02/03/2023] Open
Abstract
Autoimmune diseases (ADs) are estimated to affect between 5 and 8 % of the US population, and approximately 80 % of these patients are women. Sjögren’s syndrome (SS) is an AD that occurs predominately in women over men (16:1). The hallmark characteristic of SS is diminished secretory production from the primary exocrine gland and the lacrimal or salivary glands resulting in symptoms of dry eye and mouth. The disease is believed to be mediated by an inflammatory and autoantibody response directed against salivary and lacrimal gland tissues. This review will examine the literature on sex differences in the immune response of patients and animal models of Sjögren’s syndrome in order to gain a better understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Jessica E Brandt
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA ; Reumatologia, Dipartimento di Medicina Interna e Specialita Mediche, Sapienza Universita di Roma, 00161 Rome, Italy
| | - Roberta Priori
- Reumatologia, Dipartimento di Medicina Interna e Specialita Mediche, Sapienza Universita di Roma, 00161 Rome, Italy
| | - Guido Valesini
- Reumatologia, Dipartimento di Medicina Interna e Specialita Mediche, Sapienza Universita di Roma, 00161 Rome, Italy
| | - DeLisa Fairweather
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA ; Department of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
93
|
Kandhi S, Qin J, Froogh G, Jiang H, Luo M, Wolin MS, Huang A, Sun D. EET-dependent potentiation of pulmonary arterial pressure: sex-different regulation of soluble epoxide hydrolase. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1478-86. [PMID: 26498250 DOI: 10.1152/ajplung.00208.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/17/2015] [Indexed: 01/24/2023] Open
Abstract
We tested the hypothesis that suppression of epoxyeicosatrienoic acid (EET) metabolism via genetic knockout of the gene for soluble epoxide hydrolase (sEH-KO), or female-specific downregulation of sEH expression, plays a role in the potentiation of pulmonary hypertension. We used male (M) and female (F) wild-type (WT) and sEH-KO mice; the latter have high pulmonary EETs. Right ventricular systolic pressure (RVSP) and mean arterial blood pressure (MABP) in control and in response to in vivo administration of U46619 (thromboxane analog), 14,15-EET, and 14,15-EEZE [14,15-epoxyeicosa-5(z)-enoic acid; antagonist of EETs] were recorded. Basal RVSP was comparable among all groups of mice, whereas MABP was significantly lower in F-WT than M-WT mice and further reduced predominantly in F-KO compared with M-KO mice. U46619 dose dependently increased RVSP and MABP in all groups of mice. The increase in RVSP was significantly greater and coincided with smaller increases in MABP in M-KO and F-WT mice compared with M-WT mice. In F-KO mice, the elevation of RVSP by U46619 was even higher than in M-KO and F-WT mice, associated with the least increase in MABP. 14,15-EEZE prevented the augmentation of U46619-induced elevation of RVSP in sEH-KO mice, whereas 14,15-EET-induced pulmonary vasoconstriction was comparable in all groups of mice. sEH expression in the lungs was reduced, paralleled with higher levels of EETs in F-WT compared with M-WT mice. In summary, EETs initiate pulmonary vasoconstriction but act as vasodilators systemically. High pulmonary EETs, as a function of downregulation or deletion of sEH, potentiate U46619-induced increases in RVSP in a female-susceptible manner.
Collapse
Affiliation(s)
- Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; Department of Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China; and
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Meng Luo
- Department of Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China; and Shanghai 9th Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York;
| |
Collapse
|
94
|
Olson PD, Hruska KA, Hunstad DA. Androgens Enhance Male Urinary Tract Infection Severity in a New Model. J Am Soc Nephrol 2015; 27:1625-34. [PMID: 26449605 DOI: 10.1681/asn.2015030327] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/15/2015] [Indexed: 12/17/2022] Open
Abstract
Urinary tract infections (UTIs) occur predominantly in females but also affect substantial male patient populations; indeed, morbidity in complicated UTI is higher in males. Because of technical obstacles, preclinical modeling of UTI in male mice has been limited. We devised a minimally invasive surgical bladder inoculation technique that yields reproducible upper and lower UTI in both male and female mice, enabling studies of sex differences in these infections. Acute uropathogenic Escherichia coli (UPEC) cystitis in C57BL/6 and C3H/HeN males recapitulated the intracellular bacterial community pathway previously shown in females. However, surgically infected females of these strains exhibited more robust bladder cytokine responses and more efficient UPEC control than males. Compared with females, C3H/HeN males displayed a striking predilection for chronic cystitis, manifesting as persistent bacteriuria, high-titer bladder bacterial burdens, and chronic inflammation. Furthermore, males developed more severe pyelonephritis and 100% penetrant renal abscess (a complication that is rare in female mice). These phenotypes were sharply abrogated after castration but restored with exogenous testosterone, suggesting that male susceptibility to UTI is strongly influenced by androgen exposure. These data substantiate the long-standing presumption that anatomic differences in urogenital anatomy confer protection from UTI in males; however, as clinically observed, male sex associated with more severe UTI once these traditional anatomic barriers were bypassed. This study introduces a highly tractable preclinical model for interrogating sex differences in UTI susceptibility and pathogenesis, and illuminates an interplay between host sex and UTI that is more complex than previously appreciated.
Collapse
Affiliation(s)
- Patrick D Olson
- Department of Pediatrics, Medical Scientist Training Program
| | - Keith A Hruska
- Department of Pediatrics, Department of Cell Biology and Physiology, and
| | - David A Hunstad
- Department of Pediatrics, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
95
|
Gokyo Khumbu/Ama Dablam Trek 2012: effects of physical training and high-altitude exposure on oxidative metabolism, muscle composition, and metabolic cost of walking in women. Eur J Appl Physiol 2015; 116:129-44. [PMID: 26349745 DOI: 10.1007/s00421-015-3256-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/28/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE We investigated the effects of moderate-intensity training at low and high altitude on VO2 and QaO2 kinetics and on myosin heavy-chain expression (MyHC) in seven women (36.3 yy ± 7.1; 65.8 kg ± 11.7; 165 cm ± 8) who participated in two 12- to 14-day trekking expeditions at low (598 m) and high altitude (4132 m) separated by 4 months of recovery. METHODS Breath-by-breath VO2 and beat-by-beat QaO2 at the onset of moderate-intensity cycling exercise and energy cost of walking (Cw) were assessed before and after trekking. MyHC expression of vastus lateralis was evaluated before and after low-altitude and after high-altitude trekking; muscle fiber high-resolution respirography was performed at the beginning of the study and after high-altitude trekking. RESULTS Mean response time of VO2 kinetics was faster (P = 0.002 and P = 0.001) and oxygen deficit was smaller (P = 0.001 and P = 0.0004) after low- and high-altitude trekking, whereas ˙ QaO2 kinetics and Cw did not change. Percentages of slow and fast isoforms of MyHC and mitochondrial mass were not affected by low- and high-altitude training. After training altitude, muscle fiber ADP-stimulated mitochondrial respiration was decreased as compared with the control condition (P = 0.016), whereas leak respiration was increased (P = 0.031), leading to a significant increase in the respiratory control ratio (P = 0.016). CONCLUSIONS Although training did not significantly modify muscle phenotype, it induced beneficial adaptations of the oxygen transport-utilization systems witnessed by faster VO2 kinetics at exercise onset.
Collapse
|
96
|
Harvey RE, Hart EC, Charkoudian N, Curry TB, Carter JR, Fu Q, Minson CT, Joyner MJ, Barnes JN. Oral Contraceptive Use, Muscle Sympathetic Nerve Activity, and Systemic Hemodynamics in Young Women. Hypertension 2015; 66:590-7. [PMID: 26101348 PMCID: PMC4537364 DOI: 10.1161/hypertensionaha.115.05179] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/28/2015] [Indexed: 01/21/2023]
Abstract
Endogenous female sex hormones influence muscle sympathetic nerve activity (MSNA), a regulator of arterial blood pressure and important factor in hypertension development. Although ≈80% of American women report using hormonal contraceptives sometime during their life, the influence of combined oral contraceptives (OCs) on MSNA and systemic hemodynamics remains equivocal. The goal of this study was to determine whether women taking OCs have altered MSNA and hemodynamics (cardiac output and total peripheral resistance) at rest during the placebo phase of OC use compared with women with natural menstrual cycles during the early follicular phase. We retrospectively analyzed data from studies in which healthy, premenopausal women (aged 18-35 years) participated. We collected MSNA values at rest and hemodynamic measurements in women taking OCs (n=53; 25±4 years) and women with natural menstrual cycles (n=74; 25±4 years). Blood pressure was higher in women taking OCs versus those with natural menstrual cycles (mean arterial pressure, 89±1 versus 85±1 mm Hg, respectively; P=0.01), although MSNA was similar in both groups (MSNA burst incidence, 16±1 versus 18±1 bursts/100 heartbeats, respectively; P=0.19). In a subset of women in which detailed hemodynamic data were available, those taking OCs (n=33) had similar cardiac output (4.9±0.2 versus 4.7±0.2 L/min, respectively; P=0.47) and total peripheral resistance (19.2±0.8 versus 20.0±0.9 U, respectively; P=0.51) as women with natural menstrual cycles (n=22). In conclusion, women taking OCs have higher resting blood pressure and similar MSNA and hemodynamics during the placebo phase of OC use when compared with naturally menstruating women in the early follicular phase.
Collapse
Affiliation(s)
- Ronee E Harvey
- From the Department of Anesthesiology, Mayo Clinic, Rochester, MN (R.E.H., T.B.C., M.J.J., J.N.B.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (E.C.H.); Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA (N.C.); Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton (J.R.C.); Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center (Q.F.); and Department of Human Physiology, University of Oregon, Eugene (C.T.M.).
| | - Emma C Hart
- From the Department of Anesthesiology, Mayo Clinic, Rochester, MN (R.E.H., T.B.C., M.J.J., J.N.B.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (E.C.H.); Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA (N.C.); Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton (J.R.C.); Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center (Q.F.); and Department of Human Physiology, University of Oregon, Eugene (C.T.M.)
| | - Nisha Charkoudian
- From the Department of Anesthesiology, Mayo Clinic, Rochester, MN (R.E.H., T.B.C., M.J.J., J.N.B.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (E.C.H.); Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA (N.C.); Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton (J.R.C.); Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center (Q.F.); and Department of Human Physiology, University of Oregon, Eugene (C.T.M.)
| | - Timothy B Curry
- From the Department of Anesthesiology, Mayo Clinic, Rochester, MN (R.E.H., T.B.C., M.J.J., J.N.B.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (E.C.H.); Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA (N.C.); Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton (J.R.C.); Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center (Q.F.); and Department of Human Physiology, University of Oregon, Eugene (C.T.M.)
| | - Jason R Carter
- From the Department of Anesthesiology, Mayo Clinic, Rochester, MN (R.E.H., T.B.C., M.J.J., J.N.B.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (E.C.H.); Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA (N.C.); Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton (J.R.C.); Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center (Q.F.); and Department of Human Physiology, University of Oregon, Eugene (C.T.M.)
| | - Qi Fu
- From the Department of Anesthesiology, Mayo Clinic, Rochester, MN (R.E.H., T.B.C., M.J.J., J.N.B.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (E.C.H.); Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA (N.C.); Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton (J.R.C.); Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center (Q.F.); and Department of Human Physiology, University of Oregon, Eugene (C.T.M.)
| | - Christopher T Minson
- From the Department of Anesthesiology, Mayo Clinic, Rochester, MN (R.E.H., T.B.C., M.J.J., J.N.B.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (E.C.H.); Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA (N.C.); Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton (J.R.C.); Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center (Q.F.); and Department of Human Physiology, University of Oregon, Eugene (C.T.M.)
| | - Michael J Joyner
- From the Department of Anesthesiology, Mayo Clinic, Rochester, MN (R.E.H., T.B.C., M.J.J., J.N.B.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (E.C.H.); Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA (N.C.); Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton (J.R.C.); Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center (Q.F.); and Department of Human Physiology, University of Oregon, Eugene (C.T.M.)
| | - Jill N Barnes
- From the Department of Anesthesiology, Mayo Clinic, Rochester, MN (R.E.H., T.B.C., M.J.J., J.N.B.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (E.C.H.); Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA (N.C.); Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton (J.R.C.); Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center (Q.F.); and Department of Human Physiology, University of Oregon, Eugene (C.T.M.)
| |
Collapse
|
97
|
Miller VM, Rocca WA, Faubion SS. Sex Differences Research, Precision Medicine, and the Future of Women's Health. J Womens Health (Larchmt) 2015; 24:969-71. [PMID: 26325362 PMCID: PMC4683561 DOI: 10.1089/jwh.2015.5498] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The National Institutes of Health's (NIH) commitment to improving health outcomes for women and men through rigorous science has been compromised by the lack of basic science evidence obtained from female animals. To correct this limitation, in June 2015 the NIH announced expectations that "sex," as a biological variable, be included into research design and analysis in studies of vertebrate animals and humans (NOT-OD-15-102). Scientists must take the responsibility to implement this directive. However, in doing so, there is a risk that attention could be restricted to only studies of direct comparison between female/women and male/men. By contrast, understanding how sex influences health and disease needs to take a programmatic approach that includes the study of sex-specific conditions. A programmatic approach will assure the advancement of knowledge to improve women's health.
Collapse
Affiliation(s)
- Virginia M Miller
- 1 Departments of Surgery and Physiology and Biomedical Engineering, Women's Health Clinic, Mayo Clinic , Rochester, Minnesota
| | - Walter A Rocca
- 2 Departments of Health Sciences Research and Neurology, Women's Health Clinic, Mayo Clinic , Rochester, Minnesota
| | - Stephanie S Faubion
- 3 Division of General Internal Medicine, Women's Health Clinic, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
98
|
Fairweather D. Sex differences in inflammation during atherosclerosis. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 8:49-59. [PMID: 25983559 PMCID: PMC4405090 DOI: 10.4137/cmc.s17068] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is the leading cause of death in the United States and worldwide, yet more men die from atherosclerosis than women, and at a younger age. Women, on the other hand, mainly develop atherosclerosis following menopause, and particularly if they have one or more autoimmune diseases, suggesting that the immune mechanisms that increase disease in men are different from those in women. The key processes in the pathogenesis of atherosclerosis are vascular inflammation, lipid accumulation, intimal thickening and fibrosis, remodeling, and plaque rupture or erosion leading to myocardial infarction and ischemia. Evidence indicates that sex hormones alter the immune response during atherosclerosis, resulting in different disease phenotypes according to sex. Women, for example, respond to infection and damage with increased antibody and autoantibody responses, while men have elevated innate immune activation. This review describes current knowledge regarding sex differences in the inflammatory immune response during atherosclerosis. Understanding sex differences is critical for improving individualized medicine.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
99
|
Exercise vasodilation is greater in women: contributions of nitric oxide synthase and cyclooxygenase. Eur J Appl Physiol 2015; 115:1735-46. [PMID: 25820143 DOI: 10.1007/s00421-015-3160-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE We hypothesized exercise vasodilation would be greater in women due to nitric oxide synthase (NOS) and cyclooxygenase (COX) signaling. METHODS 45 healthy adults (23 women, W, 22 men, M, 26 ± 1 years) completed two 10-min trials of dynamic forearm exercise at 15 % intensity. Forearm blood flow (FBF; Doppler ultrasound), arterial pressure (brachial catheter), and forearm lean mass were measured to calculate relative forearm vascular conductance (FVCrel) = FBF 100 mmHg(-1) 100 g(-1) lean mass. Local intra-arterial infusion of L-NMMA or ketorolac acutely inhibited NOS and COX, respectively. In Trial 1, the first 5 min served as control exercise (CON), followed by 5 min of L-NMMA or ketorolac over the last 5 min of exercise. In Trial 2, the remaining drug was infused during 5-10 min, to achieve combined NOS-COX inhibition (double blockade, DB). RESULTS Are mean ± SE. Women exhibited 29 % greater vasodilation in CON (ΔFVCrel, 19 ± 1 vs. 15 ± 1, p = 0.01). L-NMMA reduced ΔFVCrel (p < 0.001) (W: Δ -2.3 ± 1.3 vs. M: Δ -3.7 ± 0.8, p = 0.25); whereas, ketorolac modestly increased ΔFVCrel (p = 0.04) similarly between sexes (W: Δ 1.6 ± 1.1 vs. M: Δ 2.0 ± 1.6, p = 0.78). DB was also found to be similar between the sexes (p = 0.85). CONCLUSION These data clearly indicate women produce a greater exercise vasodilator response. Furthermore, contrary to experiments in animal models, these data are the first to demonstrate vascular control by NOS and COX is similar between sexes.
Collapse
|
100
|
Gahagan J, Gray K, Whynacht A. Sex and gender matter in health research: addressing health inequities in health research reporting. Int J Equity Health 2015; 14:12. [PMID: 25637131 PMCID: PMC4320818 DOI: 10.1186/s12939-015-0144-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022] Open
Abstract
Attention to the concepts of 'sex' and 'gender' is increasingly being recognized as contributing to better science through an augmented understanding of how these factors impact on health inequities and related health outcomes. However, the ongoing lack of conceptual clarity in how sex and gender constructs are used in both the design and reporting of health research studies remains problematic. Conceptual clarity among members of the health research community is central to ensuring the appropriate use of these concepts in a manner that can advance our understanding of the sex- and gender-based health implications of our research findings. During the past twenty-five years much progress has been made in reducing both sex and gender disparities in clinical research and, to a significant albeit lesser extent, in basic science research. Why, then, does there remain a lack of uptake of sex- and gender-specific reporting of health research findings in many health research journals? This question, we argue, has significant health equity implications across all pillars of health research, from biomedical and clinical research, through to health systems and population health.
Collapse
Affiliation(s)
- Jacqueline Gahagan
- Gender & Health Promotion Studies Unit (GAHPS Unit), Head, Health Promotion Division, Dalhousie University, Halifax, NS, Canada.
| | - Kimberly Gray
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Ardath Whynacht
- Department of Sociology, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|