51
|
Teske JA, Levine AS, Kuskowski M, Levine JA, Kotz CM. Elevated hypothalamic orexin signaling, sensitivity to orexin A, and spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R889-99. [PMID: 16763079 DOI: 10.1152/ajpregu.00536.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selectively-bred obesity-resistant [diet resistant (DR)] rats weigh less than obesity-prone [diet-induced obese (DIO)] rats, despite comparable daily caloric intake, suggesting phenotypic energy expenditure differences. Human data suggest that obesity is maintained by reduced ambulatory or spontaneous physical activity (SPA). The neuropeptide orexin A robustly stimulates SPA. We hypothesized that DR rats have greater: 1) basal SPA, 2) orexin A-induced SPA, and 3) preproorexin, orexin 1 and 2 receptor (OX1R and OX2R) mRNA, compared with DIO rats. A group of age-matched out-bred Sprague-Dawley rats were used as additional controls for the behavioral studies. DIO, DR, and Sprague-Dawley rats with dorsal-rostral lateral hypothalamic (rLHa) cannulas were injected with orexin A (0, 31.25, 62.5, 125, 250, and 500 pmol/0.5 microl). SPA and food intake were measured for 2 h after injection. Preproorexin, OX1R and OX2R mRNA in the rLHa, and whole hypothalamus were measured by real-time RT-PCR. Orexin A significantly stimulated feeding in all rats. Orexin A-induced SPA was significantly greater in DR and Sprague-Dawley rats than in DIO rats. Two-mo-old DR rats had significantly greater rLHa OX1R and OX2R mRNA than DIO rats but comparable preproorexin levels. Eight-mo-old DR rats had elevated OX1R and OX2R mRNA compared with DIO rats, although this increase was significant for OX2R only at this age. Thus DR rats show elevated basal and orexin A-induced SPA associated with increased OX1R and OX2R gene expression, suggesting that differences in orexin A signaling through OX1R and OX2R may mediate DIO and DR phenotypes.
Collapse
Affiliation(s)
- J A Teske
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, USA
| | | | | | | | | |
Collapse
|
52
|
White CL, Ishii Y, Mendoza T, Upton N, Stasi LP, Bray GA, York DA. Effect of a selective OX1R antagonist on food intake and body weight in two strains of rats that differ in susceptibility to dietary-induced obesity. Peptides 2005; 26:2331-8. [PMID: 15893404 DOI: 10.1016/j.peptides.2005.03.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/24/2005] [Accepted: 03/24/2005] [Indexed: 11/25/2022]
Abstract
An orexin-1 receptor antagonist decreases food intake whereas orexin-A selectively induces hyperphagia to a high-fat diet. In the present study, we evaluated the effect of an orexin antagonist in two strains of rats that differ in their sensitivity to becoming obese while eating a high-fat diet. Male Osborne-Mendel (OM) and S5B/Pl (S5B) rats were treated acutely with an orexin-1 receptor antagonist (SB-334867), after adaptation to either a high-fat (56% fat energy) diet or a low-fat (10% fat energy) diet that were equicaloric for protein (24% energy). Ad libitum fed rats were injected intraperitoneally with SB-334867 at doses of 3, 10 or 30 mg/kg, or vehicle at the beginning of the dark cycle, and food intake and body weight were measured. Hypothalamic prepro-orexin and orexin-1 receptor mRNA expression were analyzed in OM and S5B rats fed at a high-fat or low-fat diet for two weeks. SB-334867 significantly decreased food intake in both strains of rats eating the high-fat diet but only in the OM rats eating the low fat diet. The effect was greatest at 12 and 24 h. Body weight was also reduced in OM rats 1d after injection of SB-334867 but not in the S5B rats. Prepro-orexin and orexin-1 receptor expression levels did not differ between strains or diets. These experiments demonstrate that an orexin antagonist (SB-334867) reduces food intake and has a greater effect in a rat strain that is susceptible to dietary-induced obesity, than in a resistant strain.
Collapse
Affiliation(s)
- C L White
- Pennington Biomedical Research Center, Experimental Obesity laboratory, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | |
Collapse
|
53
|
Thorpe AJ, Cleary JP, Levine AS, Kotz CM. Centrally administered orexin A increases motivation for sweet pellets in rats. Psychopharmacology (Berl) 2005; 182:75-83. [PMID: 16075284 DOI: 10.1007/s00213-005-0040-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 04/24/2005] [Indexed: 11/24/2022]
Abstract
RATIONALE Centrally administered orexin A induces both feeding and locomotion in rats. Thus, the feeding response following orexin A administration may be secondary to general increases in activity rather than a specific motivation to eat. OBJECTIVE The aim of the study is to determine whether orexin A increases the motivation to eat. METHODS The effect of orexin A (0, 31.25, 62.5, 125, 250, and 500 pmol) on breakpoint was determined in male Sprague-Dawley rats with rostro-lateral hypothalamic cannulae under a progressive ratio of five schedule (PR5). The effect of orexin A (0, 31.25, 125, and 500 pmol) on pressing rate under a fixed ratio (20) schedule was obtained to analyze the time course of orexin-A-induced pressing. The effect of 24-h food deprivation on breakpoint under PR5 and the effect of orexin A (125 pmol) on free feeding (sweet pellets) and on open-field locomotor activity (0, 100, 500, and 1,000 pmol) were also tested. RESULTS Orexin A significantly augmented free feeding of sweet pellets, open-field locomotor activity, rate of pressing (FR20 schedule), and breakpoint (PR5 schedule), although compared to 24-h deprivation, the effect of orexin A on breakpoint was mild. However, there was a differential dose response relationship and time course of stimulation between orexin A's effects on locomotion and lever pressing. CONCLUSION These data indicate that infusion of orexin A enhances free feeding by enhancing and possibly prolonging motivation to eat.
Collapse
Affiliation(s)
- A J Thorpe
- Department of Neuroscience, University of Minnesota, 1334 Eckles Avenue, Saint Paul, MN 55108, USA
| | | | | | | |
Collapse
|
54
|
Thorpe AJ, Kotz CM. Orexin A in the nucleus accumbens stimulates feeding and locomotor activity. Brain Res 2005; 1050:156-62. [PMID: 15979595 DOI: 10.1016/j.brainres.2005.05.045] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 05/16/2005] [Accepted: 05/18/2005] [Indexed: 11/16/2022]
Abstract
Due to the nature of processing within the accumbens shell (AccSh) and the presence of orexin receptors and varicosities within the AccSh, we hypothesized that orexin A may partly regulate feeding behavior and locomotor activity via signaling in this site. To test this hypothesis, male Sprague-Dawley rats were implanted with guide cannulae directed to the medial portion of the AccSh. Orexin A (0, 100, 500, and 1000 pmol, in 0.5 microl artificial cerebrospinal fluid) was infused into the AccSh and feeding behavior and locomotor activity were monitored. The effect of pretreatment with an orexin 1 receptor antagonist (SB334867A) on orexin A-induced feeding and locomotor activity was assessed. Orexin A augmented feeding in the 0-1 h and 1-2 h post-infusion interval (P = 0.0058 and P = 0.025, respectively) and stimulated locomotor activity in the 30-60 min, 60-90 min, and 90-120 min post-infusion intervals (P <or= 0.0001, P = 0.0056 and P = 0.046, respectively). Orexin A-induced feeding was significantly attenuated by preadministration of SB334867A in the 0-1 h post-infusion time interval (P = 0.03). Orexin A-induced locomotor activity was not affected by SB334867A. These data support the hypothesis that the AccSh is a site of orexin A modulation of feeding behavior and locomotor activity.
Collapse
Affiliation(s)
- A J Thorpe
- Department of Neuroscience, University of Minnesota, 1334 Eckles Avenue, Saint Paul, MN 55108, USA
| | | |
Collapse
|
55
|
Thorpe AJ, Teske JA, Kotz CM. Orexin A-induced feeding is augmented by caloric challenge. Am J Physiol Regul Integr Comp Physiol 2005; 289:R367-R372. [PMID: 15947069 DOI: 10.1152/ajpregu.00737.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orexin neurons are stimulated by conditions that are glucoprivic, suggesting that orexin signaling may be increased during nutritional duress. We have previously shown that injection of orexin A (OxA) into the rostral lateral hypothalamic area (rLHa) robustly and dose-dependently increases feeding behavior. Thus we hypothesized that exogenous administration of orexin A would induce a greater feeding response after acute food deprivation or perceived caloric duress achieved through 2-deoxyglucose (2DG) administration. To test our hypothesis, male Sprague-Dawley rats implanted with internal guide cannulas directed to the rLHa were exposed to varying degrees of food deprivation (0, 3, 12, 24 h) and 2DG (200 mg/kg) before intra-rLHa OxA (500 pmol) infusion. We also performed a dose-response study using graded doses of OxA (0, 31.25, 125, and 500 pmol) in fed and 24-h fasted rats. OxA administration in conjunction with the highest level of prior food deprivation (24 h) resulted in the greatest feeding response (above baseline means; 0 h deprivation: 1.9 +/- 0.6; 24 h deprivation: 4.4 +/- 0.8; P = 0.0034) and showed a dose-dependent enhancement of feeding. Additionally, 2DG administration before OxA administration resulted in a significantly higher feeding response (above baseline means: 2DG = 1.8 +/- 0.5; OxA = 1.8 +/- 0.4; 2DG + OxA = 5.1 +/- 0.6; P < 0.0001). These data support the hypothesis that orexin signaling may be important in modulating the feeding network under times of nutritional duress.
Collapse
Affiliation(s)
- A J Thorpe
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
56
|
Affiliation(s)
- W A Cupples
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020, STN CSC Victoria, British Columbia, Canada V8W 3N5.
| |
Collapse
|
57
|
Kotz CM, Mullett MA, Wang C. Diminished feeding responsiveness to orexin A (hypocretin 1) in aged rats is accompanied by decreased neuronal activation. Am J Physiol Regul Integr Comp Physiol 2005; 289:R359-R366. [PMID: 15879054 DOI: 10.1152/ajpregu.00717.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orexin A is produced in caudal lateral, posterior, perifornical, and dorsomedial hypothalamic areas. Orexin A in the rostro-dorsal lateral hypothalamic area (rLHa) stimulates feeding and activates several feeding-regulatory brain areas. We hypothesized that aging diminishes feeding and c-Fos-immunoreactivity (c-Fos-ir; marker of neuronal activation) response to orexin A. Young (3 mo), middle-aged (12 mo), and old (24 mo) male Fischer 344 rLHa-cannulated rats were injected with orexin A (0.5, 1, and 2 nmol). Food intake was measured at 1, 2, and 4 h. c-Fos-ir in hypothalamic, limbic, and hindbrain regions was measured in two additional sets of rLHa-orexin A injected rats. In a separate study, orexin A effects on feeding and c-Fos-ir were measured in 6-mo-old rats. Orexin A significantly elevated feeding in rats aged 3, 6, and 12 mo in the 0-1 and 1-2- h time intervals, whereas in old rats this was significant in the 1-2 h time interval only. At 1 h, 6-8 (of 14) brain areas showed elevated c-Fos-ir in response to orexin A in 3- and 6-mo-old rats, but 24-mo-old rats exhibited attenuated or absent c-Fos-ir response in all brain regions except the hypothalamic paraventricular nucleus (PVN) and rostral nucleus of the solitary tract (rNTS). Orexin A did not elevate c-Fos-ir in 3-mo-old rats at 2 h after injection, whereas the PVN and mediodorsal thalamic nucleus (MD) showed elevated c-Fos-ir at 2 h in 24-mo-old rats. These data suggest that delayed and diminished feeding responses in old animals may be due to ineffective neural signaling and implicate the orexin A network as one feeding system affected by aging.
Collapse
Affiliation(s)
- Catherine M Kotz
- Veterans Affairs Medical Center, GRECC (11G), One Veterans Drive, Minneapolis, MN 55417, USA.
| | | | | |
Collapse
|
58
|
Berthoud HR, Patterson LM, Sutton GM, Morrison C, Zheng H. Orexin inputs to caudal raphé neurons involved in thermal, cardiovascular, and gastrointestinal regulation. Histochem Cell Biol 2005; 123:147-56. [PMID: 15742197 DOI: 10.1007/s00418-005-0761-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2004] [Indexed: 02/02/2023]
Abstract
Orexin-expressing neurons in the lateral hypothalamus with their wide projections throughout the brain are important for the regulation of sleep and wakefulness, ingestive behavior, and the coordination of these behaviors in the environmental context. To further identify downstream effector targets of the orexin system, we examined in detail orexin-A innervation of the caudal raphe nuclei in the medulla, known to harbor sympathetic preganglionic motor neurons involved in thermal, cardiovascular, and gastrointestinal regulation. All three components of the caudal raphe nuclei, raphe pallidus, raphe obscurus, and parapyramidal nucleus, are innervated by orexin-A-immunoreactive fibers. Using confocal microscopy, we demonstrate close anatomical appositions between varicose orexin-A immunoreactive axon profiles and sympathetic premotor neurons identified with either a transneuronal retrograde pseudorabies virus tracer injected into the interscapular brown fat pads, or with in situ hybridization of pro-TRH mRNA. Furthermore, orexin-A injected into the fourth ventricle induced c-Fos expression in the raphe pallidus and parapyramidal nucleus. These findings suggest that orexin neurons in the hypothalamus can modulate brown fat thermogenesis, cardiovascular, and gastrointestinal functions by acting directly on neurons in the caudal raphe nuclei, and support the idea that orexin's simultaneous stimulation of food intake and sympathetic activity might have evolved as a mechanism to stay alert while foraging.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA.
| | | | | | | | | |
Collapse
|
59
|
Xu YL, Jackson VR, Civelli O. Orphan G protein-coupled receptors and obesity. Eur J Pharmacol 2004; 500:243-53. [PMID: 15464037 DOI: 10.1016/j.ejphar.2004.07.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 12/11/2022]
Abstract
The use of orphan G protein-coupled receptors (GPCRs) as targets to identify new transmitters has led over the last decade to the discovery of 12 novel neuropeptide families. Each one of these new neuropeptides has opened its own field of research, has brought new insights in distinct pathophysiological conditions and has offered new potentials for therapeutic applications. Interestingly, several of these novel peptides have seen their roles converge on one physiological response: the regulation of food intake and energy expenditure. In this manuscript, we discuss four deorphanized GPCR systems, the ghrelin, orexins/hypocretins, melanin-concentrating hormone (MCH) and neuropeptide B/neuropeptide W (NPB/NPW) systems, and review our knowledge of their role in the regulation of energy balance and of their potential use in therapies directed at feeding disorders.
Collapse
Affiliation(s)
- Yan-Ling Xu
- Department of Pharmacology, University of California Irvine, 101 Theory Dr., Suite 200, Irvine, CA 92612, USA
| | | | | |
Collapse
|
60
|
Kiwaki K, Kotz CM, Wang C, Lanningham-Foster L, Levine JA. Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats. Am J Physiol Endocrinol Metab 2004; 286:E551-9. [PMID: 14656716 DOI: 10.1152/ajpendo.00126.2003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In humans, nonexercise activity thermogenesis (NEAT) increases with positive energy balance. The mediator of the interaction between positive energy balance and physical activity is unknown. In this study, we address the hypothesis that orexin A acts in the hypothalamic paraventricular nucleus (PVN) to increase nonfeeding-associated physical activity. PVN-cannulated rats were injected with either orexin A or vehicle during the light and dark cycle. Spontaneous physical activity (SPA) was measured using arrays of infrared activity sensors and night vision videotaped recording (VTR). O(2) consumption and CO(2) production were measured by indirect calorimetry. Feeding behavior was assessed by VTR. Regardless of the time point of injection, orexin A (1 nmol) was associated with dramatic increases in SPA for 2 h after injection (orexin A: 6.27 +/- 1.95 x 10(3) beam break count, n = 24; vehicle: 1.85 +/- 1.13 x 10(3), n = 38). This increase in SPA was accompanied by compatible increase in O(2) consumption. Duration of feeding was increased only when orexin A was injected in the early light phase and accounted for only 3.5 +/- 2.5% of the increased physical activity. In a dose-response experiment, increases in SPA were correlated with dose of orexin A linearly up to 2 nmol. PVN injections of orexin receptor antagonist SB-334867 were associated with decreases in SPA and attenuated the effects of PVN-injected orexin A. Thus orexin A can act in PVN to increase nonfeeding-associated physical activity, suggesting that this neuropeptide might be a mediator of NEAT.
Collapse
Affiliation(s)
- Kohji Kiwaki
- Endocrine Research Unit, Joseph 5-194, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
61
|
Sweet DC, Levine AS, Kotz CM. Functional opioid pathways are necessary for hypocretin-1 (orexin-A)-induced feeding. Peptides 2004; 25:307-14. [PMID: 15063013 DOI: 10.1016/j.peptides.2003.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 12/22/2003] [Indexed: 11/18/2022]
Abstract
We investigated the interaction of the orexigenic neuropeptide, hypocretin-1 (Hcrt-1, also known as orexin-A), with endogenous opioids (also orexigenic neuropeptides). Rats were injected with naltrexone (NTX, nonspecific opioid antagonist) i.p., i.c.v., in the lateral hypothalamus (LH), and in the accumbens shell (AcbSh), and naloxone methiodide (nonspecific opioid antagonist unable to cross the blood brain barrier) was injected i.p. Rats were then injected with Hcrt-1 in the LH. Food intake was measured for up to 4h thereafter. Rats were also pretreated with NTX in the LH, with Hcrt-1 injected in the AcbSh. NTX suppressed Hcrt-1-induced feeding only when injected i.p., i.c.v., and in the AcbSh. These studies reveal the necessity for functional central opioidergic pathways involving the AcbSh, but not the LH in Hcrt-1-induced feeding.
Collapse
|
62
|
Affiliation(s)
- W A Cupples
- Lady Davis Institute, SMBD-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|