51
|
Vallon V. P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Renal Physiol 2007; 294:F10-27. [PMID: 17977905 DOI: 10.1152/ajprenal.00432.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular nucleotides (e.g., ATP) regulate physiological and pathophysiological processes through activation of nucleotide P2 receptors in the plasma membrane. Examples include such diverse processes as communication from taste buds to gustatory nerves, platelet aggregation, nociception, or neutrophil chemotaxis. Over approximately the last 15 years, evidence has also accumulated that cells in renal epithelia release nucleotides in response to physiological stimuli and that these nucleotides act in a paracrine and autocrine way to activate P2 receptors and play a significant role in the regulation of transport mechanisms and cell volume regulation. This review discusses potential stimuli and mechanisms involved in nucleotide release in renal epithelia and summarizes the available data on the expression and function of nucleotide P2 receptors along the native mammalian tubular and collecting duct system. Using established agonist profiles for P2 receptor subtypes, significant insights have been gained particularly into a potential role for P2Y(2)-like receptors in the regulation of transport mechanisms in the collecting duct. Due to the lack of receptor subtype-specific antagonists, however, the in vivo relevance of P2 receptor subtypes is unclear. Studies in gene knockout mice provided first insights including an antihypertensive activity of P2Y(2) receptors that is linked to an inhibitory influence on renal Na(+) and water reabsorption. We are only beginning to unravel the important roles of extracellular nucleotides and P2 receptors in the regulation of the diverse transport mechanisms of the kidney.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California and Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161., USA.
| |
Collapse
|
52
|
Friedman DJ, Rennke HG, Csizmadia E, Enjyoji K, Robson SC. The vascular ectonucleotidase ENTPD1 is a novel renoprotective factor in diabetic nephropathy. Diabetes 2007; 56:2371-9. [PMID: 17473221 DOI: 10.2337/db06-1593] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) (also known as CD39) is the dominant vascular ectonucleotidase. By hydrolyzing ATP and ADP to AMP, ENTPD1 regulates ligand availability to a large family of P2 (purinergic) receptors. Modulation of extracellular nucleotide metabolism is an important factor in several acute and subacute models of vascular injury. We hypothesized that aberrant nucleotide signaling would promote chronic glomerular injury in diabetic nephropathy. Inducing diabetes in ENTPD1-null mice with streptozotocin resulted in increased proteinuria and more severe glomerular sclerosis compared with matched diabetic wild-type mice. Diabetic ENTPD1-null mice also had more glomerular fibrin deposition and glomerular plasminogen activator inhibitor-1 (PAI-1) staining than wild-type controls. In addition, ENTPD1-null mice showed increased glomerular inflammation, in association with higher levels of monocyte chemoattractant protein-1 (MCP-1) expression. Mesangial cell PAI-1 and MCP-1 mRNA expression were upregulated by ATP and UTP but not ADP or adenosine in vitro. The stable nucleotide analog ATPgammaS stimulated sustained expression of PAI-1 and MCP-1 in vitro, whereas the stable adenosine analog NECA [5'-(N-ethylcarboxamido)adenosine] downregulated expression of both genes. Extracellular nucleotide-stimulated upregulation of MCP-1 is, at least in part, protein kinase C dependent. We conclude that ENTPD1 is a vascular protective factor in diabetic nephropathy that modulates glomerular inflammation and thromboregulation.
Collapse
Affiliation(s)
- David J Friedman
- Renal Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
53
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
54
|
Vlajkovic SM, Wang CJH, Soeller C, Zimmermann H, Thorne PR, Housley GD. Activation-dependent trafficking of NTPDase2 in Chinese hamster ovary cells. Int J Biochem Cell Biol 2007; 39:810-7. [PMID: 17307380 DOI: 10.1016/j.biocel.2007.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/18/2006] [Accepted: 01/02/2007] [Indexed: 11/28/2022]
Abstract
Membrane-bound NTPDase2 is a member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family involved in the regulation of P2 receptor signaling. NTPDase2 has broad substrate specificity for extracellular nucleotides, but hydrolyses nucleoside 5'-triphosphates with high preference over nucleoside 5'-diphosphates. In this study, we have sought to determine how enzyme substrates acting on P2 receptors affect intracellular NTPDase2 trafficking. To achieve this, Chinese hamster ovary (CHO) cells were transiently transfected with rat-specific NTPDase2 cDNA tagged with green fluorescent protein (GFP), to allow direct visualisation of subcellular localisation and trafficking of NTPDase2. Cells were superfused with NTPDase2 substrates (ATP and UTP) and synthetic nucleotide analogues (ATPgammaS and ADPbetaS), and confocal image stacks were acquired at regular time intervals. NTPDase2 incorporation into the plasma membrane was determined by comparative analysis of fluorescence intensity in the cytosolic and membrane compartments. GFP-tagged NTPDase2 was fully functional and ATP and ATPgammaS induced membrane incorporation of GFP-NTPDase2 from putative intracellular stores, whilst UTP and ADPbetaS were ineffective. The increased ATP hydrolysis rate correlated with increased NTPDase2 trafficking to the plasma membrane. ATP-induced NTPDase2 trafficking was mediated by activation of endogenous P2X receptors involving Ca2+ entry rather than by P2Y receptor-induced release of Ca2+ from intracellular stores. Our results suggest that P2X receptor activation stimulates insertion of latent NTPDase2 into the plasma membrane. The increase in surface-located NTPDase2 may reflect a regulatory mechanism counteracting excessive stimulation and desensitisation of P2 receptors.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
55
|
Martín-Satué M, Torrejón-Escribano B, Felipe A, de Aranda IG, Elías M, Marsal J, Blasi J, Solsona C. Cloning, molecular characterization and expression of ecto-nucleoside triphosphate diphosphohydrolase-1 from Torpedo electric organ. Neurochem Int 2007; 50:256-63. [PMID: 17030469 DOI: 10.1016/j.neuint.2006.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
During synaptic transmission large amounts of ATP are released from pre- and post-synaptic sources of Torpedo electric organ. A chain reaction sequentially hydrolyses ATP to adenosine, which inhibits acetylcholine secretion. The first enzyme implicated in this extracellular ATP hydrolysis is an ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) that dephosphorylates both ATP and ADP to AMP. This enzyme has been biochemically characterized in the synaptosomal fraction of Torpedo electric organ, having almost equal affinity for ATP as for ADP, a fact that pointed to the type-1 NTPDase enzyme. In the present work we describe the cloning and molecular characterization of the cDNA for an NTPDase from Torpedo marmorata electric organ. The clone, obtained using the RACE-PCR technique, contains and open-reading frame of 1506bp and encodes a 502 amino acids protein that exhibits high homology with other NTPDases1 from vertebrates previously identified, including those of zebrafish and Xenopus, as well as human, rat and mouse. Topology analyses revealed the existence of two transmembrane regions, two short cytoplasmic tails and a long extracellular domain containing five apyrase-conserved regions. Gene expression studies revealed that this gene is expressed in all the Torpedo tissues analyzed. Finally, activity and cellular localization of the protein encoded by this newly cloned cDNA was assessed by heterologous expression experiments involving COS-7 and HeLa cells.
Collapse
Affiliation(s)
- Mireia Martín-Satué
- Laboratori de Neurobiologia Cellular i Molecular, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigacions Biomèdiques de Bellvitge-Universitat de Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Kishore BK, Isaac J, Westenfelder C. Administration of poly-D-glutamic acid induces proliferation of erythropoietin-producing peritubular cells in rat kidney. Am J Physiol Renal Physiol 2006; 292:F749-61. [PMID: 17018848 DOI: 10.1152/ajprenal.00034.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Erythropoietin (EPO), a 34-kDa glycoprotein, is produced predominantly by peritubular interstitial cells (PIC) in the renal cortex and is physiologically released when ambient oxygen pressure falls. However, the exact nature of EPO-producing cells in the kidney is not well understood. We discovered that brief administration of a low-molecular-weight synthetic peptide, poly-D-glutamic acid (PDG), induced prompt and robust expansion of EPO-producing PIC in rat kidney, without evidence of tubular cell necrosis/apoptosis or fibrotic reaction. Proliferating PIC in PDG-treated rats were noninflammatory, alpha-smooth muscle actin negative, and specifically expressed CD73 (ecto-5'-nucleotidase), EPO mRNA, and protein. Increased numbers of EPO-positive PIC persisted even after the cessation of PDG treatment. No erythropoietic effects of EPO were detected, potentially suggesting maintained physiological control of EPO secretion in this normoxic model. We showed previously that PDG is readily filtered and is rapidly taken up and stored in lysosomes of proximal tubular cells (PTC), resulting in an apparently nonnoxious lysosomal storage condition by virtue of its nonhydrolyzable nature (Kishore BK, Maldague P, Tulkens PM, Courtoy PJ. Lab Invest 74: 1013-1023, 1996). Based on these findings, we suggest that unknown signaling molecules, produced by PTC in response to lysosomal PDG storage, appear to specifically stimulate the proliferation of EPO-producing PIC. We conclude that this model is uniquely suited to investigate the biology of EPO production by PIC and may thus facilitate the development of novel and more economical therapies of anemias and other EPO-responsive conditions.
Collapse
Affiliation(s)
- Bellamkonda K Kishore
- Department of Internal Medicine, Univesity of Utah Health Science Center, Salt Lake City, UT 84148, USA.
| | | | | |
Collapse
|
57
|
Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1-17. [PMID: 16990493 DOI: 10.1152/ajpregu.00332.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autoregulation of renal blood flow (RBF) is caused by the myogenic response (MR), tubuloglomerular feedback (TGF), and a third regulatory mechanism that is independent of TGF but slower than MR. The underlying cause of the third regulatory mechanism remains unclear; possibilities include ATP, ANG II, or a slow component of MR. Other mechanisms, which, however, exert their action through modulation of MR and TGF are pressure-dependent change of proximal tubular reabsorption, resetting of RBF and TGF, as well as modulating influences of ANG II and nitric oxide (NO). MR requires < 10 s for completion in the kidney and normally follows first-order kinetics without rate-sensitive components. TGF takes 30-60 s and shows spontaneous oscillations at 0.025-0.033 Hz. The third regulatory component requires 30-60 s; changes in proximal tubular reabsorption develop over 5 min and more slowly for up to 30 min, while RBF and TGF resetting stretch out over 20-60 min. Due to these kinetic differences, the relative contribution of the autoregulatory mechanisms determines the amount and spectrum of pressure fluctuations reaching glomerular and postglomerular capillaries and thereby potentially impinge on filtration, reabsorption, medullary perfusion, and hypertensive renal damage. Under resting conditions, MR contributes approximately 50% to overall RBF autoregulation, TGF 35-50%, and the third mechanism < 15%. NO attenuates the strength, speed, and contribution of MR, whereas ANG II does not modify the balance of the autoregulatory mechanisms.
Collapse
Affiliation(s)
- Armin Just
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| |
Collapse
|
58
|
Bartel DL, Sullivan SL, Lavoie EG, Sévigny J, Finger TE. Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J Comp Neurol 2006; 497:1-12. [PMID: 16680780 PMCID: PMC2212711 DOI: 10.1002/cne.20954] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The presence of one or more calcium-dependent ecto-ATPases (enzymes that hydrolyze extracellular 5'-triphosphates) in mammalian taste buds was first shown histochemically. Recent studies have established that dominant ecto-ATPases consist of enzymes now called nucleoside triphosphate diphosphohydrolases (NTPDases). Massively parallel signature sequencing (MPSS) from murine taste epithelium provided molecular evidence suggesting that NTPDase2 is the most likely member present in mouse taste papillae. Immunocytochemical and enzyme histochemical staining verified the presence of NTPDase2 associated with plasma membranes in a large number of cells within all mouse taste buds. To determine which of the three taste cell types expresses this enzyme, double-label assays were performed with antisera directed against the glial glutamate/aspartate transporter (GLAST), the transduction pathway proteins phospholipase Cbeta2 (PLCbeta2) or the G-protein subunit alpha-gustducin, and serotonin (5HT) as markers of type I, II, and III taste cells, respectively. Analysis of the double-labeled sections indicates that NTPDase2 immunoreactivity is found on cell processes that often envelop other taste cells, reminiscent of type I cells. In agreement with this observation, NTPDase2 was located to the same membrane as GLAST, indicating that this enzyme is present in type I cells. The presence of ecto-ATPase in taste buds likely reflects the importance of ATP as an intercellular signaling molecule in this system.
Collapse
Affiliation(s)
- Dianna L Bartel
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045-6511, USA
| | | | | | | | | |
Collapse
|
59
|
Vekaria RM, Unwin RJ, Shirley DG. Intraluminal ATP concentrations in rat renal tubules. J Am Soc Nephrol 2006; 17:1841-7. [PMID: 16790512 DOI: 10.1681/asn.2005111171] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
It is becoming increasingly recognized that stimulation of apical P2 receptors can influence solute transport in the nephron, but, to date, no information is available on endogenous intraluminal nucleotide concentrations in vivo. This study measured intraluminal ATP concentrations in the renal tubules of anesthetized rats. Proximal tubular concentrations were found to be in the range of 100 to 300 nmol/L, with no significant variation along the S2 segment, whereas concentrations in the early distal tubule were markedly lower. Using collections of varying duration, the half-life of ATP in collected proximal tubular fluid was found to be 3.4 min, indicating significant breakdown by soluble nucleotidases. For assessment of whether proximal tubular ATP was filtered or secreted, experiments were performed in Munich-Wistar rats. The ATP concentration in midproximal tubules (142 +/- 23 nmol/L) was more than four-fold higher than in Bowman's space (32 +/- 7 nmol/L; P < 0.001), whereas fractional water reabsorption between the two sites was modest. In experiments that were designed to determine the effects of (patho)physiologic disturbances on intraluminal ATP, rats were either volume expanded or subjected to hypotensive hemorrhage. Neither maneuver affected proximal tubular luminal ATP concentrations significantly; rapid degradation of secreted ATP by ecto- and soluble nucleotidases is a possible explanation. It is concluded that the proximal tubule secretes ATP into the lumen, where it may have an autocrine/paracrine regulatory role.
Collapse
Affiliation(s)
- Renu M Vekaria
- Department of Physiology and Centre for Nephrology, University College London, Hampstead Campus, London NW3 2PF, UK
| | | | | |
Collapse
|
60
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 726] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
61
|
Abstract
NO produced by NO synthase (NOS) 3 acts as an autacoid to regulate NaCl absorption in the thick ascending limb. ATP induces NO production by NOS 3 in endothelial cells. We hypothesized that extracellular ATP activates NOS in thick ascending limbs through P2 receptors. To test this, we measured intracellular NO production using the NO-selective fluorescent dye DAF-2 in suspensions of rat medullary thick ascending limbs. We found that ATP increased DAF-2 fluorescence in a concentration-dependent manner, reaching saturation at &200 micromol/L with an EC50 of 37 micromol/L. The increase was blunted by 74% by the nonselective NOS inhibitor L-omega-nitro-arginine-methyl-ester (2 mmol/L; 60+/-7 versus 16+/-6 arbitrary fluorescence units; P<0.02; n=5). In the presence of the P2 receptor antagonist suramin (300 micromol/L), ATP-induced NO production was reduced by 64% (101+/-11 versus 37+/-5 arbitrary fluorescence units; P<0.002; n=5). Blocking ATP hydrolysis with a 5'-ectonucleotidase inhibitor, ARL67156 (30 micromol/L) enhanced the response to ATP and shifted the EC(50) to 0.8 micromol/L. In the presence of ARL67156, the EC50 of the P2X-selective agonist beta,gamma-methylene-adenosine 5'-triphosphate was 4.8 micromol/L and the EC50 for the P2Y-selective agonist UTP was 40.4 micromol/L. The maximal responses for both agonists were similar. Taken together, these data indicate that ATP stimulates NO production in the thick ascending limb primarily through P2X receptor activation and that ATP hydrolysis may regulate NO production.
Collapse
Affiliation(s)
- Guillermo Silva
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | |
Collapse
|
62
|
Stefan C, Jansen S, Bollen M. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 2005; 30:542-50. [PMID: 16125936 DOI: 10.1016/j.tibs.2005.08.005] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 07/25/2005] [Accepted: 08/15/2005] [Indexed: 02/07/2023]
Abstract
Nucleotide pyrophosphatase/phosphodiesterase (NPP)-type ectophosphodiesterases are found at the cell surface as type-I or type-II transmembrane proteins, but are also found extracellularly as secreted or shedded enzymes. They hydrolyze pyrophosphate or phosphodiester bonds in a variety of extracellular compounds including nucleotides, (lyso)phospholipids and choline phosphate esters. Despite their structurally related catalytic domain, each enzyme has well-defined substrate specificity. Catalysis by NPPs affects processes as diverse as cell proliferation and motility, angiogenesis, bone mineralization and digestion. In addition, there is emerging evidence for non-catalytic functions of NPPs in cell signaling. NPP-type ectophosphodiesterases are also implicated in the pathophysiology of cancer, insulin resistance and calcification diseases, and they hold great promise as easily accessible therapeutic targets.
Collapse
Affiliation(s)
- Cristiana Stefan
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
63
|
Vekaria RM, Shirley DG, Sévigny J, Unwin RJ. Immunolocalization of ectonucleotidases along the rat nephron. Am J Physiol Renal Physiol 2005; 290:F550-60. [PMID: 16189292 DOI: 10.1152/ajprenal.00151.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence is accumulating that extracellular nucleotides act as autocrine/paracrine agents in most tissues, including the kidneys. Several families of surface-located enzymes, collectively known as ectonucleotidases, can degrade nucleotides. Using immunohistochemistry, we have examined the segmental distribution of five ectonucleotidases along the rat nephron. Perfusion-fixed kidneys were obtained from anesthetized male Sprague-Dawley rats. Cryostat sections of cortical and medullary regions were incubated with antibodies specific to the following enzymes: ectonucleoside triphosphate diphosphohydrolase (NTPDase) 1, NTPDase2, NTPDase3, ectonucleotide pyrophosphatase phosphodiesterase 3 (NPP3), and ecto-5'-nucleotidase. Sections were then costained with Phaseolus vulgaris erythroagglutinin (for identification of proximal tubules) and antibodies against Tamm-Horsfall protein (for identification of thick ascending limb), calbindin-D(28k) (for identification of distal tubule), and aquaporin-2 (for identification of collecting duct). The tyramide signal amplification method was used when the ectonucleotidase and marker antibody were raised in the same species. The glomerulus expressed NTPDase1 and NPP3. The proximal tubule showed prominent expression of NPP3 and ecto-5'-nucleotidase in most, but not all, segments. NTPDase2 and NTPDase3, but not NPP3 or ecto-5'-nucleotidase, were expressed in the thick ascending limb and distal tubule. NTPDase3, with some low-level expression of ecto-5'-nucleotidase, was also found in cortical and outer medullary collecting ducts. Inner medullary collecting ducts displayed low-level staining for NTPDase1, NTPDase2, NTPDase3, and ecto-5'-nucleotidase. We conclude that these ectonucleotidases are differentially expressed along the nephron and may play a key role in activation of purinoceptors by nucleotides and nucleosides.
Collapse
Affiliation(s)
- Renu M Vekaria
- Department of Physiology, Royal Free and University College Medical School, Rowland Hill St., London NW3 2PF, UK.
| | | | | | | |
Collapse
|
64
|
Abstract
In the kidney, macula densa cells communicate with the mesangial cell-afferent arteriolar smooth muscle cell complex through ATP signaling. This signaling process involves release of ATP across the macula densa basolateral membrane through a maxi anion channel and the interaction of ATP with purinergic P2 receptors.
Collapse
Affiliation(s)
- Peter Komlosi
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | |
Collapse
|