51
|
Biophysical methods to quantify bacterial behaviors at oil-water interfaces. J Ind Microbiol Biotechnol 2020; 47:725-738. [PMID: 32743734 DOI: 10.1007/s10295-020-02293-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Abstract
Motivated by the need for improved understanding of physical processes involved in bacterial biodegradation of catastrophic oil spills, we review biophysical methods to probe bacterial motility and adhesion at oil-water interfaces. This review summarizes methods that probe bulk, average behaviors as well as local, microscopic behaviors, and highlights opportunities for future work to bridge the gap between biodegradation and biophysics.
Collapse
|
52
|
Parbhoo T, Sampson SL, Mouton JM. Recent Developments in the Application of Flow Cytometry to Advance our Understanding of Mycobacterium tuberculosis Physiology and Pathogenesis. Cytometry A 2020; 97:683-693. [PMID: 32437069 PMCID: PMC7496436 DOI: 10.1002/cyto.a.24030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
The ability of the bacterial pathogen Mycobacterium tuberculosis to adapt and survive within human cells to disseminate to other individuals and cause active disease is poorly understood. Research supports that as M. tuberculosis adapts to stressors encountered in the host, it exhibits variable physiological and metabolic states that are time and niche-dependent. Challenges associated with effective treatment and eradication of tuberculosis (TB) are in part attributed to our lack of understanding of these different mycobacterial phenotypes. This is mainly due to a lack of suitable tools to effectively identify/detect heterogeneous bacterial populations, which may include small, difficult-to-culture subpopulations. Importantly, flow cytometry allows rapid and affordable multiparametric measurements of physical and chemical characteristics of single cells, without the need to preculture cells. Here, we summarize current knowledge of flow cytometry applications that have advanced our understanding of the physiology of M. tuberculosis during TB disease. Specifically, we review how host-associated stressors influence bacterial characteristics such as metabolic activity, membrane potential, redox status and the mycobacterial cell wall. Further, we highlight that flow cytometry offers unprecedented opportunities for insight into bacterial population heterogeneity, which is increasingly appreciated as an important determinant of disease outcome. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Trisha Parbhoo
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Samantha L. Sampson
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Jacoba M. Mouton
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
53
|
Maertens H, Demeyere K, De Reu K, Dewulf J, Vanhauteghem D, Van Coillie E, Meyer E. Effect of subinhibitory exposure to quaternary ammonium compounds on the ciprofloxacin susceptibility of Escherichia coli strains in animal husbandry. BMC Microbiol 2020; 20:155. [PMID: 32527225 PMCID: PMC7291530 DOI: 10.1186/s12866-020-01818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/10/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Quaternary ammonium compound based disinfectants are commonly used in pig and poultry husbandry to maintain farm hygiene. However, studies have shown that subinhibitory concentrations of these disinfectants may increase antibiotic resistance. Investigation of antibiotic susceptibility is usually assessed via the microbroth dilution method, although this conventional culture-based technique only provides information on the bacteriostatic activity of an antimicrobial agent. Therefore, experiments were performed to investigate the effect of prior benzalkonium chloride (BKC) exposure on the viability of subsequent ciprofloxacin (CIP) treated Escherichia coli. RESULTS Following CIP treatment, bacterial cell counts were significantly higher after exposure to a subinhibitory BKC concentration than without BKC exposure. The flow cytometric results suggested a BKC-dependent onset of membrane damage and loss of membrane potential. CONCLUSION Our results indicate a lower bactericidal effect of CIP treatment on BKC-exposed E. coli isolates compared to unexposed E. coli isolates.
Collapse
Affiliation(s)
- H Maertens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - K Demeyere
- Veterinary Biochemistry Unit, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - K De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - J Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - D Vanhauteghem
- Veterinary Biochemistry Unit, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - E Van Coillie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - E Meyer
- Veterinary Biochemistry Unit, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
54
|
Scott LC, Lee N, Aw TG. Antibiotic Resistance in Minimally Human-Impacted Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113939. [PMID: 32498349 PMCID: PMC7313453 DOI: 10.3390/ijerph17113939] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022]
Abstract
Antibiotic resistant bacteria (ARB) have become contaminants of concern in environmental systems. Studies investigating environmental ARB have primarily focused on environments that are greatly impacted by anthropogenic activity. Background concentrations of ARB in natural environments is not well understood. This review summarizes the current literature on the monitoring of ARB and antibiotic resistance genes (ARGs) in environments less impacted by human activity. Both ARB and ARGs have been detected on the Antarctic continent, on isolated glaciers, and in remote alpine environments. The methods for detecting and quantifying ARB and ARGs from the environment are not standardized and warrant optimization. Further research should be focused on the detection and quantification of ARB and ARGs along human gradients to better characterize the factors leading to their dissemination in remote environments.
Collapse
|
55
|
Ganguly J, Tempelaars M, Abee T, van Kranenburg R. Characterization of sporulation dynamics of Pseudoclostridium thermosuccinogenes using flow cytometry. Anaerobe 2020; 63:102208. [PMID: 32387172 DOI: 10.1016/j.anaerobe.2020.102208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/30/2022]
Abstract
Single-cell analysis of microbial population heterogeneity is a fast growing research area in microbiology due to its potential to identify and quantify the impact of subpopulations on microbial performance in, for example, industrial biotechnology, environmental biology, and pathogenesis. Although several tools have been developed, determination of population heterogenity in anaerobic bacteria, especially spore-forming clostridia species has been amply studied. In this study we applied single cell analysis techniques such as flow cytometry (FCM) and fluorescence-assisted cell sorting (FACS) on the spore-forming succinate producer Pseudoclostridium thermosuccinogenes. By combining FCM and FACS with fluorescent staining, we differentiated and enriched all sporulation-related morphologies of P. thermosuccinogenes. To evaluate the presence of metabolically active vegetative cells, a blend of the dyes propidium iodide (PI) and carboxy fluorescein diacetate (cFDA) tested best. Side scatter (SSC-H) in combination with metabolic indicator cFDA dye provided the best separation of sporulation populations. Based on this protocol, we successfully determined culture heterogeneity of P. thermosuccinogenes by discriminating between mature spores, forespores, dark and bright phase endospores, and vegetative cells populations. Henceforth, this methodology can be applied to further study sporulation dynamics and its impact on fermentation performance and product formation by P. thermosuccinogenes.
Collapse
Affiliation(s)
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Wageningen University and Research, 6708 WG, Wageningen, the Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, 6708 WG, Wageningen, the Netherlands
| | - Richard van Kranenburg
- Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, the Netherlands; Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
56
|
Pestrak MJ, Gupta TT, Dusane DH, Guzior DV, Staats A, Harro J, Horswill AR, Stoodley P. Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation. PLoS One 2020; 15:e0231791. [PMID: 32302361 PMCID: PMC7164621 DOI: 10.1371/journal.pone.0231791] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 12/01/2022] Open
Abstract
Periprosthetic joint infections (PJIs) are a devastating complication that occurs in 2% of patients following joint replacement. These infections are costly and difficult to treat, often requiring multiple corrective surgeries and prolonged antimicrobial treatments. The Gram-positive bacterium Staphylococcus aureus is one of the most common causes of PJIs, and it is often resistant to a number of commonly used antimicrobials. This tolerance can be partially attributed to the ability of S. aureus to form biofilms. Biofilms associated with the surface of indwelling medical devices have been observed on components removed during chronic infection, however, the development and localization of biofilms during PJIs remains unclear. Prior studies have demonstrated that synovial fluid, in the joint cavity, promotes the development of bacterial aggregates with many biofilm-like properties, including antibiotic resistance. We anticipate these aggregates have an important role in biofilm formation and antibiotic tolerance during PJIs. Therefore, we sought to determine specifically how synovial fluid promotes aggregate formation and the impact of this process on surface attachment. Using flow cytometry and microscopy, we quantified the aggregation of various clinical S. aureus strains following exposure to purified synovial fluid components. We determined that fibrinogen and fibronectin promoted bacterial aggregation, while cell free DNA, serum albumin, and hyaluronic acid had minimal effect. To determine how synovial fluid mediated aggregation affects surface attachment, we utilized microscopy to measure bacterial attachment. Surprisingly, we found that synovial fluid significantly impeded bacterial surface attachment to a variety of materials. We conclude from this study that fibrinogen and fibronectin in synovial fluid have a crucial role in promoting bacterial aggregation and inhibiting surface adhesion during PJI. Collectively, we propose that synovial fluid may have conflicting protective roles for the host by preventing adhesion to surfaces, but by promoting bacterial aggregation is also contributing to the development of antibiotic tolerance.
Collapse
Affiliation(s)
- Matthew J. Pestrak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Tripti Thapa Gupta
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Devendra H. Dusane
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Doug V. Guzior
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Amelia Staats
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Jan Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Orthopedics, The Ohio State University, Columbus, Ohio, United States of America
- National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
57
|
Benito V, Etxebarria J, Goñi-de-Cerio F, Gonzalez I, Brettes P, Urkiaga A. Better understanding of the activated sludge process combining fluorescence-based methods and flow cytometry: A case study. J Environ Sci (China) 2020; 90:51-58. [PMID: 32081340 DOI: 10.1016/j.jes.2019.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This study aims to demonstrate the validity of fluorescence-based methods, together with flow cytometry, as a complementary tool to conventional physicochemical analyses carried out in wastewater treatment plants (WWTPs), for the control of the currently largely unknown activated sludge process. Staining with SYTO 9, propidium iodide and 5-(and 6)-carboxy-2',7'-difluorodihydrofluorescein diacetate (carboxy-H2DFFDA) was used for cell viability and oxidative stress monitoring of the bacterial population forming the activated sludge of a WWTP. Throughout the period of research, several unstable periods were detected, where the non-viable bacteria exceeded the 75% of the total bacterial population in the activated sludge, but only in one case the cells with oxidative stress grew to 9%, exceeding the typical values of 2%-5% of this plant. These periods coincided in two cases with high values of total suspended solids (SST) and chemical oxygen demand (COD) in the effluent, and with an excess of ammonia in other case. A correlation between flow cytometric and physicochemical data was found, which enabled to clarify the possible origin of each case of instability in the biological system. This experience supports the application of bacterial fluorescence staining, together with flow cytometric analysis, as a simple, rapid and reliable tool for the control and better understanding of the bacteria dynamics in a biological wastewater treatment process.
Collapse
Affiliation(s)
- Vanesa Benito
- GAIKER, Parque Tecnológico, Ed. 202, 48170, Zamudio, Bizkaia, Spain.
| | | | | | - Iñigo Gonzalez
- EDAR Galindo, Bilbao Bizkaia Water Consortium, Sestao 48910, Bizkaia, Spain
| | - Pilar Brettes
- GAIKER, Parque Tecnológico, Ed. 202, 48170, Zamudio, Bizkaia, Spain
| | - Ana Urkiaga
- GAIKER, Parque Tecnológico, Ed. 202, 48170, Zamudio, Bizkaia, Spain
| |
Collapse
|
58
|
Nitsch A, Haralambiev L, Einenkel R, Muzzio DO, Zygmunt MT, Ekkernkamp A, Burchardt M, Stope MB. Determination of In Vitro Membrane Permeability by Analysis of Intracellular and Extracellular Fluorescein Signals in Renal Cells. In Vivo 2020; 33:1767-1771. [PMID: 31662501 DOI: 10.21873/invivo.11667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM The structural integrity of the eukaryotic cytoplasmic membrane is of crucial importance for its cell biological function and thus for the survival of the cell. Physical and chemical noxae can interact in various ways with components of the cytoplasmic membrane, influence its permeability and thus mediate toxic effects. In the study presented, changes in membrane permeability were quantified by intracellular accumulation of a fluorescent dye and by the release of the fluorescent dye from dye-loaded cells. MATERIALS AND METHODS Non-malignant (RC-124) and malignant (786-O, Caki-1) renal cells were permeabilized with different concentrations of Triton X-100. The permeability of the membrane was determined at the single-cell level by the uptake of the dye into the cell inner by flow cytometry. In addition, a fluorescence plate reader was used to detect and quantify the release of the dye into the cell culture supernatant. RESULTS Both malignant and non-malignant cells showed a dose-dependent alteration of membrane permeability after treatment with Triton X-100. In the presence of the fluorescent dye, significantly more dye was introduced into the permeabilized cells compared to control incubations. Vice versa, Triton X-100-treated and dye-loaded cells released significantly more dye into the cell culture supernatant. CONCLUSION The combination of measurement of intracellular accumulated and extracellular released dye can quantifiably detect changes in membrane permeability due to cell-membrane damage. The combination of two different measurement methods offers additional value in reliable detection of membrane-damaging, potentially toxic influences.
Collapse
Affiliation(s)
- Andreas Nitsch
- Department of Urology, University Medicine Greifswald, Greifswald, Germany.,Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lyubomir Haralambiev
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany .,Department of Trauma and Orthopaedic Surgery, BG Clinic Trauma Hospital Berlin gGmbH, Berlin, Germany
| | - Rebekka Einenkel
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Damián O Muzzio
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Marek T Zygmunt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Axel Ekkernkamp
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany.,Department of Trauma and Orthopaedic Surgery, BG Clinic Trauma Hospital Berlin gGmbH, Berlin, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
59
|
Determining the Development of Persisters in Extensively Drug-Resistant Acinetobacter baumannii upon Exposure to Polymyxin B-Based Antibiotic Combinations Using Flow Cytometry. Antimicrob Agents Chemother 2020; 64:AAC.01712-19. [PMID: 31818819 DOI: 10.1128/aac.01712-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Polymyxin B-based combinations are increasingly prescribed as a last-line option against extensively drug-resistant (XDR) Acinetobacter baumannii It is unknown if such combinations can result in the development of nondividing persister cells in XDR A. baumannii We investigated persister development upon exposure of XDR A. baumannii to polymyxin B-based antibiotic combinations using flow cytometry. Time-kill studies (TKSs) were conducted in three nonclonal XDR A. baumannii strains with 5 log10 CFU/ml bacteria against polymyxin B alone and polymyxin B-based two-drug combinations over 24 h. At different time points, samples were obtained and enumerated by viable plating and flow cytometry. Propidium iodide and carboxyfluorescein succinimidyl ester dyes were used to differentiate between live and dead cells and between dividing and nondividing cells, respectively, at the single-cell level, and nondividing live cells were resuscitated and characterized phenotypically. Our results from viable plating showed that polymyxin B plus meropenem and polymyxin B plus rifampin were each bactericidal (>99.9% kill compared to the initial inoculum) against 2/3 XDR A. baumannii strains at 24 h. By flow cytometry, however, none of the combinations were bactericidal against XDR A. baumannii at 24 h. Further analysis using cellular dyes in flow cytometry revealed that upon exposure to polymyxin B-based combinations, XDR A. baumannii entered a viable but nondividing persister state. These bacterial cells reinitiated division upon the removal of antibiotic pressure and did not have a growth deficit compared to the parent strain. We conclude that persister cells develop in XDR A. baumannii upon exposure to polymyxin B-based combinations and that nonplating methods appear to complement viable-plating methods in describing the killing activity of polymyxin B-based combinations against XDR A. baumannii.
Collapse
|
60
|
Heins AL, Reyelt J, Schmidt M, Kranz H, Weuster-Botz D. Development and characterization of Escherichia coli triple reporter strains for investigation of population heterogeneity in bioprocesses. Microb Cell Fact 2020; 19:14. [PMID: 31992282 PMCID: PMC6988206 DOI: 10.1186/s12934-020-1283-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background Today there is an increasing demand for high yielding robust and cost efficient biotechnological production processes. Although cells in these processes originate from isogenic cultures, heterogeneity induced by intrinsic and extrinsic influences is omnipresent. To increase understanding of this mechanistically poorly understood phenomenon, advanced tools that provide insights into single cell physiology are needed. Results Two Escherichia coli triple reporter strains have been designed based on the industrially relevant production host E. coli BL21(DE3) and a modified version thereof, E. coli T7E2. The strains carry three different fluorescence proteins chromosomally integrated. Single cell growth is followed with EmeraldGFP (EmGFP)-expression together with the ribosomal promoter rrnB. General stress response of single cells is monitored by expression of sigma factor rpoS with mStrawberry, whereas expression of the nar-operon together with TagRFP657 gives information about oxygen limitation of single cells. First, the strains were characterized in batch operated stirred-tank bioreactors in comparison to wildtype E. coli BL21(DE3). Afterwards, applicability of the triple reporter strains for investigation of population heterogeneity in bioprocesses was demonstrated in continuous processes in stirred-tank bioreactors at different growth rates and in response to glucose and oxygen perturbation simulating gradients on industrial scale. Population and single cell level physiology was monitored evaluating general physiology and flow cytometry analysis of fluorescence distributions of the triple reporter strains. Although both triple reporter strains reflected physiological changes that were expected based on the expression characteristics of the marker proteins, the triple reporter strain based on E. coli T7E2 showed higher sensitivity in response to environmental changes. For both strains, noise in gene expression was observed during transition from phases of non-growth to growth. Apparently, under some process conditions, e.g. the stationary phase in batch cultures, the fluorescence response of EmGFP and mStrawberry is preserved, whereas TagRFP657 showed a distinct response. Conclusions Single cell growth, general stress response and oxygen limitation of single cells could be followed using the two triple reporter strains developed in this study. They represent valuable tools to study population heterogeneity in bioprocesses significantly increasing the level of information compared to the use of single reporter strains.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Jan Reyelt
- Gene Bridges GmbH, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Marlen Schmidt
- Gene Bridges GmbH, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Harald Kranz
- Gene Bridges GmbH, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
61
|
Zhang Y, Delbrück AI, Off CL, Benke S, Mathys A. Flow Cytometry Combined With Single Cell Sorting to Study Heterogeneous Germination of Bacillus Spores Under High Pressure. Front Microbiol 2020; 10:3118. [PMID: 32038559 PMCID: PMC6985370 DOI: 10.3389/fmicb.2019.03118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/24/2019] [Indexed: 01/27/2023] Open
Abstract
Isostatic high pressure (HP) of 150 MPa can trigger the germination of bacterial spores, making them lose their extreme resistance to stress factors, and increasing their susceptibility to milder inactivation strategies. However, germination response of spores within a population is very heterogeneous, and tools are needed to study this heterogeneity. Here, classical methods were combined with more recent and powerful techniques such as flow cytometry (FCM) and fluorescence activated cell sorting (FACS) to investigate spore germination behavior under HP. Bacillus subtilis spores were treated with HP at 150 MPa and 37°C, stained with SYTO16 and PI, and analyzed via FCM. Four sub-populations were detected. These sub-populations were for the first time isolated on single cell level using FACS and characterized in terms of their heat resistance (80°C, 10 min) and cultivability in a nutrient-rich environment. The four isolated sub-populations were found to include (1) heat-resistant and mostly cultivable superdormant spores, i.e., spores that remained dormant after this specific HP treatment, (2) heat-sensitive and cultivable germinated spores, (3) heat-sensitive and partially-cultivable germinated spores, and (4) membrane-compromised cells with barely detectable cultivability. Of particular interest was the physiological state of the third sub-population, which was previously referred to as "unknown". Moreover, the kinetic transitions between different physiological states were characterized. After less than 10 min of HP treatment, the majority of spores germinated and ended up in a sublethally damaged stage. HP treatment at 150 MPa and 37°C did not cause inactivation of all geminated spores, suggesting that subsequent inactivation strategies such as mild heat inactivation or other inactivation techniques are necessary to control spores in food. This study validated FCM as a powerful technique to investigate the heterogeneous behavior of spores under HP, and provided a pipeline using FACS for isolation of different sub-populations and subsequent characterization to understand their physiological states.
Collapse
Affiliation(s)
- Yifan Zhang
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Alessia I. Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Cosima L. Off
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Stephan Benke
- Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
62
|
Cell wall hydrolase as a surface-associated protein target for the specific detection of Lactobacillus rhamnosus using flow cytometry. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
63
|
Cal-Sabater P, Caro I, Castro MJ, Cao MJ, Mateo J, Quinto EJ. Flow Cytometry to Assess the Counts and Physiological State of Cronobacter sakazakii Cells after Heat Exposure. Foods 2019; 8:foods8120688. [PMID: 31888256 PMCID: PMC6963341 DOI: 10.3390/foods8120688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/26/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that is associated with outbreaks of neonatal necrotizing enterocolitis, septicaemia, and meningitis. Reconstituted powdered infant formulae is the most common vehicle of infection. The aim of the present study is to gain insight into the physiological states of C. sakazakii cells using flow cytometry to detect the compromised cells, which are viable but non-culturable using plate-based methods, and to evaluate the impact of milk heat treatments on those populations. Dead-cell suspensions as well as heat-treated and non-heat-treated cell suspensions were used. After 60 or 65 °C treatments, the number of compromised cells increased as a result of cells with compromised membranes shifting from the heat-treated suspension. These temperatures were not effective at killing all bacteria but were effective at compromising their membranes. Thus, mild heat treatments are not enough to guarantee the safety of powered infant formulae. Flow cytometry was capable of detecting C. sakazakii’s compromised cells that cannot be detected with classical plate count methods; thus, it could be used as a screening test to decrease the risk derived from the presence of pathogenic viable but non-culturable cells in this food that is intended for newborns’ nutrition.
Collapse
Affiliation(s)
- Paloma Cal-Sabater
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.C.-S.); (I.C.)
- Department of Nursery, Faculty of Nursery, University of Valladolid, 47005 Valladolid, Spain; (M.J.C.); (M.J.C.)
| | - Irma Caro
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.C.-S.); (I.C.)
| | - María J. Castro
- Department of Nursery, Faculty of Nursery, University of Valladolid, 47005 Valladolid, Spain; (M.J.C.); (M.J.C.)
| | - María J. Cao
- Department of Nursery, Faculty of Nursery, University of Valladolid, 47005 Valladolid, Spain; (M.J.C.); (M.J.C.)
| | - Javier Mateo
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain;
| | - Emiliano J. Quinto
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.C.-S.); (I.C.)
- Correspondence:
| |
Collapse
|
64
|
Bisht K, Wakeman CA. Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Front Microbiol 2019; 10:1908. [PMID: 31507548 PMCID: PMC6718512 DOI: 10.3389/fmicb.2019.01908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
The association of microorganisms into biofilms produces functionally organized microbial structures that promote community survival in a wide range of environments. Much like when individual cells within a multicellular organism express different genes from the same DNA blueprint, individual microbial cells located within different regions of a biofilm structure can exhibit distinct genetic programs. These spatially defined regions of physiologically differentiated cells are reminiscent of the role of tissues in multicellular organisms, with specific subpopulations in the microbial community serving defined roles to promote the overall health of the biofilm. The functions of these subpopulations are quite diverse and can range from dormant cells that can withstand antibiotic onslaughts to cells actively producing extracellular polymeric substances providing integrity to the entire community. The purpose of this review is to discuss the diverse roles of subpopulations in the stability and function of clonal biofilms, the methods for studying these subpopulations, and the ways these subpopulations can potentially be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine Ann Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
65
|
Ratiu IA, Railean Plugaru V, Pomastowski P, Milanowski M, Mametov R, Bocos-Bintintan V, Buszewski B. Temporal influence of different antibiotics onto the inhibition of Escherichia coli bacterium grown in different media. Anal Biochem 2019; 585:113407. [PMID: 31449777 DOI: 10.1016/j.ab.2019.113407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023]
Abstract
Escherichia coli (E. coli) is a Gram-negative bacterium commonly found in the lower intestine of warm-blooded organisms, including humans. Although the majority of the strains are considerably harmless, some serotypes are pathogenic, frequently causing diarrhea and other illnesses outside the intestinal tract. The standard antidote against bacteria is the use of antibiotics. Depending on their type, the antibiotics have various mechanisms of action on bacteria. Moreover, in case of in-vitro cultivation of bacteria, the used growth media plays a crucial role, since it influences bacterial inhibition as well. In the present study, we emphasize the importance of cultivability in bacterial inhibition under the treatment with five different antibiotics belonging to different classes. Consequently, E. coli was cultivated in three different growth media: trypcase soy broth (TSB), Mueller Hinton (MH), and minimal salts (M9) enriched with glucose, respectively. MALDI-TOF MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) analyses, that were used for fast characterization of changes that occur in ribosomal protein profiles, revealed differentiation and similarities between investigated cases, while flow cytometry (FCM) tests better explained the given changes that occurred in the analyzed samples after 3, 24 and 48 h of experimental campaign.
Collapse
Affiliation(s)
- Ileana Andreea Ratiu
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100, Toruń, Poland; Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Str., RO, 400028, Cluj-Napoca, Romania.
| | - Viorica Railean Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100, Toruń, Poland
| | - Pawel Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100, Toruń, Poland
| | - Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100, Toruń, Poland
| | - Radik Mametov
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100, Toruń, Poland
| | - Victor Bocos-Bintintan
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fântânele Str., RO, 400294, Cluj-Napoca, Romania
| | - Boguslaw Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100, Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100, Toruń, Poland.
| |
Collapse
|
66
|
Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci 2019; 20:E3794. [PMID: 31382580 PMCID: PMC6696330 DOI: 10.3390/ijms20153794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
67
|
Montanari C, Tylewicz U, Tabanelli G, Berardinelli A, Rocculi P, Ragni L, Gardini F. Heat-Assisted Pulsed Electric Field Treatment for the Inactivation of Saccharomyces cerevisiae: Effects of the Presence of Citral. Front Microbiol 2019; 10:1737. [PMID: 31417527 PMCID: PMC6684780 DOI: 10.3389/fmicb.2019.01737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
Pulsed electric field (PEF) treatment is a non-thermal technology that has shown good potential for microbial inactivation. However, in many cases, it cannot be sufficient to avoid microbial proliferation, and the combination with other stabilizing technologies is needed. In the framework of the hurdle concept, several researches have been focused on the use of PEF in combination with heat and/or antimicrobials to increase its efficacy. This study investigated the inactivation effect of PEF on a strain of Saccharomyces cerevisiae (isolated from spoiled beverages) in a model system (growth medium). The efficacy of PEF treatment was evaluated in relation to different variables, such as electric field strength (25 and 50 kV/cm), treatment time (from 1 to 5 s), initial inoculum level (4 or 6 log cfu/ml), preheating at 50°C, medium pH (4 or 6), and addition of citral at sublethal concentration (i.e., half of minimum inhibiting concentration). The data from plate counting, modeled with the Weibull equation, showed that one of the main factors affecting yeast inactivation was the preheating of the suspension at 50°C. Indeed, higher cell load reductions were obtained with heat-assisted PEF, especially in the presence of citral. The effect of initial cell load was negligible, while pH affected yeast inactivation only without preheating, with higher death kinetics at pH 6. Flow cytometry (FCM) analysis confirmed higher mortality under these conditions. However, the occurrence of injured cells, especially in samples treated at pH 4, was observed. The ability of these cells to recover from the damages induced by treatments was affected by both citral and preheating. The synergic effects of PEF, preheating, and citral were likely due to the increase of membrane permeability (especially at pH 6), as the primary target of electroporation, which favored the solubilization of citral in the cell membrane, enhancing the efficacy of the whole process. The multi-analytical approach (traditional plate counting and FCM) allowed defining parameters to increase PEF efficacy against S. cerevisiae. Moreover, FCM, able to discriminate different physiological states of the yeast population, was helpful to better clarify the action mechanism and the potential recovery of cells after treatment.
Collapse
Affiliation(s)
- Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Urszula Tylewicz
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | - Pietro Rocculi
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Luigi Ragni
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Fausto Gardini
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| |
Collapse
|
68
|
Quantification and isolation of Bacillus subtilis spores using cell sorting and automated gating. PLoS One 2019; 14:e0219892. [PMID: 31356641 PMCID: PMC6663000 DOI: 10.1371/journal.pone.0219892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/04/2019] [Indexed: 01/22/2023] Open
Abstract
The Gram-positive bacterium Bacillus subtilis is able to form endospores which have a variety of biotechnological applications. Due to this ability, B. subtilis is as well a model organism for cellular differentiation processes. Sporulating cultures of B. subtilis form sub-populations which include vegetative cells, sporulating cells and spores. In order to readily and rapidly quantify spore formation we employed flow cytometric and fluorescence activated cell sorting techniques in combination with nucleic acid fluorescent staining in order to investigate the distribution of sporulating cultures on a single cell level. Automated gating procedures using Gaussian mixture modeling (GMM) were employed to avoid subjective gating and allow for the simultaneous measurement of controls. We utilized the presented method for monitoring sporulation over time in germination deficient strains harboring different genome modifications. A decrease in the sporulation efficiency of strain Bs02018, utilized for the display of sfGFP on the spores surface was observed. On the contrary, a double knock-out mutant of the phosphatase gene encoding Spo0E and of the spore killing factor SkfA (Bs02025) exhibited the highest sporulation efficiency, as within 24 h of cultivation in sporulation medium, cultures of BS02025 already consisted of 80% spores as opposed to 18% for the control strain. We confirmed the identity of the different subpopulations formed during sporulation by employing sorting and microscopy.
Collapse
|
69
|
Lian H, He S, Chen C, Yan X. Flow Cytometric Analysis of Nanoscale Biological Particles and Organelles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:389-409. [PMID: 30978294 DOI: 10.1146/annurev-anchem-061318-115042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Analysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.
Collapse
Affiliation(s)
| | | | - Chaoxiang Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| |
Collapse
|
70
|
Puchkov EO. Quantitative Methods for Single-Cell Analysis of Microorganisms. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
71
|
Robertson J, McGoverin C, Vanholsbeeck F, Swift S. Optimisation of the Protocol for the LIVE/DEAD ® BacLight TM Bacterial Viability Kit for Rapid Determination of Bacterial Load. Front Microbiol 2019; 10:801. [PMID: 31031741 PMCID: PMC6474257 DOI: 10.3389/fmicb.2019.00801] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/28/2019] [Indexed: 11/20/2022] Open
Abstract
Rapid antimicrobial susceptibility testing is needed to reduce prescription of inappropriate antibiotics. A rapid alternative to standard culture-based testing is to determine reductions in cell viability using the LIVE/DEAD® BacLightTM Bacterial Viability Kit. We optimised the kit protocol for this application, focusing on simplifying the process by minimising the steps involved and on determining the optimal analytical parameters for fluorescence measurements from the dyes SYTO 9 and propidium iodide (PI). We demonstrate that for our experimental system, the intensity of emissions should be integrated from 505–515 nm for SYTO 9 and 600–610 nm for PI, and the proportion of live cells calculated from a new dye ratio formula, termed the adjusted dye ratio. We show that the pre-staining washing step is not necessary if a non-fluorescent growth media is used; however, staining must be done for each sampling as prolonged exposure to the dyes negatively impacts cell viability. The optimised methodology was able to reproducibly detect reductions in culture viability when the proportion of live cells in a sample of 1 × 108 cells/ml fell below ∼50% live in a media that supports the growth required for detecting antibiotic killing. Finally, we show that the interaction of fluorescence emission spectra from SYTO 9 and PI stained Escherichia coli cells is influenced by the proportion of dead cells in a sample. The excitation of PI by SYTO 9 was found to occur in populations containing sufficient numbers of dead cells (>25%), whereas in populations with low numbers of dead cells the dye interaction was additive in regard to red emissions, indicating that these dye interactions may offer another dimension to live/dead analysis. Fluorescence measurements from samples established according to the optimised protocol can be taken using a flow cytometer, spectrofluorometer, microplate reader, and the Optrode, a fibre-based spectroscopic system developed at the University of Auckland.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand.,The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| | - Cushla McGoverin
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand.,Department of Physics, The University of Auckland, Auckland, New Zealand
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand.,Department of Physics, The University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
72
|
Tabanelli G, Montanari C, Arioli S, Magnani M, Patrignani F, Lanciotti R, Mora D, Gardini F. Physiological response of Saccharomyces cerevisiae to citral combined with thermal treatment. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
73
|
Volbers D, Stierle VK, Ditzel KJ, Aschauer J, Rädler JO, Opitz M, Paulitschke P. Interference Disturbance Analysis Enables Single-Cell Level Growth and Mobility Characterization for Rapid Antimicrobial Susceptibility Testing. NANO LETTERS 2019; 19:643-651. [PMID: 30525694 DOI: 10.1021/acs.nanolett.8b02815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To support the emerging battle against antimicrobial resistance (AMR), detection methods that allow fast and accurate antimicrobial susceptibility testing (AST) are urgently needed. The early identification and application of an appropriate antibiotic treatment leads to lower mortality rates and substantial cost savings and prevents the development of resistant pathogens. In this work, we present a diffraction-based method, which is capable of quantitative bacterial growth, mobility, and susceptibility measurements. The method is based on the temporal analysis of the intensity of a light diffraction peak, which arises due to interference at a periodic pattern of gold nanostructures. The presence of bacteria disturbs the constructive interference, leading to an intensity decrease and thus allows the monitoring of bacterial growth in very low volumes. We demonstrate the direct correlation of the decrease in diffraction peak intensity with bacterial cell number starting from single cells and show the capability for rapid high-throughput AST measurements by determining the minimum inhibitory concentration for three different antimicrobials in less than 2-3 h as well as the susceptibility in less than 30-40 min. Furthermore, bacterial mobility is obtained from short-term fluctuations of the diffraction peak intensity and is shown to decrease by a factor of 3 during bacterial attachment to a surface. This multiparameter detection method allows for rapid AST of planktonic and of biofilm-forming bacterial strains in low volumes and in real-time without the need of high initial cell numbers.
Collapse
Affiliation(s)
- David Volbers
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Valentin K Stierle
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Konstantin J Ditzel
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Julian Aschauer
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Madeleine Opitz
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Philipp Paulitschke
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| |
Collapse
|
74
|
Lv R, Wang D, Zou M, Wang W, Ma X, Chen W, Zhou J, Ding T, Ye X, Liu D. Analysis ofBacillus cereuscell viability, sublethal injury, and death induced by mild thermal treatment. J Food Saf 2018. [DOI: 10.1111/jfs.12581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ruiling Lv
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Danli Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Mingming Zou
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Wenjun Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Weijun Chen
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Tian Ding
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
- Fuli Institute of Food ScienceZhejiang University Zhejiang Hangzhou China
| |
Collapse
|
75
|
Phenotypic antibiotic susceptibility testing of pathogenic bacteria using photonic readout methods: recent achievements and impact. Appl Microbiol Biotechnol 2018; 103:549-566. [PMID: 30443798 DOI: 10.1007/s00253-018-9505-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
The development of antibiotic resistances in common pathogens is an increasing challenge for therapy of infections and especially severe complications like sepsis. To prevent administration of broad-spectrum and potentially non-effective antibiotics, the susceptibility spectrum of the pathogens underlying the infection has to be determined. Current phenotypic standard methods for antibiotic susceptibility testing (AST) require the isolation of pathogens from the patient and the subsequent culturing in the presence of antibiotics leading to results only after 24-72 h. Since the early initialization of an effective antibiotic therapy is crucial for positive treatment result in severe infections, faster methods of AST are urgently needed. A large number of different assay systems are currently tested for their practicability for fast detection of antibiotic resistance profiles. They can be divided into genotypic ones which detect the presence of certain genes or gene products associated with resistances and phenotypic assays which determine the effect of antibiotics on the pathogens. In this mini-review, we summarize current developments in fast phenotypic tests that use photonic approaches and critically discuss their status. We further outline steps that are required to bring these assays into clinical practice.
Collapse
|
76
|
Cai J, Nichols RG, Koo I, Kalikow ZA, Zhang L, Tian Y, Zhang J, Smith PB, Patterson AD. Multiplatform Physiologic and Metabolic Phenotyping Reveals Microbial Toxicity. mSystems 2018; 3:e00123-18. [PMID: 30417115 PMCID: PMC6222046 DOI: 10.1128/msystems.00123-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combines in vitro microbial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and 1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and function in vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that the in vitro approach reflected in vivo conditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison of in vitro and in vivo exposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity. IMPORTANCE The gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.
Collapse
Affiliation(s)
- Jingwei Cai
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Robert G. Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Imhoi Koo
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zachary A. Kalikow
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Limin Zhang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Yuan Tian
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Jingtao Zhang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Philip B. Smith
- Metabolomics Facility, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew D. Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
77
|
Carré G, Charpentier E, Audonnet S, Terryn C, Boudifa M, Doliwa C, Belgacem ZB, Gangloff SC, Gelle MP. Contribution of Fluorescence Techniques in Determining the Efficiency of the Non-thermal Plasma Treatment. Front Microbiol 2018; 9:2171. [PMID: 30250463 PMCID: PMC6140754 DOI: 10.3389/fmicb.2018.02171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
We have recently developed a non-thermal plasma (NTP) equipment intended to sterilize fragile medical devices and maintain the sterile state of items downstream the treatment. With traditional counts on agar plate a six log reduction of Staphylococcus aureus viability was obtained within 120 min of O2, Ar, or N2 NTP treatments. However to determine the best NTP process, we studied the different physiological states of S. aureus by flow cytometry (FC) and confocal laser scanning microscopy (CLSM) focusing on the esterasic activity and membrane integrity of the bacteria. Two fluorochromes, 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate and propidium iodide were used in order to distinguish three sub-populations: metabolically active, permeabilized, and damaged bacteria that can be in the viable but nonculturable state. FC and CLSM highlight that O2 and Ar NTP treatments were the most attractive processes. Indeed, a 5 min of Ar NTP generated a high destruction of the structure of bacteria and a 120 min of O2 NTP treatment led to the higher decrease of the total damaged bacteria population. SEM observations showed that in presence of clusters, bacteria of upper layers are easily altered compared to bacteria in the deeper layers. In conclusion, the plate counting method is not sufficient by itself to determine the best NTP treatment. FC and CLSM represent attractive indicator techniques to select the most efficient gas NTP treatment generating the lowest proportion of viable bacteria and the most debris.
Collapse
Affiliation(s)
- Gaëlle Carré
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France
| | - Emilie Charpentier
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France.,Unité de Formation et de Recherche de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Sandra Audonnet
- URCACyt - Plateau technique de cytométrie en flux, Université de Reims Champagne-Ardenne, Reims, France.,PICT - Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-Ardenne, Reims, France
| | - Christine Terryn
- PICT - Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Christelle Doliwa
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France
| | - Zouhaier Ben Belgacem
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France
| | - Sophie C Gangloff
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France.,Unité de Formation et de Recherche de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Marie-Paule Gelle
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France.,Pôle Médecine Bucco-Dentaire, Centre Hospitalier Universitaire de Reims, Reims, France
| |
Collapse
|
78
|
Missina JM, Gavinho B, Postal K, Santana FS, Valdameri G, de Souza EM, Hughes DL, Ramirez MI, Soares JF, Nunes GG. Effects of Decavanadate Salts with Organic and Inorganic Cations on Escherichia coli, Giardia intestinalis, and Vero Cells. Inorg Chem 2018; 57:11930-11941. [DOI: 10.1021/acs.inorgchem.8b01298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Glaucio Valdameri
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Campus Jardim Botânico, Jardim Botânico, 80210-170 Curitiba, Paraná, Brazil
| | | | - David L. Hughes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Marcel I. Ramirez
- Fundação Osvaldo Cruz, Av. Brazil, Manguinhos, 4365 Rio de Janeiro, Brazil
| | | | | |
Collapse
|
79
|
Bhargava A, Pareek V, Roy Choudhury S, Panwar J, Karmakar S. Superior Bactericidal Efficacy of Fucose-Functionalized Silver Nanoparticles against Pseudomonas aeruginosa PAO1 and Prevention of Its Colonization on Urinary Catheters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29325-29337. [PMID: 30096228 DOI: 10.1021/acsami.8b09475] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pseudomonas aeruginosa, a Gram-negative rod-shaped bacterium is a notorious pathogen causing chronic infections. Its ability to form antibiotic-resistant biofilm has raised the need for the development of alternative treatment approaches. An ideal alternate can be silver nanoparticles known for their strong yet tunable bactericidal activity. However, their use in commercial in vivo medicine could not see the light of the day because of the unwanted toxicity of silver in the host cells at higher concentrations. Thus, strategies which can modulate the bacterial cell-silver nanoparticle interactions thereby reducing the amount of nanoparticles required to kill a typical number of bacterial cells are utmost welcomed. The current work showcases one such strategy by functionalizing the silver nanoparticles with l-fucose to increase their interactions with the LecB lectins present on P. aeruginosa PAO1. The advantage of this approach lies in the higher bactericidal and antibiofilm activity of fucose-functionalized silver nanoparticles (FNPs) as compared to the citrate-capped silver nanoparticles (CNPs) of similar size and concentrations. The superior bactericidal potential of FNPs as demonstrated by fluorescence-assisted cell sorting, confocal laser scanning microscopy, and transmission electron microscopy analyses may be attributed to the higher reactive oxygen species generation and oxidative membrane damage. Additionally, FNPs prevented the formation of biofilms by downregulating the expression of various virulence genes at lower concentrations as compared to CNPs. The practical applicability of the approach was demonstrated by preventing bacterial colonization on artificial silicone rubber surfaces. These results can be extrapolated in the treatment of catheter-associated urinary tract infections caused by P. aeruginosa. In conclusion, the present work strongly advocates the use of antivirulence targets and their corresponding binding residues for the augmentation of the bactericidal effect of silver nanoparticles.
Collapse
Affiliation(s)
- Arpit Bhargava
- Institute of Nano Science and Technology , Habitat Centre, Phase-10 , Mohali 160062 , Punjab , India
| | - Vikram Pareek
- Department of Biological Sciences , Birla Institute of Technology and Science , Pilani 333031 , Rajasthan , India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology , Habitat Centre, Phase-10 , Mohali 160062 , Punjab , India
| | - Jitendra Panwar
- Department of Biological Sciences , Birla Institute of Technology and Science , Pilani 333031 , Rajasthan , India
| | - Surajit Karmakar
- Institute of Nano Science and Technology , Habitat Centre, Phase-10 , Mohali 160062 , Punjab , India
| |
Collapse
|
80
|
García-Timermans C, Rubbens P, Kerckhof FM, Buysschaert B, Khalenkow D, Waegeman W, Skirtach AG, Boon N. Label-free Raman characterization of bacteria calls for standardized procedures. J Microbiol Methods 2018; 151:69-75. [DOI: 10.1016/j.mimet.2018.05.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022]
|
81
|
Duan Y, Sen B, Xie N, Paterson JS, Chen Z, Wang G. Flow Cytometry for Rapid Enumeration and Biomass Quantification of Thraustochytrids in Coastal Seawaters. Microbes Environ 2018; 33:195-204. [PMID: 29910220 PMCID: PMC6031391 DOI: 10.1264/jsme2.me17162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Marine fungus-like eukaryotic unicellular protists (thraustochytrids) are considered to play an important role in the marine microbial food web. However, their abundance, distribution, and relative biomass in coastal waters have not yet been examined in detail. By using a flow cytometry method (FCM) for the rapid enumeration of thraustochytrids in nearshore and offshore stations along the Gulf of Bohai, China, we herein expanded current knowledge on their ecological significance. The FCM method allows for the rapid detection and quantification of prokaryotic and eukaryotic cells, but is rarely applied to the enumeration of small eukaryotic protists. Epifluorescence microscopy (EpiM) has been commonly used for the direct detection and enumeration of thraustochytrids; however, this method is time-consuming and inapplicable to a large-scale analysis of complex seawater samples. There is no available FCM method to track the abundance and biomass of thraustochytrids in marine habitats. The FCM enumeration of thraustochytrids in seawater samples ranged between 400 and 4,080 cells mL-1 with a biomass range of 8.15-83.96 μg C L-1. The thraustochytrid biomass contributed 10.9% to 98.1% of the total biomass of the heterotrophic microbial community comprising bacterioplankton and thraustochytrids. Their overall abundance in nearshore stations was significantly different from that in offshore stations (P<0.5). The present results provide an optimized method for the rapid detection and enumeration of thraustochytrids in seawater and facilitate large-scale studies of the ecological role of thraustochytrids in the microbial food web of coastal waters.
Collapse
Affiliation(s)
- Yingbo Duan
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin 300072China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin 300072China
| | - Ningdong Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin 300072China
| | - James S. Paterson
- School of Biological Sciences, Flinders UniversityGPO Box 2100, Adelaide SA 5001Australia
| | - Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin UniversityTianjin 300072P. R. China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin 300072China
| |
Collapse
|
82
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
83
|
Fang Y, Zhu C, Chen X, Wang Y, Xu M, Sun G, Guo J, Yoo J, Tie C, Jiang X, Li X. Copy number of ArsR reporter plasmid determines its arsenite response and metal specificity. Appl Microbiol Biotechnol 2018; 102:5753-5761. [PMID: 29766244 DOI: 10.1007/s00253-018-9042-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 10/16/2022]
Abstract
The key component in bacteria-based biosensors is a transcriptional reporter employed to monitor induction or repression of a reporter gene corresponding to environmental change. In this study, we made a series of reporters in order to achieve highly sensitive detection of arsenite. From these reporters, two biosensors were developed by transformation of Escherichia coli DH5α with pLHPars9 and pLLPars9, consisting of either a high or low copy number plasmid, along with common elements of ArsR-luciferase fusion and addition of two binding sequences, one each from E. coli and Acidithiobacillus ferrooxidans chromosome, in front of the R773 ArsR operon. Both of them were highly sensitive to arsenite, with a low detection limit of 0.04 μM arsenite (~ 5 μg/L). They showed a wide dynamic range of detection up to 50 μM using high copy number pLHPars9 and 100 μM using low copy number pLLPars9. Significantly, they differ in metal specificity, pLLPars9 more specific to arsenite, while pLHPars9 to both arsenite and antimonite. The only difference between pLHPars9 and pLLPars9 is their copy numbers of plasmid and corresponding ratios of ArsR to its binding promoter/operator sequence. Therefore, we propose a working model in which DNA bound-ArsR is different from its free form in metal specificity.
Collapse
Affiliation(s)
- Yun Fang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou, 510070, Guangdong, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Chunjie Zhu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou, 510070, Guangdong, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Xingjuan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou, 510070, Guangdong, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Yan Wang
- Science and Technology Library of Guangdong Province, Guangdong Institute of Science and Technology Information and Development Strategy, Guangzhou, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou, 510070, Guangdong, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China.
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou, 510070, Guangdong, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou, 510070, Guangdong, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Jinnon Yoo
- Signosis Inc., 1700 Wyatt Drive, suite10-12, Santa Clara, CA, USA
| | - Cuijuan Tie
- Signosis Inc., 1700 Wyatt Drive, suite10-12, Santa Clara, CA, USA
| | - Xin Jiang
- Signosis Inc., 1700 Wyatt Drive, suite10-12, Santa Clara, CA, USA
| | - Xianqiang Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou, 510070, Guangdong, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China. .,Signosis Inc., 1700 Wyatt Drive, suite10-12, Santa Clara, CA, USA.
| |
Collapse
|
84
|
Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T. Antimicrobial photodynamic therapy - what we know and what we don't. Crit Rev Microbiol 2018; 44:571-589. [PMID: 29749263 DOI: 10.1080/1040841x.2018.1467876] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Considering increasing number of pathogens resistant towards commonly used antibiotics as well as antiseptics, there is a pressing need for antimicrobial approaches that are capable of inactivating pathogens efficiently without the risk of inducing resistances. In this regard, an alternative approach is the antimicrobial photodynamic therapy (aPDT). The antimicrobial effect of aPDT is based on the principle that visible light activates a per se non-toxic molecule, the so-called photosensitizer (PS), resulting in generation of reactive oxygen species that kill bacteria unselectively via an oxidative burst. During the last 10-20 years, there has been extensive in vitro research on novel PS as well as light sources, which is now to be translated into clinics. In this review, we aim to provide an overview about the history of aPDT, its fundamental photochemical and photophysical mechanisms as well as photosensitizers and light sources that are currently applied for aPDT in vitro. Furthermore, the potential of resistances towards aPDT is extensively discussed and implications for proper comparison of in vitro studies regarding aPDT as well as for potential application fields in clinical practice are given. Overall, this review shall provide an outlook on future research directions needed for successful translation of promising in vitro results in aPDT towards clinical practice.
Collapse
Affiliation(s)
- Fabian Cieplik
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany.,b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Dongmei Deng
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wolfgang Buchalla
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany
| | - Elmar Hellwig
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Ali Al-Ahmad
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Tim Maisch
- d Department of Dermatology , University Medical Center Regensburg , Regensburg , Germany
| |
Collapse
|
85
|
Abstract
A variety of direct and indirect methods have been used to quantify planktonic and biofilm bacterial cells. Direct counting methods to determine the total number of cells include plate counts, microscopic cell counts, Coulter cell counting, flow cytometry, and fluorescence microscopy. However, indirect methods are often used to supplement direct cell counting, as they are often more convenient, less time-consuming, and require less material, while providing a number that can be related to the direct cell count. Herein, an indirect method is presented that uses fluorescence emission intensity as a proxy marker for studying bacterial accumulation. A clinical strain of Pseudomonas aeruginosa was genetically modified to express a green fluorescent protein (PA14/EGFP). The fluorescence intensity of EGFP in live cells was used as an indirect measure of live cell density, and was compared with the traditional cell counting methods of optical density (OD600) and plate counting (colony-forming units (CFUs)). While both OD600 and CFUs are well-established methods, the use of fluorescence spectroscopy to quantify bacteria is less common. This study demonstrates that EGFP intensity is a convenient reporter for bacterial quantification. In addition, we demonstrate the potential for fluorescence spectroscopy to be used to measure the quantity of PA14/EGFP biofilms, which have important human health implications due to their antimicrobial resistance. Therefore, fluorescence spectroscopy could serve as an alternative or complementary quick assay to quantify bacteria in planktonic cultures and biofilms.
Collapse
|
86
|
Cieplik F, Steinwachs VS, Muehler D, Hiller KA, Thurnheer T, Belibasakis GN, Buchalla W, Maisch T. Phenalen-1-one-Mediated Antimicrobial Photodynamic Therapy: Antimicrobial Efficacy in a Periodontal Biofilm Model and Flow Cytometric Evaluation of Cytoplasmic Membrane Damage. Front Microbiol 2018; 9:688. [PMID: 29681899 PMCID: PMC5897782 DOI: 10.3389/fmicb.2018.00688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/23/2018] [Indexed: 01/18/2023] Open
Abstract
In light of increasing resistance toward conventional antibiotics and antiseptics, antimicrobial photodynamic therapy (aPDT) may be a valuable alternative, especially for use in dentistry. In this regard, photosensitizers (PS) based on a phenalen-1-one structure seem to be especially favorable due to their high singlet oxygen quantum yield. However, the actual target structures of phenalen-1-one-mediated aPDT are still unclear. The aim of the present study was to investigate the antimicrobial efficacy of aPDT mediated by phenalen-1-one derivatives SAPYR and SAGUA for inactivation of a polymicrobial biofilm consisting of three putative periodontal pathogens in vitro and to get first insights in the mechanism of action of phenalen-1-one-mediated aPDT by assessing damage of cytoplasmic membranes. aPDT with SAPYR exhibited identical antimicrobial efficacy as compared to chlorhexidine (CHX) [4.4-6.1 log10 reduction of colony forming units (CFUs) depending on bacterial species] while aPDT with SAGUA was less effective (2.0-2.8 log10). Flow cytometric analysis combined with propidium iodide (PI) staining revealed no damage of cytoplasmic membranes after aPDT with both phenalen-1-one derivatives, which was confirmed by spectroscopic measurements for release of nucleic acids after treatment. Spectrophotometric PS-uptake measurements showed no uptake of SAPYR by bacterial cells. Despite the inability to pinpoint the actual target of phenalen-1-one-mediated aPDT, this study shows the high antimicrobial potential of phenalen-1-on mediated aPDT (especially when using SAPYR) and represents a first step for getting insights in the mechanism and damage patterns of aPDT with this class of PS.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Viktoria-Sophia Steinwachs
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Denise Muehler
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Thomas Thurnheer
- Division of Oral Microbiology and Immunology, Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Solna, Sweden
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
87
|
Heins AL, Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 2018. [PMID: 29541890 DOI: 10.1007/s00449-018-1922-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Population heterogeneity is omnipresent in all bioprocesses even in homogenous environments. Its origin, however, is only so well understood that potential strategies like bet-hedging, noise in gene expression and division of labour that lead to population heterogeneity can be derived from experimental studies simulating the dynamics in industrial scale bioprocesses. This review aims at summarizing the current state of the different parts of single cell studies in bioprocesses. This includes setups to visualize different phenotypes of single cells, computational approaches connecting single cell physiology with environmental influence and special cultivation setups like scale-down reactors that have been proven to be useful to simulate large-scale conditions. A step in between investigation of populations and single cells is studying subpopulations with distinct properties that differ from the rest of the population with sub-omics methods which are also presented here. Moreover, the current knowledge about population heterogeneity in bioprocesses is summarized for relevant industrial production hosts and mixed cultures, as they provide the unique opportunity to distribute metabolic burden and optimize production processes in a way that is impossible in traditional monocultures. In the end, approaches to explain the underlying mechanism of population heterogeneity and the evidences found to support each hypothesis are presented. For instance, population heterogeneity serving as a bet-hedging strategy that is used as coordinated action against bioprocess-related stresses while at the same time spreading the risk between individual cells as it ensures the survival of least a part of the population in any environment the cells encounter.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
88
|
Wilson C, Lukowicz R, Merchant S, Valquier-Flynn H, Caballero J, Sandoval J, Okuom M, Huber C, Brooks TD, Wilson E, Clement B, Wentworth CD, Holmes AE. Quantitative and Qualitative Assessment Methods for Biofilm Growth: A Mini-review. RESEARCH & REVIEWS. JOURNAL OF ENGINEERING AND TECHNOLOGY 2017; 6:http://www.rroij.com/open-access/quantitative-and-qualitative-assessment-methods-for-biofilm-growth-a-minireview-.pdf. [PMID: 30214915 PMCID: PMC6133255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biofilms are microbial communities attached to a surface and embedded in an extracellular polymeric substance which provides for the protection, stability and nutrients of the various bacterial species indwelling. These communities can build up in a variety of different environments from industrial equipment to medical devices resulting in damage, loss of productivity and disease. They also have great potential for economic and societal benefits as bioremediation agents and renewable energy sources. The great potential benefits and threats of biofilms has encouraged researchers across disciplines to study biofilm characteristics and antibiofilm strategies resulting in chemists, physicists, material scientists, and engineers, to develop beneficial biofilm applications and prevention methods. The ultimate outcome is a wealth of knowledge and innovative technology. However, without extensive formal training in microbes and biofilm research, these scientists find a daunting array of established techniques for growing, quantifying and characterizing biofilms while trying to design experiments and develop innovative laboratory protocols. This mini-review focuses on enriching interdisciplinary efforts and understanding by overviewing a variety of quantitative and qualitative biofilm characterization methods to assist the novice researcher in assay selection. This review consists of four parts. Part 1 is a brief overview of biofilms and the unique properties that demand a highly interdisciplinary approach. Part 2 describes the classical quantification techniques including colony forming unit (CFU) counting and crystal violet staining, but also introduces some modern methods including ATP bioluminescence and quartz crystal microbalance. Part 3 focuses on the characterization of biofilm morphology and chemistry including scanning electron microscopy and spectroscopic methods. Finally, Part 4 illustrates the use of software, including ImageJ and predictive modeling platforms, for biofilm analysis. Each section highlights the most common methods, including literature references, to help novice biofilm researchers make choices which commensurate with their study goals, budget and available equipment.
Collapse
Affiliation(s)
- Christina Wilson
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | - Rachel Lukowicz
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | - Stefan Merchant
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | - Helena Valquier-Flynn
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | - Jeniffer Caballero
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | - Jasmin Sandoval
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | - Macduff Okuom
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | - Christopher Huber
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | - Tessa Durham Brooks
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | - Erin Wilson
- Department of Chemistry, Westminster College, New Wilmington, Pennsylvania
| | - Barbara Clement
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| | | | - Andrea E Holmes
- Department of Chemistry, Biology, Physics & Engineering, Doane University, Crete, Nebraska
| |
Collapse
|
89
|
González-Cabaleiro R, Mitchell AM, Smith W, Wipat A, Ofiţeru ID. Heterogeneity in Pure Microbial Systems: Experimental Measurements and Modeling. Front Microbiol 2017; 8:1813. [PMID: 28970826 PMCID: PMC5609101 DOI: 10.3389/fmicb.2017.01813] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/05/2017] [Indexed: 01/02/2023] Open
Abstract
Cellular heterogeneity influences bioprocess performance in ways that until date are not completely elucidated. In order to account for this phenomenon in the design and operation of bioprocesses, reliable analytical and mathematical descriptions are required. We present an overview of the single cell analysis, and the mathematical modeling frameworks that have potential to be used in bioprocess control and optimization, in particular for microbial processes. In order to be suitable for bioprocess monitoring, experimental methods need to be high throughput and to require relatively short processing time. One such method used successfully under dynamic conditions is flow cytometry. Population balance and individual based models are suitable modeling options, the latter one having in particular a good potential to integrate the various data collected through experimentation. This will be highly beneficial for appropriate process design and scale up as a more rigorous approach may prevent a priori unwanted performance losses. It will also help progressing synthetic biology applications to industrial scale.
Collapse
Affiliation(s)
- Rebeca González-Cabaleiro
- School of Engineering, Chemical Engineering, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Anca M Mitchell
- School of Engineering, Chemical Engineering, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Wendy Smith
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of ComputingNewcastle University, Newcastle upon Tyne, United Kingdom
| | - Anil Wipat
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of ComputingNewcastle University, Newcastle upon Tyne, United Kingdom
| | - Irina D Ofiţeru
- School of Engineering, Chemical Engineering, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| |
Collapse
|
90
|
Zhao Y, Knøchel S, Siegumfeldt H. Heterogeneity between and within Strains of Lactobacillus brevis Exposed to Beer Compounds. Front Microbiol 2017; 8:239. [PMID: 28261191 PMCID: PMC5308056 DOI: 10.3389/fmicb.2017.00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
This study attempted to investigate the physiological response of six Lactobacillus brevis strains to hop stress, with and without the addition of Mn2+ or ethanol. Based on the use of different fluorescent probes, cell viability and intracellular pH (pHi) were assessed by fluorescence microscopy combined with flow cytometry, at the single cell level. The combined approach was faster than the traditional colony based method, but also provided additional information about population heterogeneity with regard to membrane damage and cell size reduction, when exposed to hop compounds. Different physiological subpopulations were detected under hop stress in both hop tolerant and sensitive strains. A large proportion of cells were killed in all the tested strains, but a small subpopulation from the hop tolerant strains eventually recovered as revealed by pHi measurements. Furthermore, a short term protection against hop compounds was obtained for both hop tolerant and sensitive strains, by addition of high concentration of Mn2+. Addition of ethanol in combination with hop compounds caused an additional short term increase in damaged subpopulation, but the subsequent growth suggested that the presence of ethanol provides a slight cross resistance toward hop compounds.
Collapse
Affiliation(s)
- Yu Zhao
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen Frederiksberg, Denmark
| | - Susanne Knøchel
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen Frederiksberg, Denmark
| | - Henrik Siegumfeldt
- Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen Frederiksberg, Denmark
| |
Collapse
|
91
|
Rubbens P, Props R, Boon N, Waegeman W. Flow Cytometric Single-Cell Identification of Populations in Synthetic Bacterial Communities. PLoS One 2017; 12:e0169754. [PMID: 28122063 PMCID: PMC5266259 DOI: 10.1371/journal.pone.0169754] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/21/2016] [Indexed: 01/14/2023] Open
Abstract
Bacterial cells can be characterized in terms of their cell properties using flow cytometry. Flow cytometry is able to deliver multiparametric measurements of up to 50,000 cells per second. However, there has not yet been a thorough survey concerning the identification of the population to which bacterial single cells belong based on flow cytometry data. This paper not only aims to assess the quality of flow cytometry data when measuring bacterial populations, but also suggests an alternative approach for analyzing synthetic microbial communities. We created so-called in silico communities, which allow us to explore the possibilities of bacterial flow cytometry data using supervised machine learning techniques. We can identify single cells with an accuracy >90% for more than half of the communities consisting out of two bacterial populations. In order to assess to what extent an in silico community is representative for its synthetic counterpart, we created so-called abundance gradients, a combination of synthetic (i.e., in vitro) communities containing two bacterial populations in varying abundances. By showing that we are able to retrieve an abundance gradient using a combination of in silico communities and supervised machine learning techniques, we argue that in silico communities form a viable representation for synthetic bacterial communities, opening up new opportunities for the analysis of synthetic communities and bacterial flow cytometry data in general.
Collapse
Affiliation(s)
- Peter Rubbens
- KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
- * E-mail:
| | - Ruben Props
- Center for Microbial Technology and Ecology (CMET), Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Technology and Ecology (CMET), Ghent University, Ghent, Belgium
| | - Willem Waegeman
- KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
92
|
Gough A, Stern AM, Maier J, Lezon T, Shun TY, Chennubhotla C, Schurdak ME, Haney SA, Taylor DL. Biologically Relevant Heterogeneity: Metrics and Practical Insights. SLAS DISCOVERY 2017; 22:213-237. [PMID: 28231035 DOI: 10.1177/2472555216682725] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications, including basic biomedical research, drug discovery, diagnostics, and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high-throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell-level data, as well as the need for standard metrics of the spatial, temporal, and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high-throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics, and the design of optimal therapeutic strategies for individual patients.
Collapse
Affiliation(s)
- Albert Gough
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Andrew M Stern
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - John Maier
- 3 Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy Lezon
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Tong-Ying Shun
- 2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Chakra Chennubhotla
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Mark E Schurdak
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Steven A Haney
- 5 Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - D Lansing Taylor
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
93
|
Phetsang W, Pelingon R, Butler MS, KC S, Pitt ME, Kaeslin G, Cooper MA, Blaskovich MAT. Fluorescent Trimethoprim Conjugate Probes To Assess Drug Accumulation in Wild Type and Mutant Escherichia coli. ACS Infect Dis 2016; 2:688-701. [PMID: 27737551 PMCID: PMC5067704 DOI: 10.1021/acsinfecdis.6b00080] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Reduced
susceptibility to antimicrobials in Gram-negative bacteria may result
from multiple resistance mechanisms, including increased efflux pump
activity or reduced porin protein expression. Up-regulation of the
efflux pump system is closely associated with multidrug resistance
(MDR). To help investigate the role of efflux pumps on compound accumulation,
a fluorescence-based assay was developed using fluorescent derivatives
of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that
inhibits an intracellular target, dihydrofolate reductase (DHFR).
Novel fluorescent TMP probes inhibited eDHFR activity
with comparable potency to TMP, but did not kill or inhibit growth
of wild type Escherichia coli. However,
bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure
cellular accumulation of the TMP probe using either fluorescence spectroscopy
or flow cytometry, with validation by LC-MS/MS. This fluorescence
assay may provide a simple method to assess efflux pump activity with
standard laboratory equipment.
Collapse
Affiliation(s)
- Wanida Phetsang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruby Pelingon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sanjaya KC
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Miranda E. Pitt
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geraldine Kaeslin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
94
|
Ambriz-Aviña V, Yasbin RE, Robleto EA, Pedraza-Reyes M. Role of Base Excision Repair (BER) in Transcription-associated Mutagenesis of Nutritionally Stressed Nongrowing Bacillus subtilis Cell Subpopulations. Curr Microbiol 2016; 73:721-726. [PMID: 27530626 DOI: 10.1007/s00284-016-1122-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
Compelling evidence points to transcriptional processes as important factors contributing to stationary-phase associated mutagenesis. However, it has not been documented whether or not base excision repair mechanisms play a role in modulating mutagenesis under conditions of transcriptional derepression. Here, we report on a flow cytometry-based methodology that employs a fluorescent reporter system to measure at single-cell level, the occurrence of transcription-associated mutations in nutritionally stressed B. subtilis cultures. Using this approach, we demonstrate that (i) high levels of transcription correlates with augmented mutation frequency, and (ii) mutation frequency is enhanced in nongrowing population cells deficient for deaminated (Ung, YwqL) and oxidized guanine (GO) excision repair, strongly suggesting that accumulation of spontaneous DNA lesions enhance transcription-associated mutagenesis.
Collapse
Affiliation(s)
- Verónica Ambriz-Aviña
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Ronald E Yasbin
- College of Arts and Sciences, University of Missouri-St Louis, St Louis, MO, USA
| | | | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
95
|
Saint-Ruf C, Crussard S, Franceschi C, Orenga S, Ouattara J, Ramjeet M, Surre J, Matic I. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry. Front Microbiol 2016; 7:1121. [PMID: 27507962 PMCID: PMC4960253 DOI: 10.3389/fmicb.2016.01121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/06/2016] [Indexed: 11/24/2022] Open
Abstract
Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.
Collapse
Affiliation(s)
- Claude Saint-Ruf
- Institut National de la Santé et de la Recherche Médicale, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| | - Steve Crussard
- Institut National de la Santé et de la Recherche Médicale, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| | | | - Sylvain Orenga
- Microbiology Unit, R&D Microbiology, BioMérieux SA La Balme Les Grottes, France
| | - Jasmine Ouattara
- Institut National de la Santé et de la Recherche Médicale, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| | | | - Jérémy Surre
- Institut National de la Santé et de la Recherche Médicale, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Université Paris DescartesParis, France; Microbiology Unit, R&D Microbiology, BioMérieux SALa Balme Les Grottes, France
| | - Ivan Matic
- Institut National de la Santé et de la Recherche Médicale, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| |
Collapse
|
96
|
Koutsoumanis KP, Aspridou Z. Individual cell heterogeneity in Predictive Food Microbiology: Challenges in predicting a "noisy" world. Int J Food Microbiol 2016; 240:3-10. [PMID: 27412586 DOI: 10.1016/j.ijfoodmicro.2016.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
Gene expression is a fundamentally noisy process giving rise to a significant cell to cell variability at the phenotype level. The phenotypic noise is manifested in a wide range of microbial traits. Heterogeneous behavior of individual cells is observed at the growth, survival and inactivation responses and should be taken into account in the context of Predictive Food Microbiology (PMF). Recent methodological advances can be employed for the study and modeling of single cell dynamics leading to a new generation of mechanistic models which can provide insight into the link between phenotype, gene-expression, protein and metabolic functional units at the single cell level. Such models however, need to deal with an enormous amount of interactions and processes that influence each other, forming an extremely complex system. In this review paper, we discuss the importance of noise and present the future challenges in predicting the "noisy" microbial responses in foods.
Collapse
Affiliation(s)
- Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
97
|
|