51
|
Diaz Bessone MI, Simón-Gracia L, Scodeller P, Ramirez MDLA, Lago Huvelle MA, Soler-Illia GJAA, Simian M. iRGD-guided tamoxifen polymersomes inhibit estrogen receptor transcriptional activity and decrease the number of breast cancer cells with self-renewing capacity. J Nanobiotechnology 2019; 17:120. [PMID: 31812165 PMCID: PMC6898937 DOI: 10.1186/s12951-019-0553-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tamoxifen (Tam) is the most frequent treatment for estrogen receptor (ER) positive breast cancer. We recently showed that fibronectin (FN) leads to Tam resistance and selection of breast cancer stem cells. With the aim of developing a nanoformulation that would simultaneously tackle ER and FN/β1 integrin interactions, we designed polyethylene glycol-polycaprolactone polymersomes polymersomes (PS) that carry Tam and are functionalized with the tumor-penetrating iRGD peptide (iRGD-PS-Tam). RESULTS Polyethylene glycol-polycaprolactone PS were assembled and loaded with Tam using the hydration film method. The loading of encapsulated Tam, measured by UPLC, was 2.4 ± 0.5 mol Tam/mol polymer. Physicochemical characterization of the PS demonstrated that iRGD functionalization had no effect on morphology, and a minimal effect on the PS size and polydispersity (176 nm and Pdi 0.37 for iRGD-TAM-PS and 171 nm and Pdi 0.36 for TAM-PS). iRGD-PS-Tam were taken up by ER+ breast carcinoma cells in 2D-culture and exhibited increased penetration of 3D-spheroids. Treatment with iRGD-PS-Tam inhibited proliferation and sensitized cells cultured on FN to Tam. Mechanistically, treatment with iRGD-PS-Tam resulted in inhibition ER transcriptional activity as evaluated by a luciferase reporter assay. iRGD-PS-Tam reduced the number of cells with self-renewing capacity, a characteristic of breast cancer stem cells. In vivo, systemic iRGD-PS-Tam showed selective accumulation at the tumor site. CONCLUSIONS Our study suggests iRGD-guided delivery of PS-Tam as a potential novel therapeutic strategy for the management of breast tumors that express high levels of FN. Future studies in pre-clinical in vivo models are warranted.
Collapse
Affiliation(s)
- María Inés Diaz Bessone
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - María de los Angeles Ramirez
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - María Amparo Lago Huvelle
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Galo J. A. A. Soler-Illia
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Marina Simian
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| |
Collapse
|
52
|
Deville SS, Cordes N. The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome-A Review. Front Oncol 2019; 9:1376. [PMID: 31867279 PMCID: PMC6908495 DOI: 10.3389/fonc.2019.01376] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Alterations in mechano-physiological properties of a tissue instigate cancer burdens in parallel to common genetic and epigenetic alterations. The chronological and mechanistic interrelation between the various extra- and intracellular aspects remains largely elusive. Mechano-physiologically, integrins and other cell adhesion molecules present the main mediators for transferring and distributing forces between cells and the extracellular matrix (ECM). These cues are channeled via focal adhesion proteins, termed the focal adhesomes, to cytoskeleton and nucleus and vice versa thereby affecting the pathophysiology of multicellular cancer tissues. In combination with simultaneous activation of diverse downstream signaling pathways, the phenotypes of cancer cells are created and driven characterized by deregulated transcriptional and biochemical cues that elicit the hallmarks of cancer. It, however, remains unclear how elastostatic modifications, i.e., stiffness, in the extracellular, intracellular, and nuclear compartment contribute and control the resistance of cancer cells to therapy. In this review, we discuss how stiffness of unique tumor components dictates therapy response and what is known about the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Germany German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
53
|
Atlas E, Dimitrova V. Bisphenol S and Bisphenol A disrupt morphogenesis of MCF-12A human mammary epithelial cells. Sci Rep 2019; 9:16005. [PMID: 31690802 PMCID: PMC6831626 DOI: 10.1038/s41598-019-52505-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the most common cancers diagnosed in women worldwide. Genetic predisposition, such as breast cancer 1 (BRCA1) mutations, account for a minor percentage of the total breast cancer incidences. And thus, many life style factors have also been linked to the disease such as smoking, alcohol consumption and obesity. Emerging studies show that environmental pollutants may also play a role. Bisphenol-A (BPA) has been suspected to contribute to breast cancer development, and has been shown to affect mammary gland development amongst other effects. This prompted its replacement with other bisphenol analogs such as, bisphenol-S (BPS). In this study we used the human mammary epithelial cells, MCF-12A, grown in extracellular matrix to investigate the ability of BPA and BPS to disrupt mammary epithelial cells organization. We show that both BPA and BPS were equipotent in disrupting the organization of the acinar structures, despite BPS being less oestrogenic by other assays. Further, treatment with both compounds enabled the cells to invade the lumen of the structures. This study shows that BPS and BPA are environmental pollutants that may affect mammary development and may contribute to the development of breast cancer.
Collapse
Affiliation(s)
- Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada. .,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada.
| | - Valeria Dimitrova
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
54
|
Dünker N, Jendrossek V. Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research. Cancers (Basel) 2019; 11:cancers11101499. [PMID: 31591362 PMCID: PMC6826367 DOI: 10.3390/cancers11101499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is part of standard cancer treatment. Innovations in treatment planning and increased precision in dose delivery have significantly improved the therapeutic gain of radiotherapy but are reaching their limits due to biologic constraints. Thus, a better understanding of the complex local and systemic responses to RT and of the biological mechanisms causing treatment success or failure is required if we aim to define novel targets for biological therapy optimization. Moreover, optimal treatment schedules and prognostic biomarkers have to be defined for assigning patients to the best treatment option. The complexity of the tumor environment and of the radiation response requires extensive in vivo experiments for the validation of such treatments. So far in vivo investigations have mostly been performed in time- and cost-intensive murine models. Here we propose the implementation of the chick chorioallantoic membrane (CAM) model as a fast, cost-efficient model for semi high-throughput preclinical in vivo screening of the modulation of the radiation effects by molecularly targeted drugs. This review provides a comprehensive overview on the application spectrum, advantages and limitations of the CAM assay and summarizes current knowledge of its applicability for cancer research with special focus on research in radiation biology and experimental radiation oncology.
Collapse
Affiliation(s)
- Nicole Dünker
- Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| |
Collapse
|
55
|
Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer 2019; 121:154-171. [PMID: 31581056 DOI: 10.1016/j.ejca.2019.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
During tumorigenesis, breast tumour cells undergo metabolic reprogramming, which generally includes enhanced glycolysis, tricarboxylic acid cycle activity, glutaminolysis and fatty acid biosynthesis. However, the extension and functional importance of these metabolic alterations may diverge not only according to breast cancer subtypes, but also depending on the interaction of cancer cells with the complex surrounding microenvironment. This microenvironment comprises a variety of non-cancerous cells, such as immune cells (e.g. macrophages, lymphocytes, natural killer cells), fibroblasts, adipocytes and endothelial cells, together with extracellular matrix components and soluble factors, which influence cancer progression and are predictive of clinical outcome. The continuous interaction between cancer and stromal cells results in metabolic competition and symbiosis, with oncogenic-driven metabolic reprogramming of cancer cells shaping the metabolism of neighbouring cells and vice versa. This review addresses current knowledge on this metabolic crosstalk within the breast tumour microenvironment (TME). Improved understanding of how metabolism in the TME modulates cancer development and evasion of tumour-suppressive mechanisms may provide clues for novel anticancer therapeutics directed to metabolic targets.
Collapse
Affiliation(s)
- Ana S Dias
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal; iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Catarina R Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Luisa A Helguero
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
| |
Collapse
|
56
|
Nigim F, Kiyokawa J, Gurtner A, Kawamura Y, Hua L, Kasper EM, Brastianos PK, Cahill DP, Rabkin SD, Martuza RL, Carbonell WS, Wakimoto H. A Monoclonal Antibody Against β1 Integrin Inhibits Proliferation and Increases Survival in an Orthotopic Model of High-Grade Meningioma. Target Oncol 2019; 14:479-489. [DOI: 10.1007/s11523-019-00654-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
57
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
58
|
Beta1 integrin blockade overcomes doxorubicin resistance in human T-cell acute lymphoblastic leukemia. Cell Death Dis 2019; 10:357. [PMID: 31043590 PMCID: PMC6494825 DOI: 10.1038/s41419-019-1593-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Growing evidence indicates that cell adhesion to extracellular matrix (ECM) plays an important role in cancer chemoresistance. Leukemic T cells express several adhesion receptors of the β1 integrin subfamily with which they interact with ECM. However, the role of β1 integrins in chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL) is still ill defined. In this study, we demonstrate that interactions of human T-ALL cell lines and primary blasts with three-dimensional matrices including Matrigel and collagen type I gel promote their resistance to doxorubicin via β1 integrin. The blockade of β1 integrin with a specific neutralizing antibody sensitized xenografted CEM leukemic cells to doxorubicin, diminished the leukemic burden in the bone marrow and resulted in the extension of animal survival. Mechanistically, Matrigel/β1 integrin interaction enhanced T-ALL chemoresistance by promoting doxorubicin efflux through the activation of the ABCC1 drug transporter. Finally, our findings showed that Matrigel/β1 interaction enhanced doxorubicin efflux and chemoresistance by activating the FAK-related proline-rich tyrosine kinase 2 (PYK2) as both PYK2 inhibitor and siRNA diminished the effect of Matrigel. Collectively, these results support the role of β1 integrin in T-ALL chemoresistance and suggest that the β1 integrin pathway can constitute a therapeutic target to avoid chemoresistance and relapsed-disease in human T-ALL.
Collapse
|
59
|
Li R, Shi Y, Zhao S, Shi T, Zhang G. NF-κB signaling and integrin-β1 inhibition attenuates osteosarcoma metastasis via increased cell apoptosis. Int J Biol Macromol 2019; 123:1035-1043. [DOI: 10.1016/j.ijbiomac.2018.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/13/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022]
|
60
|
Abstract
Potential for cancers to form metastases requires cell dissemination utilizing epithelial-to-mesenchymal transition (EMT) program. In this issue of Cancer Cell, Ishay-Ronen et al. show that plasticity intrinsic to the EMT program can be exploited to divert cancer cells into becoming post-mitotic adipocytes, thus preventing formation of metastases.
Collapse
Affiliation(s)
- Stefan Hinz
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
61
|
Eke I, Makinde AY, Aryankalayil MJ, Reedy JL, Citrin DE, Chopra S, Ahmed MM, Coleman CN. Long-term Tumor Adaptation after Radiotherapy: Therapeutic Implications for Targeting Integrins in Prostate Cancer. Mol Cancer Res 2018; 16:1855-1864. [PMID: 30042176 PMCID: PMC6279542 DOI: 10.1158/1541-7786.mcr-18-0232] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/24/2018] [Accepted: 07/06/2018] [Indexed: 11/16/2022]
Abstract
Adaptation of tumor cells to radiotherapy induces changes that are actionable by molecular targeted agents and immunotherapy. This report demonstrates that radiation-induced changes in integrin expression can be targeted 2 months later. Integrins are transmembrane cell adhesion molecules that are essential for cancer cell survival and proliferation. To analyze the short- and long-term effects of radiation on the integrin expression, prostate cancer cells (DU145, PC3, and LNCaP) were cultured in a 3D extracellular matrix and irradiated with either a single dose of radiation (2-10 Gy) or a multifractionated regimen (2-10 fractions of 1 Gy). Whole human genome microarrays, immunoblotting, immunoprecipitation assays, and immunofluorescence staining of integrins were performed. The results were confirmed in a prostate cancer xenograft model system. Interestingly, β1 and β4 integrins (ITGB1 and ITGB4) were upregulated after radiation in vitro and in vivo. This overexpression lasted for more than 2 months and was dose dependent. Moreover, radiation-induced upregulation of β1 and β4 integrin resulted in significantly increased tumor cell death after treatment with inhibitory antibodies. Combined, these findings indicate that long-term tumor adaptation to radiation can result in an increased susceptibility of surviving cancer cells to molecular targeted therapy due to a radiation-induced overexpression of the target. IMPLICATIONS: Radiation induces dose- and schedule-dependent adaptive changes that are targetable for an extended time; thus suggesting radiotherapy as a unique strategy to orchestrate molecular processes, thereby providing new radiation-drug treatment options within precision cancer medicine.
Collapse
Affiliation(s)
- Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Adeola Y Makinde
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jessica L Reedy
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
62
|
Wang T, Huang J, Vue M, Alavian MR, Goel HL, Altieri DC, Languino LR, FitzGerald TJ. α vβ 3 Integrin Mediates Radioresistance of Prostate Cancer Cells through Regulation of Survivin. Mol Cancer Res 2018; 17:398-408. [PMID: 30266752 DOI: 10.1158/1541-7786.mcr-18-0544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023]
Abstract
The αvβ3 integrin is involved in various physiologic and pathologic processes such as wound healing, angiogenesis, tumor growth, and metastasis. The impact of αvβ3 integrin on the radiosensitivity of prostate cancer cells and the molecular mechanism controlling cell survival in response to ionizing radiation (IR) was investigated. Both LNCaP cells stably transfected with αvβ3 integrin and PC-3 cells that contain endogenous β3 integrin were used. This study demonstrated that αvβ3 integrin increases survival of αvβ3-LNCaP cells upon IR while small hairpin RNA (shRNA)-mediated knockdown of αvβ3 integrin in PC-3 cells sensitizes to radiation. Expression of αvβ3 integrin in LNCaP cells also enhances anchorage-independent cell growth while knockdown of αvβ3 integrin in PC-3 cells inhibits anchorage-independent cell growth. The αvβ3 antagonist, cRGD, significantly increases radiosensitivity in both αvβ3-LNCaP and PC-3 cells. Moreover, αvβ3 integrin prevents radiation-induced downregulation of survivin. Inhibition of survivin expression by siRNA or shRNA enhances IR-induced inhibition of anchorage-independent cell growth. Overexpression of wild-type survivin in PC-3 cells treated with αvβ3 integrin shRNA increases survival of cells upon IR. These findings reveal that αvβ3 integrin promotes radioresistance and regulates survivin levels in response to IR. IMPLICATIONS: Future translational research on targeting αvβ3 integrin and survivin may reveal novel approaches as an adjunct to radiotherapy for patients with prostate cancer.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jiayi Huang
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mai Vue
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Michael R Alavian
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Lucia R Languino
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas J FitzGerald
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
63
|
Abstract
Cell adhesion to the extracellular matrix is fundamental to tissue integrity and human health. Integrins are the main cellular adhesion receptors that through multifaceted roles as signalling molecules, mechanotransducers and key components of the cell migration machinery are implicated in nearly every step of cancer progression from primary tumour development to metastasis. Altered integrin expression is frequently detected in tumours, where integrins have roles in supporting oncogenic growth factor receptor (GFR) signalling and GFR-dependent cancer cell migration and invasion. In addition, integrins determine colonization of metastatic sites and facilitate anchorage-independent survival of circulating tumour cells. Investigations describing integrin engagement with a growing number of versatile cell surface molecules, including channels, receptors and secreted proteins, continue to lead to the identification of novel tumour-promoting pathways. Integrin-mediated sensing, stiffening and remodelling of the tumour stroma are key steps in cancer progression supporting invasion, acquisition of cancer stem cell characteristics and drug resistance. Given the complexity of integrins and their adaptable and sometimes antagonistic roles in cancer cells and the tumour microenvironment, therapeutic targeting of these receptors has been a challenge. However, novel approaches to target integrins and antagonism of specific integrin subunits in stringently stratified patient cohorts are emerging as potential ways forward.
Collapse
Affiliation(s)
- Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
64
|
Cobler L, Zhang H, Suri P, Park C, Timmerman LA. xCT inhibition sensitizes tumors to γ-radiation via glutathione reduction. Oncotarget 2018; 9:32280-32297. [PMID: 30190786 PMCID: PMC6122354 DOI: 10.18632/oncotarget.25794] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/08/2018] [Indexed: 01/13/2023] Open
Abstract
About 3 million US cancer patients and 1.7 million EU cancer patients received multiple doses of radiation therapy (RT) in 2012, with treatment duration limited by normal adjacent tissue damage. Tumor-specific sensitization could allow treatment with lower radiation doses, reducing normal tissue damage. This is a longstanding, largely unrealized therapeutic goal. The cystine:glutamate exchanger xCT is expressed on poor prognosis subsets of most solid tumors, but not on most normal cells. xCT provides cells with environmental cystine for enhanced glutathione synthesis. Glutathione is used to control reactive oxygen species (ROS), which are therapeutic effectors of RT. We tested whether xCT inhibition would sensitize xCT+ tumor cells to ionizing radiation. We found that pretreatment with the xCT inhibitor erastin potently sensitized xCT+ but not xCT- cells, in vitro and in xenograft. Similarly, targeted gene inactivation also sensitized cells, and both modes of sensitization were overcome by glutathione supplementation. Sensitization prolongs DNA damage signaling, increases genome instability, and enhances cell death, revealing an unforeseen role for cysteine in genome integrity maintenance. We conclude that an xCT-specific therapeutic would provide tumor-specific sensitization to RT, allowing treatment with lower radiation doses, and producing far fewer side effects than other proposed sensitizers. Our data speaks to the need for the rapid development of such a drug.
Collapse
Affiliation(s)
- Lara Cobler
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Hui Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Poojan Suri
- University of California, San Francisco, CA, USA
| | - Catherine Park
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Luika A Timmerman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
65
|
hMENA isoforms impact NSCLC patient outcome through fibronectin/β1 integrin axis. Oncogene 2018; 37:5605-5617. [PMID: 29907768 PMCID: PMC6193944 DOI: 10.1038/s41388-018-0364-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
Abstract
We demonstrated previously that the splicing of the actin regulator, hMENA, generates two alternatively expressed isoforms, hMENA11a and hMENAΔv6, which have opposite functions in cell invasiveness. Their mechanisms of action have remained unclear. Here we report two major findings: (i) hMENA regulates β1 integrin expression. This was shown by depleting total hMENA, which led to loss of nuclear expression of serum response factor (SRF)-coactivator myocardin-related transcription factor 1 (MRTF-A), leading to an increase in the G-actin/F-actin ratio crucial for MRTF-A localization. This in turn inhibited SRF activity and the expression of its target gene β1 integrin. (ii) hMENA11a reduces and hMENAΔv6 increases β1 integrin activation and signaling. Moreover, exogenous expression of hMENA11a in hMENAΔv6-positive cancer cells dramatically reduces secretion of extracellular matrix (ECM) components, including β1 integrin ligands and metalloproteinases. On the other hand, overexpression of the pro-invasive hMENAΔv6 increases fibronectin production. In primary tumors high hMENA11a correlates with low stromal fibronectin and a favorable clinical outcome of early node-negative non-small-cell lung cancer patients. These data provide new insights into the roles of hMENA11a and hMENAΔv6 in the druggable β1 integrin-ECM signaling axis and allow stratification of patient risk, guiding their clinical management.
Collapse
|
66
|
Huang R, Rofstad EK. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res 2018; 37:92. [PMID: 29703238 PMCID: PMC5924434 DOI: 10.1186/s13046-018-0763-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Integrins are a large family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. Among the 24 integrin isoforms, many have been found to be associated with tumor angiogenesis, tumor cell migration and proliferation, and metastasis. Integrins, especially αvβ3, αvβ5 and α5β1, participate in mediating tumor angiogenesis by interacting with the vascular endothelial growth factor and angiopoietin-Tie signaling pathways. Melanoma patients have a poor prognosis when the primary tumor has generated distant metastases, and the melanoma metastatic site is an independent predictor of the survival of these patients. Different integrins on the melanoma cell surface preferentially direct circulating melanoma cells to different organs and promote the development of metastases at specific organ sites. For instance, melanoma cells expressing integrin β3 tend to metastasize to the lungs, whereas those expressing integrin β1 preferentially generate lymph node metastases. Moreover, tumor cell-derived exosomes which contain different integrins may prepare a pre-metastatic niche in specific organs and promote organ-specific metastases. Because of the important role that integrins play in tumor angiogenesis and metastasis, they have become promising targets for the treatment of advanced cancer. In this paper, we review the integrin isoforms responsible for angiogenesis and organ-specific metastasis in malignant melanoma and the inhibitors that have been considered for the future treatment of metastatic disease.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway.
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| |
Collapse
|
67
|
Adhesion- and stress-related adaptation of glioma radiochemoresistance is circumvented by β1 integrin/JNK co-targeting. Oncotarget 2018; 8:49224-49237. [PMID: 28514757 PMCID: PMC5564763 DOI: 10.18632/oncotarget.17480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
Resistance of cancer stem-like and cancer tumor bulk cells to radiochemotherapy and destructive infiltration of the brain fundamentally influence the treatment efficiency to cure of patients suffering from Glioblastoma (GBM). The interplay of adhesion and stress-related signaling and activation of bypass cascades that counteract therapeutic approaches remain to be identified in GBM cells. We here show that combined inhibition of the adhesion receptor β1 integrin and the stress-mediator c-Jun N-terminal kinase (JNK) induces radiosensitization and blocks invasion in stem-like and patient-derived GBM cultures as well as in GBM cell lines. In vivo, this treatment approach not only significantly delays tumor growth but also increases median survival of orthotopic, radiochemotherapy-treated GBM mice. Both, in vitro and in vivo, effects seen with β1 integrin/JNK co-inhibition are superior to the monotherapy. Mechanistically, the in vitro radiosensitization provoked by β1 integrin/JNK targeting is caused by defective DNA repair associated with chromatin changes, enhanced ATM phosphorylation and prolonged G2/M cell cycle arrest. Our findings identify a β1 integrin/JNK co-dependent bypass signaling for GBM therapy resistance, which might be therapeutically exploitable.
Collapse
|
68
|
Spiess M, Hernandez-Varas P, Oddone A, Olofsson H, Blom H, Waithe D, Lock JG, Lakadamyali M, Strömblad S. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions. J Cell Biol 2018; 217:1929-1940. [PMID: 29632027 PMCID: PMC5987715 DOI: 10.1083/jcb.201707075] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 01/24/2023] Open
Abstract
Through two superresolution microscopy techniques, STED and STORM, Spiess et al. visualize the organization of integrins in focal adhesions and show that active and inactive β1 integrins assemble into distinct nanoclusters within adhesions, suggesting the existence of a novel mechanism that locally coordinates integrin activity. Integrins are the core constituents of cell–matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive β1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive β1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation.
Collapse
Affiliation(s)
- Matthias Spiess
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Pablo Hernandez-Varas
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Anna Oddone
- Institut de Ciències Fotòniques, Barcelona, Spain
| | - Helene Olofsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hans Blom
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - John G Lock
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
69
|
Kirsch DG, Diehn M, Kesarwala AH, Maity A, Morgan MA, Schwarz JK, Bristow R, Demaria S, Eke I, Griffin RJ, Haas-Kogan D, Higgins GS, Kimmelman AC, Kimple RJ, Lombaert IM, Ma L, Marples B, Pajonk F, Park CC, Schaue D, Tran PT, Willers H, Wouters BG, Bernhard EJ. The Future of Radiobiology. J Natl Cancer Inst 2018; 110:329-340. [PMID: 29126306 PMCID: PMC5928778 DOI: 10.1093/jnci/djx231] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Innovation and progress in radiation oncology depend on discovery and insights realized through research in radiation biology. Radiobiology research has led to fundamental scientific insights, from the discovery of stem/progenitor cells to the definition of signal transduction pathways activated by ionizing radiation that are now recognized as integral to the DNA damage response (DDR). Radiobiological discoveries are guiding clinical trials that test radiation therapy combined with inhibitors of the DDR kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), ataxia telangiectasia related (ATR), and immune or cell cycle checkpoint inhibitors. To maintain scientific and clinical relevance, the field of radiation biology must overcome challenges in research workforce, training, and funding. The National Cancer Institute convened a workshop to discuss the role of radiobiology research and radiation biologists in the future scientific enterprise. Here, we review the discussions of current radiation oncology research approaches and areas of scientific focus considered important for rapid progress in radiation sciences and the continued contribution of radiobiology to radiation oncology and the broader biomedical research community.
Collapse
Affiliation(s)
- David G Kirsch
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Max Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Amit Maity
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Robert Bristow
- Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Sandra Demaria
- Department of Radiation Oncology and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Iris Eke
- Radiation Oncology Branch, National Institutes of Health, Bethesda, MD
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, MA
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Alec C Kimmelman
- Perlmutter Cancer Center and Department of Radiation Oncology, New York University Langone Medical Center, New York, NY
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Isabelle M Lombaert
- Department of Biologic and Materials Sciences, Biointerfaces Institute, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brian Marples
- Department of Radiation Oncology, University of Miami, Miami, FL
| | - Frank Pajonk
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Catherine C Park
- David Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Dörthe Schaue
- Division of Molecular and Cellular Oncology, University of California, Los Angeles, CA
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Oncology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Brad G. Wouters
- Department of Radiation Oncology (RB), Princess Margaret Cancer Center
| | - Eric J Bernhard
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
70
|
Carbonic Anhydrase IX (CAIX), Cancer, and Radiation Responsiveness. Metabolites 2018; 8:metabo8010013. [PMID: 29439394 PMCID: PMC5874614 DOI: 10.3390/metabo8010013] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
Carbonic anhydrase IX has been under intensive investigation as a therapeutic target in cancer. Studies demonstrate that this enzyme has a key role in pH regulation in cancer cells, allowing these cells to adapt to the adverse conditions of the tumour microenviroment. Novel CAIX inhibitors have shown efficacy in both in vitro and in vivo pre-clinical cancer models, adversely affecting cell viability, tumour formation, migration, invasion, and metastatic growth when used alone. In co-treatments, CAIX inhibitors may enhance the effects of anti-angiogenic drugs or chemotherapy agents. Research suggests that these inhibitors may also increase the response of tumours to radiotherapy. Although many of the anti-tumour effects of CAIX inhibition may be dependent on its role in pH regulation, recent work has shown that CAIX interacts with several of the signalling pathways involved in the cellular response to radiation, suggesting that pH-independent mechanisms may also be an important basis of its role in tumour progression. Here, we discuss these pH-independent interactions in the context of the ability of CAIX to modulate the responsiveness of cancer to radiation.
Collapse
|
71
|
Sayeed A, Lu H, Liu Q, Deming D, Duffy A, McCue P, Dicker AP, Davis RJ, Gabrilovich D, Rodeck U, Altieri DC, Languino LR. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation. Oncotarget 2018; 7:52618-52630. [PMID: 27438371 PMCID: PMC5288136 DOI: 10.18632/oncotarget.10522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system. Our results show that SP600125 negates the effect of radiation on tumor growth in β1pc-/- /TRAMP mice and leads to invasive adenocarcinoma. These effects are associated with increased focal adhesion kinase (FAK) expression and phosphorylation in prostate tumors in β1pc-/- /TRAMP mice. In marked contrast, radiation-induced tumor growth suppression, FAK expression and phosphorylation are not altered by SP600125 treatment of β1wt /TRAMP mice. Furthermore, we have reported earlier that abrogation of insulin-like growth factor receptor (IGF-IR) in prostate cancer cells enhances the sensitivity to radiation. Here we further explore the β1/IGF-IR crosstalk and report that β1 integrins promote cell proliferation partly by enhancing the expression of IGF-IR. In conclusion, we demonstrate that β1 integrin-mediated inhibition of JNK signaling modulates tumor growth rate upon hypofractionated radiation.
Collapse
Affiliation(s)
- Aejaz Sayeed
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Huimin Lu
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qin Liu
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David Deming
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Duffy
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dmitry Gabrilovich
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, PA, USA
| | - Ulrich Rodeck
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
72
|
Lovitt CJ, Shelper TB, Avery VM. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 2018; 18:41. [PMID: 29304770 PMCID: PMC5756400 DOI: 10.1186/s12885-017-3953-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 12/21/2017] [Indexed: 11/24/2022] Open
Abstract
Background Cancer cell resistance to therapeutics can result from acquired or de novo-mediated factors. Here, we have utilised advanced breast cancer cell culture models to elucidate de novo doxorubicin resistance mechanisms. Methods The response of breast cancer cell lines (MCF-7 and MDA-MB-231) to doxorubicin was examined in an in vitro three-dimensional (3D) cell culture model. Cells were cultured with Matrigel™ enabling cellular arrangements into a 3D architecture in conjunction with cell-to-extracellular matrix (ECM) contact. Results Breast cancer cells cultured in a 3D ECM-based model demonstrated altered sensitivity to doxorubicin, when compared to those grown in corresponding two-dimensional (2D) monolayer culture conditions. Investigations into the factors triggering the observed doxorubicin resistance revealed that cell-to-ECM interactions played a pivotal role. This finding correlated with the up-regulation of pro-survival proteins in 3D ECM-containing cell culture conditions following exposure to doxorubicin. Inhibition of integrin signalling in combination with doxorubicin significantly reduced breast cancer cell viability. Furthermore, breast cancer cells grown in a 3D ECM-based model demonstrated a significantly reduced proliferation rate in comparison to cells cultured in 2D conditions. Conclusion Collectively, these novel findings reveal resistance mechanisms which may contribute to reduced doxorubicin sensitivity.
Collapse
Affiliation(s)
- Carrie J Lovitt
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Building N27, Brisbane Innovation Park, Nathan, QLD, 4111, Australia
| | - Todd B Shelper
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Building N27, Brisbane Innovation Park, Nathan, QLD, 4111, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Building N27, Brisbane Innovation Park, Nathan, QLD, 4111, Australia.
| |
Collapse
|
73
|
Cross-activating c-Met/β1 integrin complex drives metastasis and invasive resistance in cancer. Proc Natl Acad Sci U S A 2017; 114:E8685-E8694. [PMID: 28973887 DOI: 10.1073/pnas.1701821114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular underpinnings of invasion, a hallmark of cancer, have been defined in terms of individual mediators but crucial interactions between these mediators remain undefined. In xenograft models and patient specimens, we identified a c-Met/β1 integrin complex that formed during significant invasive oncologic processes: breast cancer metastases and glioblastoma invasive resistance to antiangiogenic VEGF neutralizing antibody, bevacizumab. Inducing c-Met/β1 complex formation through an engineered inducible heterodimerization system promoted features crucial to overcoming stressors during metastases or antiangiogenic therapy: migration in the primary site, survival under hypoxia, and extravasation out of circulation. c-Met/β1 complex formation was up-regulated by hypoxia, while VEGF binding VEGFR2 sequestered c-Met and β1 integrin, preventing their binding. Complex formation promoted ligand-independent receptor activation, with integrin-linked kinase phosphorylating c-Met and crystallography revealing the c-Met/β1 complex to maintain the high-affinity β1 integrin conformation. Site-directed mutagenesis verified the necessity for c-Met/β1 binding of amino acids predicted by crystallography to mediate their extracellular interaction. Far-Western blotting and sequential immunoprecipitation revealed that c-Met displaced α5 integrin from β1 integrin, creating a complex with much greater affinity for fibronectin (FN) than α5β1. Thus, tumor cells adapt to microenvironmental stressors induced by metastases or bevacizumab by coopting receptors, which normally promote both cell migration modes: chemotaxis, movement toward concentrations of environmental chemoattractants, and haptotaxis, movement controlled by the relative strengths of peripheral adhesions. Tumor cells then redirect these receptors away from their conventional binding partners, forming a powerful structural c-Met/β1 complex whose ligand-independent cross-activation and robust affinity for FN drive invasive oncologic processes.
Collapse
|
74
|
Dickreuter E, Cordes N. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches. Biol Chem 2017; 398:721-735. [PMID: 28002024 DOI: 10.1515/hsz-2016-0326] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Cell adhesion-mediated resistance limits the success of cancer therapies and is a great obstacle to overcome in the clinic. Since the 1990s, where it became clear that adhesion of tumor cells to the extracellular matrix is an important mediator of therapy resistance, a lot of work has been conducted to understand the fundamental underlying mechanisms and two paradigms were deduced: cell adhesion-mediated radioresistance (CAM-RR) and cell adhesion-mediated drug resistance (CAM-DR). Preclinical work has evidently demonstrated that targeting of integrins, adapter proteins and associated kinases comprising the cell adhesion resistome is a promising strategy to sensitize cancer cells to both radiotherapy and chemotherapy. Moreover, the cell adhesion resistome fundamentally contributes to adaptation mechanisms induced by radiochemotherapy as well as molecular drugs to secure a balanced homeostasis of cancer cells for survival and growth. Intriguingly, this phenomenon provides a basis for synthetic lethal targeted therapies simultaneously administered to standard radiochemotherapy. In this review, we summarize current knowledge about the cell adhesion resistome and highlight targeting strategies to override CAM-RR and CAM-DR.
Collapse
Affiliation(s)
| | - Nils Cordes
- , Faculty of Medicine and University Hospital Carl Gustav Carus
| |
Collapse
|
75
|
Ji X, Zhu X, Lu X. Effect of cancer-associated fibroblasts on radiosensitivity of cancer cells. Future Oncol 2017; 13:1537-1550. [PMID: 28685611 DOI: 10.2217/fon-2017-0054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Solid tumors are composed of tumor epithelial cells and the stroma, which are seemingly separate but actually related through cell-cell and cell-matrix interactions. These interactions can promote tumor evolution. Cancer-associated fibroblasts (CAFs) are the most abundant non-neoplastic cells in the stroma and also among the most important cell types interacting with cancer cells. Particularly, cancer cells promote the formation and maintenance of CAFs by secreting various cytokines. The activated CAFs then synthesize a series of growth factors to promote tumor cell growth, invasion and metastasis. More importantly, the presence of CAFs also interferes with therapeutic efficacy, bringing severe challenges to radiotherapy. This review summarizes the effect of CAFs on the radiosensitivity of tumor cells and underscores the need for further studies on CAFs in order to improve the efficacy of antitumor therapy.
Collapse
Affiliation(s)
- Xiaoqin Ji
- Department of Radiation Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xixu Zhu
- Department of Radiation Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xueguan Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
76
|
Hirata E, Sahai E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026781. [PMID: 28213438 DOI: 10.1101/cshperspect.a026781] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer evolution plays a key role in both the development of tumors and their response to therapy. Like all evolutionary processes, tumor evolution is shaped by the environment. In tumors, this consists of a complex mixture of nontransformed cell types and extracellular matrix. Chemotherapy or radiotherapy imposes further strong selective pressures on cancer cells during cancer treatment. Here, we review how different components of the tumor microenvironment can modulate the response to chemo- and radiotherapy. We further describe how therapeutic strategies directly alter the composition, or function, of the tumor microenvironment, thereby further altering the selective pressures to which cancer cells are exposed. Last, we explore the consequences of these interactions for therapy outcomes and how to exploit our increasing understanding of the tumor microenvironment for therapeutic benefit.
Collapse
Affiliation(s)
- Eishu Hirata
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Erik Sahai
- Tumor Cell Biology Laboratory, Francis Crick Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
77
|
Das V, Kalyan G, Hazra S, Pal M. Understanding the role of structural integrity and differential expression of integrin profiling to identify potential therapeutic targets in breast cancer. J Cell Physiol 2017; 233:168-185. [DOI: 10.1002/jcp.25821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| | - Gazal Kalyan
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
| | - Saugata Hazra
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
- Centre for NanotechnologyIndian Institute of Technology RoorkeeRoorkeeUttarakhandIndia
| | - Mintu Pal
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| |
Collapse
|
78
|
Hamurcu Z, Kahraman N, Ashour A, Ozpolat B. FOXM1 transcriptionally regulates expression of integrin β1 in triple-negative breast cancer. Breast Cancer Res Treat 2017; 163:485-493. [PMID: 28361350 DOI: 10.1007/s10549-017-4207-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/15/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer and associated with early metastasis, drug resistance, and poor patient survival. Fork head box M1 (FOXM1) is considered as an emerging molecular target due to its oncogenic role and high overexpression profile in 85% in TNBC. However, molecular mechanisms by which FOXM1 transcription factor mediate its oncogenic effects are not fully understood. Integrin β1 is often upregulated in invasive breast cancers and associated with poor clinical outcome and shorter overall patient survival in TNBC. However, the mechanisms regulating integrin β1 (ITGB1) gene expression have not been well elucidated. METHODS Normal breast epithelium (MCF10A) and TNBC cells (i.e., MDA-MB-231, BT-20 MDA-MB436) were used for the study. Small interfering RNA (siRNA)-based knockdown was used to inhibit Integrin β1 gene (mRNA) and protein expressions, which are detected by RT-PCR and Western blot, respectively. Chromatin immunoprecipitation (ChiP) and gene reporter (Luciferase) assays were used to demonstrate that FOXM1 transcription factor binds to the promoter of Integrin β1 gene and drives its expression. RESULTS We demonstrated that FOXM1 directly binds to the promoter of integrin β1 gene and transcriptionally regulates its expression and activity of focal adhesion kinase (FAK) in TNBC cells. CONCLUSION Our study suggests that FOXM1 transcription factor regulates Integrin β1 gene expression and that FOXM1/ Integrin-β1/FAK axis may play an important role in the progression of TNBC.
Collapse
Affiliation(s)
- Zuhal Hamurcu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA.,Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Ahmed Ashour
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA. .,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
79
|
Caromile LA, Dortche K, Rahman MM, Grant CL, Stoddard C, Ferrer FA, Shapiro LH. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal 2017; 10:10/470/eaag3326. [PMID: 28292957 DOI: 10.1126/scisignal.aag3326] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the β1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/β1 integrin axis may occur in other tumors.
Collapse
Affiliation(s)
- Leslie Ann Caromile
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kristina Dortche
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - M Mamunur Rahman
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Christina L Grant
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Christopher Stoddard
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Fernando A Ferrer
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
80
|
Meenakshi Sundaram DN, Kucharski C, Parmar MB, Kc RB, Uludağ H. Polymeric Delivery of siRNA against Integrin-β1 (CD29) to Reduce Attachment and Migration of Breast Cancer Cells. Macromol Biosci 2017; 17. [PMID: 28160423 DOI: 10.1002/mabi.201600430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Cell surface integrins, which play important roles in the survival, proliferation, migration, and invasion of cancer cells, are a viable target for treatment of metastatic breast cancer. This line of therapy still remains challenging due to the lack of proper identification and validation of effective targets as well as the lack of suitable therapeutic agents for treatment. The focus is on one such molecular target for this purpose, namely integrin-β1, and effective lowering of integrin-β1 levels on a breast cancer model (MDA-MB-231 cells) is achieved by delivering a dicer-substrate short interfering RNA (siRNA) targeting integrin-β1 with lipid-modified low molecular weight polyethylenimine polymers. Reduction of integrin-β1 levels leads to reduced adhesion of MDA-MB-231 cells to extracellular matrix component fibronectin as well as to human bone marrow cells. A reduced migration of the breast cancer cells is also observed after integrin-β1 silencing in "scratch" and "transwell" migration assays. These results highlight the importance of integrin-β1 for the migration of metastatic breast cancer cells by effectively silencing this target with a practical dose of siRNA.
Collapse
Affiliation(s)
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Manoj B Parmar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Remant Bahadur Kc
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, 2V2, Canada
| |
Collapse
|
81
|
Shin HS, An HY, Choi JS, Kim HJ, Lim JY. Organotypic Spheroid Culture to Mimic Radiation-Induced Salivary Hypofunction. J Dent Res 2017; 96:396-405. [PMID: 28048945 DOI: 10.1177/0022034516685036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Radiation treatment often leads to irreversible damage to normal salivary glands (SGs) because of their proximity to head and neck cancers. Optimization of the in vitro model of irradiation (IR)-induced SG damage is warranted to investigate pathophysiology and monitor treatment outcome. Here, we present an organotypic spheroid culture model to investigate the impact of IR on SGs and the mechanisms underlying IR-induced structural and functional changes. Human parotid epithelial cells were obtained from human parotid glands and plated on either plastic plates or Matrigel. A number of 3-dimensional (3D) spheroids were assembled on Matrigel. After IR at 10 and 20 Gy, morphologic changes in cells in 2D monolayers and 3D spheroids were observed. As the structural integrity of the 3D spheroids was destroyed by IR, the expression levels of salivary epithelial and structural proteins and genes decreased proportionally with radiation dosage. Furthermore, the spheroid culture allowed better measurement of functional alterations following IR relative to the monolayer culture, in which IR-inflicted spheroids exhibited a loss of acinar-specific cellular functions that enable Ca2+ influx or secretion of α-amylase in response to cholinergic or β-adrenergic agonists. p53-mediated apoptotic cell death was observed under both culture conditions, and its downstream signals increased, such as p53 upregulated modulator of apoptosis (PUMA), Bax, cytochrome c, caspase 9, and caspase 3. These results suggest that the organotypic spheroid culture could provide a useful alternative model for exploration of radiobiology and mode of action of new therapies for prevention of radiation-induced salivary hypofunction.
Collapse
Affiliation(s)
- H S Shin
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon, Republic of Korea.,2 Translational Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - H Y An
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon, Republic of Korea.,2 Translational Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - J S Choi
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon, Republic of Korea.,2 Translational Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - H J Kim
- 3 Department of Radiation Oncology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - J Y Lim
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon, Republic of Korea.,2 Translational Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
82
|
Qin Q, Wei F, Zhang J, Li B. miR-134 suppresses the migration and invasion of non-small cell lung cancer by targeting ITGB1. Oncol Rep 2017; 37:823-830. [DOI: 10.3892/or.2017.5350] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/29/2016] [Indexed: 11/05/2022] Open
|
83
|
Mould AP, Askari JA, Byron A, Takada Y, Jowitt TA, Humphries MJ. Ligand-induced Epitope Masking: DISSOCIATION OF INTEGRIN α5β1-FIBRONECTIN COMPLEXES ONLY BY MONOCLONAL ANTIBODIES WITH AN ALLOSTERIC MODE OF ACTION. J Biol Chem 2016; 291:20993-21007. [PMID: 27484800 PMCID: PMC5076510 DOI: 10.1074/jbc.m116.736942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/29/2016] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking.
Collapse
Affiliation(s)
- A Paul Mould
- From the Biomolecular Analysis Core Facility and
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Adam Byron
- the Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, Scotland, United Kingdom, and
| | - Yoshikazu Takada
- the Department of Vascular Biology, VB-1, The Scripps Research Institute, La Jolla, California 92037
| | | | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom,
| |
Collapse
|
84
|
Iyoda T, Nagamine Y, Nakane Y, Tokita Y, Akari S, Otsuka K, Fujita M, Itagaki K, Takizawa YI, Orita H, Owaki T, Taira J, Hayashi R, Kodama H, Fukai F. Coadministration of the FNIII14 Peptide Synergistically Augments the Anti-Cancer Activity of Chemotherapeutic Drugs by Activating Pro-Apoptotic Bim. PLoS One 2016; 11:e0162525. [PMID: 27622612 PMCID: PMC5021278 DOI: 10.1371/journal.pone.0162525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/24/2016] [Indexed: 11/17/2022] Open
Abstract
The acquisition of drug resistance mediated by the interaction of tumor cells with the extracellular matrix (ECM), commonly referred to as cell adhesion-mediated drug resistance (CAM-DR), has been observed not only in hematopoietic tumor cells but also in solid tumor cells. We have previously demonstrated that a 22-mer peptide derived from fibronectin, FNIII14, can inhibit cell adhesion through the inactivation of β1 integrin; when coadministered with cytarabine, FNIII14 completely eradicates acute myelogenous leukemia by suppressing CAM-DR. In this study, we show that our FNIII14 peptide also enhances chemotherapy efficacy in solid tumors. Coadministration of FNIII14 synergistically enhances the cytotoxicity of doxorubicin and aclarubicin in mammary tumor and melanoma cells, respectively. The solid tumor cell chemosensitization induced by FNIII14 is dependent upon the upregulation and activation of the pro-apoptotic protein, Bim. Furthermore, the metastasis of tumor cells derived from ventrally transplanted mammary tumor grafts is suppressed by the coadministration of FNIII14 and doxorubicin. These results suggest that the coadministration of our FNIII14 peptide with chemotherapy could achieve efficient solid tumor eradication by increasing chemosensitivity and decreasing metastasis. The major causes of tumor recurrence are the existence of chemotherapy-resistant primary tumor cells and the establishment of secondary metastatic lesions. As such, coadministering FNIII14 with anti-cancer drugs could provide a promising new approach to improve the prognosis of patients with solid tumors.
Collapse
Affiliation(s)
- Takuya Iyoda
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.,Translational Research Center, Research Institutes for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Yumi Nagamine
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoshitomi Nakane
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yuya Tokita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shougo Akari
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Kazuki Otsuka
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Keisuke Itagaki
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - You-Ichi Takizawa
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroaki Orita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Toshiyuki Owaki
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Jyunichi Taira
- Department of Biochemistry, Faculty of Science and Engineering, Saga University, Saga, Saga, Japan
| | - Ryo Hayashi
- Department of Biochemistry, Faculty of Science and Engineering, Saga University, Saga, Saga, Japan
| | - Hiroaki Kodama
- Department of Biochemistry, Faculty of Science and Engineering, Saga University, Saga, Saga, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.,Translational Research Center, Research Institutes for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
85
|
Arya AD, Hallur PM, Karkisaval AG, Gudipati A, Rajendiran S, Dhavale V, Ramachandran B, Jayaprakash A, Gundiah N, Chaubey A. Gelatin Methacrylate Hydrogels as Biomimetic Three-Dimensional Matrixes for Modeling Breast Cancer Invasion and Chemoresponse in Vitro. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22005-17. [PMID: 27494432 DOI: 10.1021/acsami.6b06309] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent studies have shown that three-dimensional (3D) culture environments allow the study of cellular responses in a setting that more closely resembles the in vivo milieu. In this context, hydrogels have become popular scaffold options for the 3D cell culture. Because the mechanical and biochemical properties of culture matrixes influence crucial cell behavior, selecting a suitable matrix for replicating in vivo cellular phenotype in vitro is essential for understanding disease progression. Gelatin methacrylate (GelMA) hydrogels have been the focus of much attention because of their inherent bioactivity, favorable hydration and diffusion properties, and ease-of-tailoring of their physicochemical characteristics. Therefore, in this study we examined the efficacy of GelMA hydrogels as a suitable platform to model specific attributes of breast cancer. We observed increased invasiveness in vitro and increased tumorigenic ability in vivo in breast cancer cells cultured on GelMA hydrogels. Further, cells cultured on GelMA matrixes were more resistant to paclitaxel treatment, as shown by the results of cell-cycle analysis and gene expression. This study, therefore, validates GelMA hydrogels as inexpensive, cell-responsive 3D platforms for modeling key characteristics associated with breast cancer metastasis, in vitro.
Collapse
Affiliation(s)
- Anuradha D Arya
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Hosur Road, Bangalore 560 099, India
| | - Pavan M Hallur
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Hosur Road, Bangalore 560 099, India
| | - Abhijith G Karkisaval
- Department of Mechanical Engineering, Indian Institute of Science , Bangalore 560 012, India
| | - Aditi Gudipati
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Hosur Road, Bangalore 560 099, India
| | - Satheesh Rajendiran
- In Vivo Pharmacology-Oncology, Syngene International Ltd. , Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Vaibhav Dhavale
- In Vivo Pharmacology-Oncology, Syngene International Ltd. , Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Balaji Ramachandran
- In Vivo Pharmacology-Oncology, Syngene International Ltd. , Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Aravindakshan Jayaprakash
- In Vivo Pharmacology-Oncology, Syngene International Ltd. , Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science , Bangalore 560 012, India
| | - Aditya Chaubey
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Hosur Road, Bangalore 560 099, India
| |
Collapse
|
86
|
Yin HL, Wu CC, Lin CH, Chai CY, Hou MF, Chang SJ, Tsai HP, Hung WC, Pan MR, Luo CW. β1 Integrin as a Prognostic and Predictive Marker in Triple-Negative Breast Cancer. Int J Mol Sci 2016; 17:ijms17091432. [PMID: 27589736 PMCID: PMC5037711 DOI: 10.3390/ijms17091432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/03/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022] Open
Abstract
Triple negative breast cancer (TNBC) displays higher risk of recurrence and distant metastasis. Due to absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), TNBC lacks clinically established targeted therapies. Therefore, understanding of the mechanism underlying the aggressive behaviors of TNBC is required for the design of individualized strategies and the elongation of overall survival duration. Here, we supported a positive correlation between β1 integrin and malignant behaviors such as cell migration, invasion, and drug resistance. We found that silencing of β1 integrin inhibited cell migration, invasion, and increased the sensitivity to anti-cancer drug. In contrast, activation of β1 integrin increased cell migration, invasion, and decreased the sensitivity to anti-cancer drug. Furthermore, we found that silencing of β1 integrin abolished Focal adhesion kinese (FAK) mediated cell survival. Overexpression of FAK could restore cisplatin-induced apoptosis in β1 integrin-depleted cells. Consistent to in vitro data, β1 integrin expression was also positively correlated with FAK (p = 0.031) in clinical tissue. More importantly, β1 integrin expression was significantly correlated with patient outcome. In summary, our study indicated that β1 integrin could regulate TNBC cells migration, invasion, drug sensitivity, and be a potential prognostic biomarker in TNBC patient survival.
Collapse
Affiliation(s)
- Hsin-Ling Yin
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Pathology, Faculty of Medicine, Collage of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Chih-Hung Lin
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Pathology, Faculty of Medicine, Collage of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Ming-Feng Hou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Cancer Center, Kaohsiung Medical University Hospital, 807 Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Hung-Pei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Wen-Chun Hung
- Cancer Center, Kaohsiung Medical University Hospital, 807 Kaohsiung, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, 704 Tainan, Taiwan.
| | - Mei-Ren Pan
- Cancer Center, Kaohsiung Medical University Hospital, 807 Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Chi-Wen Luo
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Cancer Center, Kaohsiung Medical University Hospital, 807 Kaohsiung, Taiwan.
| |
Collapse
|
87
|
Kalluri R. The biology and function of fibroblasts in cancer. NATURE REVIEWS. CANCER 2016. [PMID: 27550820 DOI: 10.1038/nrc.2016.73.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
88
|
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
89
|
Gangadhara S, Smith C, Barrett-Lee P, Hiscox S. 3D culture of Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of therapeutic response. BMC Cancer 2016; 16:345. [PMID: 27251376 PMCID: PMC4888214 DOI: 10.1186/s12885-016-2377-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/22/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The Her2 receptor is overexpressed in up to 25 % of breast cancers and is associated with a poor prognosis. Around half of Her2+ breast cancers also express the estrogen receptor and treatment for such tumours can involve both endocrine and Her2-targeted therapies. However, despite preclinical data supporting the effectiveness of these agents, responses can vary widely in the clinical setting. In light of the increasing evidence pointing to the interplay between the tumour and its extracellular microenvironment as a significant determinant of therapeutic sensitivity and response here we investigated the impact of 3D matrix culture of breast cancer cells on their therapeutic sensitivity. METHODS A 3D Matrigel-based culture system was established and optimized for the growth of ER+/Her2+ breast cancer cell models. Growth of cells in response to trastuzumab and endocrine agents in 3D culture versus routine monolayer culture were assessed using cell counting and Ki67 staining. Endogenous and trastuzumab-modulated signalling pathway activity in 2D and 3D cultures were assessed using Western blotting. RESULTS Breast cancer cells in 3D culture displayed an attenuated response to both endocrine agents and trastuzumab compared with cells cultured in traditional 2D monolayers. Underlying this phenomenon was an apparent matrix-induced shift from AKT to MAPK signalling; consequently, suppression of MAPK in 3D cultures restores therapeutic response. CONCLUSION These data suggest that breast cancer cells in 3D culture display a reduced sensitivity to therapeutic agents which may be mediated by internal MAPK-mediated signalling. Targeting of adaptive pathways that maintain growth in 3D culture may represent an effective strategy to improve therapeutic response clinically.
Collapse
Affiliation(s)
- Sharath Gangadhara
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, CF10 3NB, Cardiff, UK.,Velindre Cancer Centre, Whitchurch Road, Cardiff, UK
| | - Chris Smith
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, CF10 3NB, Cardiff, UK.,Velindre Cancer Centre, Whitchurch Road, Cardiff, UK
| | | | - Stephen Hiscox
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, CF10 3NB, Cardiff, UK.
| |
Collapse
|
90
|
Zscheppang K, Kurth I, Wachtel N, Dubrovska A, Kunz-Schughart LA, Cordes N. Efficacy of Beta1 Integrin and EGFR Targeting in Sphere-Forming Human Head and Neck Cancer Cells. J Cancer 2016; 7:736-45. [PMID: 27076856 PMCID: PMC4829561 DOI: 10.7150/jca.14232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/22/2016] [Indexed: 12/11/2022] Open
Abstract
Background: Resistance to radiotherapy continues to be a limiting factor in the treatment of cancer including head and neck squamous cell carcinoma (HNSCC). Simultaneous targeting of β1 integrin and EGFR was shown to have a higher radiosensitizing potential than mono-targeting in the majority of tested HNSCC cancer models. As tumor-initiating cells (TIC) are thought to play a key role for therapy resistance and recurrence and can be enriched in sphere forming conditions, this study investigated the efficacy of β1 integrin/EGFR targeting without and in combination with X-ray irradiation on the behavior of sphere-forming cells (SFC). Methods: HNSCC cell lines (UTSCC15, UTSCC5, Cal33, SAS) were injected subcutaneously into nude mice for tumor up-take and plated for primary and secondary sphere formation under non-adhesive conditions which is thought to reflect the enrichment of SFC and their self-renewal capacity, respectively. Treatment was accomplished by inhibitory antibodies for β1 integrin (AIIB2) and EGFR (Cetuximab) as well as X-ray irradiation (2 - 6 Gy single doses). Further, flow cytometry for TIC marker expression and cell cycling as well as Western blotting for DNA repair protein expression and phosphorylation were employed. Results: We found higher primary and secondary sphere forming capacity of SAS cells relative to other HNSCC cell lines, which was in line with the tumor up-take rates of SAS versus UTSCC15 cells. AIIB2 and Cetuximab administration had minor cytotoxic and no radiosensitizing effects on SFC. Intriguingly, secondary SAS spheres, representing the fraction of surviving SFC upon passaging, showed greatly enhanced radiosensitivity compared to primary spheres. Intriguingly, neither AIIB2 nor Cetuximab significantly altered basal sphere forming capacity and radiosensitivity. While an increased accumulation of G0/G1 phase cells was observable in secondary SAS spheres, DNA double strand break repair indicated no difference on the basis of significantly enhanced ATM and Chk2 dephosphorylation upon irradiation. Conclusions: In the HNSCC model, sphere-forming conditions select for cells, which are unsusceptible to both anti-β1 integrin and anti-EGFR inhibitory antibodies. With regard to primary and secondary sphere formation, our data suggest that both of these SFC fractions express distinct survival strategies independent from β1 integrin and EGFR and that future work is warranted to better understand SFC survival and enrichment before and after treatment to untangle the underlying mechanisms for identifying novel, druggable cancer targets in SFC.
Collapse
Affiliation(s)
- Katja Zscheppang
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 2. Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Ina Kurth
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 3. National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Nicole Wachtel
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Anna Dubrovska
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 5. Institute of Radiooncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany;; 6. German Cancer Consortium (DKTK), Dresden, Germany;; 7. German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leoni A Kunz-Schughart
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 5. Institute of Radiooncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Nils Cordes
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 4. Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany;; 5. Institute of Radiooncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany;; 6. German Cancer Consortium (DKTK), Dresden, Germany;; 7. German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
91
|
Dickreuter E, Eke I, Krause M, Borgmann K, van Vugt MA, Cordes N. Targeting of β1 integrins impairs DNA repair for radiosensitization of head and neck cancer cells. Oncogene 2016; 35:1353-62. [PMID: 26073085 DOI: 10.1038/onc.2015.212] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 11/09/2022]
Abstract
β1 Integrin-mediated cell-extracellular matrix interactions allow cancer cell survival and confer therapy resistance. It was shown that inhibition of β1 integrins sensitizes cells to radiotherapy. Here, we examined the impact of β1 integrin targeting on the repair of radiation-induced DNA double-strand breaks (DSBs). β1 Integrin inhibition was accomplished using the monoclonal antibody AIIB2 and experiments were performed in three-dimensional cell cultures and tumor xenografts of human head and neck squamous cell carcinoma (HNSCC) cell lines. AIIB2, X-ray irradiation, small interfering RNA-mediated knockdown and Olaparib treatment were performed and residual DSB number, protein and gene expression, non-homologous end joining (NHEJ) activity as well as clonogenic survival were determined. β1 Integrin targeting impaired repair of radiogenic DSB (γH2AX/53BP1, pDNA-PKcs T2609 foci) in vitro and in vivo and reduced the protein expression of Ku70, Rad50 and Nbs1. Further, we identified Ku70, Ku80 and DNA-PKcs but not poly(ADP-ribose) polymerase (PARP)-1 to reside in the β1 integrin pathway. Intriguingly, combined inhibition of β1 integrin and PARP using Olaparib was significantly more effective than either treatment alone in non-irradiated and irradiated HNSCC cells. Here, we support β1 integrins as potential cancer targets and highlight a regulatory role for β1 integrins in the repair of radiogenic DNA damage via classical NHEJ. Further, the data suggest combined targeting of β1 integrin and PARP as promising approach for radiosensitization of HNSCC.
Collapse
Affiliation(s)
- E Dickreuter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - I Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
- German Cancer Consortium (DKTK), 01307 Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Clinic of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M A van Vugt
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - N Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
- German Cancer Consortium (DKTK), 01307 Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
92
|
Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett 2016; 387:61-68. [PMID: 26845449 DOI: 10.1016/j.canlet.2016.01.043] [Citation(s) in RCA: 1223] [Impact Index Per Article: 135.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment significantly influences therapeutic response and clinical outcome. Microenvironment-mediated drug resistance can be induced by soluble factors secreted by tumor or stromal cells. The adhesion of tumor cells to stromal fibroblasts or to components of the extracellular matrix can also blunt therapeutic response. Microenvironment-targeted therapy strategies include inhibition of the extracellular ligand-receptor interactions and downstream pathways. Immune cells can both improve and obstruct therapeutic efficacy and may vary in their activation status within the tumor microenvironment; thus, re-programme of the immune response would be substantially more beneficial. The development of rational drug combinations that can simultaneously target tumor cells and the microenvironment may represent a solution to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Ting Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
93
|
Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells. Sci Rep 2016; 6:18430. [PMID: 26728650 PMCID: PMC4700444 DOI: 10.1038/srep18430] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
An aberrant expression of integrin β1 has been implicated in breast cancer progression. Here, we compared the cell behaviors of wild-type (WT), β1 gene deleted (KO), and β1 gene restored (Res) MDA-MB-231 cells. Surprisingly, the expression of β1 exhibited opposite effects on cell proliferation. These effects were dependent on cell densities, and they showed an up-regulation of cell proliferation when cells were cultured under sparse conditions, and a down-regulation of cell growth under dense conditions. By comparison with WT cells, the phosphorylation levels of ERK in KO cells were consistently suppressed under sparse culture conditions, but consistently up-regulated under dense culture conditions. The phosphorylation levels of EGFR were increased in the KO cells. By contrast, the phosphorylation levels of AKT were decreased in the KO cells. The abilities for both colony and tumor formation were significantly suppressed in the KO cells, suggesting that β1 plays an important role in cell survival signaling for tumorigenesis. These aberrant phenotypes in the KO cells were rescued in the Res cells. Taken together, these results clearly showed the distinct roles of β1 in cancer cells: the inhibition of cell growth and the promotion of cell survival, which may shed light on cancer therapies.
Collapse
|
94
|
Vehlow A, Storch K, Matzke D, Cordes N. Molecular Targeting of Integrins and Integrin-Associated Signaling Networks in Radiation Oncology. Recent Results Cancer Res 2016; 198:89-106. [PMID: 27318682 DOI: 10.1007/978-3-662-49651-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Radiation and chemotherapy are the main pillars of the current multimodal treatment concept for cancer patients. However, tumor recurrences and resistances still hamper treatment success regardless of advances in radiation beam application, particle radiotherapy, and optimized chemotherapeutics. To specifically intervene at key recurrence- and resistance-promoting molecular processes, the development of potent and specific molecular-targeted agents is demanded for an efficient, safe, and simultaneous integration into current standard of care regimens. Potential targets for such an approach are integrins conferring structural and biochemical communication between cells and their microenvironment. Integrin binding to extracellular matrix activates intracellular signaling for regulating essential cellular functions such as survival, proliferation, differentiation, adhesion, and cell motility. Tumor-associated characteristics such as invasion, metastasis, and radiochemoresistance also highly depend on integrin function. Owing to their dual functionality and their overexpression in the majority of human malignancies, integrins present ideal and accessible targets for cancer therapy. In the following chapter, the current knowledge on aspects of the tumor microenvironment, the molecular regulation of integrin-dependent radiochemoresistance and current approaches to integrin targeting are summarized.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja Storch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela Matzke
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
95
|
Kuhl S, Voss E, Scherer A, Lusche DF, Wessels D, Soll DR. 4D Tumorigenesis Model for Quantitating Coalescence, Directed Cell Motility and Chemotaxis, Identifying Unique Cell Behaviors, and Testing Anticancer Drugs. Methods Mol Biol 2016; 1407:229-50. [PMID: 27271907 DOI: 10.1007/978-1-4939-3480-5_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 4D high-resolution computer-assisted reconstruction and motion analysis system has been developed and applied to the long-term (14-30 days) analysis of cancer cells migrating and aggregating within a 3D matrix. 4D tumorigenesis models more closely approximate the tumor microenvironment than 2D substrates and, therefore, are improved tools for elucidating the interactions within the tumor microenvironment that promote growth and metastasis. The model we describe here can be used to analyze the growth of tumor cells, aggregate coalescence, directed cell motility and chemotaxis, matrix degradation, the effects of anticancer drugs, and the behavior of immune and endothelial cells mixed with cancer cells. The information given in this chapter is also intended to acquaint the reader with computer-assisted methods and algorithms that can be used for high-resolution 3D reconstruction and quantitative motion analysis.
Collapse
Affiliation(s)
- Spencer Kuhl
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Edward Voss
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Amanda Scherer
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Deborah Wessels
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - David R Soll
- Department of Biology, The University of Iowa, 302 Biology Building East, 210 Iowa Avenue, Iowa City, IA, 52242, USA.
| |
Collapse
|
96
|
Barney LE, Dandley EC, Jansen LE, Reich NG, Mercurio AM, Peyton SR. A cell-ECM screening method to predict breast cancer metastasis. Integr Biol (Camb) 2015; 7:198-212. [PMID: 25537447 DOI: 10.1039/c4ib00218k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer preferentially spreads to the bone, brain, liver, and lung. The clinical patterns of this tissue-specific spread (tropism) cannot be explained by blood flow alone, yet our understanding of what mediates tropism to these physically and chemically diverse tissues is limited. While the microenvironment has been recognized as a critical factor in governing metastatic colonization, the role of the extracellular matrix (ECM) in mediating tropism has not been thoroughly explored. We created a simple biomaterial platform with systematic control over the ECM protein density and composition to determine if integrin binding governs how metastatic cells differentiate between secondary tissue sites. Instead of examining individual behaviors, we compiled large patterns of phenotypes associated with adhesion to and migration on these controlled ECMs. In combining this novel analysis with a simple biomaterial platform, we created an in vitro fingerprint that is predictive of in vivo metastasis. This rapid biomaterial screen also provided information on how β1, α2, and α6 integrins might mediate metastasis in patients, providing insights beyond a purely genetic analysis. We propose that this approach of screening many cell-ECM interactions, across many different heterogeneous cell lines, is predictive of in vivo behavior, and is much simpler, faster, and more economical than complex 3D environments or mouse models. We also propose that when specifically applied toward the question of tissue tropism in breast cancer, it can be used to provide insight into certain integrin subunits as therapeutic targets.
Collapse
Affiliation(s)
- L E Barney
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
97
|
The extracellular matrix in breast cancer predicts prognosis through composition, splicing, and crosslinking. Exp Cell Res 2015; 343:73-81. [PMID: 26597760 DOI: 10.1016/j.yexcr.2015.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022]
Abstract
The extracellular matrix in the healthy breast has an important tumor suppressive role, whereas the abnormal ECM in tumors can promote aggressiveness, and has been linked to breast cancer relapse, survival and resistance to chemotherapy. This review article gives an overview of the elements of the ECM which have been linked to prognosis of breast cancers, including changes in ECM protein composition, splicing, and microstructure.
Collapse
|
98
|
Eke I, Hehlgans S, Sandfort V, Cordes N. 3D matrix-based cell cultures: Automated analysis of tumor cell survival and proliferation. Int J Oncol 2015; 48:313-21. [PMID: 26549537 PMCID: PMC4734598 DOI: 10.3892/ijo.2015.3230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional ex vivo cell cultures mimic physiological in vivo growth conditions thereby significantly contributing to our understanding of tumor cell growth and survival, therapy resistance and identification of novel potent cancer targets. In the present study, we describe advanced three-dimensional cell culture methodology for investigating cellular survival and proliferation in human carcinoma cells after cancer therapy including molecular therapeutics. Single cells are embedded into laminin-rich extracellular matrix and can be treated with cytotoxic drugs, ionizing or UV radiation or any other substance of interest when consolidated and approximating in vivo morphology. Subsequently, cells are allowed to grow for automated determination of clonogenic survival (colony number) or proliferation (colony size). The entire protocol of 3D cell plating takes ~1 h working time and pursues for ~7 days before evaluation. This newly developed method broadens the spectrum of exploration of malignant tumors and other diseases and enables the obtainment of more reliable data on cancer treatment efficacy.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Stephanie Hehlgans
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Veit Sandfort
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
99
|
D’Alessandria C, Pohle K, Rechenmacher F, Neubauer S, Notni J, Wester HJ, Schwaiger M, Kessler H, Beer AJ. In vivo biokinetic and metabolic characterization of the 68Ga-labelled α5β1-selective peptidomimetic FR366. Eur J Nucl Med Mol Imaging 2015; 43:953-963. [DOI: 10.1007/s00259-015-3218-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/06/2015] [Indexed: 01/04/2023]
|
100
|
Liu QZ, Gao XH, Chang WJ, Gong HF, Fu CG, Zhang W, Cao GW. Expression of ITGB1 predicts prognosis in colorectal cancer: a large prospective study based on tissue microarray. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12802-12810. [PMID: 26722470 PMCID: PMC4680415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND ITGB1 is a heterodimeric cell-surface receptor involved in cell functions such as proliferation, migration, invasion and survival. The aim of this study was to assess ITGB1 expression in colorectal cancer and correlate it with clinicopathological features, as well as to evaluate its potential prognostic significance. MATERIALS AND METHODS In this study, we examined the expression of ITGB1 using tissue microarrays containing analyzed specimens by immunohistochemistry. ITGB1 expression was further correlated with clinicopathological and prognostic data. The prognostic significance was assessed using Kaplan-Meier survival estimates and log-rank tests. A multivariate study with the Cox's proportional hazard model was used to evaluate the prognostic aspects. RESULTS ITGB1 expression was present in 88.5% of the analyzed specimens. Significant differences in ITGB1 expression were found between normal mucosa and carcinomas (P<0.001). High ITGB1 expression was associated with poor prognosis, and it independently correlated with shortened overall survival and disease-free survival in colorectal cancer patients (P<0.001). More so, ITGB1 expression, bowel wall invasion, lymph node metastasis and distant metastasis were independent prognostic factors for overall survival. Additionally, significant differences in ITGB1 expression were observed in adenomas and tumors from patients with familial adenomatous polyposis compared to normal colon mucosa (P<0.05) CONCLUSION: The results of this study indicate that ITGB1 overexpression in colorectal tumors is associated with poor prognosis, as well as aggressive clinicopathological features. Therefore, ITGB1 expression could be used as potential prognostic predictor in colorectal cancer patients.
Collapse
Affiliation(s)
- Qi-Zhi Liu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Xian-Hua Gao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Wen-Jun Chang
- Department of Epidemiology, Second Military Medical UniversityShanghai, China
| | - Hai-Feng Gong
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Chuan-Gang Fu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Guang-Wen Cao
- Department of Epidemiology, Second Military Medical UniversityShanghai, China
| |
Collapse
|