51
|
He Z, Deng W, Jiang B, Liu S, Tang M, Liu Y, Zhang J. Hsa-let-7b inhibits cell proliferation by targeting PLK1 in HCC. Gene 2018; 673:46-55. [PMID: 29913237 DOI: 10.1016/j.gene.2018.06.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that high levels of PLK1 are expressed in HCC, and PLK1 inhibitors are being tested in clinical trials. However, the mechanisms, which regulate PLK1 expression in HCC, have not been clarified. Here, we show that induction of let-7b over-expression inhibits the PLK1-regulated luciferase activity in HEK-293T cells, and decreases the levels of PLK1 expression in HCC cells. Furthermore, the levels of let-7b expression were negatively correlated with PLK1 expression in HCC tissues. Let-7b over-expression inhibited the proliferation of HCC cells and promoted their apoptosis, which were partially rescued by increased PLK1 expression. Let-7b over-expression decreased the levels of PLK1, CDC25C and Survivin phosphorylation and CDC2, β-catenin, TCF-4 expression, which were mitigated by increased PLK1 expression in MHCC-97H cells. Let-7b over-expression inhibited the development and growth of implanted HCC tumors in mice by decreasing PLK1 and Survivin expression in the tumors. Together, our data indicated that let-7b targeted PLK1 to inhibit HCC growth and induce their apoptosis by attenuating the PLK1-mediated Survivin phosphorylation. Our findings may provide new insights into the pathogenesis of HCC.
Collapse
Affiliation(s)
- Zili He
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China; Key Laboratory of Protein Chemistry, Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China; Laboratory of Hepatobiliary Molecular Oncology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, People's Republic of China.
| | - Wen Deng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Mingchun Tang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Yi Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry, Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China.
| |
Collapse
|
52
|
AlAjmi MF, Rehman MT, Hussain A, Rather GM. Pharmacoinformatics approach for the identification of Polo-like kinase-1 inhibitors from natural sources as anti-cancer agents. Int J Biol Macromol 2018; 116:173-181. [PMID: 29738867 DOI: 10.1016/j.ijbiomac.2018.05.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
Polo-like kinase-1 (PLK-1) plays a key role in cell cycle progression during mitosis. Overexpression/dysfunction of PLK-1 is directly associated with cancerous transformation and has been reported in different cancer types. Here, we employed high throughput virtual screening and molecular docking to screen Selleck's natural compound library against PLK-1 kinase domain. We have identified eight bioactive compounds (Apigenin, Dihydromyricetin, Diosmetin, Hesperidin, Hesperitin, Naringenin, Phlorizi, and Quercetin) as the potential inhibitors of PLK-1. Further investigation through Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations and 15 ns molecular dynamics simulation revealed that hesperidin formed the most stable complex with PLK-1 kinase domain. Altogether, our results indicate that hesperidin interacted strongly with the key residues of the PLK-1 active site (such as Leu59, Lys61, Lys82, Cys133, Asn181, Asp194, Leu59, Cys67, Ala80, Val114, Leu130, Leu132, Cys133, Leu139, Phe183, and Phe195) through hydrogen bonding and hydrophobic interactions. The Hesperidin-PLK-1 complex was stabilized by Gibb's free energy of -13.235 kcal/mol which corresponded to the binding affinity of 5.095 × 109 M-1. This is the first study wherein hesperidin has been identified as a potential inhibitor of PLK-1. Further design and optimization of the hesperidin scaffold as an inhibitor of PLK-1 kinase domain is highly recommended.
Collapse
Affiliation(s)
- Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Gulam Mohmad Rather
- Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick 08901, NJ, USA
| |
Collapse
|
53
|
Abstract
Although tumours initiate from oncogenic changes in a cancer cell, subsequent tumour progression and therapeutic response depend on interactions between the cancer cells and the tumour microenvironment (TME). The primary monocilium, or cilium, provides a spatially localized platform for signalling by Hedgehog, Notch, WNT and some receptor tyrosine kinase pathways and mechanosensation. Changes in ciliation of cancer cells and/or cells of the TME during tumour development enforce asymmetric intercellular signalling in the TME. Growing evidence indicates that some oncogenic signalling pathways as well as some targeted anticancer therapies induce ciliation, while others repress it. The links between the genomic profile of cancer cells, drug treatment and ciliary signalling in the TME likely affect tumour growth and therapeutic response.
Collapse
Affiliation(s)
- Hanqing Liu
- School of Pharmacy, Jiangsu University, Jiangsu, China
| | - Anna A Kiseleva
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
- Kazan Federal University, Kazan, Russia
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
54
|
de Cárcer G, Venkateswaran SV, Salgueiro L, El Bakkali A, Somogyi K, Rowald K, Montañés P, Sanclemente M, Escobar B, de Martino A, McGranahan N, Malumbres M, Sotillo R. Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat Commun 2018; 9:3012. [PMID: 30069007 PMCID: PMC6070485 DOI: 10.1038/s41467-018-05429-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 07/06/2018] [Indexed: 02/06/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is overexpressed in a wide spectrum of human tumors, being frequently considered as an oncogene and an attractive cancer target. However, its contribution to tumor development is unclear. Using a new inducible knock-in mouse model we report here that Plk1 overexpression results in abnormal chromosome segregation and cytokinesis, generating polyploid cells with reduced proliferative potential. Mechanistically, these cytokinesis defects correlate with defective loading of Cep55 and ESCRT complexes to the abscission bridge, in a Plk1 kinase-dependent manner. In vivo, Plk1 overexpression prevents the development of Kras-induced and Her2-induced mammary gland tumors, in the presence of increased rates of chromosome instability. In patients, Plk1 overexpression correlates with improved survival in specific breast cancer subtypes. Therefore, despite the therapeutic benefits of inhibiting Plk1 due to its essential role in tumor cell cycles, Plk1 overexpression has tumor-suppressive properties by perturbing mitotic progression and cytokinesis.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| | - Sharavan Vishaan Venkateswaran
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
| | - Lorena Salgueiro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Aicha El Bakkali
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Konstantina Rowald
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Pablo Montañés
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Manuel Sanclemente
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Beatriz Escobar
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Alba de Martino
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| | - Rocío Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
55
|
Mao F, Li J, Luo Q, Wang R, Kong Y, Carlock C, Liu Z, Elzey BD, Liu X. Plk1 Inhibition Enhances the Efficacy of BET Epigenetic Reader Blockade in Castration-Resistant Prostate Cancer. Mol Cancer Ther 2018; 17:1554-1565. [PMID: 29716963 PMCID: PMC6030429 DOI: 10.1158/1535-7163.mct-17-0945] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/07/2018] [Accepted: 04/25/2018] [Indexed: 01/30/2023]
Abstract
Polo-like kinase 1 (Plk1), a crucial regulator of cell-cycle progression, is overexpressed in multiple types of cancers and has been proven to be a potent and promising target for cancer treatment. In case of prostate cancer, we once showed that antineoplastic activity of Plk1 inhibitor is largely due to inhibition of androgen receptor (AR) signaling. However, we also discovered that Plk1 inhibition causes activation of the β-catenin pathway and increased expression of c-MYC, eventually resulting in resistance to Plk1 inhibition. JQ1, a selective small-molecule inhibitor targeting the amino-terminal bromodomains of BRD4, has been shown to dramatically inhibit c-MYC expression and AR signaling, exhibiting antiproliferative effects in a range of cancers. Because c-MYC and AR signaling are essential for prostate cancer initiation and progression, we aim to test whether targeting Plk1 and BRD4 at the same time is an effective approach to treat prostate cancer. Herein, we show that a combination of Plk1 inhibitor GSK461364A and BRD4 inhibitor JQ1 had a strong synergistic effect on castration-resistant prostate cancer (CRPC) cell lines, as well as in CRPC xenograft tumors. Mechanistically, the synergistic effect is likely due to two reasons: (i) Plk1 inhibition results in the accumulation of β-catenin in the nucleus, thus elevation of c-MYC expression, whereas JQ1 treatment directly suppresses c-MYC transcription; (ii) Plk1 and BRD4 dual inhibition acts synergistically in inhibition of AR signaling. Mol Cancer Ther; 17(7); 1554-65. ©2018 AACR.
Collapse
Affiliation(s)
- Fengyi Mao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Jie Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Qian Luo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Ruixin Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Yifan Kong
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Colin Carlock
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Zian Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Bennet D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
56
|
Li Z, Kong Y, Song L, Luo Q, Liu J, Shao C, Hou X, Liu X. Plk1-Mediated Phosphorylation of TSC1 Enhances the Efficacy of Rapamycin. Cancer Res 2018; 78:2864-2875. [PMID: 29559472 PMCID: PMC5984699 DOI: 10.1158/0008-5472.can-17-3046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/13/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
The AKT/TSC/mTOR axis is an important pathway controlling cell growth, survival, and proliferation in response to extracellular cues. Recently, it was reported that AKT activity fluctuates across the cell cycle. However, it remains unclear whether downstream targets of AKT are also regulated by the cell cycle. Here, we report that mTORC1 activity inversely correlates with AKT activity during the cell cycle. Mechanistically, Plk1 phosphorylation of TSC1 at S467 and S578 interfered with TSC1/TSC2 binding, destabilized TSC1, promoted dissociation of the TSC complex from the lysosome, and eventually led to mTORC1 activation. Tumors derived from cancer cells expressing the TSC1-S467E/S578E mutant exhibited greater sensitivity to rapamycin than those expressing WT TSC1. Collectively, our data support a model in which Plk1, instead of AKT, regulates the TSC/mTORC1 pathway during mitosis, eventually regulating the efficacy of rapamycin.Significance: This seminal report shows that activation of mTORC1 can be independent of AKT during mitosis. Cancer Res; 78(11); 2864-75. ©2018 AACR.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Yifan Kong
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Longzhen Song
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Qian Luo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Jinghui Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Chen Shao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Xianzeng Hou
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
57
|
Yao D, Gu P, Wang Y, Luo W, Chi H, Ge J, Qian Y. Inhibiting polo-like kinase 1 enhances radiosensitization via modulating DNA repair proteins in non-small-cell lung cancer. Biochem Cell Biol 2018; 96:317-325. [PMID: 29040814 DOI: 10.1139/bcb-2017-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To assure faithful chromosome segregation, cells make use of the spindle assembly checkpoint, which can be activated in aneuploid cancer cells. In this study, the efficacies of inhibiting polo-like kinase 1 (PLK1) on the radiosensitization of non-small-cell lung cancer (NSCLC) cells were studied. Clonogenic survival assay was performed to identify the effects of the PLK1 inhibitor on radiosensitivity within NSCLC cells. Mitotic catastrophe assessment was used to measure the cell death and histone H2AX protein (γH2AX) foci were utilized to assess the DNA double-strand breaks (DSB). The transcriptome was analyzed via unbiased profiling of microarray expression. The results showed that the postradiation mitotic catastrophe induction and the DSB repair were induced by PLK1 inhibitor BI-6727, leading to an increase in the radiosensitivity of NSCLC cells. BI-6727 in combination with radiation significantly induced the delayed tumor growth. PLK1-silenced NSCLC cells showed an altered mRNA and protein expression related to DNA damaging, replication, and repairing, including the DNA-dependent protein kinase (DNAPK) and topoisomerase II alpha (TOPO2A). Furthermore, inhibition of PLK1 blocked 2 important DNA repair pathways. To summarize, our study showed PLK1 kinase as an option in the therapy of NSCLC.
Collapse
Affiliation(s)
- Da Yao
- a Department of Cardiovascular Surgery Center, Anhui Province Hospital of Anhui Medical University, Hefei, 230001, PR China
| | - Peigui Gu
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Youyu Wang
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Weibin Luo
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Huiliang Chi
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Jianjun Ge
- a Department of Cardiovascular Surgery Center, Anhui Province Hospital of Anhui Medical University, Hefei, 230001, PR China
| | - Youhui Qian
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| |
Collapse
|
58
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
59
|
Cheng CY, Liu CJ, Huang YC, Wu SH, Fang HW, Chen YJ. BI2536 induces mitotic catastrophe and radiosensitization in human oral cancer cells. Oncotarget 2018; 9:21231-21243. [PMID: 29765534 PMCID: PMC5940398 DOI: 10.18632/oncotarget.25035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/19/2018] [Indexed: 11/25/2022] Open
Abstract
BI2536 has been developed as a potential therapeutic agent for various cancers but not in oral cancer cells. Since BI2536 exhibits mitosis-regulating activity which are the most radiosensitive, we hypothesized that BI2536 might modulate the radiosensitivity of oral cancer cells. Human normal fibroblasts, oral cancer SAS, and OECM1 cells were treated with BI2536 (0-50 nM) and/or radiation (0-4 Gy). MTT assay, Liu's staining, flow cytometry, clonogenic assay, Annexin V/propidium iodide (PI) staining, western blot analysis, and small interfering RNA knockdown experiments were used to assess cell viability, morphology, cell cycle progression, radiation survival, and expression of regulatory proteins in vitro. Male BALB/c nude mice implanted with SAS cells were used to examine the effects of BI2536 in vivo. Treatment with BI2536 preferentially inhibited the viability of SAS and OECM1 cells, but not the normal fibroblasts. Morphological examination and Annexin V/PI staining of BI2536-treated oral cancer cells showed mitotic catastrophe and apoptosis. A DNA histogram revealed BI2536 induced G2/M and upregulation of phosphorylated H3 indicating accumulation in the M phase. BI2536 modulated the expression of PLK1, cell division control protein (Cdc)2, Cdc20, Cdc25c, adenomatous polyposis coli 3, and cyclin B1. At 10 nM, BI2536 exhibited low cytotoxicity, effectively induced mitotic catastrophe, and more importantly, sensitized oral cancer cells to radiotherapy. The animal study showed that BI2536 (10 mg/kg) + radiation (2 Gy) resulted in stronger tumor inhibition than that associated with radiation alone. Our findings showed that BI2536 could be an effective radiosensitizer both in vitro and in vivo.
Collapse
Affiliation(s)
- Chieh-Yuan Cheng
- Graduate Institute of Engineering Technology, National Taipei University of Technology, Taipei 10608, Taiwan.,Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan.,Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan.,Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yu-Chuen Huang
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shu-Hua Wu
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City 25160, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yu-Jen Chen
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, New Taipei City 25160, Taiwan.,Department of Radiation Oncology, Mackay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
60
|
Lian G, Li L, Shi Y, Jing C, Liu J, Guo X, Zhang Q, Dai T, Ye F, Wang Y, Chen M. BI2536, a potent and selective inhibitor of polo-like kinase 1, in combination with cisplatin exerts synergistic effects on gastric cancer cells. Int J Oncol 2018; 52:804-814. [PMID: 29393385 PMCID: PMC5807034 DOI: 10.3892/ijo.2018.4255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
Abstract
BI2536 is a highly selective and potent inhibitor of polo-like kinase 1 (PLK1). In this study, we aimed to determine whether BI2536 and cisplatin can synergistically inhibit the malignant behavior of gastric cancer cells. For this purpose, the expression of PLK1 in gastric cancer cells was determined. The effects of BI2536, cisplatin, and the combination of BI2536 and cisplatin on gastric cancer cell viability, invasion, cell cycle arrest and apoptosis were assessed. Furthermore, the expression of cell cycle-regulated proteins was examined. Moreover, the differentially expressed proteins between the SGC-7901 and SGC-7901/DDP (cisplatin-resistant) cells, and the enriched signaling pathways were analyzed by protein pathway array following treatment with BI2536 (IC50) for 48 h. Our results revealed that PLK1 was upregulated in the SGC-7901/DDP (cisplatin-resistant) gastric cancer cells compared with the SGC-7901 cells. BI2536 enhanced the inhibitory effect of cisplatin on SGC-7901 cell viability and invasion. BI2536 induced G2/M arrest in SGC-7901 and SGC-7901/DDP cells. BI2536 promoted cisplatin-induced gastric cancer SGC-7901/DDP cell apoptosis. It also induced the differential expression of 68 proteins between the SGC-7901 and SGC-7901/DDP cells, and these differentially expressed proteins were involved in a number of cellular functions and signaling pathways, such as cell death, cell development, tumorigenesis, the cell cycle, DNA duplication/recombination/repair, cellular movement, and the Wnt/β-catenin and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK)/ribosomal S6 kinase 1 (RSK1) signaling pathways. On the whole, our findings suggest that BI2536 and cisplatin synergistically inhibit the malignant behavior of SGC-7901/DDP (cisplatin‑resistant) gastric cancer cells.
Collapse
Affiliation(s)
| | - Leping Li
- Department of Gastrointestinal Surgery
| | | | | | | | | | - Qingqing Zhang
- Statistics and Medical Record Management Section, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021
| | - Tianyu Dai
- Clinical Medical College of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Fei Ye
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yanyan Wang
- Biological Engineering School of Dalian Polytechnic University, Dalian, Liaoning 116034
| | - Man Chen
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
61
|
Microarray Analysis of the Molecular Mechanism Involved in Parkinson's Disease. PARKINSONS DISEASE 2018; 2018:1590465. [PMID: 29686831 PMCID: PMC5852864 DOI: 10.1155/2018/1590465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/21/2017] [Accepted: 10/18/2017] [Indexed: 02/03/2023]
Abstract
Purpose This study aimed to investigate the underlying molecular mechanisms of Parkinson's disease (PD) by bioinformatics. Methods Using the microarray dataset GSE72267 from the Gene Expression Omnibus database, which included 40 blood samples from PD patients and 19 matched controls, differentially expressed genes (DEGs) were identified after data preprocessing, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein-protein interaction (PPI) network, microRNA- (miRNA-) target regulatory network, and transcription factor- (TF-) target regulatory networks were constructed. Results Of 819 DEGs obtained, 359 were upregulated and 460 were downregulated. Two GO terms, “rRNA processing” and “cytoplasm,” and two KEGG pathways, “metabolic pathways” and “TNF signaling pathway,” played roles in PD development. Intercellular adhesion molecule 1 (ICAM1) was the hub node in the PPI network; hsa-miR-7-5p, hsa-miR-433-3p, and hsa-miR-133b participated in PD pathogenesis. Six TFs, including zinc finger and BTB domain-containing 7A, ovo-like transcriptional repressor 1, GATA-binding protein 3, transcription factor dp-1, SMAD family member 1, and quiescin sulfhydryl oxidase 1, were related to PD. Conclusions “rRNA processing,” “cytoplasm,” “metabolic pathways,” and “TNF signaling pathway” were key pathways involved in PD. ICAM1, hsa-miR-7-5p, hsa-miR-433-3p, hsa-miR-133b, and the abovementioned six TFs might play important roles in PD development.
Collapse
|
62
|
Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models. Oncotarget 2018; 7:39595-39608. [PMID: 27167191 PMCID: PMC5129956 DOI: 10.18632/oncotarget.9153] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Purpose Though the efficacy of MEK inhibitors is being investigated in KRAS-mutant colorectal cancers (CRC), early clinical trials of MEK inhibitor monotherapy did not reveal significant antitumor activity. Resistance to MEK inhibitor monotherapy developed through a variety of mechanisms converging in ERK reactivation. Since ERK increases cyclin D expression and increases entry into the cell cycle, we hypothesized that the combination of MEK inhibitors and CDK4/6 inhibitors would have synergistic antitumor activity and cause tumor regression in vivo. Results The combination of MEK and CDK4/6 inhibitors synergistically inhibited cancer cell growth in vitro and caused tumor regression in vivo in cell line and patient-derived xenograft models. Combination therapy markedly decreased levels of phosphorylated ribosomal protein S6 both in vitro and in vivo and decreased Ki67 staining in vivo. Experimental Design We performed in vitro proliferation, colony formation, apoptosis, and senescence assays, and Western blots, on a panel of 11 KRAS mutant CRC cell lines treated with the MEK inhibitor MEK162, the CDK4/6 inhibitor palbociclib, or the combination. We also treated 4 KRAS mutant CRC cell line and patient-derived xenografts with the MEK inhibitor trametinib, the CDK4/6 inhibitor palbociclib, or the combination, and performed immunohistochemical and reverse phase protein array analysis. Conclusions Combined inhibition of both MEK and CDK4/6 is effective in preclinical models of KRAS mutant CRC and justifies a planned phase II clinical trial in patients with refractory KRAS-mutant CRC. Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models.
Collapse
|
63
|
Dong J, Park SY, Nguyen N, Ezhilarasan R, Martinez-Ledesma E, Wu S, Henry V, Piao Y, Tiao N, Brunell D, Stephan C, Verhaak R, Sulman E, Balasubramaniyan V, de Groot JF. The polo-like kinase 1 inhibitor volasertib synergistically increases radiation efficacy in glioma stem cells. Oncotarget 2018. [PMID: 29535822 PMCID: PMC5828226 DOI: 10.18632/oncotarget.24041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Despite the availability of hundreds of cancer drugs, there is insufficient data on the efficacy of these drugs on the extremely heterogeneous tumor cell populations of glioblastoma (GBM). Results The PKIS of 357 compounds was initially evaluated in 15 different GSC lines which then led to a more focused screening of the 21 most highly active compounds in 11 unique GSC lines using HTS screening for cell viability. We further validated the HTS result with the second-generation PLK1 inhibitor volasertib as a single agent and in combination with ionizing radiation (IR). In vitro studies showed that volasertib inhibited cell viability, and high levels of the anti-apoptotic protein Bcl-xL expression were highly correlated with volasertib resistance. Volasertib sensitized GSCs to radiation therapy by enhancing G2/M arrest and by inducing apoptosis. Colony-formation assay demonstrated that volasertib plus IR synergistically inhibited colony formation. In intracranial xenograft mouse models, the combination of volasertib and radiation significantly inhibited GSC tumor growth and prolonged median survival compared with radiation treatment alone due to inhibition of cell proliferation, enhancement of DNA damage, and induction of apoptosis. Conclusions Our results reinforce the potential therapeutic efficacy of volasertib in combination with radiation for the treatment of GBM. Methods We used high-throughput screening (HTS) to identify drugs, out of 357 compounds in the published Protein Kinase Inhibitor Set, with the greatest efficacy against a panel of glioma stem cells (GSCs), which are representative of the classic cancer genome atlas (TCGA) molecular subtypes.
Collapse
Affiliation(s)
- Jianwen Dong
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soon Young Park
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nghi Nguyen
- Institute of Biosciences and Technology, Texas A&M Health Science Center at Houston, Center for Translational Cancer Research, Houston, TX, USA
| | - Ravesanker Ezhilarasan
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaofang Wu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Verlene Henry
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuji Piao
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ningyi Tiao
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Brunell
- Institute of Biosciences and Technology, Texas A&M Health Science Center at Houston, Center for Translational Cancer Research, Houston, TX, USA
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M Health Science Center at Houston, Center for Translational Cancer Research, Houston, TX, USA
| | - Roel Verhaak
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Erik Sulman
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
64
|
Wen D, Wu J, Wang L, Fu Z. SUMOylation Promotes Nuclear Import and Stabilization of Polo-like Kinase 1 to Support Its Mitotic Function. Cell Rep 2017; 21:2147-2159. [PMID: 29166606 PMCID: PMC5728694 DOI: 10.1016/j.celrep.2017.10.085] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/22/2017] [Accepted: 10/23/2017] [Indexed: 02/08/2023] Open
Abstract
As a pivotal mitotic regulator, polo-like kinase 1 (PLK1) is under highly coordinated and multi-layered regulation. However, the pathways that control PLK1's activity and function have just begun to be elucidated. PLK1 has recently been shown to be functionally modulated by post-translational modifications (PTMs), including phosphorylation and ubiquitination. Herein, we report that SUMOylation plays an essential role in regulating PLK1's mitotic function. We found that Ubc9 was recruited to PLK1 upon initial phosphorylation and activation by CDK1/cyclin B. By in vivo and in vitro SUMOylation assays, PLK1 was identified as a physiologically relevant small ubiquitin-related modifier (SUMO)-targeted protein, preferentially modified by SUMO-1. We further showed that K492 on PLK1 is essential for SUMOylation. SUMOylation causes PLK1's nuclear import and significantly increases its protein stability, both of which are critical for normal mitotic progression and genomic integrity. Our findings suggest that SUMOylation is an important regulatory mechanism governing PLK1's mitotic function.
Collapse
Affiliation(s)
- Donghua Wen
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Jianguo Wu
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Lei Wang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
65
|
Li Z, Liu J, Li J, Kong Y, Sandusky G, Rao X, Liu Y, Wan J, Liu X. Polo-like kinase 1 (Plk1) overexpression enhances ionizing radiation-induced cancer formation in mice. J Biol Chem 2017; 292:17461-17472. [PMID: 28900036 PMCID: PMC5655521 DOI: 10.1074/jbc.m117.810960] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
Polo-like kinase 1 (Plk1), a serine/threonine protein kinase normally expressed in mitosis, is frequently up-regulated in multiple types of human tumors regardless of the cell cycle stage. However, the causal relationship between Plk1 up-regulation and tumorigenesis is incompletely investigated. To this end, using a conditional expression system, here we generated Plk1 transgenic mouse lines to examine the role of Plk1 in tumorigenesis. Plk1 overexpression in mouse embryonic fibroblasts prepared from the transgenic mice led to aberrant mitosis followed by aneuploidy and apoptosis. Surprisingly, Plk1 overexpression had no apparent phenotypes in the mice. Given that no malignant tumor formation was observed even after a long period of Plk1 overexpression, we reasoned that additional factors are required for tumorigenesis in Plk1-overexpressing mice. Because Plk1 can directly participate in the regulation of the DNA damage response (DDR) pathway, we challenged Plk1-overexpressing mice with ionizing radiation (IR) and found that Plk1-overexpressing mice are much more sensitive to IR than their wild-type littermates. Analysis of tumor development in the Plk1-overexpressing mice indicated a marked decrease in the time required for tumor emergence after IR. At the molecular level, Plk1 overexpression led to reduced phosphorylation of the serine/threonine kinases ATM and Chk2 and of histone H2AX after IR treatment both in vivo and in vitro Furthermore, RNA-Seq analysis suggested that Plk1 elevation decreases the expression of several DDR genes. We conclude that Plk1 overexpression may contribute to tumor formation by both inducing chromosomal instability and suppressing the DDR pathway.
Collapse
MESH Headings
- Animals
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Checkpoint Kinase 2/genetics
- Checkpoint Kinase 2/metabolism
- DNA Damage
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Enzymologic/radiation effects
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/radiation effects
- Mice
- Mice, Transgenic
- Neoplasms, Radiation-Induced/enzymology
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/pathology
- Phosphorylation/genetics
- Phosphorylation/radiation effects
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Radiation, Ionizing
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Zhiguo Li
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jinghui Liu
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jie Li
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Yifan Kong
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - George Sandusky
- the Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana 46202, and
| | - Xi Rao
- the Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yunlong Liu
- the Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jun Wan
- the Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoqi Liu
- From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907,
| |
Collapse
|
66
|
Lin P, Xiong DD, Dang YW, Yang H, He Y, Wen DY, Qin XG, Chen G. The anticipating value of PLK1 for diagnosis, progress and prognosis and its prospective mechanism in gastric cancer: a comprehensive investigation based on high-throughput data and immunohistochemical validation. Oncotarget 2017; 8:92497-92521. [PMID: 29190933 PMCID: PMC5696199 DOI: 10.18632/oncotarget.21438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/26/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a multi-functional protein and its aberrant expression is a driver of cancerous transformation and progression. To increase our understanding of the clinical value and potential molecular mechanism of PLK1 in gastric cancer (GC), we performed this comprehensive investigation. A total of 25 datasets and 12 publications were finally incorporated. Additional immunohistochemistry was conducted to validate the expression pattern of PLK1 in GC. The pooled standard mean deviation (SMD) indicated that PLK1 mRNA was up-regulated in GC (SMD=1.21, 95% CI: 0.65-1.77, P< 0.001). Similarly, the pooled odds ratio (OR) revealed that PLK1 protein was overexpressed in GC compared with normal gastric tissue (OR=12.12, 95% CI: 5.41-27.16, P<0.001). The area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve was 0.86. Furthermore, our results demonstrated that GC patients with PLK1 overexpression were significantly associated with unfavorable overall survival (HR =1.54, 95% CI: 1.30–1.83, P<0.001), lymph node metastasis (OR = 1.78, 95% CI: 1.13–2.80, P=0.013) and advanced TNM stage (OR=1.48, 95% CI: 1.02-2.15, P=0.038). Altogether, 100 similar genes were identified by Gene Expression Profiling Interactive Analysis (GEPIA) and further with gene-set enrichment analysis. These genes were related to gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways relevant to the cell cycle. Gene set enrichment analysis (GSEA) indicated that PLK1 is associated with various cancer-related pathways. Collectively, this study suggests that PLK1 overexpression could play vital roles in the carcinogenesis and deterioration of GC via regulating tumor-related pathways.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Xin-Gan Qin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
67
|
The Emerging Role of Polo-Like Kinase 1 in Epithelial-Mesenchymal Transition and Tumor Metastasis. Cancers (Basel) 2017; 9:cancers9100131. [PMID: 28953239 PMCID: PMC5664070 DOI: 10.3390/cancers9100131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays a key role in the regulation of the cell cycle. PLK1 is overexpressed in a variety of human tumors, and its expression level often correlates with increased cellular proliferation and poor prognosis in cancer patients. It has been suggested that PLK1 controls cancer development through multiple mechanisms that include canonical regulation of mitosis and cytokinesis, modulation of DNA replication, and cell survival. However, emerging evidence suggests novel and previously unanticipated roles for PLK1 during tumor development. In this review, we will summarize the recent advancements in our understanding of the oncogenic functions of PLK1, with a focus on its role in epithelial-mesenchymal transition and tumor invasion. We will further discuss the therapeutic potential of these functions.
Collapse
|
68
|
Ruvolo PP, Ma H, Ruvolo VR, Zhang X, Mu H, Schober W, Hernandez I, Gallardo M, Khoury JD, Cortes J, Andreeff M, Post SM. Anexelekto/MER tyrosine kinase inhibitor ONO-7475 arrests growth and kills FMS-like tyrosine kinase 3-internal tandem duplication mutant acute myeloid leukemia cells by diverse mechanisms. Haematologica 2017; 102:2048-2057. [PMID: 28912176 PMCID: PMC5709104 DOI: 10.3324/haematol.2017.168856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 12/23/2022] Open
Abstract
Nearly one-third of patients with acute myeloid leukemia have FMS-like tyrosine kinase 3 mutations and thus have poor survival prospects. Receptor tyrosine kinase anexelekto is critical for FMS-like tyrosine kinase 3 signaling and participates in FMS-like tyrosine kinase 3 inhibitor resistance mechanisms. Thus, strategies targeting anexelekto could prove useful for acute myeloid leukemia therapy. ONO-7475 is an inhibitor with high specificity for anexelekto and MER tyrosine kinase. Herein, we report that ONO-7475 potently arrested growth and induced apoptosis in acute myeloid leukemia with internal tandem duplication mutation of FMS-like tyrosine kinase 3. MER tyrosine kinase-lacking MOLM13 cells were sensitive to ONO-7475, while MER tyrosine kinase expressing OCI-AML3 cells were resistant, suggesting that the drug acts via anexelekto in acute myeloid leukemia cells. Reverse phase protein analysis of ONO-7475 treated cells revealed that cell cycle regulators like cyclin dependent kinase 1, cyclin B1, polo-like kinase 1, and retinoblastoma were suppressed. ONO-7475 suppressed cyclin dependent kinase 1, cyclin B1, polo-like kinase 1 gene expression suggesting that anexelekto may regulate the cell cycle, at least in part, via transcriptional mechanisms. Importantly, ONO-7475 was effective in a human FMS-like tyrosine kinase 3 with internal tandem duplication mutant murine xenograft model. Mice fed a diet containing ONO-7475 exhibited significantly longer survival and, interestingly, blocked leukemia cell infiltration in the liver. In summary, ONO-7475 effectively kills acute myeloid leukemia cells in vitro and in vivo by mechanisms that involve disruption of diverse survival and proliferation pathways.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huaxian Ma
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian R Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Mu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Schober
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ivonne Hernandez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miguel Gallardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
69
|
Kagami Y, Ono M, Yoshida K. Plk1 phosphorylation of CAP-H2 triggers chromosome condensation by condensin II at the early phase of mitosis. Sci Rep 2017; 7:5583. [PMID: 28717250 PMCID: PMC5514044 DOI: 10.1038/s41598-017-05986-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
Condensin complexes play crucial roles in chromosome condensation that is a fundamental process to establish the "rod-like" shape of chromosome structure in mitosis. Failure of the chromosome assembly causes chromosome segregation errors and subsequent genomic instability. However, a molecular mechanism that controls condensin function for the chromosomal organization has not been fully understood. Here, we show that the abundance of CAP-H2, one of the condensin II subunits, is fluctuated during the cell cycle in accordance with Plk1 kinase activity. Inhibition of Plk1 leads to Cdc20-mediated degradation of CAP-H2 in mitosis. Plk1 phosphorylation of CAP-H2 at Ser288 is required for the accumulation of CAP-H2 and accurate chromosomal condensation during prophase. These findings suggest that Plk1 phosphorylation regulates condensin II function by modulating CAP-H2 expression levels to facilitate proper mitotic chromosome organization.
Collapse
Affiliation(s)
- Yuya Kagami
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
70
|
Chai Y, Zhao M. iTRAQ-Based Quantitative Proteomic Analysis of the Inhibitory Effects of Polysaccharides from Viscum coloratum (Kom.) Nakai on HepG2 Cells. Sci Rep 2017; 7:4596. [PMID: 28676664 PMCID: PMC5496916 DOI: 10.1038/s41598-017-04417-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Viscum coloratum (Kom.) Nakai is one of active medicinal plants, and its active components, especially polysaccharides, have been shown to exhibit bioactivity. In this study, we examined the effects of three polysaccharide fractions from Viscum coloratum (Kom.) Nakai on HepG2 cell growth in a dose-dependent manner by using a CCK-8 assay kit. Flow cytometry analysis showed that VCP2 treatment delayed the cell cycle in the G1 phase and induced apoptosis in HepG2 cells, a result possibly due to the increased expression of p21Wafl/Cip1 and Cyclin D and the decreased expression of Cyclin E and CDK4. The increased expression of Bad, Smac and Caspase-3 and the decreased expression of Bcl-XL and XIAP may be some of the reasons for the induction of apoptosis in VCP2-treated HepG2 cells. Through iTRAQ and 2D-LC-MSMS, 113 and 198 differentially expressed proteins were identified in normal and VCP2-treated HepG2 and Caco2 cells. The mRNA and protein levels of Histone H3.1, Cytoskeletal 9 and Vitronectin agreed with iTRAQ proteomic results. GO, pathways and the PPI of differentially expressed proteins were further analyzed. These findings broaden the understanding of the anti-tumor mechanisms of mistletoe polysaccharides and provide new clues for screening proteins that are responsive to polysaccharides.
Collapse
Affiliation(s)
| | - Min Zhao
- Northeast Forestry University, Harbin, PR China.
| |
Collapse
|
71
|
Dasgupta N, Thakur BK, Ta A, Das S, Banik G, Das S. Polo-like kinase 1 expression is suppressed by CCAAT/enhancer-binding protein α to mediate colon carcinoma cell differentiation and apoptosis. Biochim Biophys Acta Gen Subj 2017; 1861:1777-1787. [PMID: 28341486 DOI: 10.1016/j.bbagen.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/12/2017] [Accepted: 03/18/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human polo-like kinase 1 (PLK1), a highly conserved serine/threonine kinase is a key player in several essential cell-cycle events. PLK1 is considered an oncogene and its overexpression often correlates with poor prognosis of cancers, including colorectal cancer (CRC). However, regulation of PLK1 expression in colorectal cells was never studied earlier and it is currently unknown if PLK1 regulates differentiation and apoptosis of CRC. METHODS PLK1 expression was analyzed by real-time PCR and western blotting. Transcriptional regulation was studied by reporter assay, gene knock-down, EMSA and ChIP. RESULTS PLK1 expression was down-regulated during butyrate-induced differentiation of HT-29 and other CRC cells. Also, PLK1 down-regulation mediated the role of butyrate in CRC differentiation and apoptosis. We report here a novel transcriptional regulation of PLK1 by butyrate. Transcription factors CCAAT/enhancer-binding protein α (C/EBPα) and Oct-1 share an overlapping binding site over the PLK1 promoter. Elevated levels of C/EBPα by butyrate treatment of CRC cells competed out the activator protein Oct-1 from binding to the PLK1 promoter and sequestered it. Binding of C/EBPα was associated with increased deacetylation near the transcription start site (TSS) of the PLK1 promoter, which abrogated transcription through reduced recruitment of RNA polymerase II. We also found a synergistic role between the synthetic PLK1-inhibitor SBE13 and butyrate on the apoptosis of CRC cells. CONCLUSION This study offered a novel p53-independent regulation of PLK1 during CRC differentiation and apoptosis. GENERAL SIGNIFICANCE Down-regulation of PLK1 is one of the mechanisms underlying the anti-cancer role of dietary fibre-derived butyrate in CRC.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India; Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Bhupesh Kumar Thakur
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Atri Ta
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Sayan Das
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - George Banik
- BD Biosciences, Salt Lake, Kolkata 700102, India
| | - Santasabuj Das
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India.
| |
Collapse
|
72
|
Park JE, Hymel D, Burke TR, Lee KS. Current progress and future perspectives in the development of anti-polo-like kinase 1 therapeutic agents. F1000Res 2017; 6:1024. [PMID: 28721210 PMCID: PMC5497816 DOI: 10.12688/f1000research.11398.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
Although significant levels of side effects are often associated with their use, microtubule-directed agents that primarily target fast-growing mitotic cells have been considered to be some of the most effective anti-cancer therapeutics. With the hope of developing new-generation anti-mitotic agents with reduced side effects and enhanced tumor specificity, researchers have targeted various proteins whose functions are critically required for mitotic progression. As one of the highly attractive mitotic targets, polo-like kinase 1 (Plk1) has been the subject of an extensive effort for anti-cancer drug discovery. To date, a variety of anti-Plk1 agents have been developed, and several of them are presently in clinical trials. Here, we will discuss the current status of generating anti-Plk1 agents as well as future strategies for designing and developing more efficacious anti-Plk1 therapeutics.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
73
|
Zhan P, Xi G, Zhang B, Wu Y, Liu H, Liu Y, Xu W, Zhu Q, Cai F, Zhou Z, Miu Y, Wang X, Jin J, Li Q, Lv T, Song Y. NCAPG2 promotes tumour proliferation by regulating G2/M phase and associates with poor prognosis in lung adenocarcinoma. J Cell Mol Med 2017; 21:665-676. [PMID: 27862966 PMCID: PMC5345611 DOI: 10.1111/jcmm.13010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022] Open
Abstract
NCAPG2 is a component of the condensin II complex and contributes to chromosome segregation via microtubule-kinetochore attachment during mitosis. It is well known that NCAPG2 plays a critical role in cell mitosis; however, the role of altered NCAPG2 expression and its transcriptional regulatory function in cancer development remains mostly unknown. Here, for the first time we reported that NCAPG2 was evidently increased in non-small cell lung cancer tissues compared to adjacent normal lung tissues. Clinicopathological data analysis showed that NCAPG2 overexpression was significantly correlated with lymph node metastasis and pathologic-Tumour Nodes Metastasen stages, and was an independent prognostic factor in lung adenocarcinoma patients. Moreover, siRNA-mediated knockdown of NCAPG2 could inhibit tumour cell growth of lung adenocarcinoma cells (A549 and H1299) in vitro and could significantly lead to cell cycle arrest in the G2 phase. Furthermore, we found that NCAPG2 silencing significantly decreased the expression levels of G2/M phase cell cycle-related protein expressions (Cyclin B1, Cdc2) and increased the expression levels of p27 and p21 through Western blot analysis. Taken together, we demonstrated that increased NCAPG2 expression could regulate cell proliferation and identified as a poor prognostic biomarker in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ping Zhan
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
- Department of Respiratory MedicineNanjing Chest HospitalMedical School of Southeast UniversityNanjingChina
| | - Guang‐min Xi
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Bin Zhang
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University, Medical SchoolNanjingJiangsuChina
| | - Ying Wu
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Hong‐bing Liu
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Ya‐fang Liu
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Wu‐jian Xu
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Qingqing Zhu
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Feng Cai
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Ze‐jun Zhou
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Ying‐ying Miu
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Xiao‐xia Wang
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Jia‐jia Jin
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Qian Li
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Tang‐feng Lv
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| | - Yong Song
- Department of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingChina
| |
Collapse
|
74
|
Yang X, Chen G, Li W, Peng C, Zhu Y, Yang X, Li T, Cao C, Pei H. Cervical Cancer Growth Is Regulated by a c-ABL-PLK1 Signaling Axis. Cancer Res 2017; 77:1142-1154. [PMID: 27899378 DOI: 10.1158/0008-5472.can-16-1378] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/15/2016] [Accepted: 11/02/2016] [Indexed: 11/16/2022]
Abstract
The nonreceptor tyrosine kinase c-ABL controls cell growth but its contributions in solid tumors are not fully understood. Here we report that the Polo-like kinase PLK1, an essential mitotic kinase regulator, is an important downstream effector of c-ABL in regulating the growth of cervical cancer. c-ABL interacted with and phosphorylated PLK1. Phosphorylation of PLK1 by c-ABL inhibited PLK1 ubiquitination and degradation and enhanced its activity, leading to cell-cycle progression and tumor growth. Both c-ABL and PLK1 were overexpressed in cervical carcinoma. Notably, PLK1 tyrosine phosphorylation correlated with patient survival in cervical cancer. In a murine xenograft model of human cervical cancer, combination treatment with c-ABL and PLK1 inhibitors yielded additive effects on tumor growth inhibition. Our findings highlight the c-ABL-PLK1 axis as a novel prognostic marker and treatment target for human cervical cancers. Cancer Res; 77(5); 1142-54. ©2016 AACR.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gang Chen
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Beijing Institute of Biotechnology, Haidian District, Beijing, China
- Laboratory of Nuclear and Radiation Damage, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Changmin Peng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yue Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Teng Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.
| | - Cheng Cao
- Beijing Institute of Biotechnology, Haidian District, Beijing, China.
| | - Huadong Pei
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
75
|
Cholewa BD, Ndiaye MA, Huang W, Liu X, Ahmad N. Small molecule inhibition of polo-like kinase 1 by volasertib (BI 6727) causes significant melanoma growth delay and regression in vivo. Cancer Lett 2017; 385:179-187. [PMID: 27793694 PMCID: PMC5171235 DOI: 10.1016/j.canlet.2016.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023]
Abstract
The objective of this study was to determine the therapeutic potential of polo-like kinase 1 (Plk1) inhibition in melanoma, in vivo. Employing Vectra technology, we assessed the Plk1 expression profile in benign nevi, malignant (stages I-IV) and metastatic melanomas. We found a significant elevation of Plk1 immunostaining in melanoma tissues. Further, a second generation small molecule Plk1 inhibitor, BI 6727, resulted in reductions in growth, viability and clonogenic survival, as well as an increase in apoptosis of A375 and Hs 294T melanoma cells. BI 6727 treatment also resulted in a G2/M-as well as S-phase cell cycle arrest in melanoma cells. Importantly, BI 6727 (intravenous injection; 10 and 25 mg/kg body weight) treatment resulted in significant tumor growth delay and regression in vivo in A375-and Hs 294T-implanted xenografts in athymic nude mice. These anti-melanoma effects were accompanied with a decreased cellular proliferation (Ki-67 staining) and induction of apoptosis (caspase 3 activation). In addition, BI 6727 treatment caused a marked induction of p53 and p21 in vitro as well as in vivo. Overall, we suggest that Plk1 inhibition may be a useful approach as a monotherapy as well as in combination with other existing therapeutics, for melanoma management.
Collapse
Affiliation(s)
- Brian D Cholewa
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1685 Highland Avenue, Madison, WI 53705, USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; William S. Middleton VA Medical Center, 2500 Overlook Terrace, Madison, WI 53705, USA.
| |
Collapse
|
76
|
RNAi-mediated knockdown of MCM7 gene on CML cells and its therapeutic potential for leukemia. Med Oncol 2017; 34:21. [PMID: 28058629 DOI: 10.1007/s12032-016-0878-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
Abstract
MCM7 is one of the subunits of MCM2-7 complex, which is essential to DNA replication licensing and the control of cell cycle progression. It has been demonstrated that MCM7 participates in mRNA transcription and DNA damage regulation as well. MCM7 gene is found to be over-expressed in multiple cancers, but there are few reports about its effect in leukemia. Recent studies have proven that MCM7 expression has a relationship with diagnosis and prognosis, which has led to their potential clinical application as a marker for cancer screening. RNA interference (RNAi) is a biological process in which RNA molecules inhibit gene expression, typically by causing the destruction of specific mRNA molecules. It is a valuable research tool, which is widely used in cell culture and living organisms as well as in medicine recent years. It is indicated that RNAi application for targeting functional carcinogenic molecules, tumor resistance to chemotherapy and radiotherapy is required in cancer treatment. Gene products knockdown by RNAi technology exerts anti-proliferative and pro-apoptotic effects upon cell culture systems, animal models and in clinical trials in the most studies. In the present study, we found that MCM7 highly expressed in K562 cells rather than that in normal neutrophils. Thus, lentivirus-mediated shRNA targeting MCM7 was used to suppress its endogenous expression in K562 cells and develop a novel therapeutic strategy for leukemia.
Collapse
|
77
|
Parrilla A, Cirillo L, Thomas Y, Gotta M, Pintard L, Santamaria A. Mitotic entry: The interplay between Cdk1, Plk1 and Bora. Cell Cycle 2016; 15:3177-3182. [PMID: 27831827 PMCID: PMC5176151 DOI: 10.1080/15384101.2016.1249544] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is an important mitotic kinase that is crucial for entry into mitosis after recovery from DNA damage-induced cell cycle arrest. Plk1 activation is promoted by the conserved protein Bora (SPAT-1 in C. elegans), which stimulates the phosphorylation of a conserved residue in the activation loop by the Aurora A kinase. In a recent article published in Cell Reports, we show that the master mitotic kinase Cdk1 contributes to Plk1 activation through SPAT-1/Bora phosphorylation. We identified 3 conserved Sp/Tp residues that are located in the N-terminal, most conserved part, of SPAT-1/Bora. Phosphorylation of these sites by Cdk1 is essential for Plk1 function in mitotic entry in C. elegans embryos and during DNA damage checkpoint recovery in mammalian cells. Here, using an untargeted Förster Resonance Energy Transfer (FRET) biosensor to monitor Plk1 activation, we provide additional experimental evidence supporting the importance of these phosphorylation sites for Plk1 activation and subsequent mitotic entry after DNA damage. We also briefly discuss the mechanism of Plk1 activation and the potential role of Bora phosphorylation by Cdk1 in this process. As Plk1 is overexpressed in cancer cells and this correlates with poor prognosis, understanding how Bora contributes to Plk1 activation is paramount for the development of innovative therapeutical approaches.
Collapse
Affiliation(s)
- Alfonso Parrilla
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) – Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Luca Cirillo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yann Thomas
- Jacques Monod Institute, UMR7592, Paris-Diderot University, Centre National de la Recherche Scientifique, Paris, France
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland
| | - Lionel Pintard
- Jacques Monod Institute, UMR7592, Paris-Diderot University, Centre National de la Recherche Scientifique, Paris, France
| | - Anna Santamaria
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) – Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
78
|
Kagami Y, Yoshida K. The functional role for condensin in the regulation of chromosomal organization during the cell cycle. Cell Mol Life Sci 2016; 73:4591-4598. [PMID: 27402120 PMCID: PMC11108269 DOI: 10.1007/s00018-016-2305-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
In all organisms, the control of cell cycle progression is a fundamental process that is essential for cell growth, development, and survival. Through each cell cycle phase, the regulation of chromatin organization is essential for natural cell proliferation and maintaining cellular homeostasis. During mitosis, the chromatin morphology is dramatically changed to have a "thread-like" shape and the condensed chromosomes are segregated equally into two daughter cells. Disruption of the mitotic chromosome architecture physically impedes chromosomal behaviors, such as chromosome alignment and chromosome segregation; therefore, the proper mitotic chromosome structure is required to maintain chromosomal stability. Accumulating evidence has demonstrated that mitotic chromosome condensation is induced by condensin complexes. Moreover, recent studies have shown that condensin also modulates interphase chromatin and regulates gene expression. This review mainly focuses on the molecular mechanisms that condensin uses to exert its functions during the cell cycle progression. Moreover, we discuss the condensin-mediated chromosomal organization in cancer cells.
Collapse
Affiliation(s)
- Yuya Kagami
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
79
|
Liu Z, Sun Q, Wang X. PLK1, A Potential Target for Cancer Therapy. Transl Oncol 2016; 10:22-32. [PMID: 27888710 PMCID: PMC5124362 DOI: 10.1016/j.tranon.2016.10.003] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays an important role in the initiation, maintenance, and completion of mitosis. Dysfunction of PLK1 may promote cancerous transformation and drive its progression. PLK1 overexpression has been found in a variety of human cancers and was associated with poor prognoses in cancers. Many studies have showed that inhibition of PLK1 could lead to death of cancer cells by interfering with multiple stages of mitosis. Thus, PLK1 is expected to be a potential target for cancer therapy. In this article, we examined PLK1’s structural characteristics, its regulatory roles in cell mitosis, PLK1 expression, and its association with survival prognoses of cancer patients in a wide variety of cancer types, PLK1 interaction networks, and PLK1 inhibitors under investigation. Finally, we discussed the key issues in the development of PLK1-targeted cancer therapy.
Collapse
Affiliation(s)
- Zhixian Liu
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
80
|
Yu L, Shang ZF, Abdisalaam S, Lee KJ, Gupta A, Hsieh JT, Asaithamby A, Chen BPC, Saha D. Tumor suppressor protein DAB2IP participates in chromosomal stability maintenance through activating spindle assembly checkpoint and stabilizing kinetochore-microtubule attachments. Nucleic Acids Res 2016; 44:8842-8854. [PMID: 27568005 PMCID: PMC5062997 DOI: 10.1093/nar/gkw746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/14/2016] [Accepted: 08/17/2016] [Indexed: 01/17/2023] Open
Abstract
Defects in kinetochore-microtubule (KT-MT) attachment and the spindle assembly checkpoint (SAC) during cell division are strongly associated with chromosomal instability (CIN). CIN has been linked to carcinogenesis, metastasis, poor prognosis and resistance to cancer therapy. We previously reported that the DAB2IP is a tumor suppressor, and that loss of DAB2IP is often detected in advanced prostate cancer (PCa) and is indicative of poor prognosis. Here, we report that the loss of DAB2IP results in impaired KT-MT attachment, compromised SAC and aberrant chromosomal segregation. We discovered that DAB2IP directly interacts with Plk1 and its loss inhibits Plk1 kinase activity, thereby impairing Plk1-mediated BubR1 phosphorylation. Loss of DAB2IP decreases the localization of BubR1 at the kinetochore during mitosis progression. In addition, the reconstitution of DAB2IP enhances the sensitivity of PCa cells to microtubule stabilizing drugs (paclitaxel, docetaxel) and Plk1 inhibitor (BI2536). Our findings demonstrate a novel function of DAB2IP in the maintenance of KT-MT structure and SAC regulation during mitosis which is essential for chromosomal stability.
Collapse
Affiliation(s)
- Lan Yu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zeng-Fu Shang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, China
| | - Salim Abdisalaam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kyung-Jong Lee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Gupta
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10048, Taiwan
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
81
|
Johmura Y, Yamashita E, Shimada M, Nakanishi K, Nakanishi M. Defective DNA repair increases susceptibility to senescence through extension of Chk1-mediated G2 checkpoint activation. Sci Rep 2016; 6:31194. [PMID: 27507734 PMCID: PMC4979019 DOI: 10.1038/srep31194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/14/2016] [Indexed: 02/03/2023] Open
Abstract
Susceptibility to senescence caused by defective DNA repair is a major hallmark of progeroid syndrome patients, but molecular mechanisms of how defective DNA repair predisposes to senescence are largely unknown. We demonstrate here that suppression of DNA repair pathways extends the duration of Chk1-dependent G2 checkpoint activation and sensitizes cells to senescence through enhancement of mitosis skipping. Extension of G2 checkpoint activation by introduction of the TopBP1 activation domain and the nondegradable mutant of Claspin sensitizes cells to senescence. In contrast, a shortening of G2 checkpoint activation by expression of SIRT6 or depletion of OTUB2 reduces susceptibility to senescence. Fibroblasts from progeroid syndromes tested shows a correlation between an extension of G2 checkpoint activation and an increase in the susceptibility to senescence. These results suggest that extension of G2 checkpoint activation caused by defective DNA repair is critical for senescence predisposition in progeroid syndrome patients.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Emiri Yamashita
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Midori Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Keiko Nakanishi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Division of Cancer Cell Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
82
|
Jayashree B, Srimany A, Jayaraman S, Bhutra A, Janakiraman N, Chitipothu S, Krishnakumar S, Baddireddi LS, Elchuri S, Pradeep T. Monitoring of changes in lipid profiles during PLK1 knockdown in cancer cells using DESI MS. Anal Bioanal Chem 2016; 408:5623-32. [PMID: 27277815 DOI: 10.1007/s00216-016-9665-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023]
Abstract
The importance of the polo-like kinase 1 (PLK1) gene is increasing substantially both as a biomarker and as a target for highly specific cancer therapy. This is due to its involvement in multiple points of cell progression and carcinogenesis. PLK1 inhibitors' efficacy in treating human cancers has been limited due to the lack of a specific targeting strategy. Here, we describe a method of targeted downregulation of PLK1 in cancer cells and the concomitant rapid detection of surface lipidomic perturbations using desorption electrospray ionization mass spectrometry (DESI MS). The efficient delivery of siRNA targeting PLK1 gene selectively to the cancer cells is achieved by targeting overexpressed cell surface epithelial cell adhesion molecule (EpCAM) by the EpDT3 aptamer. The chimeric aptamer (EpDT3-siPLK1) showed the knockdown of PLK1 gene expression and PLK1 protein levels by quantitative PCR and western blotting, respectively. The abundant surface lipids, phosphatidylcholines (PCs), such as PC(32:1) (m/z 754.6), PC(34:1) (m/z 782.6), and PC(36:2) (m/z 808.6), were highly expressed in MCF-7 and WERI-RB1 cancer cells compared to normal MIO-M1 cells and they were observed using DESI MS. These overexpressed cell surface lipids in the cancer cells were downregulated upon the treatment of EpDT3-siPLK1 chimera indicating a novel role of PLK1 to regulate surface lipid expression in addition to the efficient selective cancer targeting ability. Our results indicate that DESI MS has a potential ability to rapidly monitor aptamer-mediated cancer therapy and accelerate the drug discovery process. Graphical abstract Binding of aptamer chimera to the cells and changes in lipid profile.
Collapse
Affiliation(s)
- Balasubramanyam Jayashree
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600006, India
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Amitava Srimany
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Srinidhi Jayaraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600006, India
| | - Anjali Bhutra
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600006, India
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600006, India
| | - Srujana Chitipothu
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600006, India
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600006, India
| | | | - Sailaja Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600006, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
83
|
Van den Bossche J, Lardon F, Deschoolmeester V, De Pauw I, Vermorken JB, Specenier P, Pauwels P, Peeters M, Wouters A. Spotlight on Volasertib: Preclinical and Clinical Evaluation of a Promising Plk1 Inhibitor. Med Res Rev 2016; 36:749-86. [PMID: 27140825 DOI: 10.1002/med.21392] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
Considering the important side effects of conventional microtubule targeting agents, more and more research focuses on regulatory proteins for the development of mitosis-specific agents. Polo-like kinase 1 (Plk1), a master regulator of several cell cycle events, has arisen as an intriguing target in this research field. The observed overexpression of Plk1 in a broad range of human malignancies has given rise to the development of several potent and specific small molecule inhibitors targeting the kinase. In this review, we focus on volasertib (BI6727), the lead agent in category of Plk1 inhibitors at the moment. Numerous preclinical experiments have demonstrated that BI6727 is highly active across a variety of carcinoma cell lines, and the inhibitor has been reported to induce tumor regression in several xenograft models. Moreover, volasertib has shown clinical efficacy in multiple tumor types. As a result, Food and Drug Administration (FDA) has recently awarded volasertib the Breakthrough Therapy status after significant benefit was observed in acute myeloid leukemia (AML) patients treated with the Plk1 inhibitor. Here, we discuss both preclinical and clinical data available for volasertib administered as monotherapy or in combination with other anticancer therapies in a broad range of tumor types.
Collapse
Affiliation(s)
- J Van den Bossche
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
| | - F Lardon
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
| | - V Deschoolmeester
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - I De Pauw
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
| | - J B Vermorken
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
| | - P Specenier
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
| | - P Pauwels
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - M Peeters
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
| | - A Wouters
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
84
|
Weng Ng WT, Shin JS, Roberts TL, Wang B, Lee CS. Molecular interactions of polo-like kinase 1 in human cancers. J Clin Pathol 2016; 69:557-62. [PMID: 26941182 DOI: 10.1136/jclinpath-2016-203656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Abstract
Polo-like kinase 1 (PLK1) is an essential protein in communicating cell-cycle progression and DNA damage. Overexpression of PLK1 has been validated as a marker for poor prognosis in many cancers. PLK1 knockdown decreases the survival of cancer cells. PLK1 is therefore an attractive target for anticancer treatments. Several inhibitors have been developed, and some have been clinically tested to show additive effects with conventional therapies. Upstream regulation of PLK1 involves multiple interactions of proteins such as FoxM1, E2F and p21. Other cancer-related proteins such as pRB and p53 also indirectly influence PLK1 expression. With the high mutation rates of these genes seen in cancers, they may be associated with PLK1 deregulation. This raises the question of whether PLK1 overexpression is a cause or a consequence of oncogenesis. In addition, hypomethylation of the CpG island of the PLK1 promoter region contributes to its upregulation. PLK1 expression can be affected by many factors; thus, it is possible that PLK1 deregulation in each individual patient tumours could be due to different underlying mechanisms.
Collapse
Affiliation(s)
- Wayne Tiong Weng Ng
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Joo-Shik Shin
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia
| | - Tara Laurine Roberts
- Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Cheok Soon Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia Cancer Pathology, Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
85
|
Wang ZD, Shen LP, Chang C, Zhang XQ, Chen ZM, Li L, Chen H, Zhou PK. Long noncoding RNA lnc-RI is a new regulator of mitosis via targeting miRNA-210-3p to release PLK1 mRNA activity. Sci Rep 2016; 6:25385. [PMID: 27160062 PMCID: PMC4861912 DOI: 10.1038/srep25385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence indicates that lncRNAs play critical roles in various biological processes, but many have not been functionally characterized. Here, we report a novel radiation-inducible lncRNA, namely lnc-RI which is essential for cell survival and appropriate mitotic progression. Our data indicated that knockdown of lnc-RI resulted in spindle abnormalities and mitotic arrest simultaneously with sharply decreased mRNA and protein expression of PLK1, a key regulator of mitosis. Our data demonstrated that PLK1 is a key downstream mediator of lnc-RI in regulating mitosis, whereby lnc-RI competitively bound to the negative PLK1 regulating miRNA, miRNA-210-p3. Taken together, we have identified lnc-RI as a new regulator of mitosis which acts by releasing PLK1 mRNA activity via competition for binding to miRNA-210-3p.
Collapse
Affiliation(s)
- Zhi-Dong Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Li-Ping Shen
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Cheng Chang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
- Institute for Environmental Medicine and Radiation Hygiene, College of Public Health, University of South China, Hengyang, Hunan Province, 421000, P.R. China
| | - Xue-Qing Zhang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Zhong-Min Chen
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Lin Li
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Hong Chen
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
- Institute for Environmental Medicine and Radiation Hygiene, College of Public Health, University of South China, Hengyang, Hunan Province, 421000, P.R. China
| |
Collapse
|
86
|
Wu J, Ivanov AI, Fisher PB, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. eLife 2016; 5:e10734. [PMID: 27003818 PMCID: PMC4811775 DOI: 10.7554/elife.10734] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 03/03/2016] [Indexed: 12/22/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a key cell cycle regulator implicated in the development of various cancers, including prostate cancer. However, the functions of PLK1 beyond cell cycle regulation remain poorly characterized. Here, we report that PLK1 overexpression in prostate epithelial cells triggers oncogenic transformation. It also results in dramatic transcriptional reprogramming of the cells, leading to epithelial-to-mesenchymal transition (EMT) and stimulation of cell migration and invasion. Consistently, PLK1 downregulation in metastatic prostate cancer cells enhances epithelial characteristics and inhibits cell motility. The signaling mechanisms underlying the observed cellular effects of PLK1 involve direct PLK1-dependent phosphorylation of CRAF with subsequent stimulation of the MEK1/2-ERK1/2-Fra1-ZEB1/2 signaling pathway. Our findings highlight novel non-canonical functions of PLK1 as a key regulator of EMT and cell motility in normal prostate epithelium and prostate cancer. This study also uncovers a previously unanticipated role of PLK1 as a potent activator of MAPK signaling.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Zheng Fu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, United States
| |
Collapse
|
87
|
Helmke C, Becker S, Strebhardt K. The role of Plk3 in oncogenesis. Oncogene 2016; 35:135-47. [PMID: 25915845 DOI: 10.1038/onc.2015.105] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
The polo-like kinases (Plks) encompass a family of five serine/threonine protein kinases that play essential roles in many cellular processes involved in the control of the cell cycle, including entry into mitosis, DNA replication and the response to different types of stress. Plk1, which has been validated as a cancer target, came into the focus of many pharmaceutical companies for the development of small-molecule inhibitors as anticancer agents. Recently, FDA (Food and Drug Administration) has granted a breakthrough therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. However, the various ATP-competitive inhibitors of Plk1 that are currently in clinical development also inhibit the activities of Plk2 and Plk3, which are considered as tumor suppressors. Plk3 contributes to the control and progression of the cell cycle while acting as a mediator of apoptosis and various types of cellular stress. The aberrant expression of Plk3 was found in different types of tumors. Recent progress has improved our understanding of Plk3 in regulating stress signaling and tumorigenesis. When using ATP-competitive Plk1 inhibitors, the biological roles of Plk1-related family members like Plk3 in cancer cells need to be considered carefully to improve treatment strategies against cancer.
Collapse
Affiliation(s)
- C Helmke
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - S Becker
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - K Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
88
|
Xu C, Li S, Chen T, Hu H, Ding C, Xu Z, Chen J, Liu Z, Lei Z, Zhang HT, Li C, Zhao J. miR-296-5p suppresses cell viability by directly targeting PLK1 in non-small cell lung cancer. Oncol Rep 2016; 35:497-503. [PMID: 26549165 DOI: 10.3892/or.2015.4392] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/06/2015] [Indexed: 01/17/2023] Open
Abstract
Polo-like kinase 1 (PLK1), a critical kinase for mitotic progression, is overexpressed in a wide range of cancers. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules and proposed to play important roles in the regulation of tumor progression and invasion. However, the relationship between PLK1 and miRNAs have remained unclear. In the present study, the association between PLK1 and miR-296-5p was investigated. The upregulation of PLK1 mRNA expression levels combined with the downregulation of miR-296-5p levels were detected in both non-small cell lung cancer (NSCLC) tissues and cell lines. Functional studies showed that knockdown of PLK1 by siRNA inhibited NSCLC cells proliferation. Impressively, overexpression of miR-296-5p showed the same phenocopy as the effect of PLK1 knockdown in NSCLC cells, indicating that PLK1 was a major target of miR-296-5p. Furthermore, using western blot analysis and luciferase reporter assay, PLK1 protein expression was proved to be regulated by miR-296-5p through binding to the putative binding sites in its 3'-untranslated region (3'-UTR). Taken together, the present study indicated that miR-296-5p regulated PLK1 expression and could function as a tumor suppressor in NSCLC progression, which provides a potential target for gene therapy of NSCLC.
Collapse
Affiliation(s)
- Chun Xu
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sen Li
- Department of Thoracic Surgery, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 215400, P.R. China
| | - Tengfei Chen
- Department of Thoracic Surgery, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 215400, P.R. China
| | - Haibo Hu
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Cheng Ding
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhenlei Xu
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jun Chen
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhe Lei
- Suzhou Key Laboratory for Cancer Molecular Genetics, Suzhou, Jiangsu 215123, P.R. China
| | - Hong-Tao Zhang
- Suzhou Key Laboratory for Cancer Molecular Genetics, Suzhou, Jiangsu 215123, P.R. China
| | - Chang Li
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jun Zhao
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
89
|
Fischer M, Quaas M, Nickel A, Engeland K. Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex. Oncotarget 2015; 6:41402-17. [PMID: 26595675 PMCID: PMC4747163 DOI: 10.18632/oncotarget.6356] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is central to cell cycle control by downregulation of cell cycle-promoting genes upon cell stress such as DNA damage. Survivin (BIRC5), CDC25C, and PLK1 encode important cell cycle regulators that are repressed following p53 activation. Here, we provide evidence that p53-dependent repression of these genes requires activation of p21 (CDKN1A, WAF1, CIP1). Chromatin immunoprecipitation (ChIP) data indicate that promoter binding of B-MYB switches to binding of E2F4 and p130 resulting in a replacement of the MMB (Myb-MuvB) by the DREAM complex. We demonstrate that this replacement depends on p21. Furthermore, transcriptional repression by p53 requires intact DREAM binding sites in the target promoters. The CDE and CHR cell cycle promoter elements are the sites for DREAM binding. These elements as well as the p53 response of Survivin, CDC25C, and PLK1 are evolutionarily conserved. No binding of p53 to these genes is detected by ChIP and mutation of proposed p53 binding sites does not alter the p53 response. Thus, a mechanism for direct p53-dependent transcriptional repression is not supported by the data. In contrast, repression by DREAM is consistent with most previous findings and unifies models based on p21-, E2F4-, p130-, and CDE/CHR-dependent repression by p53. In conclusion, the presented data suggest that the p53-p21-DREAM-CDE/CHR pathway regulates p53-dependent repression of Survivin, CDC25C, and PLK1.
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana–Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marianne Quaas
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Annina Nickel
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| |
Collapse
|
90
|
Kaushik A, Bhatia Y, Ali S, Gupta D. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma. PLoS One 2015; 10:e0142443. [PMID: 26558755 PMCID: PMC4641706 DOI: 10.1371/journal.pone.0142443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023] Open
Abstract
Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis.
Collapse
Affiliation(s)
- Abhinav Kaushik
- Bioinformatics Laboratory, Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Yashuma Bhatia
- Bioinformatics Laboratory, Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shakir Ali
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India
| | - Dinesh Gupta
- Bioinformatics Laboratory, Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- * E-mail:
| |
Collapse
|
91
|
Posch C, Cholewa BD, Vujic I, Sanlorenzo M, Ma J, Kim ST, Kleffel S, Schatton T, Rappersberger K, Gutteridge R, Ahmad N, Ortiz/Urda S. Combined Inhibition of MEK and Plk1 Has Synergistic Antitumor Activity in NRAS Mutant Melanoma. J Invest Dermatol 2015; 135:2475-2483. [PMID: 26016894 PMCID: PMC4567913 DOI: 10.1038/jid.2015.198] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 02/08/2023]
Abstract
About one-third of cancers harbor activating mutations in rat sarcoma viral oncogene homolog (RAS) oncogenes. In melanoma, aberrant neuroblastoma-RAS (NRAS) signaling fuels tumor progression in about 20% of patients. Current therapeutics for NRAS-driven malignancies barely affect overall survival. To date, pathway interference downstream of mutant NRAS seems to be the most promising approach. In this study, data revealed that mutant NRAS induced Polo-like kinase 1 (Plk1) expression, and pharmacologic inhibition of Plk1 stabilized the size of NRAS mutant melanoma xenografts. The combination of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) and Plk1 inhibitors resulted in a significant growth reduction of NRAS mutant melanoma cells in vitro, and regression of xenografted NRAS mutant melanoma in vivo. Independent cell cycle arrest and increased induction of apoptosis underlies the synergistic effect of this combination. Data further suggest that the p53 signaling pathway is of key importance to the observed therapeutic efficacy. This study provides in vitro, in vivo, and first mechanistic data that an MEK/Plk1 inhibitor combination might be a promising treatment approach for patients with NRAS-driven melanoma. As mutant NRAS signaling is similar across different malignancies, this inhibitor combination could also offer a previously unreported treatment modality for NRAS mutant tumors of other cell origins.
Collapse
Affiliation(s)
- C Posch
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 2340 Sutter Street N461, 94115 San Francisco – USA
- Brigham and Women's Hospital, Harvard Medical School, Department of Dermatology, 77 Avenue Louis Pasteur, 02115 Boston – USA
- The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Department of Dermatology, Juchgasse 25, 1030 Vienna – Austria
| | - BD Cholewa
- University of Wisconsin, Department of Dermatology, 7418 Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI 53705 – USA
| | - I Vujic
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 2340 Sutter Street N461, 94115 San Francisco – USA
- The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Department of Dermatology, Juchgasse 25, 1030 Vienna – Austria
| | - M Sanlorenzo
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 2340 Sutter Street N461, 94115 San Francisco – USA
- Department of Medical Sciences, Section of Dermatology, University of Turin – Italy
| | - J Ma
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 2340 Sutter Street N461, 94115 San Francisco – USA
| | - ST Kim
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 2340 Sutter Street N461, 94115 San Francisco – USA
| | - S Kleffel
- Brigham and Women's Hospital, Harvard Medical School, Department of Dermatology, 77 Avenue Louis Pasteur, 02115 Boston – USA
| | - T Schatton
- Brigham and Women's Hospital, Harvard Medical School, Department of Dermatology, 77 Avenue Louis Pasteur, 02115 Boston – USA
| | - K Rappersberger
- The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Department of Dermatology, Juchgasse 25, 1030 Vienna – Austria
| | - R Gutteridge
- University of Wisconsin, Department of Dermatology, 7418 Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI 53705 – USA
| | - N Ahmad
- University of Wisconsin, Department of Dermatology, 7418 Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI 53705 – USA
| | - S Ortiz/Urda
- University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research Center, 2340 Sutter Street N461, 94115 San Francisco – USA
| |
Collapse
|
92
|
Lange L, Hemmerich P, Spänkuch B. Survival of primary, but not of cancer cells after combined Plk1-HDAC inhibition. Oncotarget 2015; 6:25801-14. [PMID: 26317649 PMCID: PMC4694867 DOI: 10.18632/oncotarget.4445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/16/2015] [Indexed: 01/15/2023] Open
Abstract
In the current study we examined the combination of SAHA and SBE13 in cancer and non-cancer cells. HeLa cells displayed a synergistically reduced cell proliferation, which was much weaker in hTERT-RPE1 or NIH-3T3 cells. Cell cycle distribution differed in HeLa, hTERT-RPE1 and NIH-3T3 cells. SAHA-treated HeLa cells showed slightly increasing cell numbers in G2/M phase, but after combination with SBE13 strongly elevated cell numbers in G2/M and S phase, accompanied by decreasing G0/G1 percentages. hTERT-RPE1 and NIH-3T3 cells showed strongly enriched cell numbers in G0/G1 phase. Western blot and quantitative real time analyses revealed reduced Plk1 mRNA and protein in all cells. p21 protein was strongly induced in cancer, but not in non-cancer cells, corresponding to a different localization in immunofluorescence studies. Additionally, these revealed an abundantly present pRb protein in HeLa cells after any treatment but almost completely vanished pRb staining in treated hTERT-RPE1 cells. These differences could be approved in Western blots against Parp and Caspase 3, which were activated in HeLa, but not in hTERT-RPE1 cells. Thus, we observed for the first time a differential effect of cancer versus non-cancer cells after treatment with SAHA and SBE13, which might be due to the dual role of p21.
Collapse
Affiliation(s)
- Lisa Lange
- Friedrich-Schiller-University, CMB, Institute for Biochemistry and Biophysics, 07745 Jena, Germany
| | - Peter Hemmerich
- Leibniz-Institute for Age Research-Fritz Lipmann Institute, JenAge (Jena Centre for Systems Biology of Aging), 07745 Jena, Germany
| | - Birgit Spänkuch
- Friedrich-Schiller-University, CMB, Institute for Biochemistry and Biophysics, 07745 Jena, Germany
| |
Collapse
|
93
|
Duan L, Rai G, Roggero C, Zhang QJ, Wei Q, Ma SH, Zhou Y, Santoyo J, Martinez ED, Xiao G, Raj GV, Jadhav A, Simeonov A, Maloney DJ, Rizo J, Hsieh JT, Liu ZP. KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes. CHEMISTRY & BIOLOGY 2015; 22:1185-96. [PMID: 26364928 PMCID: PMC4578295 DOI: 10.1016/j.chembiol.2015.08.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/18/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Histone lysine demethylase KDM4/JMJD2s are overexpressed in many human tumors including prostate cancer (PCa). KDM4s are co-activators of androgen receptor (AR) and are thus potential therapeutic targets. Yet to date few KDM4 inhibitors that have anti-prostate tumor activity in vivo have been developed. Here, we report the anti-tumor growth effect and molecular mechanisms of three novel KDM4 inhibitors (A1, I9, and B3). These inhibitors repressed the transcription of both AR and BMYB-regulated genes. Compound B3 is highly selective for a variety of cancer cell lines including PC3 cells that lack AR. B3 inhibited the in vivo growth of tumors derived from PC3 cells and ex vivo human PCa explants. We identified a novel mechanism by which KDM4B activates the transcription of Polo-like kinase 1 (PLK1). B3 blocked the binding of KDM4B to the PLK1 promoter. Our studies suggest a potential mechanism-based therapeutic strategy for PCa and tumors with elevated KDM4B/PLK1 expression.
Collapse
Affiliation(s)
- Lingling Duan
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Carlos Roggero
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing-Jun Zhang
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qun Wei
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shi Hong Ma
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunyun Zhou
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Santoyo
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elisabeth D Martinez
- Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guanghua Xiao
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesh V Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Josep Rizo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhi-Ping Liu
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
94
|
Kim JH, Ku B, Lee KS, Kim SJ. Structural analysis of the polo-box domain of human Polo-like kinase 2. Proteins 2015; 83:1201-8. [PMID: 25846005 PMCID: PMC7720676 DOI: 10.1002/prot.24804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/03/2015] [Accepted: 03/20/2015] [Indexed: 12/25/2022]
Abstract
Polo-like kinases (Plks) are the key regulators of cell cycle progression, the members of which share a kinase domain and a polo-box domain (PBD) that serves as a protein-binding module. While Plk1 is a promising target for antitumor therapy, Plk2 is regarded as a tumor suppressor even though the two Plks commonly recognize the S-pS/T-P motif through their PBD. Herein, we report the crystal structure of the PBD of Plk2 at 2.7 Å. Despite the overall structural similarity with that of Plk1 reflecting their high sequence homology, the crystal structure also contains its own features including the highly ordered loop connecting two subdomains and the absence of 310 -helices in the N-terminal region unlike the PBD of Plk1. Based on the three-dimensional structure, we furthermore could model its interaction with two types of phosphopeptides, one of which was previously screened as the optimal peptide for the PBD of Plk2.
Collapse
Affiliation(s)
- Ju Hee Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Bonsu Ku
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Seung Jun Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| |
Collapse
|
95
|
Zhang H, Diab A, Fan H, Mani SKK, Hullinger R, Merle P, Andrisani O. PLK1 and HOTAIR Accelerate Proteasomal Degradation of SUZ12 and ZNF198 during Hepatitis B Virus-Induced Liver Carcinogenesis. Cancer Res 2015; 75:2363-74. [PMID: 25855382 PMCID: PMC4452430 DOI: 10.1158/0008-5472.can-14-2928] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/19/2015] [Indexed: 12/11/2022]
Abstract
Elucidating mechanisms of hepatitis B virus (HBV)-mediated hepatocarcinogenesis is needed to gain insights into the etiology and treatment of liver cancer. Cells where HBV is replicating exhibit increased expression of Plk1 kinase and reduced levels of two transcription repression factors, SUZ12 and ZNF198. SUZ12 is an essential subunit of the transcription repressive complex PRC2. ZNF198 stabilizes the transcription repressive complex composed of LSD1, Co-REST, and HDAC1. These two transcription repressive complexes are held together by binding the long noncoding RNA HOTAIR. In this study, we linked these regulatory events mechanistically by showing that Plk1 induces proteasomal degradation of SUZ12 and ZNF198 by site-specific phosphorylation. Plk1-dependent ubiquitination of SUZ12 and ZNF198 was enhanced by expression of HOTAIR, significantly reducing SUZ12 and ZNF198 stability. In cells expressing the HBV X protein (HBx), downregulation of SUZ12 and ZNF198 mediated global changes in histone modifications. In turn, HBx-expressing cells propagated an altered chromatin landscape after cell division, as exemplified by changes in histone modifications of the EpCAM promoter, a target of PRC2 and LSD1/Co-REST/HDAC1 complexes. Notably, liver tumors from X/c-myc bitransgenic mice exhibited downregulation of SUZ12 and ZNF198 along with elevated expression of Plk1, HOTAIR, and EpCAM. Clinically, similar effects were documented in a set of HBV-related liver tumors consistent with the likelihood that downregulation of SUZ12 and ZNF198 leads to epigenetic reprogramming of infected hepatocytes. Because both Plk1 and HOTAIR are elevated in many human cancers, we propose that their combined effects are involved in epigenetic reprogramming associated broadly with oncogenic transformation.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University,West Lafayette IN 47907, USA, and Centre de Recherche en Cancérologie de Lyon , UMR INSERM 1052 - CNRS 5286 , Lyon Cedex 03, France
| | - Ahmed Diab
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University,West Lafayette IN 47907, USA, and Centre de Recherche en Cancérologie de Lyon , UMR INSERM 1052 - CNRS 5286 , Lyon Cedex 03, France
| | - Huitao Fan
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University,West Lafayette IN 47907, USA, and Centre de Recherche en Cancérologie de Lyon , UMR INSERM 1052 - CNRS 5286 , Lyon Cedex 03, France
| | - Saravana Kumar Kailasam Mani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University,West Lafayette IN 47907, USA, and Centre de Recherche en Cancérologie de Lyon , UMR INSERM 1052 - CNRS 5286 , Lyon Cedex 03, France
| | - Ronald Hullinger
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University,West Lafayette IN 47907, USA, and Centre de Recherche en Cancérologie de Lyon , UMR INSERM 1052 - CNRS 5286 , Lyon Cedex 03, France
| | - Philippe Merle
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University,West Lafayette IN 47907, USA, and Centre de Recherche en Cancérologie de Lyon , UMR INSERM 1052 - CNRS 5286 , Lyon Cedex 03, France
| | - Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University,West Lafayette IN 47907, USA, and Centre de Recherche en Cancérologie de Lyon , UMR INSERM 1052 - CNRS 5286 , Lyon Cedex 03, France
| |
Collapse
|
96
|
Liu X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Treatment. Transl Oncol 2015; 8:185-95. [PMID: 26055176 PMCID: PMC4486469 DOI: 10.1016/j.tranon.2015.03.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that regulate multiple intracellular processes including DNA replication, mitosis, and stress response. Plk1, the most well understood family member, regulates numerous stages of mitosis and is overexpressed in many cancers. Plk inhibitors are currently under clinical investigation, including phase III trials of volasertib, a Plk inhibitor, in acute myeloid leukemia and rigosertib, a dual inhibitor of Plk1/phosphoinositide 3-kinase signaling pathways, in myelodysplastic syndrome. Other Plk inhibitors, including the Plk1 inhibitors GSK461364A, TKM-080301, GW843682, purpurogallin, and poloxin and the Plk4 inhibitor CFI-400945 fumarate, are in earlier clinical development. This review discusses the biologic roles of Plks in cell cycle progression and cancer, and the mechanisms of action of Plk inhibitors currently in development as cancer therapies.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
97
|
Jin HY, Qiu XG, Yang B. The MicroRNA3686 Inhibits the Proliferation of Pancreas Carcinoma Cell Line by Targeting the Polo-Like Kinase 1. BIOMED RESEARCH INTERNATIONAL 2015; 2015:954870. [PMID: 26090465 PMCID: PMC4454736 DOI: 10.1155/2015/954870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 12/18/2022]
Abstract
The Polo-like kinase 1 (PLK1) is one member of the so-called Polo-like kinase family which plays an important role in tumorigenesis. By analyzing the potential complementary microRNA (miRNA) targeting sequence of PLK1, we identified that miRNA-3686 (hereby and thereafter mir3696) could be the potential regulator for PLK1. Real-time PCR demonstrated that the mir3686 has a relatively higher expression in the immortalized pancreas cell HPDE6C7 than pancreas carcinoma derived cell line PANC1. The upregulation of mir3686 in HPDE6C7 cell corresponded with the low expression of PLK1 as well. Both luciferase based reporter assay and evaluation of endogenous PLK1 expression demonstrated that mir3686 regulated PLK1, which confirms our speculation. Moreover, we found that transfection of mir3686 in PANC1 cell could lead to proliferation inhibition and promote apoptosis. Further analysis demonstrated that mir3686 transfection in PANC1 cell also inhibited cell invasion, and clone formation in cell invasion assay and clonogenic cell survival assay, respectively. In contrast, inhibition of mir3686 expression in HPDE6C7 cell enhanced the capability of proliferation, cell invasion and clone formation. Taken together, our results indicated that mir3686 could target PLK1 to inhibit the cell proliferation in pancreas cancer derived cell line and mir3686 could be a new therapeutic target for pancreas cancer treatment.
Collapse
Affiliation(s)
- Hong-Yi Jin
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
- Department of Emergency, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin-Guang Qiu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Yang
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang 455000, China
| |
Collapse
|
98
|
McCarroll JA, Dwarte T, Baigude H, Dang J, Yang L, Erlich RB, Kimpton K, Teo J, Sagnella SM, Akerfeldt MC, Liu J, Phillips PA, Rana TM, Kavallaris M. Therapeutic targeting of polo-like kinase 1 using RNA-interfering nanoparticles (iNOPs) for the treatment of non-small cell lung cancer. Oncotarget 2015; 6:12020-34. [PMID: 25557168 PMCID: PMC4494920 DOI: 10.18632/oncotarget.2664] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/27/2014] [Indexed: 01/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer death worldwide due its resistance to chemotherapy and aggressive tumor growth. Polo-like kinase 1 (PLK1) is a serine-threonine protein kinase which is overexpressed in cancer cells, and plays a major role in regulating tumor growth. A number of PLK1 inhibitors are in clinical trial; however, poor tumor bioavailability and off-target effects limit their efficacy. Short-interfering-RNA (siRNA) holds promise as a class of therapeutics, which can selectively silence disease-causing genes. However, siRNA cannot enter cells without a delivery vehicle. Herein, we investigated whether RNAi-interfering nanoparticles could deliver siRNA to NSCLC cells and silence PLK1 expression in vitro and in vivo. iNOP-7 was non-toxic, and delivered siRNA with high efficiency to NSCLC cells. iNOP-7-PLK1 siRNA silenced PLK1 expression and reduced NSCLC growth in vitro. Notably, iNOP-7 delivered siRNA to orthotopic lung tumors in mice, and administration of iNOP-7-PLK1 siRNA reduced lung tumor burden. These novel data show that iNOP-7 can deliver siRNA against PLK1 to NSCLC cells, and decrease cell proliferation both in vitro and in vivo. iNOP-7-PLK1 siRNA may provide a novel therapeutic strategy for the treatment of NSCLC as well as other cancers which aberrantly express this gene.
Collapse
Affiliation(s)
- Joshua A. McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| | - Tanya Dwarte
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
| | - Huricha Baigude
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Jason Dang
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Lu Yang
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
| | - Rafael B. Erlich
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| | - Kathleen Kimpton
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
| | - Joann Teo
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| | - Sharon M. Sagnella
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| | - Mia C. Akerfeldt
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
| | - Jie Liu
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW, NSW, Australia
| | - Phoebe A. Phillips
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW, NSW, Australia
| | - Tariq M. Rana
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| |
Collapse
|
99
|
Lee KJ, Shang ZF, Lin YF, Sun J, Morotomi-Yano K, Saha D, Chen BPC. The Catalytic Subunit of DNA-Dependent Protein Kinase Coordinates with Polo-Like Kinase 1 to Facilitate Mitotic Entry. Neoplasia 2015; 17:329-38. [PMID: 25925375 PMCID: PMC4415140 DOI: 10.1016/j.neo.2015.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/21/2015] [Accepted: 02/27/2015] [Indexed: 01/09/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the key regulator of the non-homologous end joining pathway of DNA double-strand break repair. We have previously reported that DNA-PKcs is required for maintaining chromosomal stability and mitosis progression. Our further investigations reveal that deficiency in DNA-PKcs activity caused a delay in mitotic entry due to dysregulation of cyclin-dependent kinase 1 (Cdk1), the key driving force for cell cycle progression through G2/M transition. Timely activation of Cdk1 requires polo-like kinase 1 (Plk1), which affects modulators of Cdk1. We found that DNA-PKcs physically interacts with Plk1 and could facilitate Plk1 activation both in vitro and in vivo. Further, DNA-PKcs-deficient cells are highly sensitive to Plk1 inhibitor BI2536, suggesting that the coordination between DNA-PKcs and Plk1 is not only crucial to ensure normal cell cycle progression through G2/M phases but also required for cellular resistance to mitotic stress. On the basis of the current study, it is predictable that combined inhibition of DNA-PKcs and Plk1 can be employed in cancer therapy strategy for synthetic lethality.
Collapse
Affiliation(s)
- Kyung-Jong Lee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zeng-Fu Shang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Suzhou, Jiangsu, China
| | - Yu-Fen Lin
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jingxin Sun
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Keiko Morotomi-Yano
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Debabrata Saha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
100
|
Yu J, Wilson J, Taylor L, Polgar P. DNA microarray and signal transduction analysis in pulmonary artery smooth muscle cells from heritable and idiopathic pulmonary arterial hypertension subjects. J Cell Biochem 2015; 116:386-97. [PMID: 25290246 PMCID: PMC4391824 DOI: 10.1002/jcb.24987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular smooth muscle contraction and proliferation. Here, we analyze genome-wide mRNA expression in human pulmonary arterial smooth muscle cells (HPASMC) isolated from three control, three hereditary (HPAH), and three idiopathic PAH (IPAH) subjects using the Affymetrix Human Gene ST 1.0 chip. The microarray analysis reveals the expression of 537 genes in HPAH and 1024 genes in IPAH changed compared with control HPASMC. Among those genes, 227 genes show similar directionality of expression in both HPAH and IPAH HPASMC. Ingenuity™ Pathway Analysis (IPA) suggests that many of those genes are involved in cellular growth/proliferation and cell cycle regulation and that signaling pathways such as the mitotic activators, polo-like kinases, ATM signaling are activated under PAH conditions. Furthermore, the analysis demonstrates downregulated mRNA expression of certain vasoactive receptors such as bradykinin receptor B2 (BKB2R). Using real time PCR, we verified the downregulated BKB2R expression in the PAH cells. Bradykinin-stimulated calcium influx is also decreased in PAH PASMC. IPA also identified transcriptional factors such p53 and Rb as downregulated, and FoxM1 and Myc as upregulated in both HPAH and IPAH HPASMC. The decreased level of phospho-p53 in PAH cells was confirmed with a phospho-protein array; and we experimentally show a dysregulated proliferation of both HPAH and IPAH PASMC. Together, the microarray experiments and bioinformatics analysis highlight an aberrant proliferation and cell cycle regulation in HPASMC from PAH subjects. These newly identified pathways may provide new targets for the treatment of both hereditary and idiopathic PAH.
Collapse
MESH Headings
- Antibodies, Phospho-Specific/metabolism
- Case-Control Studies
- Cell Cycle/genetics
- Cell Proliferation
- Cells, Cultured
- Familial Primary Pulmonary Hypertension/genetics
- Familial Primary Pulmonary Hypertension/pathology
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Phosphorylation
- Principal Component Analysis
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Signal Transduction/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jamie Wilson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Linda Taylor
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Peter Polgar
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|