51
|
Wu H, Fu X, Zhai Y, Gao S, Yang X, Zhai G. Development of Effective Tumor Vaccine Strategies Based on Immune Response Cascade Reactions. Adv Healthc Mater 2021; 10:e2100299. [PMID: 34021717 DOI: 10.1002/adhm.202100299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/11/2021] [Indexed: 12/13/2022]
Abstract
To solve the problems of high toxicity and poor efficacy of existing tumor treatment methods, researchers have developed a variety of tumor immunotherapies. Among them, tumor vaccines activate antigen-presenting cells and T lymphocytes upstream of the cancer-immunity cycle are considered the most promising therapy to activate the immune system. Nanocarriers are considered the most promising tumor vaccine delivery vehicles, including polymer nanocarriers, lipid nanocarriers, inorganic nanocarriers, and biomimetic nanocarriers that have been developed for vaccine delivery. Based on the cascade reaction for tumor vaccines to exert their effects, this review summarizes the four key factors for the design and construction of nano-tumor vaccines. The composition and functional characteristics of the corresponding preferred nanocarriers are illustrated to provide a reference for the development of effective tumor vaccines. Finally, potential challenges and perspectives are illustrated in the hope of improving the efficacy of tumor vaccine immunotherapy and accelerating the clinical transformation of next-generation tumor vaccines.
Collapse
Affiliation(s)
- Hang Wu
- School of Pharmaceutical Sciences Key Laboratory of Chemical Biology Ministry of Education Shandong University Jinan 250012 China
| | - Xianglei Fu
- School of Pharmaceutical Sciences Key Laboratory of Chemical Biology Ministry of Education Shandong University Jinan 250012 China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry University of Utah Salt Lake City UT 84124 USA
| | - Shan Gao
- School of Pharmaceutical Sciences Key Laboratory of Chemical Biology Ministry of Education Shandong University Jinan 250012 China
| | - Xiaoye Yang
- School of Pharmaceutical Sciences Key Laboratory of Chemical Biology Ministry of Education Shandong University Jinan 250012 China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences Key Laboratory of Chemical Biology Ministry of Education Shandong University Jinan 250012 China
| |
Collapse
|
52
|
Fan F, Shen P, Ma Y, Ma W, Wu H, Liu H, An Q. Bullatacin triggers immunogenic cell death of colon cancer cells by activating endoplasmic reticulum chaperones. JOURNAL OF INFLAMMATION-LONDON 2021; 18:23. [PMID: 34112202 PMCID: PMC8194247 DOI: 10.1186/s12950-021-00289-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/27/2021] [Indexed: 11/27/2022]
Abstract
Background It is well accepted that the immune system efficiently contributes to positive outcomes of chemotherapeutic cancer treatment by activating immunogenic cell death (ICD). However, only a limited number of ICD-inducing compounds are well characterized at present; therefore, identification of novel ICD inducers is urgently needed for cancer drug discovery, and the need is becoming increasingly urgent. Methods Herein, we assessed the antitumour activity of bullatacin by MTS assay and apoptosis assay. ICD biomarkers, such as calreticulin (CRT), high-mobility group protein B1 (HMGB-1), heat shock protein (HSP)70, HSP90 and ATP, were assessed by Western blotting, ELISA and flow cytometry. Western blot and qPCR assays were performed to explore the underlying mechanisms of bullatacin-induced ICD. Flow cytometry was used to detect macrophage phagocytosis. Results First, bullatacin induced apoptosis in both SW480 cells and HT-29 cells in a time-dependent manner at 10 nM, as assessed by flow cytometry. Moreover, Western blot and flow cytometry assays showed that CRT and HSP90 (biomarkers of early ICD) significantly accumulated on the cell membrane surface after approximately 6 h of treatment with bullatacin. In addition, ELISAs and Western blot assays showed that the second set of hallmarks required for ICD (HMGB1, HSP70 and HSP90) were released in the conditioned media of both SW480 and HT-29 cells after 36 h of treatment. Furthermore, qPCR and Western blot assays indicated that bullatacin triggered ICD via activation of the endoplasmic reticulum stress (ERS) signalling pathway. Finally, bullatacin promoted macrophage phagocytosis. Conclusion This study documents that bullatacin, a novel ICD inducer, triggers immunogenic tumour cell death by activating ERS even at a relatively low concentration in vitro.
Collapse
Affiliation(s)
- Fangtian Fan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233003, Anhui, China.
| | - Peiliang Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Ma
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233003, Anhui, China
| | - Wangbo Ma
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233003, Anhui, China
| | - Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, No.283 Jiefang South Road, Yancheng, 224005, China.
| | - Hao Liu
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233003, Anhui, China
| | - Qing An
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| |
Collapse
|
53
|
Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Jafarpour R, Shojaei Z, Motallebnezhad M. Immune checkpoints and cancer development: Therapeutic implications and future directions. Pathol Res Pract 2021; 223:153485. [PMID: 34022684 DOI: 10.1016/j.prp.2021.153485] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Over the past few decades, different inhibitory receptors have been identified, which have played prominent roles in reducing anti-tumor immune responses. The role of immune checkpoint inhibitors in cancer was revealed by critical blockade of the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) checkpoints. Immune checkpoint inhibitors, including anti-PD-1 (nivolumab and pembrolizumab), anti-PD-L1 (Atezolizumab, avelumab, and duravulumab), and anti-CTLA-4 (ipilimumab, tremelimumab), are currently FDA-approved treatment options for a broad range of cancer types. However, regarding immunotherapy advances in recent years, most studies have been focused on finding the antibodies against other inhibitory immune checkpoints in the tumor microenvironment such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin, and mucin domain 3 (TIM-3), B7-homolog 3 (B7-H3), V-domain immunoglobulin-containing suppressor of T-cell activation (VISTA), diacylglycerol kinase-α (DGK-α), T cell immunoglobulin and ITIM domain (TIGIT), and B and T lymphocyte attenuator (BTLA). This immune checkpoint exerts differential inhibitory impacts on various types of lymphocytes. The suppression of immune responses demonstrates a surprising synergy with PD-1. Therefore, most antibodies against these immune checkpoints are undertaking clinical trials for cancer immunotherapy of advanced solid tumors and hematologic malignancies. In this review, we will summarize recent findings of immune checkpoint and the role of monoclonal antibodies in cancer immunotherapy targeting these receptors.
Collapse
Affiliation(s)
- Saber Mehdizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Jafarpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shojaei
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
54
|
Harvey PD, Plé J. Recent Advances in Nanoscale Metal-Organic Frameworks Towards Cancer Cell Cytotoxicity: An Overview. J Inorg Organomet Polym Mater 2021; 31:2715-2756. [PMID: 33994899 PMCID: PMC8114195 DOI: 10.1007/s10904-021-02011-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Abstract The fight against cancer has always been a prevalent research topic. Nanomaterials have the ability to directly penetrate cancer cells and potentially achieve minimally invasive, precise and efficient tumor annihilation. As such, nanoscale metal organic frameworks (nMOFs) are becoming increasingly attractive as potential therapeutic agents in the medical field due to their high structural variability, good biocompatibility, ease of surface functionalization as well as their porous morphologies with tunable cavity sizes. This overview addresses five different common strategies used to find cancer therapies, while summarizing the recent progress in using nMOFs as cytotoxic cancer cell agents largely through in vitro studies, although some in vivo investigations have also been reported. Chemo and targeted therapies rely on drug encapsulation and delivery inside the cell, whereas photothermal and photodynamic therapies depend on photosensitizers. Concurrently, immunotherapy actively induces the body to destroy the tumor by activating an immune response. By choosing the appropriate metal center, ligands and surface functionalization, nMOFs can be utilized in all five types of therapies. In the last section, the future prospects and challenges of nMOFs with respect to the various therapies will be presented and discussed. Graphic Abstract
Collapse
Affiliation(s)
- Pierre D. Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ J1K 2R1 Canada
| | - Jessica Plé
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ J1K 2R1 Canada
| |
Collapse
|
55
|
Hu M, Li Y, Lu Y, Wang M, Li Y, Wang C, Li Q, Zhao H. The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ 2021; 9:e11306. [PMID: 34012727 PMCID: PMC8109006 DOI: 10.7717/peerj.11306] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) influences the occurrence and progression of tumors, and hypoxia is an important characteristic of the TME. The expression of programmed death 1 (PD1)/programmed death-ligand 1 (PDL1), cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), and other immune checkpoints in hypoxic malignant tumors is often significantly increased, and is associated with poor prognosis. The application of immune checkpoint inhibitors (ICIs) for treating lung cancer, urothelial carcinoma, and gynecological tumors has achieved encouraging efficacy; however, the rate of efficacy of ICI single-drug treatment is only about 20%. In the present review, we discuss the possible mechanisms by which the hypoxic TME regulates immune checkpoints. By activating hypoxia-inducible factor-1α (HIF-1α), regulating the adenosine (Ado)-A2aR pathway, regulating the glycolytic pathway, and driving epithelial-mesenchymal transition (EMT) and other biological pathways, hypoxia regulates the expression levels of CTLA4, PD1, PDL1, CD47, lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain 3 (TIM3), and other immune checkpoints, which interfere with the immune effector cell anti-tumor response and provide convenient conditions for tumors to escape immune surveillance. The combination of HIF-1α inhibitors, Ado-inhibiting tumor immune microenvironment regulatory drugs, and other drugs with ICIs has good efficacy in both preclinical studies and phase I-II clinical studies. Exploring the effects of TME hypoxia on the expression of immune checkpoints and the function of infiltrating immune cells has greatly clarified the relationship between the hypoxic TME and immune escape, which is of great significance for the development of new drugs and the search for predictive markers of the efficacy of immunotherapy for treating malignant tumors. In the future, combination therapy with hypoxia pathway inhibitors and ICIs may be an effective anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Min Hu
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongfu Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Yuting Lu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingrui Li
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoying Wang
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Zhao
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
56
|
Sun S, Xu L, Zhang X, Pang L, Long Z, Deng C, Zhu J, Zhou S, Wan L, Pang B, Xiao Y. Systematic Assessment of Transcriptomic Biomarkers for Immune Checkpoint Blockade Response in Cancer Immunotherapy. Cancers (Basel) 2021; 13:1639. [PMID: 33915876 PMCID: PMC8037221 DOI: 10.3390/cancers13071639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy has yielded successful clinical responses in treatment of a minority of patients in certain cancer types. Substantial efforts were made to establish biomarkers for predicting responsiveness to ICB. However, the systematic assessment of these ICB response biomarkers remains insufficient. METHODS We collected 22 transcriptome-based biomarkers for ICB response and constructed multiple benchmark datasets to evaluate the associations with clinical response, predictive performance, and clinical efficacy of them in pre-treatment patients with distinct ICB agents in diverse cancers. RESULTS Overall, "Immune-checkpoint molecule" biomarkers PD-L1, PD-L2, CTLA-4 and IMPRES and the "Effector molecule" biomarker CYT showed significant associations with ICB response and clinical outcomes. These immune-checkpoint biomarkers and another immune effector IFN-gamma presented predictive ability in melanoma, urothelial cancer (UC) and clear cell renal-cell cancer (ccRCC). In non-small cell lung cancer (NSCLC), only PD-L2 and CTLA-4 showed preferable correlation with clinical response. Under different ICB therapies, the top-performing biomarkers were usually mutually exclusive in patients with anti-PD-1 and anti-CTLA-4 therapy, and most of biomarkers presented outstanding predictive power in patients with combined anti-PD-1 and anti-CTLA-4 therapy. CONCLUSIONS Our results show these biomarkers had different performance in predicting ICB response across distinct ICB agents in diverse cancers.
Collapse
Affiliation(s)
- Shangqin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (S.S.); (L.X.); (X.Z.); (L.P.); (J.Z.); (S.Z.); (L.W.)
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (S.S.); (L.X.); (X.Z.); (L.P.); (J.Z.); (S.Z.); (L.W.)
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (S.S.); (L.X.); (X.Z.); (L.P.); (J.Z.); (S.Z.); (L.W.)
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (S.S.); (L.X.); (X.Z.); (L.P.); (J.Z.); (S.Z.); (L.W.)
| | - Zhilin Long
- School of Life Sciences, Westlake University, Hangzhou 310024, China;
| | - Chunyu Deng
- Wenzhou Research Institute, University of Chinese Academy of Science, Wenzhou 325001, China;
| | - Jiali Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (S.S.); (L.X.); (X.Z.); (L.P.); (J.Z.); (S.Z.); (L.W.)
| | - Shuting Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (S.S.); (L.X.); (X.Z.); (L.P.); (J.Z.); (S.Z.); (L.W.)
| | - Linyun Wan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (S.S.); (L.X.); (X.Z.); (L.P.); (J.Z.); (S.Z.); (L.W.)
| | - Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (S.S.); (L.X.); (X.Z.); (L.P.); (J.Z.); (S.Z.); (L.W.)
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (S.S.); (L.X.); (X.Z.); (L.P.); (J.Z.); (S.Z.); (L.W.)
| |
Collapse
|
57
|
Cremolini C, Vitale E, Rastaldo R, Giachino C. Advanced Nanotechnology for Enhancing Immune Checkpoint Blockade Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:661. [PMID: 33800368 PMCID: PMC7998763 DOI: 10.3390/nano11030661] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Immune checkpoint receptor signaling pathways constitute a prominent class of "immune synapse," a cell-to-cell connection that represses T-lymphocyte effector functions. As a possible evolutionary countermeasure against autoimmunity, this strategy is aimed at lowering potential injury to uninfected cells in infected tissues and at minimizing systemic inflammation. Nevertheless, tumors can make use of these strategies to escape immune recognition, and consequently, such mechanisms represent chances for immunotherapy intervention. Recent years have witnessed the advance of pharmaceutical nanotechnology, or nanomedicine, as a possible strategy to ameliorate immunotherapy technical weaknesses thanks to its intrinsic biophysical properties and multifunctional modifying capability. To improve the long-lasting response rate of checkpoint blockade therapy, nanotechnology has been employed at first for the delivery of single checkpoint inhibitors. Further, while therapy via single immune checkpoint blockade determines resistance and a restricted period of response, strong interest has been raised to efficiently deliver immunomodulators targeting different inhibitory pathways or both inhibitory and costimulatory pathways. In this review, the partially explored promise in implementation of nanotechnology to improve the success of immune checkpoint therapy and solve the limitations of single immune checkpoint inhibitors is debated. We first present the fundamental elements of the immune checkpoint pathways and then outline recent promising results of immune checkpoint blockade therapy in combination with nanotechnology delivery systems.
Collapse
Affiliation(s)
- Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (E.V.); (C.G.)
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (E.V.); (C.G.)
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (E.V.); (C.G.)
| |
Collapse
|
58
|
Strickler JH, Hanks BA, Khasraw M. Tumor Mutational Burden as a Predictor of Immunotherapy Response: Is More Always Better? Clin Cancer Res 2021; 27:1236-1241. [PMID: 33199494 PMCID: PMC9912042 DOI: 10.1158/1078-0432.ccr-20-3054] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/01/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022]
Abstract
Immune checkpoint inhibitors, including antibodies that block programmed cell death protein-1 (PD-1) and PD-L1, have transformed the management of many cancers. However, the majority of patients have primary or acquired resistance to these immunotherapies. There is a significant unmet need for predictive biomarkers that can reliably identify patients who derive a clinically meaningful response from PD-1/PD-L1 blockade. High tumor mutational burden (TMB-H) has shown promise as a biomarker in lung cancer, but the broad applicability of TMB-H as a biomarker of response across all solid tumors is unclear. The FDA has approved the PD-1 inhibitor, pembrolizumab, as a therapy for all solid tumors with TMB equal to or greater than 10 mutations/megabase as measured by the FoundationOne CDx assay. This approval was based on an exploratory analysis of the KEYNOTE-158 study, which was a single-arm, phase II multi-cohort study of pembrolizumab for select, previously treated advanced solid tumors. Here, we elucidate the caveats of using TMB as a biomarker with a universal threshold across all solid tumors. While we recognize the importance of this and other FDA pan-cancer approvals, several questions about TMB as a predictive biomarker remain unanswered. In this perspective, we discuss clinical trial evidence in this area. We review the relationship between TMB and the tumor immune microenvironment. We highlight the risks of extrapolating evidence from a limited number of tumor histologies to all solid tumors, and we propose avenues for future research.
Collapse
Affiliation(s)
| | - Brent A. Hanks
- Duke Cancer Institute, Duke University, Durham, North Carolina.,Duke Center for Cancer Immunotherapy, Durham, North Carolina.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Mustafa Khasraw
- Duke Cancer Institute, Duke University, Durham, North Carolina. .,Duke Center for Cancer Immunotherapy, Durham, North Carolina
| |
Collapse
|
59
|
Kazemi MH, Najafi A, Karami J, Ghazizadeh F, Yousefi H, Falak R, Safari E. Immune and metabolic checkpoints blockade: Dual wielding against tumors. Int Immunopharmacol 2021; 94:107461. [PMID: 33592403 DOI: 10.1016/j.intimp.2021.107461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in cancer immunotherapy have raised hopes for treating cancers that are resistant to conventional therapies. Among the various immunotherapy methods, the immune checkpoint (IC) blockers were more promising and have paved their way to the clinic. Tumor cells induce the expression of ICs on the immune cells and derive them to a hyporesponsive exhausted phenotype. IC blockers could hinder immune exhaustion in the tumor microenvironment and reinvigorate immune cells for an efficient antitumor response. Despite the primary success of IC blockers in the clinic, the growing numbers of refractory cases require an in-depth study of the cellular and molecular mechanisms underlying IC expression and function. Immunometabolism is recently found to be a key factor in the regulation of immune responses. Activated or exhausted immune cells exploit different metabolic pathways. Tumor cells can suppress antitumor responses via immunometabolism alteration. Therefore, it is expected that concurrent targeting of ICs and immunometabolism pathways can cause immune cells to restore their antitumor activity. In this review, we dissected the reciprocal interactions of immune cell metabolism with expression and signaling of ICs in the tumor microenvironment. Recent findings on dual targeting of ICs and metabolic checkpoints have also been discussed.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
| | - Foad Ghazizadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
60
|
Abstract
Pancreatic cancer is a tumor with a high degree of malignancy, morbidity, and mortality. Immunotherapy is another important treatment for pancreatic cancer in addition to surgery and chemotherapy, but its application in pancreatic cancer is very limited, which is related to the unique biological behavior of pancreatic cancer and the tumor microenvironment. The immunosuppressive microenvironment of pancreatic cancer is highly heterogeneous and presents challenges for immunotherapy. The transformation of tumor immunosuppressive microenvironment contributes to the response to tumor immunotherapy, such that the tumor undergoes functional reprogramming to change from immunologically "cold" to immunologically "hot." In this review, we summarized the research and progress in immunotherapy for pancreatic cancer, including immune checkpoint inhibitors, vaccines, adoptive T cell therapy, oncolytic viruses, and immunomodulators, and suggest that individualized, combination, and precise therapy should be the main direction of future immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Jia Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
61
|
Prigent K, Lasnon C, Ezine E, Janson M, Coudrais N, Joly E, Césaire L, Stefan A, Depontville M, Aide N. Assessing immune organs on 18F-FDG PET/CT imaging for therapy monitoring of immune checkpoint inhibitors: inter-observer variability, prognostic value and evolution during the treatment course of melanoma patients. Eur J Nucl Med Mol Imaging 2021; 48:2573-2585. [PMID: 33432374 DOI: 10.1007/s00259-020-05103-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have significantly improved survival in advanced melanoma. There is a need for robust biomarkers to identify patients who do not respond. We analysed 14 baseline 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) metrics and their evolution to assess their correlation with patient outcome, compared with 7 established biological markers and 7 clinical variables. METHODS We conducted a retrospective monocentric observational study of 29 patients with advanced melanoma who underwent baseline 18F-FDG PET/CT, followed by an early monitoring PET/CT (iPET) scan after 1 month of treatment and follow-up studies at 3rd (M3PET) and 6th month (M6PET). 18F-FDG uptake in immune organs (spleen, bone marrow, ileocecal valve) and derived spleen-to-liver (SLR) and bone-to-liver (BLR) ratios were reviewed by two PET readers for reproducibility analysis purposes including 14 PET variables. The most reproducible indexes were used for evaluation as predictors of overall survival (OS) in comparison with PET response using imPERCIST5, whole-body metabolic active tumour volume (WB-MATV) and biological parameters (lactate dehydrogenases (LDH), reactive protein c (CRP), white blood count (WBC), absolute lymphocyte count (ALC), neutrophil to lymphocyte ratio (NLR) and derived neutrophils to lymphocyte ratio). RESULTS Strong reproducibility's (intraclass coefficients of correlation (ICC) > 0.90) were observed for spleen anterior SUVpeak, spleen MV, spleen TLG, spleen length and BLRmean. ICC for SLRmean and ileocecal SUVmean were 0.86 and 0.65, respectively. In the 1-year OS 1 group, SLRmean tended to increase at each time point to reach a significant difference at M6-PET (p = 0.019). The same trends were observed with spleen SUVpeak anterior and spleen length. In the 1-year OS 0 group, a significative increase of spleen length was found at iPET, as compared with baseline PET (p = 0.014) and M3-PET (p = 0.0239). Univariable Kaplan-Meier survival analysis found that i%var spleen length, M3%var SLRmean, baseline LDH, i%var NLR and response at M6PET were all predictors of 1-year OS. CONCLUSIONS SLRmean is recommended as a prognosticator in melanoma patients under immunotherapy: its increase greater than 25% at 3 months, compared with baseline, was associated with poor outcome after ICIs.
Collapse
Affiliation(s)
- Kevin Prigent
- Nuclear Medicine Department, University Hospital, Avenue Côte de Nacre, 14000, Caen, France
| | - Charline Lasnon
- Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
| | - Emilien Ezine
- Dermatology Department, University Hospital, Caen, France
| | | | - Nicolas Coudrais
- Nuclear Medicine Department, University Hospital, Avenue Côte de Nacre, 14000, Caen, France
| | - Elisa Joly
- Dermatology Department, University Hospital, Caen, France
| | - Laure Césaire
- Dermatology Department, University Hospital, Caen, France
| | - Andrea Stefan
- Dermatology Department, University Hospital, Caen, France
| | | | - Nicolas Aide
- Nuclear Medicine Department, University Hospital, Avenue Côte de Nacre, 14000, Caen, France. .,Normandy University, Caen, France.
| |
Collapse
|
62
|
Shi Y, Tomczak K, Li J, Ochieng JK, Lee Y, Haymaker C. Next-Generation Immunotherapies to Improve Anticancer Immunity. Front Pharmacol 2021; 11:566401. [PMID: 33505304 PMCID: PMC7831045 DOI: 10.3389/fphar.2020.566401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Checkpoint inhibitors are widely used immunotherapies for advanced cancer. Nonetheless, checkpoint inhibitors have a relatively low response rate, work in a limited range of cancers, and have some unignorable side effects. Checkpoint inhibitors aim to reinvigorate exhausted or suppressed T cells in the tumor microenvironment (TME). However, the TME contains various other immune cell subsets that interact to determine the fate of cytotoxic T cells. Activation of cytotoxic T cells is initiated by antigen cross-presentation of dendritic cells. Dendritic cells could also release chemokines and cytokines to recruit and foster T cells. B cells, another type of antigen-presenting cell, also foster T cells and can produce tumor-specific antibodies. Neutrophils, a granulocyte cell subset in the TME, impede the proliferation and activation of T cells. The TME also consists of cytotoxic innate natural killer cells, which kill tumor cells efficiently. Natural killer cells can eradicate major histocompatibility complex I-negative tumor cells, which escape cytotoxic T cell–mediated destruction. A thorough understanding of the immune mechanism of the TME, as reviewed here, will lead to further development of more powerful therapeutic strategies. We have also reviewed the clinical outcomes of patients treated with drugs targeting these immune cells to identify strategies for improvement and possible immunotherapy combinations.
Collapse
Affiliation(s)
- Yaoyao Shi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katarzyna Tomczak
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - June Li
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua K Ochieng
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Younghee Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
63
|
Al-Badran SS, Grant L, Campo MV, Inthagard J, Pennel K, Quinn J, Konanahalli P, Hayman L, Horgan PG, McMillan DC, Roxburgh CS, Roseweir A, Park JH, Edwards J. Relationship between immune checkpoint proteins, tumour microenvironment characteristics, and prognosis in primary operable colorectal cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:121-134. [PMID: 33338327 PMCID: PMC7869939 DOI: 10.1002/cjp2.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
The tumour microenvironment is an important factor for colorectal cancer prognosis, affecting the patient's immune response. Immune checkpoints, which regulate the immune functions of lymphocytes, may provide prognostic power. This study aimed to investigate the prognostic value of the immune checkpoints TIM‐3, LAG‐3 and PD‐1 in patients with stage I–III colorectal cancer. Immunohistochemistry was employed to detect TIM‐3, LAG‐3, PD‐1 and PD‐L1 in 773 patients with stage I–III colorectal cancer. Immune checkpoint protein expression was assessed in tumour cells using the weighted histoscore, and in immune cells within the stroma using point counting. Scores were analysed for associations with survival and clinical factors. High tumoural LAG‐3 (hazard ratio [HR] 1.45 95% confidence interval [CI] 1.00–2.09, p = 0.049) and PD‐1 (HR 1.34 95% CI 1.00–1.78, p = 0.047) associated with poor survival, whereas high TIM‐3 (HR 0.60 95% CI 0.42–0.84, p = 0.003), LAG‐3 (HR 0.58 95% CI 0.40–0.87, p = 0.006) and PD‐1 (HR 0.65 95% CI 0.49–0.86, p = 0.002) on immune cells within the stroma associated with improved survival, while PD‐L1 in the tumour (p = 0.487) or the immune cells within the stroma (p = 0.298) was not associated with survival. Furthermore, immune cell LAG‐3 was independently associated with survival (p = 0.017). Checkpoint expression scores on stromal immune cells were combined into a Combined Immune Checkpoint Stromal Score (CICSS), where CICSS 3 denoted all high, CICSS 2 denoted any two high, and CICSS 1 denoted other combinations. CICSS 3 was associated with improved patient survival (HR 0.57 95% CI 0.42–0.78, p = 0.001). The results suggest that individual and combined high expression of TIM‐3, LAG‐3, and PD‐1 on stromal immune cells are associated with better colorectal cancer prognosis, suggesting there is added value to investigating multiple immune checkpoints simultaneously.
Collapse
Affiliation(s)
- Sara Sf Al-Badran
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Lauren Grant
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Maejoy V Campo
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Jitwadee Inthagard
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Kathryn Pennel
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Jean Quinn
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | | | - Liam Hayman
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Campbell Sd Roxburgh
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Antonia Roseweir
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - James H Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Joanne Edwards
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| |
Collapse
|
64
|
Nam GH, Choi Y, Kim GB, Kim S, Kim SA, Kim IS. Emerging Prospects of Exosomes for Cancer Treatment: From Conventional Therapy to Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002440. [PMID: 33015883 DOI: 10.1002/adma.202002440] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Indexed: 05/05/2023]
Abstract
Exosomes are a class of extracellular vesicles of around 100 nm in diameter that are secreted by most cells and contain various bioactive molecules reflecting their cellular origin and mediate intercellular communication. Studies of these exosomal features in tumor pathogenesis have led to the development of therapeutic and diagnostic approaches using exosomes for cancer therapy. Exosomes have many advantages for conveying therapeutic agents such as small interfering RNAs, microRNAs, membrane-associated proteins, and chemotherapeutic compounds; thus, they are considered a prime candidate as a delivery tool for cancer treatment. Since exosomes also provide an optimal microenvironment for the effective function of immunomodulatory factors, exosomes harboring bioactive molecules have been bioengineered as cancer immunotherapies that can effectively activate each stage of the cancer immunity cycle to successfully elicit cancer-specific immunity. This review discusses the advantages of exosomes for treating cancer and the challenges that must be overcome for their successful clinical development.
Collapse
Affiliation(s)
- Gi-Hoon Nam
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoonjeong Choi
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seohyun Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seong A Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
65
|
Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell agonists in cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000966. [PMID: 33020242 PMCID: PMC7537335 DOI: 10.1136/jitc-2020-000966] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer cells can evade immune surveillance in the body. However, immune checkpoint inhibitors can interrupt this evasion and enhance the antitumor activity of T cells. Other mechanisms for promoting antitumor T-cell function are the targeting of costimulatory molecules expressed on the surface of T cells, such as 4-1BB, OX40, inducible T-cell costimulator and glucocorticoid-induced tumor necrosis factor receptor. In addition, CD40 targets the modulation of the activation of antigen-presenting cells, which ultimately leads to T-cell activation. Agonists of these costimulatory molecules have demonstrated promising results in preclinical and early-phase trials and are now being tested in ongoing clinical trials. In addition, researchers are conducting trials of combinations of such immune modulators with checkpoint blockade, radiotherapy and cytotoxic chemotherapeutic drugs in patients with advanced tumors. This review gives a comprehensive picture of the current knowledge of T-cell agonists based on their use in recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Yeonjoo Choi
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yaoyao Shi
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cara L Haymaker
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Joud Hajjar
- Section of Immunology, Department of Allergy & Rheumatology, Baylor College of Medicine, Texas and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
66
|
Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M, Menevse AN, Kauer N, Blazquez R, Hacker L, Decking SM, Bohn T, Faerber S, Evert K, Aigle L, Amslinger S, Landa M, Krijgsman O, Rozeman EA, Brummer C, Siska PJ, Singer K, Pektor S, Miederer M, Peter K, Gottfried E, Herr W, Marchiq I, Pouyssegur J, Roush WR, Ong S, Warren S, Pukrop T, Beckhove P, Lang SA, Bopp T, Blank CU, Cleveland JL, Oefner PJ, Dettmer K, Selby M, Kreutz M. Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy. Cell Rep 2020; 29:135-150.e9. [PMID: 31577944 DOI: 10.1016/j.celrep.2019.08.068] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials.
Collapse
Affiliation(s)
- Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany.
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Annette Schnell
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Gudrun Koehl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Holger M Becker
- Division of General Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Matthias Fante
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ayse-Nur Menevse
- Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Nathalie Kauer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Raquel Blazquez
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Lisa Hacker
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sonja-Maria Decking
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Toszka Bohn
- Institute for Immunology, University Medical Center Johannes Gutenberg University (UMC) Mainz, Mainz, Germany
| | - Stephanie Faerber
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Lisa Aigle
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Maria Landa
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Oscar Krijgsman
- Department Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elisa A Rozeman
- Department Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christina Brummer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Stefanie Pektor
- Department of Nuclear Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrin Peter
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Eva Gottfried
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ibtisam Marchiq
- Institute of Research on Cancer and Aging (IRCAN), CNRS-INSERM-UNS UMR 7284, Nice, France
| | - Jacques Pouyssegur
- Institute of Research on Cancer and Aging (IRCAN), CNRS-INSERM-UNS UMR 7284, Nice, France; Department of Medical Biology, Scientific Centre of Monaco (CSM), Monaco
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Scripps-Florida, Jupiter, FL, USA
| | - SuFey Ong
- NanoString Technologies, Seattle, WA, USA
| | | | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Sven A Lang
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Johannes Gutenberg University (UMC) Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), UMC Mainz, Mainz, Germany; University Cancer Center Mainz, UMC Mainz, Mainz, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian U Blank
- Department Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Mark Selby
- Bristol-Myers Squibb, Redwood City, CA, USA
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany
| |
Collapse
|
67
|
Shan C, Li X, Zhang J. Progress of immune checkpoint LAG-3 in immunotherapy. Oncol Lett 2020; 20:207. [PMID: 32963613 DOI: 10.3892/ol.2020.12070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Immune checkpoint inhibition has been shown to successfully reactivate T cell responses directed against tumor-associated antigens, resulting in significantly prolonged overall survival in patients with various types of solid tumors. Among them, cytotoxic T-lymphocyte protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) play key roles in tumor immune escape and are well-established targets of cancer immunotherapy. However, the low response rate PD-1 and CTLA-4 is a limitation and a challenge. Hence, studies have focused on investigating the tumor microenvironment for alternative therapeutic targets. Lymphocyte activation gene 3 protein (LAG-3) negatively regulates T lymphocytes by binding to the extracellular domain of the ligand, thus avoiding autoimmunity caused by T cell overactivation. LAG-3 is an important immune checkpoint in vivo and plays a balanced regulatory role in the human immune system. LAG-3 is now regarded as a new generation of immunotherapy targets. The present review describes the research progress of LAG-3 to provide reference for further investigation of LAG-3. The immune checkpoint of LAG-3 plays a crucial role in cancer development and may be used in future clinical practice of cancer therapy.
Collapse
Affiliation(s)
- Chanchan Shan
- Department of Cardiology, Wuxi No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Xing Li
- Department of Cardiology, Wuxi No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Jian Zhang
- Department of Orthopaedic Surgery, Wuxi No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
68
|
Pan X, Zheng L. Epigenetics in modulating immune functions of stromal and immune cells in the tumor microenvironment. Cell Mol Immunol 2020; 17:940-953. [PMID: 32699350 PMCID: PMC7609272 DOI: 10.1038/s41423-020-0505-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic regulation of gene expression in cancer cells has been extensively studied in recent decades, resulting in the FDA approval of multiple epigenetic agents for treating different cancer types. Recent studies have revealed novel roles of epigenetic dysregulation in altering the phenotypes of immune cells and tumor-associated stromal cells, including fibroblasts and endothelial cells. As a result, epigenetic dysregulation of these cells reshapes the tumor microenvironment (TME), changing it from an antitumor environment to an immunosuppressive environment. Here, we review recent studies demonstrating how specific epigenetic mechanisms drive aspects of stromal and immune cell differentiation with implications for the development of solid tumor therapeutics, focusing on the pancreatic ductal adenocarcinoma (PDA) TME as a representative of solid tumors. Due to their unique ability to reprogram the TME into a more immunopermissive environment, epigenetic agents have great potential for sensitizing cancer immunotherapy to augment the antitumor response, as an immunopermissive TME is a prerequisite for the success of cancer immunotherapy but is often not developed with solid tumors. The idea of combining epigenetic agents with cancer immunotherapy has been tested both in preclinical settings and in multiple clinical trials. In this review, we highlight the basic biological mechanisms underlying the synergy between epigenetic therapy and immunotherapy and discuss current efforts to translate this knowledge into clinical benefits for patients.
Collapse
Affiliation(s)
- Xingyi Pan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular & Molecular Medicine Graduate Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Graduate Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
69
|
Song X, Lu Z, Xu J. Targeting cluster of differentiation 47 improves the efficacy of anti-cytotoxic T-lymphocyte associated protein 4 treatment via antigen presentation enhancement in pancreatic ductal adenocarcinoma. Exp Ther Med 2020; 20:3301-3309. [PMID: 32855701 DOI: 10.3892/etm.2020.9054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/22/2019] [Indexed: 02/04/2023] Open
Abstract
Treatment with cluster of differentiation 47 (CD47) monoclonal antibody has exhibited promising antitumor effects in various preclinical cancer models. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the present study, the CD47 expression level was measured in PDAC patient samples. The effects of CD47 on antigen presentation and anti-tumor immunity were evaluated using phagocytotic assays and animal models. The results indicated that CD47 was overexpressed in the tumor tissue of PDAC patients compared with that in normal adjacent tissues. In the human samples, antigen-presenting cells (macrophages and dendritic cells) in tumors with high CD47 expression demonstrated low CD80 and CD86 expression levels. In an in vitro co-culture tumor cell system, CD47 overexpression was observed to inhibit the function of phagocytic cells. Furthermore, in a PDAC mouse model, CD47 overexpression was indicated to reduce antigen-presenting cell tumor infiltration and T-cell priming in tumor-draining lymph nodes. Anti-CD47 treatment appeared to enhance the efficacy of the approved immune checkpoint blockade agent anti-cytotoxic T-lymphocyte associated protein 4 (anti-CTLA4) in suppressing PDAC development in a mouse model. Therefore, it was concluded that CD47 overexpression suppressed antigen presentation and T-cell priming in PDAC. Anti-CD47 treatment may enhance the efficacy of anti-CTLA4 therapy and may therefore be a potential strategy for the treatment of PDAC patients in the future.
Collapse
Affiliation(s)
- Xifu Song
- Department of General Surgery, People's Hospital of Jiyang County, Jinan, Shandong 250000, P.R. China
| | - Zenghong Lu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianqing Xu
- Department of General Surgery, Xi'an Gaoxin Hospital, Xi'an, Shaanxi 710075, P.R. China
| |
Collapse
|
70
|
Yang Y, Yang Y, Yang J, Zhao X, Wei X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front Cell Dev Biol 2020; 8:758. [PMID: 32850861 PMCID: PMC7431690 DOI: 10.3389/fcell.2020.00758] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in patients with gynecological malignancy. Despite optimal cytoreductive surgery and platinum-based chemotherapy, ovarian cancer disseminates and relapses frequently, with poor prognosis. Hence, it is urgent to find new targeted therapies for ovarian cancer. Recently, the tumor microenvironment has been reported to play a vital role in the tumorigenesis of ovarian cancer, especially with discoveries from genome-, transcriptome- and proteome-wide studies; thus tumor microenvironment may present potential therapeutic target for ovarian cancer. Here, we review the interactions between the tumor microenvironment and ovarian cancer and various therapies targeting the tumor environment.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
71
|
Qin S, Dong B, Yi M, Chu Q, Wu K. Prognostic Values of TIM-3 Expression in Patients With Solid Tumors: A Meta-Analysis and Database Evaluation. Front Oncol 2020; 10:1288. [PMID: 32850398 PMCID: PMC7417611 DOI: 10.3389/fonc.2020.01288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background: T cell immunoglobulin and mucin-domain containing molecule-3 (TIM-3), a novel emerging immune checkpoint molecule, was reported to express both on various kinds of immune cells and tumor cells. Many previous studies have investigated the prognostic significance of TIM-3 in cancer. However, the sample number from single study was limited and results remained controversial. Methods: We searched PubMed, Web of Science, and Embase databases for publications concerning TIM-3 expression in solid cancers up to March 2020. The correlations between TIM-3 and survival as well as clinical-pathological features were analyzed. Pooled hazard ratios (HRs), odds ratios (ORs), and 95% confidence interval (CI) were estimated by either fixed or random effects models. Results: A total of 3,072 patients were included in our meta-analysis. The result suggested that TIM-3 protein overexpression was relevant to poor overall survival (HR = 1.73, 95% CI = 1.39–2.15, P < 0.001). Moreover, TIM-3 was shown to be connected with lymph node metastasis (N+ vs. N-, OR = 1.59, 95% CI = 1.10–2.29, P = 0.013), tumor grade (G2-3 vs. G1, OR = 1.68, 95% CI = 1.21–2.34, P = 0.002), as well as PD-1 expression (PD-1high vs. PD-1low, OR = 3.26, 95% CI = 2.20–4.82, P < 0.001). In database test, significant correlations between high TIM-3 mRNA expression and poor overall survival for patients with non-small cell lung cancer and gastric cancer were observed (HR = 1.46, 95% CI = 1.23–1.72, P < 0.001; HR = 1.41, 95% CI = 1.12–1.77, P = 0.0038). Conclusion: Our meta-analysis highlights that TIM-3 has the potential to serve as a prognostic marker and a valuable therapeutic target in solid tumors.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
72
|
Yi X, Zhou H, Chao Y, Xiong S, Zhong J, Chai Z, Yang K, Liu Z. Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. SCIENCE ADVANCES 2020; 6:eaba3546. [PMID: 32851163 PMCID: PMC7428325 DOI: 10.1126/sciadv.aba3546] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/02/2020] [Indexed: 05/20/2023]
Abstract
We discovered that attenuated Salmonella after intravenous injection would proliferate within various types of solid tumors but show rapid clearance in normal organs, without rendering notable toxicity. Bacteria-induced inflammation would trigger thrombosis in the infected tumors by destroying tumor blood vessels. Six types of tested tumors would all turn into darkened color with strong near-infrared absorbance, as observed by photoacoustic imaging. Under laser irradiation, those bacterial-infected tumors would be effectively ablated. Because of the immune-stimulation function, such bacteria-based photothermal therapy (PTT) would subsequently trigger antitumor immune responses, which could be further enhanced by immune checkpoint blockade to effectively suppress the growth of abscopal tumors. A robust immune memory effect to reject rechallenged tumors is also observed after bacteria-based PTT. Our work demonstrates that bacteria by themselves could act as a tumor-specific PTT agent to enable photoimmunotherapy cancer therapy to inhibit tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Xuan Yi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hailin Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu Chao
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Saisai Xiong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing Zhong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- Corresponding author. (K.Y.); (Z.L.)
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
- Corresponding author. (K.Y.); (Z.L.)
| |
Collapse
|
73
|
Yin WM, Li YW, Gu YQ, Luo M. Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:902-910. [PMID: 32398683 PMCID: PMC7470800 DOI: 10.1038/s41401-020-0417-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy is rapidly changing the paradigm of cancer care and treatment by evoking host immunity to kill cancer cells. As clinical approval of checkpoint inhibitors (e.g., ipilimumab and pembrolizumab) has been accelerated by a dramatic improvement of long-term survival in a small subset of patients compared to conventional chemotherapy, growing interesting research has focused on immunotherapy. However, majority of patients have not benefited from checkpoint therapies that only partially remove the inhibition of T cell functions. Insufficient systemic T cell responses, low immunogenicity and the immunosuppressive environment of tumors, create great challenges on therapeutic efficiency. Nanotechnology can integrate multiple functions within controlled size and shape, and has been explored as a unique avenue for the development of cancer immunotherapy. In this review, we mainly address how nanoengineered vaccines can induce robust T cell responses against tumors, as well as how nanomedicine can remodel the tumor immunosuppressive microenvironment to boost antitumor immune responses.
Collapse
|
74
|
Zhai W, Zhou X, Wang H, Li W, Chen G, Sui X, Li G, Qi Y, Gao Y. A novel cyclic peptide targeting LAG-3 for cancer immunotherapy by activating antigen-specific CD8 + T cell responses. Acta Pharm Sin B 2020; 10:1047-1060. [PMID: 32642411 PMCID: PMC7332792 DOI: 10.1016/j.apsb.2020.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/10/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
PD-1 and CTLA-4 antibodies offer great hope for cancer immunotherapy. However, many patients are incapable of responding to PD-1 and CTLA-4 blockade and show low response rates due to insufficient immune activation. The combination of checkpoint blockers has been proposed to increase the response rates. Besides, antibody drugs have disadvantages such as inclined to cause immune-related adverse events and infiltration problems. In this study, we developed a cyclic peptide C25 by using Ph.D.-C7C phage display technology targeting LAG-3. As a result, C25 showed a relative high affinity with human LAG-3 protein and could effectively interfere the binding between LAG-3 and HLA-DR (MHC-II). Additionally, C25 could significantly stimulate CD8+ T cell activation in human PBMCs. The results also demonstrated that C25 could inhibit tumor growth of CT26, B16 and B16-OVA bearing mice, and the infiltration of CD8+ T cells was significantly increased while FOXP3+ Tregs significantly decreased in the tumor site. Furthermore, the secretion of IFN-γ by CD8+ T cells in spleen, draining lymph nodes and especially in the tumors was promoted. Simultaneously, we exploited T cells depletion models to study the anti-tumor mechanisms for C25 peptide, and the results combined with MTT assay confirmed that C25 exerted anti-tumor effects via CD8+ T cells but not direct killing. In conclusion, cyclic peptide C25 provides a rationale for targeting the immune checkpoint, by blockade of LAG-3/HLA-DR interaction in order to enhance anti-tumor immunity, and C25 may provide an alternative for cancer immunotherapy besides antibody drugs.
Collapse
Affiliation(s)
- Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongfei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Corresponding authors. Tel.: +86 20 84723750.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors. Tel.: +86 20 84723750.
| |
Collapse
|
75
|
Du P, Hu T, An Z, Li P, Liu L. In vitro and in vivo synergistic efficacy of ceritinib combined with programmed cell death ligand-1 inhibitor in anaplastic lymphoma kinase-rearranged non-small-cell lung cancer. Cancer Sci 2020; 111:1887-1898. [PMID: 32227409 PMCID: PMC7293083 DOI: 10.1111/cas.14397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Both ceritinib (CER) and programmed cell death (PD)-1/PD ligand-1 (PD-L1) have brought significant breakthroughs for anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC). However, the overall clinical efficacy of either CER or PD-1/PD-L1 inhibitor monotherapy has been limited to a large extent. In addition, the antitumor effect of combined CER and PD-L1 inhibitor in ALK-rearranged NSCLC is not fully understood. In H2228 cells, we examined the tumor killing effect of CER plus PD-L1 inhibitor in vitro by quantitative RT-PCR, flow cytometry, ELISA, western blot analysis, PBMC coculture system, and plasmid and transfection experiments. A Ba/F3 (EML4-ALK-WT) xenograft mouse model was also utilized to further evaluate the synergistic anticancer effects of CER and PD-L1 inhibitor in vivo. The coculture system of PBMCs with H2228 cells promotes the expression of PD-L1 and phospho-ERK, and combined treatments facilitate lymphocyte proliferation and activation, inhibit PD-L1 expression, and enhance lymphocyte cytotoxicity and cell death. In the in vivo NSCLC xenograft model, the volumes of tumors treated with CER and PD-L1 inhibitor in combination were significantly smaller than those treated with CER or PD-L1 alone. The relative tumor growth inhibitions were 84.9%, 20.0%, and 91.9% for CER, PD-L1 inhibitor, and CER plus PD-L1 groups, respectively. Ceritinib could synergize with PD-1/PD-L1 blockade to yield enhanced antitumor responses along with favorable tolerability of adverse effects. Ceritinib and PD-L1 inhibitor combined produced a synergistic antineoplastic efficacy in vitro and in vivo, which provides a key insight and proof of principle for evaluating CER plus PD-L1 blockade as combination therapy in clinical therapeutic practice.
Collapse
Affiliation(s)
- Ping Du
- Department of PharmacyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Ting Hu
- Department of PharmacyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Zhuoling An
- Department of PharmacyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Pengfei Li
- Department of PharmacyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Lihong Liu
- Department of PharmacyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
76
|
Zhao X, Kassaye B, Wangmo D, Lou E, Subramanian S. Chemotherapy but Not the Tumor Draining Lymph Nodes Determine the Immunotherapy Response in Secondary Tumors. iScience 2020; 23:101056. [PMID: 32344378 PMCID: PMC7186531 DOI: 10.1016/j.isci.2020.101056] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Immunotherapies are used as adjuvant therapies for cancers. However, knowledge of how traditional cancer treatments affect immunotherapies is limited. Using mouse models, we demonstrate that tumor-draining lymph nodes (TdLNs) are critical for tumor antigen-specific T cell response. However, removing TdLNs concurrently with established primary tumors did not affect the immune checkpoint blockade (ICB) response on localized secondary tumor due to immunotolerance in TdLNs and distribution of antigen-specific T cells in peripheral lymphatic organs. Notably, treatment response improved with sequential administration of 5-fluorouracil (5-FU) and ICB compared with concurrent administration of ICB with 5-FU. Immune profiling revealed that using 5-FU as induction treatment increased tumor visibility to immune cells, decreased immunosuppressive cells in the tumor microenvironment, and limited chemotherapy-induced T cell depletion. We show that the effect of traditional cytotoxic treatment, not TdLNs, influences immunotherapy response in localized secondary tumors. We postulate essential considerations for successful immunotherapy strategies in clinical conditions.
Collapse
Affiliation(s)
- Xianda Zhao
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Beminet Kassaye
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Emil Lou
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
77
|
Long L, Chen M, Yuan Y, Ming AL, Guo W, Wu K, Chen H. High expression of PKM2 synergizes with PD-L1 in tumor cells and immune cells to predict worse survival in human lung adenocarcinoma. J Cancer 2020; 11:4442-4452. [PMID: 32489463 PMCID: PMC7255362 DOI: 10.7150/jca.42610] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Immunotherapy targeting PD-1/PD-L1 represents a breakthrough in the treatment of lung cancer. Pyruvate kinase M2 (PKM2) is not only a critical player in glycolysis, but also conducive to tumor progression and immune response. While both have been linked to lung adenocarcinoma (AC), the correlation and clinical significance of PKM2 and PD-L1 expression in human lung AC tissues remains not entirely explored. Methods: Expression of PKM2 and PD-L1 proteins were detected by immunohistochemistry in 74 lung AC cases and the corresponding noncancerous tissues. Simultaneously, multiplex immunofluorescence was used to detect PKM2, PD-L1, CK, CD3, and CD68 in the lung AC tissues. We measured expression patterns and co-localization of these markers, evaluating their association with clinicopathological features and overall survival. Validation of findings was conducted using mRNA expression data from The Cancer Genome Atlas (TCGA) of 515 lung AC cases. Results: High expression of PKM2 in tumor cells was significantly related with lymph node metastasis and TNM stage (p=0.035, p=0.017, respectively). Moreover, PKM2 expression in tumor cells was positively correlated with tumor PD-L1 expression. High expression of PKM2, PD-L1 in tumor cells and immune cells predicted high mortality rate and poorer survival rates, respectively. Additionally, multivariate Cox regression models indicated that high expression of PKM2 in tumor cells was an independent prognostic factor. Based on TCGA genomic data, high PKM2 mRNA expression was significantly associated with poorer survival (p=0.001). Conclusion: High expression of PKM2 synergizes with PD-L1 in tumor cells and immune cells to predict poorer survival rates in patients with lung AC.
Collapse
Affiliation(s)
- Long Long
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Mengxi Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Yu Yuan
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Alex Lau Ming
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Wei Guo
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Kaisong Wu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
78
|
Tamura N, Fujiwara Y, Hashimoto T, Shiraishi H, Kitano S, Shimizu T, Kuwano K, Yamamoto N, Motoi N. Correlation between the expression of folate receptor alpha (FRα) and clinicopathological features in patients with lung adenocarcinoma. Lung Cancer 2020; 145:152-157. [PMID: 32450493 DOI: 10.1016/j.lungcan.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2020] [Accepted: 05/02/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Folate receptor alpha (FRα) is expressed on the cell surface, mediates its intracellular transport via receptor-mediated endocytosis, and is involved in cell division. Whether FRα could be a potential therapeutic target in FRα-expressing cancers remains unknown. Here, we retrospectively investigated the correlations between tumor FRα expression in lung adenocarcinoma (LADC) and clinicopathological features. MATERIALS AND METHODS FRα expression was evaluated using a tissue microarray (TMA) constructed from surgical specimens of LADC and compared with clinicopathological features including the EGFR mutation status and the expressions of PD-L1, PD-L2, PD-1, CD4, CD8, CD204, and αSMA. If the proportion of positively stained tumor cells was greater than or equal to 5%, the tumor was considered to show FRα expression; if the H-score was more than or equal to 60, the tumor was considered to show high FRα expression. RESULTS Overall, 466 TMA cores created from 233 LADC patients were evaluated: FRα-positive expression (FRα-pos)/negative (FRα-neg), 222/11; FRα high expression (FRα-HE)/low (FRα-LE), 190/43. AnEGFR mutation was present in 53.2 % of the patients. The median H-score of FRα expression, FRα-pos rate, and FRα-HE rate for EGFR mutation/wild type were 159/104 (p = 0.0002), 97.6/92.7 % (p = 0.0773), and 88.7/73.4 % (p = 0.0026), respectively. The H-scores for FRα had mild correlations with the proportion of tumor cells with positive staining for PD-L1 (r=-0.2557, p < 0.0001), the number of CD8-positive cells per square millimeter (r=-0.1767, p = 0.0069), and the area with positive staining for αSMA (r = 0.2049, p = 0.0017). No correlations were seen between FRα expression and other cancer-immunity markers. CONCLUSION Tumor FRα expression was significantly higher in LADCs withEGFR mutation than in those with wild-type EGFR. This study suggested that FRα expression was related to cancer and microenvironment-immunity markers such as PD-L1 expression, CD8 cells, and αSMA.
Collapse
Affiliation(s)
- Nobumasa Tamura
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yutaka Fujiwara
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Respiratory Medicine, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo 101-8643, Japan.
| | - Taiki Hashimoto
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hideaki Shiraishi
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Respiratory Medicine, Mitsui Memorial Hospital, 1 Kandaizumi-cho, Chiyoda-ku, Tokyo 101-8643, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Toshio Shimizu
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Noriko Motoi
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
79
|
Acquired Resistance to Immune Checkpoint Blockade Therapies. Cancers (Basel) 2020; 12:cancers12051161. [PMID: 32380703 PMCID: PMC7280955 DOI: 10.3390/cancers12051161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint blockade therapy (ICBT) has revolutionized the treatment and management of numerous cancers, yet a substantial proportion of patients who initially respond to ICBT subsequently develop resistance. Comprehensive genomic analysis of samples from recent clinical trials and pre-clinical investigation in mouse models of cancer provide insight into how tumors evade ICBT after an initial response to treatment. Here, we summarize our current knowledge on the development of acquired ICBT resistance, by examining the mechanisms related to tumor-intrinsic properties, T-cell function, and tumor-immune cell interactions. We discuss current and future management of ICBT resistance, and consider crucial questions remaining in this field of acquired resistance to immune checkpoint blockade therapies.
Collapse
|
80
|
Bai S, Yang LL, Wang Y, Zhang T, Fu L, Yang S, Wan S, Wang S, Jia D, Li B, Xue P, Kang Y, Sun ZJ, Xu Z. Prodrug-Based Versatile Nanomedicine for Enhancing Cancer Immunotherapy by Increasing Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000214. [PMID: 32309900 DOI: 10.1002/smll.202000214] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 05/23/2023]
Abstract
Nanoparticle-based tumor immunotherapy has emerged to show great potential for simultaneously regulating the immunosuppressive tumor microenvironment, reducing the unpleasant side effects, and activating tumor immunity. Herein, an excipient-free glutathione/pH dual-responsive prodrug nanoplatform is reported for immunotherapy, simply by sequentially liberating 5-aminolevulinic acid and immunogenically inducing doxorubicin drug molecules, which can leverage the acidity and reverse tumor microenvironment. The obtained nanoplatform effectively boosts the immune system by promoting dendritic cell maturation and reducing the number of immune suppressive immune cells, which shows the enhanced adjunctive effect of anti-programmed cell death protein 1 therapy. Overall, the prodrug-based immunotherapy nanoplatform may offer a reliable strategy for improving synergistic antitumor efficacy.
Collapse
Affiliation(s)
- Shuang Bai
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Yajun Wang
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Lvqin Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shaochen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shucheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Die Jia
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Peng Xue
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
81
|
Theivanthiran B, Evans KS, DeVito NC, Plebanek M, Sturdivant M, Wachsmuth LP, Salama AK, Kang Y, Hsu D, Balko JM, Johnson DB, Starr M, Nixon AB, Holtzhausen A, Hanks BA. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest 2020; 130:2570-2586. [PMID: 32017708 PMCID: PMC7190922 DOI: 10.1172/jci133055] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
An in-depth understanding of immune escape mechanisms in cancer is likely to lead to innovative advances in immunotherapeutic strategies. However, much remains unknown regarding these mechanisms and how they impact immunotherapy resistance. Using several preclinical tumor models as well as clinical specimens, we identified a mechanism whereby CD8+ T cell activation in response to programmed cell death 1 (PD-1) blockade induced a programmed death ligand 1/NOD-, LRR-, and pyrin domain-containing protein 3 (PD-L1/NLRP3) inflammasome signaling cascade that ultimately led to the recruitment of granulocytic myeloid-derived suppressor cells (PMN-MDSCs) into tumor tissues, thereby dampening the resulting antitumor immune response. The genetic and pharmacologic inhibition of NLRP3 suppressed PMN-MDSC tumor infiltration and significantly augmented the efficacy of anti-PD-1 antibody immunotherapy. This pathway therefore represents a tumor-intrinsic mechanism of adaptive resistance to anti-PD-1 checkpoint inhibitor immunotherapy and is a promising target for future translational research.
Collapse
MESH Headings
- Animals
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy
- Inflammasomes/immunology
- Male
- Melanoma/immunology
- Melanoma/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Immunological
- Myeloid-Derived Suppressor Cells/immunology
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Signal Transduction/immunology
- Translational Research, Biomedical
- Tumor Escape/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke Cancer Institute, Durham, North Carolina, USA
| | | | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Alisha Holtzhausen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brent A. Hanks
- Division of Medical Oncology and
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
82
|
Xu H, Hu M, Liu M, An S, Guan K, Wang M, Li L, Zhang J, Li J, Huang L. Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model. Biomaterials 2020; 235:119769. [PMID: 31986348 PMCID: PMC7093100 DOI: 10.1016/j.biomaterials.2020.119769] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023]
Abstract
Tumor associated fibroblasts (TAFs) are key stromal cells mediating the desmoplastic reaction and being partially responsible for the drug-resistance and immunosuppressive microenvironment formation in solid tumors. Delivery of genotoxic drugs off-targetedly to kill TAFs results in production of Wnt16 which renders the neighboring tumor cells drug resistant as shown in our previous study (PMC4623876). Our current approach looks for means to deactivate, rather than kill, TAFs. Reactive oxygen species (ROS) are the central hub of multiple profibrogenic pathways and indispensable for TAFs activation. Herein, puerarin was identified to effectively downregulate ROS production in the activated myofibroblast. In this study, a novel puerarin nanoemulsion (nanoPue) was developed to improve the solubility and bioavailability of puerarin. NanoPue significantly deactivated the stromal microenvironment (e.g., ~6-fold reduction of TAFs in nanoPue treated mice compared with the PBS control, p < 0.0001) and facilitated chemotherapy effect of nano-paclitaxel in the desmoplastic triple-negative breast cancer (TNBC) model. Moreover, the removal of the physical barrier increased intra-tumoral infiltration of cytotoxic T cell by 2-fold. This activated immune microenvironment allowed nanoPue to synergize PD-L1 blockade therapy in TNBC model.
Collapse
Affiliation(s)
- Huan Xu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Mengrui Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Sai An
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Kaiyun Guan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Lei Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Jing Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Jun Li
- ZY Therapeutics Inc., 400 Park Office Dr. Suite 310, Research Triangle Park, NC, 27709, United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
83
|
Steeneck C, Kinzel O, Anderhub S, Hornberger M, Pinto S, Morschhaeuser B, Braun F, Kleymann G, Hoffmann T. Discovery of Hydroxyamidine Based Inhibitors of IDO1 for Cancer Immunotherapy with Reduced Potential for Glucuronidation. ACS Med Chem Lett 2020; 11:179-187. [PMID: 32071686 DOI: 10.1021/acsmedchemlett.9b00572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Following the impressive success of checkpoint inhibitors in the treatment of cancer, combinations of IDO1 inhibitors with PD-1/PD-L1 antibodies are in clinical development aiming to increase response rates. Using the hydroxyamidine pharmacophore of the IDO1 inhibitor INCB14943 as a starting point for the design of new inhibitors, the potential shortcomings of extensive hydroxyamidine glucuronidation in humans was addressed. Compounds were optimized using a stability assay with recombinant UGT1A9 enzyme together with the measurement of glucuronide formation in human hepatocytes. Optimized analog 24 showed cellular and biochemical IDO1 IC50 values in the low nanomolar range, a suitable in vitro ADME/PK profile, and efficacy in an animal model of cancer. In a humanized liver mouse model the lead compound exhibited significantly reduced glucuronidation compared to epacadostat (2).
Collapse
Affiliation(s)
- Christoph Steeneck
- Phenex Pharmaceuticals AG, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Olaf Kinzel
- Phenex Pharmaceuticals AG, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Simon Anderhub
- Phenex Pharmaceuticals AG, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Martin Hornberger
- Phenex Pharmaceuticals AG, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Sheena Pinto
- Phenex Pharmaceuticals AG, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | | | - Floriane Braun
- Phenex Pharmaceuticals AG, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Gerald Kleymann
- Phenex Pharmaceuticals AG, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Thomas Hoffmann
- Phenex Pharmaceuticals AG, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| |
Collapse
|
84
|
Zhao J, Guo C, Xiong F, Yu J, Ge J, Wang H, Liao Q, Zhou Y, Gong Q, Xiang B, Zhou M, Li X, Li G, Xiong W, Fang J, Zeng Z. Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer Lett 2020; 477:131-143. [PMID: 32061950 DOI: 10.1016/j.canlet.2020.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most malignant tumors in Southern China and southeast Asia, which is characterized by a dense lymphocyte infiltration and a poor prognosis. The emergence of single-cell sequencing represents a powerful tool to resolve tumor heterogeneity and delineate the complex communication among the tumor cells with neighboring stromal and immune cells in the tumor microenvironment (TME). Here, we performed single cell RNA-seq and analyzed tumor cells together with the infiltrating immune cells from three NPC tumor tissues. In our study, the malignant cells display the intra- and inter-tumoral heterogeneity among the individual patients. Analysis of the immune cells reveal the heterogeneous composition of the distinct immune cells and the various functional states of T cells in NPC tumors. Additionally, coupled with the reconstruct of the T cell receptor (TCR) sequences from immune cells full-length single-cell sequence data, we identify the diverse T cell clonotypes and expansion distribution in individual tumors. Overall, we firstly reveal the landscape of tumor and infiltrating immune cells in nasopharyngeal cancer. These results provide deeper insights on the mechanisms of tumor clearance by immune cells in the surrounding microenvironment, which will be helpful in improving the targeted and immune therapies for NPC.
Collapse
Affiliation(s)
- Jin Zhao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jianjun Yu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qian Gong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jian Fang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
85
|
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020; 9:1703449. [PMID: 32002302 PMCID: PMC6959434 DOI: 10.1080/2162402x.2019.1703449] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Sabine Tejpar
- Department of Oncology, KU Leuven, Leuven, Belgium.,UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
86
|
Du H, Yi Z, Wang L, Li Z, Niu B, Ren G. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int Immunopharmacol 2019; 78:106113. [PMID: 31841754 DOI: 10.1016/j.intimp.2019.106113] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Many studies have shown a special interaction between LAG3 and PD-1 in T cell inhibition, while the co-expression and effect of LAG3 and PD-1 on T cells in breast cancer patients are still not very clear. Here, with strict exclusion criteria, 88 patients with breast cancer and 18 healthy controls were enrolled. The percentages of LAG3+PD-1+ T cells in their peripheral blood (PBL) and tumor infiltrating T cells (TIL) were analyzed by flow cytometry, which showed an increase in TILs but no difference in PBLs and presented differences in TILs in different molecular subtypes (P < 0.05). In triple-negative breast cancer (TNBC), the highest percentages were observed, while in ER+/PR+ breast cancer, the lowest percentages were observed; however, these percentages were not different in different clinical stages (P > 0.05). Immunohistochemical staining showed that the expression of their ligands, PD-L1, MHC class II molecular and FGL1, was inconsistent in different molecular subtypes and clinical stages. Analysis of the functions of T cells with different phenotypes showed that the proliferation and secretion capacity of LAG3+PD-1+ T cells was obviously exhausted, with more than a two-fold of decrease compared with the groups of single positive LAG3 or PD-1 (P < 0.05). Finally, in a mouse model of TNBC, the dual blockade of LAG3 and PD-1 was indicated to achieve a better anti-tumour effect than either one alone (P < 0.05), which may provide a new strategy for the immunoregulatory treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziying Yi
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin Niu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Intensive Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
87
|
Yang Y, Nam GH, Kim GB, Kim YK, Kim IS. Intrinsic cancer vaccination. Adv Drug Deliv Rev 2019; 151-152:2-22. [PMID: 31132376 DOI: 10.1016/j.addr.2019.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Immunotherapy is revolutionizing the treatment of cancer, and the current immunotherapeutics have remarkably improved the outcomes for some cancer patients. However, we still need answers for patients with immunologically cold tumors that do not benefit from the current immunotherapy treatments. Here, we suggest a novel strategy that is based on using a very old and sophisticated system for cancer immunotherapy, namely "intrinsic cancer vaccination", which seeks to awaken our own immune system to activate tumor-specific T cells. To do this, we must take advantage of the genetic instability of cancer cells and the expression of cancer cell neoantigens to trigger immunity against cancer cells. It will be necessary to not only enhance the phagocytosis of cancer cells by antigen presenting cells but also induce immunogenic cancer cell death and the subsequent immunogenic clearance, cross-priming and generation of tumor-specific T cells. This strategy will allow us to avoid using known tumor-specific antigens, ex vivo manipulation or adoptive cell therapy; rather, we will efficiently present cancer cell neoantigens to our immune system and propagate the cancer-immunity cycle. This strategy simply follows the natural cycle of cancer-immunity from its very first step, and therefore could be combined with any other treatment modality to yield enhanced efficacy.
Collapse
Affiliation(s)
- Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gi-Hoon Nam
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoon Kyoung Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
88
|
Lin W, Liu J, Chen J, Li J, Qiu S, Ma J, Lin X, Zhang L, Wu J. Peptides of tetraspanin oncoprotein CD151 trigger active immunity against primary tumour and experimental lung metastasis. EBioMedicine 2019; 49:133-144. [PMID: 31668880 PMCID: PMC6945203 DOI: 10.1016/j.ebiom.2019.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Active immunotherapy is an effective, long-lasting, cheap, and safe approach to suppress cancer progression; however, the key issue is to develop appropriate tumour vaccines. Oncoproteins are up-regulated under various stress conditions and promote cell survival. Oncoproteins and their immunogenic domains could serve well as tumour vaccines and prime the hosts' active anti-tumour immunity. METHODS Proteomic and bioinformatic analyses were performed to identify potential tumour associated antigens (TAAs). Then, peptides derived from CD151 were designed and synthesized according to the major histocompatibility complex (MHC) I binding and immunogenicity. Cytotoxicity assay, flow cytometry, immunohistochemistry, and in vivo bioluminescence imaging were performed to assess the active anti-tumour immunity triggered by CD151 peptides in H22 primary hepatoma and experimental 4T1 breast cancer lung metastasis models. FINDINGS CD151 was identified as an ideal TAA based on proteomic and bioinformatic analyses. CD151 peptides as tumour vaccines triggered active anti-tumour immunity against H22 hepatoma and the lung metastasis of 4T1 breast cancer in two mouse models through the activation of CD8+IFNγ+ lymphocytes and the subsequent targeted cytotoxicity. Further, the peptides suppressed the negative regulators, myeloid-derived suppressor cells. Survival was prolonged for mice with lung metastases from CD151 peptide-immunised groups. INTERPRETATION The up-regulated oncoproteins in 8 Gy-irradiated tumour cells are good candidates for designing immunogenic peptides as tumour vaccines. Anti-tumour active immunity primed by peptides from CD151 may be an effective and safe approach to suppress cancer progression.
Collapse
Affiliation(s)
- Wanzun Lin
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, 420 Fuma Rd, Fuzhou 350014, China
| | - Jun Liu
- Department of Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, 420 Fuma Rd, Fuzhou 350014, China
| | - Juhui Chen
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, 420 Fuma Rd, Fuzhou 350014, China
| | - Jiancheng Li
- Department of Chest Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, 420 Fuma Rd, Fuzhou 350014, China
| | - Sufang Qiu
- Department of Head & Neck Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, 420 Fuma Rd, Fuzhou 350014, China
| | - Jiayu Ma
- Department of Chest Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, 420 Fuma Rd, Fuzhou 350014, China
| | - Xiandong Lin
- Laboratory of Radiobiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, 420 Fuma Rd, Fuzhou 350014, China
| | - Lurong Zhang
- Laboratory of Radiobiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, 420 Fuma Rd, Fuzhou 350014, China.
| | - Junxin Wu
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, 420 Fuma Rd, Fuzhou 350014, China.
| |
Collapse
|
89
|
Hlavata Z, Solinas C, De Silva P, Porcu M, Saba L, Willard-Gallo K, Scartozzi M. The Abscopal Effect in the Era of Cancer Immunotherapy: a Spontaneous Synergism Boosting Anti-tumor Immunity? Target Oncol 2019; 13:113-123. [PMID: 29470785 DOI: 10.1007/s11523-018-0556-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiotherapy is one of the main treatment strategies used in cancer. Aside from the local control of the disease, which is mediated by a direct cytotoxic effect on tumor cells, radiotherapy has also been shown to exert immune-mediated local and systemic effects. Radiotherapy can elicit anti-tumor responses in distant sites from the radiation field; this phenomenon is known as the abscopal effect and has been described in patients previously treated with immune checkpoint blockade (ICB). Considering that the efficacy of immunotherapy has been demonstrated only in a subset of patients-who often benefit with lasting responses-efforts are ongoing to potentiate its activity with the development of new combination strategies. Radiotherapy might represent a potential candidate for a synergistic combination with immunotherapy, by improving the immunogenicity of tumors and by enhancing local and systemic immune effects. This review aims to summarize the current pre-clinical and clinical data on the immune effects of radiotherapy and their potential implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Zuzana Hlavata
- Medical Oncology Department, CHR Mons-Hainaut, Mons, Belgium
| | - Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium.
| | - Pushpamali De Silva
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Michele Porcu
- Department of Radiology, AOU of Cagliari, SS 554, Monserrato, CA, Italy
| | - Luca Saba
- Department of Radiology, AOU of Cagliari, SS 554, Monserrato, CA, Italy
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Mario Scartozzi
- Medical Oncology Department, AOU of Cagliari, SS 554, Monserrato, CA, Italy
| |
Collapse
|
90
|
Kim H, Griffith TS, Panyam J. Poly(d,l-lactide-co-glycolide) Nanoparticles as Delivery Platforms for TLR7/8 Agonist-Based Cancer Vaccine. J Pharmacol Exp Ther 2019; 370:715-724. [PMID: 30610006 DOI: 10.1124/jpet.118.254953] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/03/2019] [Indexed: 12/28/2022] Open
Abstract
Targeted drug delivery can significantly influence the efficacy of a drug. In the past decades, diverse drug-delivery technologies, including nano- and microparticles, co-crystals, and microneedles have been developed to maximize therapeutic efficacy and minimize undesired side effects of therapeutics. Nanoparticles-submicron-sized drug carriers-have been actively investigated for the delivery of antibiotics, nucleic acids, peptide/proteins, and chemotherapeutics. Recently, nanoparticles have gained attention as a vaccine delivery platform for tumor-associated antigens (TAAs) and/or vaccine adjuvants. Agonists of imidazoquinoline-based Toll-like receptor (TLR) 7/8 are potent cytokine inducers that are used as cancer vaccine adjuvants to elicit robust T-cell response by activating dendritic cells (DCs). Despite their in vitro potency, the translation of TLR7 agonists as cancer vaccine adjuvants in the clinic has been limited by their poor retention at the injection site. Therefore, a formulation that could improve the availability of TLR7/8 agonists to DCs via conventional vaccine administration routes (subcutaneous, intramuscular) can broaden the application of TLR7/8 agonists for cancer immunotherapy. Polymeric nanoparticles fabricated with poly(d,l-lactide-co-glycolide) (PLGA) can be an efficient TLR7/8 agonist delivery platform. PLGA is a biocompatible polymer, and nanoparticles prepared from this polymer are stable in saline and are small enough to be administered by subcutaneous or intramuscular injections. Furthermore, nanoparticulate TLR7/8 delivery can enhance DC uptake and facilitate lymphatic drainage, both of which can enhance the adjuvanticity of TLR7/8 agonists compared with soluble forms. In this review, we discuss the use of PLGA nanoparticles with TLR7/8 agonists for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Departments of Pharmaceutics (H.K., J.P.) and Urology (T.S.G.), Center for Immunology (T.S.G.), Microbiology, Immunology, and Cancer Biology Graduate Program (T.S.G.), and Masonic Cancer Center (T.S.G., J.P.), University of Minnesota, Minneapolis, Minnesota
| | - Thomas S Griffith
- Departments of Pharmaceutics (H.K., J.P.) and Urology (T.S.G.), Center for Immunology (T.S.G.), Microbiology, Immunology, and Cancer Biology Graduate Program (T.S.G.), and Masonic Cancer Center (T.S.G., J.P.), University of Minnesota, Minneapolis, Minnesota
| | - Jayanth Panyam
- Departments of Pharmaceutics (H.K., J.P.) and Urology (T.S.G.), Center for Immunology (T.S.G.), Microbiology, Immunology, and Cancer Biology Graduate Program (T.S.G.), and Masonic Cancer Center (T.S.G., J.P.), University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
91
|
Bai X, Fisher DE, Flaherty KT. Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNγ pathways. Nat Rev Clin Oncol 2019; 16:549-562. [PMID: 30967646 PMCID: PMC7185899 DOI: 10.1038/s41571-019-0204-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted therapy and immunotherapy have greatly improved the prognosis of patients with metastatic melanoma, but resistance to these therapeutic modalities limits the percentage of patients with long-lasting responses. Accumulating evidence indicates that a persisting subpopulation of melanoma cells contributes to resistance to targeted therapy or immunotherapy, even in patients who initially have a therapeutic response; however, the root mechanism of resistance remains elusive. To address this problem, we propose a new model, in which dynamic fluctuations of protein expression at the single-cell level and longitudinal reshaping of the cellular state at the cell-population level explain the whole process of therapeutic resistance development. Conceptually, we focused on two different pivotal signalling pathways (mediated by microphthalmia-associated transcription factor (MITF) and IFNγ) to construct the evolving trajectories of melanoma and described each of the cell states. Accordingly, the development of therapeutic resistance could be divided into three main phases: early survival of cell populations, reversal of senescence, and the establishment of new homeostatic states and development of irreversible resistance. On the basis of existing data, we propose future directions in both translational research and the design of therapeutic strategies that incorporate this emerging understanding of resistance.
Collapse
Affiliation(s)
- Xue Bai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - David E Fisher
- Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
92
|
Holtzhausen A, Harris W, Ubil E, Hunter DM, Zhao J, Zhang Y, Zhang D, Liu Q, Wang X, Graham DK, Frye SV, Earp HS. TAM Family Receptor Kinase Inhibition Reverses MDSC-Mediated Suppression and Augments Anti-PD-1 Therapy in Melanoma. Cancer Immunol Res 2019; 7:1672-1686. [PMID: 31451482 DOI: 10.1158/2326-6066.cir-19-0008] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/24/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
Myeloid cell receptor tyrosine kinases TYRO3, AXL, and MERTK and their ligands, GAS6 and PROTEIN S, physiologically suppress innate immune responses, including in the tumor microenvironment. Here, we showed that myeloid-derived suppressor cells (MDSC) dramatically upregulated TYRO3, AXL, and MERTK and their ligands [monocytic MDSCs (M-MDSC)>20-fold, polymorphonuclear MDSCs (PMN-MDSC)>15-fold] in tumor-bearing mice. MDSCs from tumor-bearing Mertk-/-, Axl-/- , and Tyro3-/- mice exhibited diminished suppressive enzymatic capabilities, displayed deficits in T-cell suppression, and migrated poorly to tumor-draining lymph nodes. In coimplantation experiments using TYRO3-/-, AXL-/-, and MERTK-/- MDSCs, we showed the absence of these RTKs reversed the protumorigenic properties of MDSCs in vivo Consistent with these findings, in vivo pharmacologic TYRO3, AXL, and MERTK inhibition diminished MDSC suppressive capability, slowed tumor growth, increased CD8+ T-cell infiltration, and augmented anti-PD-1 checkpoint inhibitor immunotherapy. Mechanistically, MERTK regulated MDSC suppression and differentiation in part through regulation of STAT3 serine phosphorylation and nuclear localization. Analysis of metastatic melanoma patients demonstrated an enrichment of circulating MERTK+ and TYRO3+ M-MDSCs, PMN-MDSCs, and early-stage MDSCs (e-MDSC) relative to these MDSC populations in healthy controls. These studies demonstrated that TYRO3, AXL, and MERTK control MDSC functionality and serve as promising pharmacologic targets for regulating MDSC-mediated immune suppression in cancer patients.
Collapse
Affiliation(s)
- Alisha Holtzhausen
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William Harris
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eric Ubil
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Debra M Hunter
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jichen Zhao
- Center for Integrative Chemical Biology and Drug Discovery, Division for Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yuewei Zhang
- Center for Integrative Chemical Biology and Drug Discovery, Division for Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dehui Zhang
- Center for Integrative Chemical Biology and Drug Discovery, Division for Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Qingyang Liu
- Center for Integrative Chemical Biology and Drug Discovery, Division for Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division for Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Stephen V Frye
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Center for Integrative Chemical Biology and Drug Discovery, Division for Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - H Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Department of Medicine, Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
93
|
Targeting Immune Checkpoints in Lung Cancer: Current Landscape and Future Prospects. Clin Drug Investig 2019; 39:341-353. [PMID: 30778885 DOI: 10.1007/s40261-018-00746-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung cancer is the most prevalent and deadly cancer worldwide. Immune checkpoint therapy, which targets regulatory pathways in T cells to boost anti-tumor immune response, has revolutionized lung cancer treatment paradigms. Inhibitors of the most established immune checkpoints such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) have been approved by the US Food and Drug Administration in the management of lung cancer. Despite the pronounced survival benefits that have been seen with immune checkpoint inhibitors, not all lung cancer patients respond to single-agent immunotherapy due to the complexity of the immune microenvironment and tumor resistance. Alternative immune checkpoints beyond PD-1/PD-L1 must be sought so that more patients can benefit from immune checkpoint therapy. Additionally, novel combination strategies of immunotherapy and conventional treatments (e.g., chemotherapy, radiotherapy, and targeted therapy) have shown promise in some clinical trials. Meanwhile, identification of predictive biomarkers is pivotal in selecting eligible patients for immunotherapy and to guide individualized clinical decision-making. The future of immune checkpoint therapy in lung cancer is not devoid of challenges, and more prospective clinical studies are awaited to translate our understanding from bench to bedside.
Collapse
|
94
|
Courau T, Bonnereau J, Chicoteau J, Bottois H, Remark R, Assante Miranda L, Toubert A, Blery M, Aparicio T, Allez M, Le Bourhis L. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J Immunother Cancer 2019; 7:74. [PMID: 30871626 PMCID: PMC6417026 DOI: 10.1186/s40425-019-0553-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Immunotherapies still fail to benefit colorectal cancer (CRC) patients. Relevant functional assays aimed at studying these failures and the efficacy of cancer immunotherapy in human are scarce. 3D tumor cultures, called tumor organoids or spheroids, represent interesting models to study cancer treatments and could help to challenge these issues. Methods We analyzed heterotypic cocultures of human colon tumor-derived spheroids with immune cells to assess the infiltration, activation and function of T and NK cells toward human colorectal tumors in vitro. Results We showed that allogeneic T and NK cells rapidly infiltrated cell line-derived spheroids, inducing immune-mediated tumor cell apoptosis and spheroid destruction. NKG2D, a key activator of cytotoxic responses, was engaged on infiltrating cells. We thus assessed the therapeutic potential of an antibody targeting the specific ligands of NKG2D, MICA and MICB, in this system. Anti-MICA/B enhanced immune-dependent destruction of tumor spheroid by driving an increased NK cells infiltration and activation. Interestingly, tumor cells reacted to immune infiltration by upregulating HLA-E, ligand of the inhibitory receptor NKG2A expressed by CD8 and NK cells. NKG2A was increased after anti-MICA/B treatment and, accordingly, combination of anti-MICA/B and anti-NKG2A was synergistic. These observations were ultimately confirmed in a clinical relevant model of coculture between CRC patients-derived spheroids and autologous tumor-infiltrating lymphocytes. Conclusions Altogether, we show that tumor spheroids represent a relevant tool to study tumor-lymphocyte interactions on human tissues and revealed the antitumor potential of immunomodulatory antibodies targeting MICA/B and NKG2A. Electronic supplementary material The online version of this article (10.1186/s40425-019-0553-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tristan Courau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France
| | - Julie Bonnereau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France
| | - Justine Chicoteau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Hugo Bottois
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France
| | | | | | - Antoine Toubert
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France
| | | | - Thomas Aparicio
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Matthieu Allez
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Lionel Le Bourhis
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.
| |
Collapse
|
95
|
Yu F, Gong L, Mo Z, Wang W, Wu M, Yang J, Zhang Q, Li L, Yao J, Dong J. Programmed death ligand-1, tumor infiltrating lymphocytes and HLA expression in Chinese extrahepatic cholangiocarcinoma patients: Possible immunotherapy implications. Biosci Trends 2019; 13:58-69. [PMID: 30773525 DOI: 10.5582/bst.2019.01003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immunotherapy might be an effective treatment in extrahepatic cholangiocarcinoma (eCCA), a tumor with extremely limited therapeutic options. Our study is to characterize the programmed death ligand-1 (PD-L1) protein expression and cancer microenvironment profiles in surgically resected eCCA samples. PD-L1 positivity was observed on tumor cells (32.3%) as well as on tumor-associated macrophages (74.2%). PD-L1 expression by eCCA correlated significantly with immune parameters such as intra-tumoral CD3+ tumor infiltrating lymphocytes (TILs) density (P = 0.002), intra-tumoral CD8+ TILs density (P < 0.001), and the expression pattern of human leukocyte antigen (HLA) class I (P < 0.001). Immunofluorescence showed that PD-L1 positive tumor cells were adjacent to PD-1 positive cells and the stroma covered with interferon-γ. Correlation with clinicopathological parameters and survival analyses revealed that PD-L1 positivity in eCCA was related to the absence of venous invasion (P = 0.030), improved overall survival (P = 0.020) and progressionfree survival (P = 0.011). HLA class I molecules defect, which is an important mechanism of immune evasion, was frequently observed in eCCA (50.0%) and was associated with a decreased number of intra-tumoral CD8+ TIL density (P = 0.028). Additionally, the presence of unusually high numbers of tumor-associated macrophages (TAMs) subsets M2 in most of eCCA (74.2%) was noted. Our study indicated that PD-L1 expression in association with intra-tumoral TILs infiltration and HLA class I expression in 32.3% of the eCCA reflects an active immune microenvironment potentially responsive to PD-1/PD-L1 inhibitors. In addition, the combination of macrophage-targeting agents may provide therapeutic synergy for future immunotherapy.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Tsinghua University
| | - Lei Gong
- Department of Hepatopancreatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Zheng Mo
- Department of Hematology and Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Wenran Wang
- School of Clinical Medicine, Tsinghua University.,Department of Hepatopancreatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Meilong Wu
- School of Clinical Medicine, Tsinghua University.,Department of Hepatopancreatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Jianghui Yang
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | | | - Li Li
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Jingjing Yao
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Jiahong Dong
- School of Clinical Medicine, Tsinghua University
| |
Collapse
|
96
|
Zhao S, Ren S, Jiang T, Zhu B, Li X, Zhao C, Jia Y, Shi J, Zhang L, Liu X, Qiao M, Chen X, Su C, Yu H, Zhou C, Zhang J, Camidge DR, Hirsch FR. Low-Dose Apatinib Optimizes Tumor Microenvironment and Potentiates Antitumor Effect of PD-1/PD-L1 Blockade in Lung Cancer. Cancer Immunol Res 2019; 7:630-643. [PMID: 30755403 DOI: 10.1158/2326-6066.cir-17-0640] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/04/2018] [Accepted: 02/06/2019] [Indexed: 02/03/2023]
Abstract
The lack of response to treatment in most lung cancer patients suggests the value of broadening the benefit of anti-PD-1/PD-L1 monotherapy. Judicious dosing of antiangiogenic agents such as apatinib (VEGFR2-TKI) can modulate the tumor immunosuppressive microenvironment, which contributes to resistance to anti-PD-1/PD-L1 treatment. We therefore hypothesized that inhibiting angiogenesis could enhance the therapeutic efficacy of PD-1/PD-L1 blockade. Here, using a syngeneic lung cancer mouse model, we demonstrated that low-dose apatinib alleviated hypoxia, increased infiltration of CD8+ T cells, reduced recruitment of tumor-associated macrophages in tumor and decreased TGFβ amounts in both tumor and serum. Combining low-dose apatinib with anti-PD-L1 significantly retarded tumor growth, reduced the number of metastases, and prolonged survival in mouse models. Anticancer activity was evident after coadministration of low-dose apatinib and anti-PD-1 in a small cohort of patients with pretreated advanced non-small cell lung cancer. Overall, our work shows the rationale for the treatment of lung cancer with a combination of PD-1/PD-L1 blockade and low-dose apatinib.
Collapse
Affiliation(s)
- Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Limin Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaozhen Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Hui Yu
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, Colorado
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China.
| | - Jun Zhang
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - D Ross Camidge
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| | - Fred R Hirsch
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, Colorado.,Clinical Institute for Lung Cancer, Mount Sinai Cancer, Mount Sinai Health System, Tisch Cancer Institute, Icahn School of Medicine, New York, New York
| |
Collapse
|
97
|
Kim H, Khanna V, Kucaba TA, Zhang W, Ferguson DM, Griffith TS, Panyam J. Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine. Mol Pharm 2019; 16:1200-1210. [PMID: 30620878 DOI: 10.1021/acs.molpharmaceut.8b01165] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer vaccines composed of tumor-associated antigens (TAAs) and toll-like receptor (TLR) agonists have shown promising antitumor efficacy in preclinical studies by generating antigen-specific CD8 T cells, but translation of cancer vaccines to the clinic has been limited due to variables responses and development of resistance. The tumor microenvironment deploys various immune escape mechanisms that neutralize CD8 T cell-mediated tumor rejection. Therefore, we hypothesized that modulation of the tumor microenvironment can augment CD8 T cell activation and enhance therapeutic efficacy of cancer vaccines. To accomplish this, we aimed to eliminate immune suppressive cells and block their inhibitory signaling. Combination of the tyrosine kinase inhibitor (TKI) sunitinib with a nanoparticle-based cancer vaccine (nanovaccine) resulted in the reduction of immune-suppressive myeloid-derived suppressive cells (MDSCs) and regulatory T cells (Tregs). Blockade of programmed death-ligand 1 (PD-L1) using anti-PD-L1 antibody was used to reduce CD8 T cell exhaustion. Combination of nanovaccine+sunitinib+PD-L1 antibody treatment reduced PD-L1high M2 macrophages and MDSCs and upregulated activation of CD8 T cells in the tumor. Nanovaccine+sunitinib+PD-L1 antibody treatment also stimulated antigen-specific CD8 T cell response, which led to improved therapeutic efficacy in MB49 and B16F10 murine tumor models. These results suggest that modulation of tumor microenvironment using sunitinib and PD-L1 blockade can significantly enhance the antitumor efficacy of cancer nanovaccine.
Collapse
|
98
|
Xiang Z, Yu Y. Screening responsive or resistant biomarkers of immune checkpoint inhibitors based on online databases. Front Med 2019; 13:24-31. [PMID: 30659409 DOI: 10.1007/s11684-019-0679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Immune checkpoint inhibitors are a promising strategy in the treatment of cancer, especially advanced types. However, not all patients are responsive to immune checkpoint inhibitors. The response rate depends on the immune microenvironment, tumor mutational burden (TMB), expression level of immune checkpoint proteins, and molecular subtypes of cancers. Along with the Cancer Genome Project, various open access databases, including The Cancer Genome Atlas and Gene Expression Omnibus, provide large volumes of data, which allow researchers to explore responsive or resistant biomarkers of immune checkpoint inhibitors. In this review, we introduced some methodologies on database selection, biomarker screening, current progress of immune checkpoint blockade in solid tumor treatment, possible mechanisms of drug resistance, strategies of overcoming resistance, and indications for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Zhen Xiang
- Department of Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingyan Yu
- Department of Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
99
|
Abd El-Aziz N, El Gohary G, Mohamed S, El-Saleh K. Prognostic and Therapeutic Implications of Lymphocytes in Hematological Disorders and Solid Malignancies. LYMPHOCYTES 2019. [DOI: 10.5772/intechopen.79168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
100
|
Liu JY, Lowe M. Neoadjuvant Treatments for Advanced Resectable Melanoma. J Surg Oncol 2018; 119:216-221. [PMID: 30589079 DOI: 10.1002/jso.25352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/09/2018] [Indexed: 11/07/2022]
Abstract
Neoadjuvant therapy has demonstrated promise as a treatment modality in resectable advanced-stage melanoma. Treatment has evolved beyond chemotherapy, with the utilization of biochemotherapy, immunotherapy, and targeted therapy in the neoadjuvant setting. These therapies have shown better progression-free survival and melanoma-specific survival when compared with patients that proceed directly to surgery. Ongoing clinical trials will continue to propel research forward to improve the available options for patients with resectable advanced regional disease.
Collapse
Affiliation(s)
- Jessica Y Liu
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Michael Lowe
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|