51
|
Baker SJ, Poulikakos PI, Irie HY, Parekh S, Reddy EP. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer 2022; 13:21-45. [PMID: 36051751 PMCID: PMC9426627 DOI: 10.18632/genesandcancer.221] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although Cdk4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development and tumorigenesis as well as the current status and utility of approved small molecule CDK4/6 inhibitors that are currently being used as cancer therapeutics.
Collapse
Affiliation(s)
- Stacey J. Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Hanna Y. Irie
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| |
Collapse
|
52
|
Barghi F, Shannon HE, Saadatzadeh MR, Bailey BJ, Riyahi N, Bijangi-Vishehsaraei K, Just M, Ferguson MJ, Pandya PH, Pollok KE. Precision Medicine Highlights Dysregulation of the CDK4/6 Cell Cycle Regulatory Pathway in Pediatric, Adolescents and Young Adult Sarcomas. Cancers (Basel) 2022; 14:cancers14153611. [PMID: 35892870 PMCID: PMC9331212 DOI: 10.3390/cancers14153611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary This review provides an overview of clinical features and current therapies in children, adolescents, and young adults (AYA) with sarcoma. It highlights the basic and clinical findings on the cyclin-dependent kinases 4 and 6 (CDK4/6) cell cycle regulatory pathway in the context of the precision medicine-based molecular profiles of the three most common types of pediatric and AYA sarcomas—osteosarcoma (OS), rhabdomyosarcoma (RMS), and Ewing sarcoma (EWS). Abstract Despite improved therapeutic and clinical outcomes for patients with localized diseases, outcomes for pediatric and AYA sarcoma patients with high-grade or aggressive disease are still relatively poor. With advancements in next generation sequencing (NGS), precision medicine now provides a strategy to improve outcomes in patients with aggressive disease by identifying biomarkers of therapeutic sensitivity or resistance. The integration of NGS into clinical decision making not only increases the accuracy of diagnosis and prognosis, but also has the potential to identify effective and less toxic therapies for pediatric and AYA sarcomas. Genome and transcriptome profiling have detected dysregulation of the CDK4/6 cell cycle regulatory pathway in subpopulations of pediatric and AYA OS, RMS, and EWS. In these patients, the inhibition of CDK4/6 represents a promising precision medicine-guided therapy. There is a critical need, however, to identify novel and promising combination therapies to fight the development of resistance to CDK4/6 inhibition. In this review, we offer rationale and perspective on the promise and challenges of this therapeutic approach.
Collapse
Affiliation(s)
- Farinaz Barghi
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - Harlan E. Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - M. Reza Saadatzadeh
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Barbara J. Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - Niknam Riyahi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Marissa Just
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Michael J. Ferguson
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Pankita H. Pandya
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
- Correspondence: (P.H.P.); (K.E.P.)
| | - Karen E. Pollok
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (P.H.P.); (K.E.P.)
| |
Collapse
|
53
|
Riegel K, Vijayarangakannan P, Kechagioglou P, Bogucka K, Rajalingam K. Recent advances in targeting protein kinases and pseudokinases in cancer biology. Front Cell Dev Biol 2022; 10:942500. [PMID: 35938171 PMCID: PMC9354965 DOI: 10.3389/fcell.2022.942500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Kinases still remain the most favorable members of the druggable genome, and there are an increasing number of kinase inhibitors approved by the FDA to treat a variety of cancers. Here, we summarize recent developments in targeting kinases and pseudokinases with some examples. Targeting the cell cycle machinery garnered significant clinical success, however, a large section of the kinome remains understudied. We also review recent developments in the understanding of pseudokinases and discuss approaches on how to effectively target in cancer.
Collapse
Affiliation(s)
- Kristina Riegel
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Petros Kechagioglou
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Katarzyna Bogucka
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- *Correspondence: Krishnaraj Rajalingam,
| |
Collapse
|
54
|
Mo H, Ma F, Li Q, Zhang P, Yuan P, Wang J, Luo Y, Cai R, Li Q, Xu B. Treatment patterns and clinical outcomes in patients with metastatic breast cancer treated with palbociclib-based therapies: real-world data in the Han population. Chin Med J (Engl) 2022; 135:1734-1741. [PMID: 35984107 PMCID: PMC9509029 DOI: 10.1097/cm9.0000000000002240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND This study aimed to reveal the treatment patterns and clinical outcomes of diverse palbociclib-based regimens in Han patients with estrogen receptor-positive (ER+) metastatic breast cancer in routine clinical practice. METHODS The clinical data of patients with ER+ metastatic breast cancer treated with palbociclib were collected from the National Cancer Center database. The efficacy profile of palbociclib in this Han population was evaluated, especially for various combination regimens. The efficacy of palbociclib-based therapy in patients with prior everolimus treatment was also assessed. RESULTS A total of 186 patients from 89 cities in 18 provinces in China were enrolled. The median progression-free survival (PFS) was similar among different palbociclib-combined groups ( P = 0.566): 10.0 months (95% confidence interval [CI] 3.8-16.1) in the +exemestane group, 9.7 months (95% CI 6.3-13.1) in the +letrozole group, 7.8 months (95% CI 5.5-10.2) in the +fulvestrant group, 7.2 months (95% CI 3.2-11.3) in the +toremifene group, and 6.1 months (95% CI 1.2-11.0) in the +anastrozole group. Thirty-four patients (18.3%) had received everolimus for their metastatic disease before the prescription of palbociclib. The disease control rate was significantly lower in patients who had received previous everolimus than in the everolimus-naïve group (50.0% vs . 82.2%, P < 0.001). Patients pre-treated with everolimus had significantly worse PFS than those in the everolimus-naïve group (3.4 months vs . 8.8 months, P = 0.001). After propensity score matching, patients pre-treated with everolimus had similar PFS (4.4 months, 95% CI 0.5-8.2) compared with everolimus-naïve patients (6.1 months, 95% CI 4.7-7.5, P = 0.439). CONCLUSIONS Various palbociclib-based regimens have promising efficacy in ER+ metastatic breast cancer in real-world settings, even in patients who had been pre-treated with everolimus.
Collapse
Affiliation(s)
- Hongnan Mo
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
High phosphorylated cyclin-dependent kinase 2 expression indicates poor prognosis of luminal androgen receptor triple-negative breast cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1034-1038. [PMID: 35838199 PMCID: PMC9827805 DOI: 10.3724/abbs.2022083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
56
|
Abstract
Cyclin-dependent kinase 4 (CDK4) and CDK6 are critical mediators of cellular transition into S phase and are important for the initiation, growth and survival of many cancer types. Pharmacological inhibitors of CDK4/6 have rapidly become a new standard of care for patients with advanced hormone receptor-positive breast cancer. As expected, CDK4/6 inhibitors arrest sensitive tumour cells in the G1 phase of the cell cycle. However, the effects of CDK4/6 inhibition are far more wide-reaching. New insights into their mechanisms of action have triggered identification of new therapeutic opportunities, including the development of novel combination regimens, expanded application to a broader range of cancers and use as supportive care to ameliorate the toxic effects of other therapies. Exploring these new opportunities in the clinic is an urgent priority, which in many cases has not been adequately addressed. Here, we provide a framework for conceptualizing the activity of CDK4/6 inhibitors in cancer and explain how this framework might shape the future clinical development of these agents. We also discuss the biological underpinnings of CDK4/6 inhibitor resistance, an increasingly common challenge in clinical oncology.
Collapse
Affiliation(s)
- Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Johann S Bergholz
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jean J Zhao
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
57
|
Bui TBV, Burgering BMT, Goga A, Rugo HS, van 't Veer LJ. Biomarkers for Cyclin-Dependent Kinase 4/6 Inhibitors in the Treatment of Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Advanced/Metastatic Breast Cancer: Translation to Clinical Practice. JCO Precis Oncol 2022; 6:e2100473. [PMID: 35666959 DOI: 10.1200/po.21.00473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as effective treatments for patients with hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) advanced/metastatic breast cancer (mBC). Dedicated research efforts have been undertaken to find predictive biomarkers of response or resistance to these therapies although no molecular biomarkers for mBC have reached the clinic so far. This review aims to summarize and evaluate the performance of biomarkers in predicting progression-free survival in phase II and III clinical trials of CDK4/6 inhibitors in HR+/HER2- mBC. METHODS For this narrative review, a structured literature search of PubMed, Embase, and the Cochrane library (CENTRAL) was performed. Phase II or III clinical trials of a CDK4/6 inhibitor in patients with HR+/HER2- mBC reporting on at least one molecular biomarker analysis of progression-free survival were included. Publications and selected conference abstracts were included up until November 2021. RESULTS Twenty-two articles reporting biomarker results of 12 clinical trials were included. Retinoblastoma protein status and cyclin E1 mRNA expression were promising baseline biomarkers, whereas PIK3CA circulating tumor DNA ratio on treatment relative to baseline, change in plasma thymidine kinase activity, and circulating tumor cell count were potential dynamic biomarkers of response. A number of biomarkers were unsuccessful, despite a strong mechanistic rationale, and others are still being explored. CONCLUSION Our review of clinical trials showed that there are a number of promising biomarkers at baseline and several dynamic biomarkers that might predict response to CDK4/6 inhibitors. Validation of these findings and assessment of clinical utility are crucial to make the final translation to clinical practice. Better understanding of disease heterogeneity and further elucidation of resistance mechanisms could inform future studies of rationally selected biomarkers.
Collapse
Affiliation(s)
- Tam Binh V Bui
- Faculty of Medicine (SUMMA), Utrecht University/University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, the Netherlands.,Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrei Goga
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA.,Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA
| | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA.,Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA.,University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| |
Collapse
|
58
|
Suppramote O, Prasopporn S, Aroonpruksakul S, Ponvilawan B, Makjaroen J, Suntiparpluacha M, Korphaisarn K, Charngkaew K, Chanwat R, Pisitkun T, Okada S, Sampattavanich S, Jirawatnotai S. The Acquired Vulnerability Caused by CDK4/6 Inhibition Promotes Drug Synergism Between Oxaliplatin and Palbociclib in Cholangiocarcinoma. Front Oncol 2022; 12:877194. [PMID: 35664774 PMCID: PMC9157389 DOI: 10.3389/fonc.2022.877194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most difficult to treat cancers, and its nature of being largely refractory to most, if not all, current treatments results in generally poor prognosis and high mortality. Efficacious alternative therapies that can be used ubiquitously are urgently needed. Using acquired vulnerability screening, we observed that CCA cells that reprofile and proliferate under CDK4/6 inhibition became vulnerable to ribosomal biogenesis stress and hypersensitive to the anti-ribosome chemotherapy oxaliplatin. CCA cells overexpress the oncogenic ribosomal protein RPL29 under CDK4/6 inhibition in a manner that correlated with CDK4/6 inhibitor resistance. Depletion of RPL29 by small interfering RNAs (siRNAs) restored the sensitivity of CCA cells to CDK4/6 inhibition. Oxaliplatin treatment suppressed the RPL29 expression in the CDK4/6 inhibitor treated CCA cells and triggered RPL5/11-MDM2-dependent p53 activation and cancer apoptosis. In addition, we found that combination treatment with oxaliplatin and the CDK4/6 inhibitor palbociclib synergistically inhibited both parental and CDK4/6 inhibitor-resistant CCA, and prevented the emergence of CDK4/6 and oxaliplatin-resistant CCA. This drug combination also exerted suppressive and apoptosis effects on CCA in the in vitro 3-dimensional culture, patient-derived organoid, and in vivo xenograft CCA models. These results suggest the combination of the CDK4/6 inhibitor palbociclib and the anti-ribosome drug oxaliplatin as a potentially promising treatment for cholangiocarcinoma.
Collapse
Affiliation(s)
- Orawan Suppramote
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sunisa Prasopporn
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Satinee Aroonpruksakul
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ben Ponvilawan
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Monthira Suntiparpluacha
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Krittiya Korphaisarn
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rawisak Chanwat
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgical Oncology, National Cancer Institute, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
59
|
Gu Z, Shi C, Li J, Han Y, Sun B, Zhang W, Wu J, Zhou G, Ye W, Li J, Zhang Z, Zhou R. Palbociclib-based high-throughput combination drug screening identifies synergistic therapeutic options in HPV-negative head and neck squamous cell carcinoma. BMC Med 2022; 20:175. [PMID: 35546399 PMCID: PMC9097351 DOI: 10.1186/s12916-022-02373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Deregulation of cell-cycle pathway is ubiquitously observed in human papillomavirus negative (HPVneg) head and neck squamous cell carcinoma (HNSCC). Despite being an attractive target, CDK4/6 inhibition using palbociclib showed modest or conflicting results as monotherapy or in combination with platinum-based chemotherapy or cetuximab in HPVneg HNSCC. Thus, innovative agents to augment the efficacy of palbociclib in HPVneg HNSCC would be welcomed. METHODS A collection of 162 FDA-approved and investigational agents was screened in combinatorial matrix format, and top combinations were validated in a broader panel of HPVneg HNSCC cell lines. Transcriptional profiling was conducted to explore the molecular mechanisms of drug synergy. Finally, the most potent palbociclib-based drug combination was evaluated and compared with palbociclib plus cetuximab or cisplatin in a panel of genetically diverse HPVneg HNSCC cell lines and patient-derived xenograft models. RESULTS Palbociclib displayed limited efficacy in HPVneg HNSCC as monotherapy. The high-throughput combination drug screening provided a comprehensive palbociclib-based drug-drug interaction dataset, whereas significant synergistic effects were observed when palbociclib was combined with multiple agents, including inhibitors of the PI3K, EGFR, and MEK pathways. PI3K pathway inhibitors significantly reduced cell proliferation and induced cell-cycle arrest in HPVneg HNSCC cell lines when combined with palbociclib, and alpelisib (a PI3Kα inhibitor) was demonstrated to show the most potent synergy with particularly higher efficacy in HNSCCs bearing PIK3CA alterations. Notably, when compared with cisplatin and cetuximab, alpelisib exerted stronger synergism in a broader panel of cell lines. Mechanistically, RRM2-dependent epithelial mesenchymal transition (EMT) induced by palbociclib, was attenuated by alpelisib and cetuximab rather than cisplatin. Subsequently, PDX models with distinct genetic background further validated that palbociclib plus alpelisib had significant synergistic effects in models harboring PIK3CA amplification. CONCLUSIONS This study provides insights into the systematic combinatory effect associated with CDK4/6 inhibition and supports further initiation of clinical trials using the palbociclib plus alpelisib combination in HPVneg HNSCC with PIK3CA alterations.
Collapse
Affiliation(s)
- Ziyue Gu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Chaoji Shi
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jiayi Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yong Han
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Bao Sun
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Wuchang Zhang
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jing Wu
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guoyu Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Weimin Ye
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jiang Li
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
| |
Collapse
|
60
|
Reddy S, Barkhane Z, Elmadi J, Satish Kumar L, Pugalenthi LS, Ahmad M. Cyclin-Dependent Kinase 4 and 6 Inhibitors: A Quantum Leap in the Treatment of Advanced Breast Cancers. Cureus 2022; 14:e23901. [PMID: 35530846 PMCID: PMC9076043 DOI: 10.7759/cureus.23901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is defined as an uncontrolled growth of breast cells that affected 2.3 million women in 2020 alone. Until a few years earlier, radiotherapy and chemotherapy were the most commonly used treatments in treating BC; however, many trials and studies were conducted to test the competence of cyclin-dependent kinases 4/6 (CDK4/6) in arresting the cell cycle, and it was found that they were highly influential in halting the disease from progressing. Palbociclib, ribociclib, and abemaciclib are the three drugs that have been approved by the US Food and Drug Administration (FDA) and are even more efficient when used in combination with aromatase inhibitors and fulvestrant. This article aimed to explain the effect of CDK4/6 inhibitors on tumor cells and their efficacy in combination with other drugs. We further explored the development of resistance to these treatments and future possibilities.
Collapse
|
61
|
García-Sáenz JÁ, Martínez-Jáñez N, Cubedo R, Jerez Y, Lahuerta A, González-Santiago S, Ferrer N, Ramos M, Alonso-Romero JL, Antón A, Carrasco E, Chen J, Neuwirth R, Galinsky K, Vincent S, Leonard EJ, Slamon D. Sapanisertib plus Fulvestrant in Postmenopausal Women with Estrogen Receptor-Positive/HER2-Negative Advanced Breast Cancer after Progression on Aromatase Inhibitor. Clin Cancer Res 2022; 28:1107-1116. [PMID: 34980598 PMCID: PMC9365359 DOI: 10.1158/1078-0432.ccr-21-2652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 12/27/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE This phase II study investigated daily or weekly sapanisertib (a selective dual inhibitor of mTOR complexes 1 and 2) in combination with fulvestrant. PATIENTS AND METHODS Postmenopausal women with estrogen receptor-positive (ER+)/HER2-negative (HER2-) advanced or metastatic breast cancer following progression during/after aromatase inhibitor treatment were randomized to receive fulvestrant 500 mg (28-day treatment cycles), fulvestrant plus sapanisertib 4 mg daily, or fulvestrant plus sapanisertib 30 mg weekly, until progressive disease, unacceptable toxicity, consent withdrawal, or study completion. RESULTS Among 141 enrolled patients, baseline characteristics were balanced among treatment arms, including prior cyclin-dependent kinase-4/6 (CDK4/6) inhibitor treatment in 33% to 35% of patients. Median progression-free survival (PFS; primary endpoint) was 3.5 months in the single-agent fulvestrant arm, compared with 7.2 months for fulvestrant plus sapanisertib daily [HR, 0.77; 95% confidence interval (CI), 0.47-1.26] and 5.6 months for fulvestrant plus sapanisertib weekly (HR, 0.88; 95% CI, 0.53-1.45). The greatest PFS benefits were seen in patients who had previously received CDK4/6 inhibitors. The most common adverse events were nausea, vomiting, and hyperglycemia, all occurring more frequently in the combination therapy arms. Treatment discontinuation due to adverse events occurred more frequently in the two combination therapy arms than with single-agent fulvestrant (32% and 36% vs. 4%, respectively). CONCLUSIONS Fulvestrant plus sapanisertib daily/weekly resulted in numerically longer PFS in patients with ER+/HER2- advanced or metastatic breast cancer, compared with single-agent fulvestrant. The combination was associated with increased toxicity. Further development of sapanisertib using these dosing schedules in this setting is not supported by these data.
Collapse
Affiliation(s)
- José Á. García-Sáenz
- Medical Oncology, Hospital Clínico Universitario San Carlos, Madrid, Spain.,Centro de Investigación Biomédica en Red CIBERONC-ISCIII, Madrid, Spain.,GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Corresponding Author: José Á. García-Sáenz, Medical Oncology, Hospital Clínico Universitario San Carlos, Calle del Prof Martín Lagos, Madrid 28040, Spain. Phone: 349-1330-3000, ext. 7768; E-mail:
| | - Noelia Martínez-Jáñez
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ricardo Cubedo
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Yolanda Jerez
- Centro de Investigación Biomédica en Red CIBERONC-ISCIII, Madrid, Spain.,GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Fundación de Investigación Biomédica, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| | - Ainhara Lahuerta
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Onkologikoa, Gipuzkoa, Spain
| | - Santiago González-Santiago
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitario San Pedro de Alcántara, Cáceres, Spain
| | - Nieves Ferrer
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitari Son Espases, Palma, Spain
| | - Manuel Ramos
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Centro Oncológico de Galicia, A Coruña, Spain
| | - Jose L. Alonso-Romero
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Antonio Antón
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Eva Carrasco
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
| | - Jingjing Chen
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Rachel Neuwirth
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Kevin Galinsky
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Sylvie Vincent
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - E. Jane Leonard
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Dennis Slamon
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
62
|
Cogliati V, Capici S, Pepe FF, di Mauro P, Riva F, Cicchiello F, Maggioni C, Cordani N, Cerrito MG, Cazzaniga ME. How to Treat HR+/HER2- Metastatic Breast Cancer Patients after CDK4/6 Inhibitors: An Unfinished Story. Life (Basel) 2022; 12:378. [PMID: 35330128 PMCID: PMC8954717 DOI: 10.3390/life12030378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
CDK4/6 inhibitors in association with endocrine therapy represent the best therapeutic choice for either endocrine-sensitive or resistant hormone-receptor-positive advanced breast cancer patients. On the contrary, the optimal therapeutic strategy after the failure of CDK4/6 inhibitors-based treatment still remains an open question worldwide. In this review, we analyze the most studied mechanisms of resistance to CDK4/6 inhibitors treatment, as well as the most significant results of retrospective and prospective trials in the setting of progression after CDK4/6 inhibitors, to provide the reader a comprehensive overview from both a preclinical and especially a clinical perspective. In our opinion, an approach based on a deeper knowledge of resistance mechanisms to CDK4/6 inhibitors, but also on a careful analysis of what is done in clinical practice, can lead to a better definition of prospective randomized trials, to implement a personalized sequence approach, based on molecular analyses.
Collapse
Affiliation(s)
- Viola Cogliati
- Phase 1 Research Centre, ASST Monza, 20900 Monza, MB, Italy; (S.C.); (F.F.P.); (M.E.C.)
| | - Serena Capici
- Phase 1 Research Centre, ASST Monza, 20900 Monza, MB, Italy; (S.C.); (F.F.P.); (M.E.C.)
| | - Francesca Fulvia Pepe
- Phase 1 Research Centre, ASST Monza, 20900 Monza, MB, Italy; (S.C.); (F.F.P.); (M.E.C.)
| | - Pierluigi di Mauro
- Oncology Unit, ASST Monza, 20900 Monza, MB, Italy; (P.d.M.); (F.R.); (F.C.); (C.M.)
| | - Francesca Riva
- Oncology Unit, ASST Monza, 20900 Monza, MB, Italy; (P.d.M.); (F.R.); (F.C.); (C.M.)
| | - Federica Cicchiello
- Oncology Unit, ASST Monza, 20900 Monza, MB, Italy; (P.d.M.); (F.R.); (F.C.); (C.M.)
| | - Claudia Maggioni
- Oncology Unit, ASST Monza, 20900 Monza, MB, Italy; (P.d.M.); (F.R.); (F.C.); (C.M.)
| | - Nicoletta Cordani
- School of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, MB, Italy; (N.C.); (M.G.C.)
| | - Maria Grazia Cerrito
- School of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, MB, Italy; (N.C.); (M.G.C.)
| | - Marina Elena Cazzaniga
- Phase 1 Research Centre, ASST Monza, 20900 Monza, MB, Italy; (S.C.); (F.F.P.); (M.E.C.)
- School of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, MB, Italy; (N.C.); (M.G.C.)
| |
Collapse
|
63
|
Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res 2022; 24:17. [PMID: 35248122 PMCID: PMC8898415 DOI: 10.1186/s13058-022-01510-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Pharmacological inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are now an established standard of care for patients with advanced hormone receptor-positive breast cancer. The canonical mechanism underlying CDK4/6 inhibitor activity is the suppression of phosphorylation of the retinoblastoma tumor suppressor protein, which serves to prevent cancer cell proliferation. Recent data suggest that these agents induce other diverse effects within both tumor and stromal compartments, which serve to explain aspects of their clinical activity. Here, we review these phenomena and discuss how they might be leveraged in the development of novel CDK4/6 inhibitor-containing combination treatments. We also briefly review the various known mechanisms of acquired resistance in the clinical setting.
Collapse
Affiliation(s)
- April C Watt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Shom Goel
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
64
|
Sajid A, Saeed MS, Malik RM, Fazal S, Malik S, Kamal MA. Prediction of Secondary and Tertiary Structure and Docking of Rb1WT
And Rb1R661W Proteins. CURRENT BIOTECHNOLOGY 2022. [DOI: 10.2174/2211550111666220127100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background:
Retinoblastoma, a malignancy occurring in the juvenile cells of the retina,
is responsible for light detection. It is one of the most emerging ra re childhood and infant cancer.
It is initiated by the mutation in Rb1, a first tumor suppressor gene located on chromosome 13q14.
Rb1 protein is responsible for cell cycle regulation.
Methods:
In our study, secondary and 3D-Structural predictions of Rb1WT and Rb1R661W were made
by comparative or homology modeling to find any structural change leading to the disruption in its
further interactions. Quality assurance of the structures was done by Ramachandran Plot for a stable
structure. Both the proteins were then applied by docking process with proteins of interest.
Results:
Secondary structure showed a number of mutations in helixes, β-Hairpins of Rb1R661W. The
major change was the loss of β-Hairpin loop, extension and shortening of helixes. 3D comparison
structure showed a change in the groove of Rb1R661W. Docking results, unlike RB1 WT, had different
and no interactions with some of the proteins of interest. This mutation in Rb1 protein had a deleterious
effect on the protein functionality.
Conclusion:
This study will help to design the appropriate therapy and also understand the mechanism
of disease of retinoblastoma, for researchers and pharmaceuticals.
Collapse
Affiliation(s)
- Aimen Sajid
- Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Rabbiah Manzoor Malik
- Capital University of Science and Technology, Islamabad, Pakistan
- Wah Medical College, Wah Cantt, Pakistan
| | - Sahar Fazal
- Capital University of Science and Technology, Islamabad, Pakistan
| | - Shaukat Malik
- Capital University of Science and Technology, Islamabad, Pakistan
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research
Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee
Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
65
|
The Landscape of PDK1 in Breast Cancer. Cancers (Basel) 2022; 14:cancers14030811. [PMID: 35159078 PMCID: PMC8834120 DOI: 10.3390/cancers14030811] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Given that 3-phosphoinositide-dependent kinase 1 (PDK1) plays a crucial role in the malignant biological behaviors of a wide range of cancers, we review the influence of PDK1 in breast cancer (BC). First, we describe the power of PDK1 in cellular behaviors and characterize the interaction networks of PDK1. Then, we establish the roles of PDK1 in carcinogenesis, growth and survival, metastasis, and chemoresistance in BC cells. More importantly, we sort the current preclinical or clinical trials of PDK1-targeted therapy in BC and find that, even though no selective PDK1 inhibitor is currently available for BC therapy, the combination trials of PDK1-targeted therapy and other agents have provided some benefit. Thus, there is increasing anticipation that PDK1-targeted therapy will have its space in future therapeutic approaches related to BC, and we hope the novel approaches of targeted therapy will be conducive to ameliorating the dismal prognosis of BC patients.
Collapse
|
66
|
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) and their activating partners, D-type cyclins, link the extracellular environment with the core cell cycle machinery. Constitutive activation of cyclin D–CDK4/6 represents the driving force of tumorigenesis in several cancer types. Small-molecule inhibitors of CDK4/6 have been used with great success in the treatment of hormone receptor–positive breast cancers and are in clinical trials for many other tumor types. Unexpectedly, recent work indicates that inhibition of CDK4/6 affects a wide range of cellular functions such as tumor cell metabolism and antitumor immunity. We discuss how recent advances in understanding CDK4/6 biology are opening new avenues for the future use of cyclin D–CDK4/6 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
67
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
68
|
Xia S, Lin Q. Estrogen Receptor Bio-Activities Determine Clinical Endocrine Treatment Options in Estrogen Receptor-Positive Breast Cancer. Technol Cancer Res Treat 2022; 21:15330338221090351. [PMID: 35450488 PMCID: PMC9036337 DOI: 10.1177/15330338221090351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In estrogen receptor positive (ER+) breast cancer therapy, estrogen receptors (ERs) are the major targeting molecules. ER-targeted therapy has provided clinical benefits for approximately 70% of all breast cancer patients through targeting the ERα subtype. In recent years, mechanisms underlying breast cancer occurrence and progression have been extensively studied and largely clarified. The PI3K/AKT/mTOR pathway, microRNA regulation, and other ER downstream signaling pathways are found to be the effective therapeutic targets in ER+ BC therapy. A number of the ER+ (ER+) breast cancer biomarkers have been established for diagnosis and prognosis. The ESR1 gene mutations that lead to endocrine therapy resistance in ER+ breast cancer had been identified. Mutations in the ligand-binding domain of ERα which encoded by ESR1 gene occur in most cases. The targeted drugs combined with endocrine therapy have been developed to improve the therapeutic efficacy of ER+ breast cancer, particularly the endocrine therapy resistance ER+ breast cancer. The combination therapy has been demonstrated to be superior to monotherapy in overall clinical evaluation. In this review, we focus on recent progress in studies on ERs and related clinical applications for targeted therapy and provide a perspective view for therapy of ER+ breast cancer.
Collapse
Affiliation(s)
- Song Xia
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, China
- Qiong Lin, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
69
|
Portman N, Chen J, Lim E. MDM2 as a Rational Target for Intervention in CDK4/6 Inhibitor Resistant, Hormone Receptor Positive Breast Cancer. Front Oncol 2021; 11:777867. [PMID: 34804982 PMCID: PMC8596371 DOI: 10.3389/fonc.2021.777867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
With the adoption of inhibitors of cyclin dependent kinases 4 and 6 (CDK4/6i) in combination with endocrine therapy as standard of care for the treatment of advanced and metastatic estrogen receptor positive (ER+) breast cancer, the search is now on for novel therapeutic options to manage the disease after the inevitable development of resistance to CDK4/6i. In this review we will consider the integral role that the p53/MDM2 axis plays in the interactions between CDK4/6, ERα, and inhibitors of these molecules, the current preclinical evidence for the efficacy of MDM2 inhibitors in ER+ breast cancer, and discuss the possibility of targeting the p53/MDM2 via inhibition of MDM2 in the CDK4/6i resistance setting.
Collapse
Affiliation(s)
- Neil Portman
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Julia Chen
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Elgene Lim
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
70
|
Scheidemann ER, Shajahan-Haq AN. Resistance to CDK4/6 Inhibitors in Estrogen Receptor-Positive Breast Cancer. Int J Mol Sci 2021; 22:12292. [PMID: 34830174 PMCID: PMC8625090 DOI: 10.3390/ijms222212292] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common form of breast cancer. Antiestrogens were the first therapy aimed at treating this subtype, but resistance to these warranted the development of a new treatment option. CDK4/6 inhibitors address this problem by halting cell cycle progression in ER+ cells, and have proven to be successful in the clinic. Unfortunately, both intrinsic and acquired resistance to CDK4/6 inhibitors are common. Numerous mechanisms of how resistance occurs have been identified to date, including the activation of prominent growth signaling pathways, the loss of tumor-suppressive genes, and noncanonical cell cycle function. Many of these have been successfully targeted and demonstrate the ability to overcome resistance to CDK4/6 inhibitors in preclinical and clinical trials. Future studies should focus on the development of biomarkers so that patients likely to be resistant to CDK4/6 inhibition can initially be given alternative methods of treatment.
Collapse
Affiliation(s)
| | - Ayesha N. Shajahan-Haq
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA;
| |
Collapse
|
71
|
Cui XH, Peng QJ, Li RZ, Lyu XJ, Zhu CF, Qin XH. Cell division cycle associated 8: A novel diagnostic and prognostic biomarker for hepatocellular carcinoma. J Cell Mol Med 2021; 25:11097-11112. [PMID: 34741389 PMCID: PMC8650035 DOI: 10.1111/jcmm.17032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
The cell division cycle associated 8 (CDCA8) is a crucial component of the chromosome passenger complex (CPC). It has been implicated in the regulation of cell dynamic localization during mitosis. However, its role in hepatocellular carcinoma (HCC) is not clearly known. In this study, data of 374 patients with HCC were retrieved from the Cancer Genome Atlas (TCGA) database. Pan analysis of Gene Expression Profiling Interactive Analysis (GEPIA) database was performed to profile the mRNA expression of CDCA8 in HCC. Then, the Kaplan‐Meier plotter database was analysed to determine the prognostic value of CDCA8 in HCC. In addition, samples of tumour and adjacent normal tissues were collected from 88 HCC patients to perform immunohistochemistry (IHC), reverse transcription‐quantitative polymerase chain reaction (qRT‐PCR) and Western blotting. The results obtained from bioinformatic analyses were validated through CCK‐8 assay, EdU assay, colony formation assay, cell cycle assays and Western blotting experiments. Analysis of the Kaplan‐Meier plotter database showed that high expression of CDCA8 may lead to poor overall survival (OS, p = 4.06e‐05) in patients with HCC. For the 88 patients with HCC, we found that stages and grades appeared to be strongly linked with CDCA8 expression. Furthermore, the high expression of CDCA8 was found to be correlated with poor OS (p = 0.0054) and progression‐free survival (PFS, p = 0.0009). In vitro experiments revealed that inhibition of CDCA8 slowed cell proliferation and blocked the cell cycle at the G0/G1 phase. In vivo experiments demonstrated that inhibition of CDCA8 inhibited tumour growth. Finally, blockade of CDCA8 reduced the expression levels of cyclin A2, cyclin D1, CDK4, CDK6, Ki67 and PCNA. And, there is an interaction between CDCA8 and E2F1. In conclusion, this research demonstrates that CDCA8 may serve as a biomarker for early diagnosis and prognosis prediction of HCC patients. In addition, CDCA8 could be an effective therapeutic target in HCC.
Collapse
Affiliation(s)
- Xiao-Han Cui
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiu-Ju Peng
- Department of Pediatrics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ren-Zhi Li
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xia-Jie Lyu
- Weifang Medical University, Weifang, Shandong, China
| | - Chun-Fu Zhu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xi-Hu Qin
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
72
|
Freeman-Cook K, Hoffman RL, Miller N, Almaden J, Chionis J, Zhang Q, Eisele K, Liu C, Zhang C, Huser N, Nguyen L, Costa-Jones C, Niessen S, Carelli J, Lapek J, Weinrich SL, Wei P, McMillan E, Wilson E, Wang TS, McTigue M, Ferre RA, He YA, Ninkovic S, Behenna D, Tran KT, Sutton S, Nagata A, Ornelas MA, Kephart SE, Zehnder LR, Murray B, Xu M, Solowiej JE, Visswanathan R, Boras B, Looper D, Lee N, Bienkowska JR, Zhu Z, Kan Z, Ding Y, Mu XJ, Oderup C, Salek-Ardakani S, White MA, VanArsdale T, Dann SG. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 2021; 39:1404-1421.e11. [PMID: 34520734 DOI: 10.1016/j.ccell.2021.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.
Collapse
Affiliation(s)
- Kevin Freeman-Cook
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Robert L Hoffman
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nichol Miller
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jonathan Almaden
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - John Chionis
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Qin Zhang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Koleen Eisele
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Chaoting Liu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cathy Zhang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nanni Huser
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Lisa Nguyen
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cinthia Costa-Jones
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Sherry Niessen
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jordan Carelli
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - John Lapek
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Scott L Weinrich
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ping Wei
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Elizabeth McMillan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Elizabeth Wilson
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Tim S Wang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Michele McTigue
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Rose Ann Ferre
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - You-Ai He
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Sacha Ninkovic
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Douglas Behenna
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Khanh T Tran
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Scott Sutton
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Asako Nagata
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Martha A Ornelas
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Susan E Kephart
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Luke R Zehnder
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Brion Murray
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Meirong Xu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - James E Solowiej
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ravi Visswanathan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Britton Boras
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - David Looper
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nathan Lee
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jadwiga R Bienkowska
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Zhou Zhu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Zhengyan Kan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ying Ding
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Xinmeng Jasmine Mu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cecilia Oderup
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Shahram Salek-Ardakani
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Michael A White
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Todd VanArsdale
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA.
| | - Stephen G Dann
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
73
|
Alves CL, Ehmsen S, Terp MG, Portman N, Tuttolomondo M, Gammelgaard OL, Hundebøl MF, Kaminska K, Johansen LE, Bak M, Honeth G, Bosch A, Lim E, Ditzel HJ. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 2021; 12:5112. [PMID: 34433817 PMCID: PMC8387387 DOI: 10.1038/s41467-021-25422-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) combined with endocrine therapy have shown impressive efficacy in estrogen receptor-positive advanced breast cancer. However, most patients will eventually experience disease progression on this combination, underscoring the need for effective subsequent treatments or better initial therapies. Here, we show that triple inhibition with fulvestrant, CDK4/6i and AKT inhibitor (AKTi) durably impairs growth of breast cancer cells, prevents progression and reduces metastasis of tumor xenografts resistant to CDK4/6i-fulvestrant combination or fulvestrant alone. Importantly, switching from combined fulvestrant and CDK4/6i upon resistance to dual combination with AKTi and fulvestrant does not prevent tumor progression. Furthermore, triple combination with AKTi significantly inhibits growth of patient-derived xenografts resistant to combined CDK4/6i and fulvestrant. Finally, high phospho-AKT levels in metastasis of breast cancer patients treated with a combination of CDK4/6i and endocrine therapy correlates with shorter progression-free survival. Our findings support the clinical development of ER, CDK4/6 and AKT co-targeting strategies following progression on CDK4/6i and endocrine therapy combination, and in tumors exhibiting high phospho-AKT levels, which are associated with worse clinical outcome.
Collapse
Affiliation(s)
- Carla L Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Monique F Hundebøl
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kamila Kaminska
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lene E Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Sydvestjysk Sygehus, Esbjerg, Denmark
| | - Gabriella Honeth
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ana Bosch
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
74
|
Wu J, Xu W, Ma L, Sheng J, Ye M, Chen H, Zhang Y, Wang B, Liao M, Meng T, Zhou Y, Chen H. Formononetin relieves the facilitating effect of lncRNA AFAP1-AS1-miR-195/miR-545 axis on progression and chemo-resistance of triple-negative breast cancer. Aging (Albany NY) 2021; 13:18191-18222. [PMID: 34289449 PMCID: PMC8351708 DOI: 10.18632/aging.203156] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/29/2021] [Indexed: 11/30/2022]
Abstract
This investigation attempted to discern whether formononetin restrained progression of triple-negative breast cancer (TNBC) by blocking lncRNA AFAP1-AS1-miR-195/miR-545 axis. We prepared TNBC cell lines (i.e. MDA-MB-231 and BT-549) and normal human mammary epithelial cell line (i.e. MCF-10A) in advance, and the TNBC cell lines were, respectively, transfected by pcDNA3.1-lncRNA AFAP1-AS1, si-lncRNA AFAP1-AS1, pcDNA6.2/GW/EmGFP-miR-545 or pcDNA6.2/GW/EmGFP-miR-195. Resistance of TNBC cells in response to 5-Fu, adriamycin, paclitaxel and cisplatin was evaluated through MTT assay, while potentials of TNBC cells in proliferation, migration and invasion were assessed via CCK8 assay and Transwell assay. Consequently, silencing of lncRNA AFAP1-AS1 impaired chemo-resistance, proliferation, migration and invasion of TNBC cells (P<0.05), and over-expression of miR-195 and miR-545, which were sponged and down-regulated by lncRNA AFAP1-AS1 (P<0.05), significantly reversed the promoting effect of pcDNA3.1-lncRNA AFAP1-AS1 on proliferation, migration, invasion and chemo-resistance of TNBC cells (P<0.05). Furthermore, CDK4 and Raf-1, essential biomarkers of TNBC progression, were, respectively, subjected to target and down-regulation of miR-545 and miR-195 (P<0.05), and they were promoted by pcDNA3.1-lncRNA AFAP1-AS1 at protein and mRNA levels (P<0.05). Additionally, formononetin significantly decreased expressions of lncRNA AFAP1-AS1, CDK4 and Raf-1, while raised miR-195 and miR-545 expressions in TNBC cells (P<0.05), and exposure to it dramatically contained malignant behaviors of TNBC cells (P<0.05). In conclusion, formononetin alleviated TNBC malignancy by suppressing lncRNA AFAP1-AS1-miR-195/miR-545 axis, suggesting that molecular targets combined with traditional Chinese medicine could yield significant clinical benefits in TNBC.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lina Ma
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Jiayu Sheng
- Department of Breast Surgery, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Meina Ye
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Hao Chen
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yuzhu Zhang
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bing Wang
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Mingjuan Liao
- Department of Traditional Chinese Medicine, The Ninth People's Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Tian Meng
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yue Zhou
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Hongfeng Chen
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| |
Collapse
|
75
|
The mechanisms involved in the resistance of estrogen receptor-positive breast cancer cells to palbociclib are multiple and change over time. J Cancer Res Clin Oncol 2021; 147:3211-3224. [PMID: 34244855 PMCID: PMC8484193 DOI: 10.1007/s00432-021-03722-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are widely used for the treatment of advanced estrogen receptor (ER)-positive breast cancer. To develop a treatment strategy for cancers resistant to CDK4/6 inhibitors, here, we established palbociclib-resistant sublines and analyzed their resistance mechanisms. METHODS Palbociclib-resistant sublines were established from T47D and MCF7 cells. Sensitivity to other drugs was assessed via the WST assay. Altered expression/phosphorylation of proteins related to signal transduction and cell cycle regulation was examined using western blotting. Copy number alterations and mutations in the retinoblastoma (RB1) gene were also analyzed. RESULTS Although an increase in CDK6 and decrease in retinoblastoma protein (Rb) expression/phosphorylation were commonly observed in the resistant sublines, changes in other cell cycle-related proteins were heterogeneous. Upon extended exposure to palbociclib, the expression/phosphorylation of these proteins became altered, and the long-term removal of palbociclib did not restore the Rb expression/phosphorylation patterns. Consistently a copy number decrease, as well as RB1 mutations were detected. Moreover, although the resistant sublines exhibited cross-resistance to abemaciclib, their response to dinaciclib was the same as that of wild-type cells. Of note, the cell line exhibiting increased mTOR phosphorylation also showed a higher sensitivity to everolimus. However, the sensitivity to chemotherapeutic agents was unchanged in palbociclib-resistant sublines. CONCLUSION ER-positive breast cancer cells use multiple molecular mechanisms to survive in the presence of palbociclib, suggesting that targeting activated proteins may be an effective strategy to overcome resistance. Additionally, palbociclib monotherapy induces mutations and copy number alterations in the RB1 gene.
Collapse
|
76
|
PI3K and MAPK Pathways as Targets for Combination with the Pan-HER Irreversible Inhibitor Neratinib in HER2-Positive Breast Cancer and TNBC by Kinome RNAi Screening. Biomedicines 2021; 9:biomedicines9070740. [PMID: 34203351 PMCID: PMC8301343 DOI: 10.3390/biomedicines9070740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Human epidermal growth factor receptor (EGFR) 2 (HER2) is overexpressed/amplified in about 25% of all breast cancers, and EGFR is overexpressed in up to 76% and amplified in up to 24% of triple-negative breast cancers (TNBC). Here, we aimed to identify inhibitors that may enhance the anti-tumor activity of neratinib for HER2+ breast cancer and TNBC. By conducting a non-biased high-throughput RNA interference screening, we identified PI3K/AKT/mTOR and MAPK as two potential inhibitory synergistic canonical pathways. We confirmed that everolimus (mTOR inhibitor) and trametinib (MEK inhibitor) enhances combinatorial anti-proliferative effects with neratinib under anchorage-independent growth conditions (p < 0.05). Compared to single agent neratinib, the combination therapies significantly enhanced tumor growth inhibition in both SUM190 HER2+ breast cancer (neratinib plus everolimus, 77%; neratinib plus trametinib, 77%; p < 0.0001) and SUM149 TNBC (neratinib plus everolimus, 71%; neratinib plus trametinib, 81%; p < 0.0001) xenograft models. Compared to single-agent neratinib, everolimus, or trametinib, both everolimus plus neratinib and trametinib plus neratinib significantly suppressed proliferation marker Ki67 and enhanced antitumor efficacy by activating the apoptosis pathway shown by increased Bim and cleaved-PARP expression. Taken together, our data justify new neratinib-based combinations for both HER2+ breast cancer and TNBC.
Collapse
|
77
|
Jhaveri K, Burris Rd HA, Yap TA, Hamilton E, Rugo HS, Goldman JW, Dann S, Liu F, Wong GY, Krupka H, Shapiro GI. The evolution of cyclin dependent kinase inhibitors in the treatment of cancer. Expert Rev Anticancer Ther 2021; 21:1105-1124. [PMID: 34176404 DOI: 10.1080/14737140.2021.1944109] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The cell cycle cyclin dependent kinases (CDKs) play a critical role in controlling the transition between cell cycle phases, as well as cellular transcription. Aberrant CDK activation is common in cancer, and deregulation of the cell cycle a key hallmark of cancer. Although CDK4/6 inhibitors are now a standard-of-care option for first- and second-line HR+HER2- metastatic breast cancer, resistance inevitably limits their clinical benefit. AREAS COVERED Early pan-CDK inhibitors targeted the cell cycle and RNA polymerase II phosphorylation, but were complicated by toxicity, providing a rationale and need for the development of selective CDK inhibitors. In this review, we highlight selected recent literature to provide a narrative review summarizing the current CDK inhibitor therapeutic landscape. We detail the challenges associated with targeting CDKs for the treatment of breast and other cancers and review emerging biomarkers that may aid response prediction. We also discuss the risk-benefit ratio for CDK therapy and explore promising combination approaches. EXPERT OPINION Although CDK inhibitors may stem the proliferation of cancer cells, resistance remains an issue, and currently there are limited biomarkers to predict response to therapy. Ongoing research investigating CDK inhibitors in cancer is of paramount importance to define appropriate and effective treatment regimens.
Collapse
Affiliation(s)
- Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Howard A Burris Rd
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA
| | - Timothy A Yap
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA
| | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | | | | | | | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
78
|
Aka Y, Karakas B, Acikbas U, Basaga H, Gul O, Kutuk O. Kinome-wide RNAi screening for mediators of ABT-199 resistance in breast cancer cells identifies Wee1 as a novel therapeutic target. Int J Biochem Cell Biol 2021; 137:106028. [PMID: 34171479 DOI: 10.1016/j.biocel.2021.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Antiapoptotic and proapoptotic BCL-2 protein family members regulate mitochondrial apoptotic pathway. Small molecule inhibitors of antiapoptotic BCL-2 proteins including BCL-2-specific inhibitor ABT-199 (Venetoclax) are in clinical development. However, the efficiency of ABT-199 as a single agent in solid tumors is limited. We performed a high-throughput RNAi kinome screen targeting 691 kinases to identify potentially targetable kinases to enhance ABT-199 response in breast cancer cells. Our studies identified Wee1 as the primary target kinase to overcome resistance to ABT-199. Depletion of Wee1 by siRNA-mediated knockdown or inhibition of Wee1 by the small molecule Wee1 inhibitor AZD1775 sensitized SKBR3, MDA-MB-468, T47D and CAMA-1 breast cancer cells to ABT-199 along with decreased MCL1. BH3-only proteins PUMA and BIM functionally contribute to apoptosis signaling following co-targeting BCL-2 and Wee1. Suppression of Wee1 function increased mitochondrial cell death priming. Furthermore, we found that Wee1 inhibition altered MCL1 phosphorylation and protein stability, which led to HUWE1-mediated MCL1 degradation. Our findings suggest that Wee1 inhibition can overcome resistance to ABT-199 and provide a rationale for further translational investigation of BCL-2 inhibitor/Wee1 inhibitor combination in breast cancer.
Collapse
Affiliation(s)
- Yeliz Aka
- Baskent University School of Medicine, Dept. of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Bahriye Karakas
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Ufuk Acikbas
- Baskent University School of Medicine, Dept. of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Huveyda Basaga
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Ozgur Gul
- Bilgi University, Dept. of Genetics and Bioengineering, Istanbul, Turkey
| | - Ozgur Kutuk
- Baskent University School of Medicine, Dept. of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey.
| |
Collapse
|
79
|
Jeong H, Jeong JH, Kim JE, Ahn JH, Jung KH, Kim SB. Comparison of the Effectiveness and Clinical Outcome of Everolimus Followed by CDK4/6 Inhibitors with the Opposite Treatment Sequence in Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Cancer Res Treat 2021; 54:469-477. [PMID: 34176251 PMCID: PMC9016296 DOI: 10.4143/crt.2021.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose In hormone receptor-positive, human epidermal growth factor receptor 2–negative metastatic breast cancer (HR+ HER2− MBC), the mainstay treatment options include cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) and everolimus (EVE) in combination with endocrine treatment. This study aims to compare the outcomes of the following treatment sequences: CDK4/6i followed by EVE and EVE followed by CDK4/6i. Materials and Methods Data from HR+ HER2− MBC patients treated between January 2014 and November 2020 with both CDK4/6i and EVE were retrospectively analyzed. Results Among the 88 patients included in the study, 51 received CDK4/6i before EVE (C→E group), and 37 received EVE before CDK4/6i (E→C group) with endocrine treatment. More patients in the E→C group had endocrine resistance (13.7% vs. 40.5%), experienced palliative chemotherapy (7.8% vs. 40.5%), and were heavily treated (treated as ≥ 3rd line, 5.9% vs. 40.5%). Median overall survival was 46.8 months in the C→E group and 38.9 months in the E→C group (p=0.151). Median composite progression-free survival (PFS), defined as the time from the start of the preceding regimen to disease progression on the following regimen or death, was 24.8 months in the C→E group vs. 21.8 months in the E→C group (p=0.681). Median PFS2/PFS1 ratio did not differ significantly between groups (0.5 in the C→E group, 0.6 in the E→C group; p=0.775). Ten patients (11.4%) discontinued EVE, and two patients (2.3%) discontinued CDK4/6i during treatment. Conclusion Although the CDK4/6i-based regimen should be considered as an earlier line of treatment, CDK4/6i- and EVE-based treatments can be valid options in circumstances where the other treatment had been already given.
Collapse
Affiliation(s)
- Hyehyun Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
80
|
Combined inhibition of DDR1 and CDK4/6 induces synergistic effects in ER-positive, HER2-negative breast cancer with PIK3CA/AKT1 mutations. Oncogene 2021; 40:4425-4439. [PMID: 34108622 DOI: 10.1038/s41388-021-01819-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Molecular alterations in the PI3K/AKT pathway occur frequently in hormone receptor-positive breast tumors. Patients with ER-positive, HER2-negative metastatic breast cancer are often treated with CDK4/6 inhibitors such as palbociclib in combination with endocrine therapy. Although this is an effective regimen, most patients ultimately progress. The purpose of this study was identifying synthetic lethality partners that can enhance palbociclib's antitumor efficacy in the presence of PIK3CA/AKT1 mutations. We utilized a barcoded shRNA library to determine critical targets for survival in isogenic MCF7 cells with PIK3CA/AKT1 mutations. We demonstrated that the efficacy of palbociclib is reduced in the presence of PIK3CA/AKT1 mutations. We also identified that the downregulation of discoidin domain receptor 1 (DDR1) is synthetically lethal with palbociclib. DDR1 knockdown and DDR1 pharmacological inhibitor decreased cell growth and inhibited cell cycle progression in all cell lines, while enhanced the sensitivity of PIK3CA/AKT1 mutant cells to palbociclib. Combined treatment of palbociclib and 7rh further induced cell cycle arrest in PIK3CA/AKT1 mutant cell lines. In vivo, 7rh significantly enhanced palbociclib's antitumor efficacy. Our data indicates that DDR1 inhibition can augment cell cycle suppressive effect of palbociclib and could be effective strategy for targeted therapy of ER-positive, HER2-negative breast cancers with PI3K pathway activation.
Collapse
|
81
|
Abstract
In this review, Shen and Kang provide an overview of the tumor-intrinsic and microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. Metastasis is the ultimate “survival of the fittest” test for cancer cells, as only a small fraction of disseminated tumor cells can overcome the numerous hurdles they encounter during the transition from the site of origin to a distinctly different distant organ in the face of immune and therapeutic attacks and various other stresses. During cancer progression, tumor cells develop a variety of mechanisms to cope with the stresses they encounter, and acquire the ability to form metastases. Restraining these stress-releasing pathways could serve as potentially effective strategies to prevent or reduce metastasis and improve the survival of cancer patients. Here, we provide an overview of the tumor-intrinsic, microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. We also summarize the preclinical and clinical studies that evaluate the potential therapeutic benefit of targeting these stress-relieving pathways.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
82
|
NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev 2021; 99:102238. [PMID: 34098219 DOI: 10.1016/j.ctrv.2021.102238] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS. STATEMENT OF SIGNIFICANCE: An estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.
Collapse
|
83
|
Migliaccio I, Leo A, Galardi F, Guarducci C, Fusco GM, Benelli M, Di Leo A, Biganzoli L, Malorni L. Circulating Biomarkers of CDK4/6 Inhibitors Response in Hormone Receptor Positive and HER2 Negative Breast Cancer. Cancers (Basel) 2021; 13:2640. [PMID: 34072070 PMCID: PMC8199335 DOI: 10.3390/cancers13112640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) and endocrine therapy are the standard treatment for patients with hormone receptor-positive and HER2 negative (HR+/HER2-) metastatic breast cancer. Patients might show intrinsic and acquired resistance, which leads to treatment failure and progression. Circulating biomarkers have the potential advantages of recognizing patients who might not respond to treatment, monitoring treatment effects and identifying markers of acquired resistance during tumor progression with a simple withdrawal of peripheral blood. Genomic alterations on circulating tumor DNA and serum thymidine kinase activity, but also circulating tumor cells, epigenetic or exosome markers are currently being tested as markers of CDK4/6i treatment response, even though none of these have been integrated into clinical practice. In this review, we discuss the recent advancements in the development of circulating biomarkers of CDK4/6i response in patients with HR+/HER2-breast cancer.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Angela Leo
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Francesca Galardi
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Giulio Maria Fusco
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy;
| | - Angelo Di Leo
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| | - Laura Biganzoli
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| | - Luca Malorni
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| |
Collapse
|
84
|
Wang B, Li R, Wu S, Liu X, Ren J, Li J, Bi K, Wang Y, Jia H. Breast Cancer Resistance to Cyclin-Dependent Kinases 4/6 Inhibitors: Intricacy of the Molecular Mechanisms. Front Oncol 2021; 11:651541. [PMID: 34123801 PMCID: PMC8187902 DOI: 10.3389/fonc.2021.651541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is a common malignant tumor in women, with a highest incidence and mortality among all of the female malignant tumors. Notably, targeted therapy has achieved impressive success in the treatment of breast cancer. As one class of the anti-tumor targeted therapeutics, Cyclin-Dependent Kinases 4/6CDK4/6inhibitors have shown good clinical activity in treating breast cancer. Nevertheless, despite the promising clinical outcomes, intrinsic or acquired resistance to CDK4/6 inhibitors has limited the benefits of this novel target therapy. In the present review, we provide an overview of the currently known molecular mechanisms of resistance to CDK4/6 inhibitors, and discuss the potential strategies to overcoming drug resistance improving the outcomes for breast cancer patients treated with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Wu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Liu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianlin Ren
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaixin Bi
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
85
|
Advances in endocrine and targeted therapy for hormone-receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer. Chin Med J (Engl) 2021; 133:1099-1108. [PMID: 32265426 PMCID: PMC7213629 DOI: 10.1097/cm9.0000000000000745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nearly 70% of breast cancer (BC) is hormone-receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, and endocrine therapy is the mainstay of treatment for this subtype. However, intrinsic or acquired endocrine resistance can occur during the endocrine treatment. Based on insights of endocrine resistance mechanisms, a number of targeted therapies have been and continue to be developed. With regard to HR-positive, HER2-negative advanced BC, aromatase inhibitor (AI) is superior to tamoxifen, and fulvestrant is a better option for patients previously exposed to endocrine therapy. Targeted drugs, such as cyclin-dependent kinases (CDK) 4/6 inhibitors, mammalian target of rapamycin (mTOR) inhibitors, phosphoinositide-3-kinase (PI3K) inhibitors, and histone deacetylase (HDAC) inhibitors, play a significant role in the present and show a promising future. With the application of CDK4/6 inhibitors becoming common, mechanisms of acquired resistance to them should also be taken into consideration.
Collapse
|
86
|
Raimondi L, Raimondi FM, Pietranera M, Di Rocco A, Di Benedetto L, Miele E, Lazzeroni R, Cimino G, Spinelli GP. Assessment of Resistance Mechanisms and Clinical Implications in Patients with KRAS Mutated-Metastatic Breast Cancer and Resistance to CDK4/6 Inhibitors. Cancers (Basel) 2021; 13:cancers13081928. [PMID: 33923563 PMCID: PMC8073052 DOI: 10.3390/cancers13081928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Palbociclib in combination with fulvestrant is used globally to treat metastatic breast cancer, but it was recognized that not all patients benefit from this combination of drugs. However, the predictive factors remain unknown. Here, we show KRAS ctDNA levels as predictive mechanisms of resistance to palbociclib and fulvestrant, and their association with the time to treatment discontinuation of the above treatment. These observations shed light on the potential clinical applications of ctDNA analysis in this setting of patients, in order to provide critical information about tumour dynamics, and to predict who will take advantage from CDK4/6 inhibitors. Abstract Despite therapeutic improvements, resistance to palbociclib is a growing clinical challenge which is poorly understood. This study was conducted in order to understand the molecular mechanisms of resistance to palbociclib, and to identify biomarkers to predict who will take advantage from cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). A total of about a thousand blood samples were collected from 106 patients with hormone receptor positive (HR+) human epidermal growth factor receptor 2 (HER2) negative metastatic breast cancer who received palbociclib in combination with fulvestrant as the first-line metastatic therapy enrolled in this study. The genotyping of their plasma cell-free DNA was studied, including serial plasma samples. Collectively, our findings identify the appearance of KRAS mutations leading to palbociclib resistance acquisition within 6 months, and provide critical information for the prediction of therapeutic responses in metastatic breast cancer. By monitoring KRAS status through liquid biopsy, we could predict who will take advantage from the combination of palbociclib and fulvestrant, offering highly-individualized treatment plans, thus ensuring the best patient quality of life.
Collapse
Affiliation(s)
- Lucrezia Raimondi
- U.O.C. Territorial Oncology of Aprilia, Sapienza University of Rome, 04011 Aprilia, Italy; (L.R.); (G.C.)
| | | | - Marta Pietranera
- Centro Medico Diagnostico Salus, Via Cadorna 8, 00053 Civitavecchia, Italy;
| | - Arianna Di Rocco
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00100 Rome, Italy;
| | | | - Evelina Miele
- Department of Paediatric Haematology/Oncology Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Rachele Lazzeroni
- Department of Medical and Surgical Scieces and Translational Medicine, “Sapienza” University of Rome, 00100 Rome, Italy;
| | - Giuseppe Cimino
- U.O.C. Territorial Oncology of Aprilia, Sapienza University of Rome, 04011 Aprilia, Italy; (L.R.); (G.C.)
| | - Gian Paolo Spinelli
- U.O.C. Territorial Oncology of Aprilia, Sapienza University of Rome, 04011 Aprilia, Italy; (L.R.); (G.C.)
- Correspondence:
| |
Collapse
|
87
|
Chaikovsky AC, Li C, Jeng EE, Loebell S, Lee MC, Murray CW, Cheng R, Demeter J, Swaney DL, Chen SH, Newton BW, Johnson JR, Drainas AP, Shue YT, Seoane JA, Srinivasan P, He A, Yoshida A, Hipkins SQ, McCrea E, Poltorack CD, Krogan NJ, Diehl JA, Kong C, Jackson PK, Curtis C, Petrov DA, Bassik MC, Winslow MM, Sage J. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature 2021; 592:794-798. [PMID: 33854239 PMCID: PMC8246597 DOI: 10.1038/s41586-021-03474-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/08/2022]
Abstract
The initiation of cell division integrates a large number of intra- and extracellular inputs. D-type cyclins (hereafter, cyclin D) couple these inputs to the initiation of DNA replication1. Increased levels of cyclin D promote cell division by activating cyclin-dependent kinases 4 and 6 (hereafter, CDK4/6), which in turn phosphorylate and inactivate the retinoblastoma tumour suppressor. Accordingly, increased levels and activity of cyclin D-CDK4/6 complexes are strongly linked to unchecked cell proliferation and cancer2,3. However, the mechanisms that regulate levels of cyclin D are incompletely understood4,5. Here we show that autophagy and beclin 1 regulator 1 (AMBRA1) is the main regulator of the degradation of cyclin D. We identified AMBRA1 in a genome-wide screen to investigate the genetic basis of the response to CDK4/6 inhibition. Loss of AMBRA1 results in high levels of cyclin D in cells and in mice, which promotes proliferation and decreases sensitivity to CDK4/6 inhibition. Mechanistically, AMBRA1 mediates ubiquitylation and proteasomal degradation of cyclin D as a substrate receptor for the cullin 4 E3 ligase complex. Loss of AMBRA1 enhances the growth of lung adenocarcinoma in a mouse model, and low levels of AMBRA1 correlate with worse survival in patients with lung adenocarcinoma. Thus, AMBRA1 regulates cellular levels of cyclin D, and contributes to cancer development and the response of cancer cells to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Andrea C Chaikovsky
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Chuan Li
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Edwin E Jeng
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Samuel Loebell
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christopher W Murray
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ran Cheng
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Janos Demeter
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Si-Han Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yan Ting Shue
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jose A Seoane
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Preethi Srinivasan
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Andy He
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Akihiro Yoshida
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Susan Q Hipkins
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Edel McCrea
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carson D Poltorack
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - J Alan Diehl
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Christina Kong
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Peter K Jackson
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Monte M Winslow
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
88
|
Differential reprogramming of breast cancer subtypes in 3D cultures and implications for sensitivity to targeted therapy. Sci Rep 2021; 11:7259. [PMID: 33790333 PMCID: PMC8012355 DOI: 10.1038/s41598-021-86664-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Screening for effective candidate drugs for breast cancer has shifted from two-dimensional (2D) to three-dimensional (3D) cultures. Here we systematically compared the transcriptomes of these different culture conditions by RNAseq of 14 BC cell lines cultured in both 2D and 3D conditions. All 3D BC cell cultures demonstrated increased mitochondrial metabolism and downregulated cell cycle programs. Luminal BC cells in 3D demonstrated overall limited reprogramming. 3D basal B BC cells showed increased expression of extracellular matrix (ECM) interaction genes, which coincides with an invasive phenotype not observed in other BC cells. Genes downregulated in 3D were associated with metastatic disease progression in BC patients, including cyclin dependent kinases and aurora kinases. Furthermore, the overall correlation of the cell line transcriptome to the BC patient transcriptome was increased in 3D cultures for all TNBC cell lines. To define the most optimal culture conditions to study the oncogenic pathway of interest, an open source bioinformatics strategy was established.
Collapse
|
89
|
Galardi F, De Luca F, Biagioni C, Migliaccio I, Curigliano G, Minisini AM, Bonechi M, Moretti E, Risi E, McCartney A, Benelli M, Romagnoli D, Cappadona S, Gabellini S, Guarducci C, Conti V, Biganzoli L, Di Leo A, Malorni L. Circulating tumor cells and palbociclib treatment in patients with ER-positive, HER2-negative advanced breast cancer: results from a translational sub-study of the TREnd trial. Breast Cancer Res 2021; 23:38. [PMID: 33761970 PMCID: PMC7992319 DOI: 10.1186/s13058-021-01415-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Circulating tumor cells (CTCs) are prognostic in patients with advanced breast cancer (ABC). However, no data exist about their use in patients treated with palbociclib. We analyzed the prognostic role of CTC counts in patients enrolled in the cTREnd study, a pre-planned translational sub-study of TREnd (NCT02549430), that randomized patients with ABC to palbociclib alone or palbociclib plus the endocrine therapy received in the prior line of treatment. Moreover, we evaluated RB1 gene expression on CTCs and explored its prognostic role within the cTREnd subpopulation. Methods Forty-six patients with ER-positive, HER2-negative ABC were analyzed. Blood samples were collected before starting palbociclib treatment (timepoint T0), after the first cycle of treatment (timepoint T1), and at disease progression (timepoint T2). CTCs were isolated and counted by CellSearch® System using the CellSearch™Epithelial Cell kit. Progression-free survival (PFS), clinical benefit (CB) during study treatment, and time to treatment failure (TTF) after study treatment were correlated with CTC counts. Samples with ≥ 5 CTCs were sorted by DEPArray system® (DA). RB1 and GAPDH gene expression levels were measured by ddPCR. Results All 46 patients were suitable for CTCs analysis. CTC count at T0 did not show significant prognostic value in terms of PFS and CB. Patients with at least one detectable CTC at T1 (n = 26) had a worse PFS than those with 0 CTCs (n = 16) (p = 0.02). At T1, patients with an increase of at least three CTCs showed reduced PFS compared to those with no increase (mPFS = 3 versus 9 months, (p = 0.004). Finally, patients with ≥ 5 CTCs at T2 (n = 6/23) who received chemotherapy as post-study treatment had a shorter TTF (p = 0.02). Gene expression data for RB1 were obtained from 19 patients. CTCs showed heterogeneous RB1 expression. Patients with detectable expression of RB1 at any timepoint showed better, but not statistically significant, outcomes than those with undetectable levels. Conclusions CTC count seems to be a promising modality in monitoring palbociclib response. Moreover, CTC count at the time of progression could predict clinical outcome post-palbociclib. RB1 expression analysis on CTCs is feasible and may provide additional prognostic information. Results should be interpreted with caution given the small studied sample size. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01415-w.
Collapse
Affiliation(s)
- Francesca Galardi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Francesca De Luca
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | | | - Ilenia Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milan, Italy.,Department of Haematology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Alessandro M Minisini
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Martina Bonechi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Erica Moretti
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Emanuela Risi
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Amelia McCartney
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy.,School of Clinical Sciences, Monash University, Melbourne, Australia
| | | | | | - Silvia Cappadona
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Stefano Gabellini
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Cristina Guarducci
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Laura Biganzoli
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Angelo Di Leo
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy. .,"Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy.
| |
Collapse
|
90
|
Yin Q, Jian Y, Xu M, Huang X, Wang N, Liu Z, Li Q, Li J, Zhou H, Xu L, Wang Y, Yang C. CDK4/6 regulate lysosome biogenesis through TFEB/TFE3. J Cell Biol 2021; 219:151944. [PMID: 32662822 PMCID: PMC7401801 DOI: 10.1083/jcb.201911036] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Lysosomes are degradation and signaling organelles that adapt their biogenesis to meet many different cellular demands; however, it is unknown how lysosomes change their numbers for cell division. Here, we report that the cyclin-dependent kinases CDK4/6 regulate lysosome biogenesis during the cell cycle. Chemical or genetic inactivation of CDK4/6 increases lysosomal numbers by activating the lysosome and autophagy transcription factors TFEB and TFE3. CDK4/6 interact with and phosphorylate TFEB/TFE3 in the nucleus, thereby inactivating them by promoting their shuttling to the cytoplasm. During the cell cycle, lysosome numbers increase in S and G2/M phases when cyclin D turnover diminishes CDK4/6 activity. These findings not only uncover the molecular events that direct the nuclear export of TFEB/TFE3, but also suggest a mechanism that controls lysosome biogenesis in the cell cycle. CDK4/6 inhibitors promote autophagy and lysosome-dependent degradation, which has important implications for the therapy of cancer and lysosome-related disorders.
Collapse
Affiliation(s)
- Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Youli Jian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Meng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Niya Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhifang Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Qian Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Jinglin Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Hejiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
91
|
Dong C, Wu J, Chen Y, Nie J, Chen C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front Pharmacol 2021; 12:628690. [PMID: 33790792 PMCID: PMC8005514 DOI: 10.3389/fphar.2021.628690] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Although chemotherapy, targeted therapy and endocrine therapy decrease rate of disease recurrence in most breast cancer patients, many patients exhibit acquired resistance. Hyperactivation of the PI3K/AKT/mTOR pathway is associated with drug resistance and cancer progression. Currently, a number of drugs targeting PI3K/AKT/mTOR are being investigated in clinical trials by combining them with standard therapies to overcome acquired resistance in breast cancer. In this review, we summarize the critical role of the PI3K/AKT/mTOR pathway in drug resistance, the development of PI3K/AKT/mTOR inhibitors, and strategies to overcome acquired resistance to standard therapies in breast cancer.
Collapse
Affiliation(s)
- Chao Dong
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Yin Chen
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jianyun Nie
- Department of the Third Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
92
|
Mouron S, Manso L, Caleiras E, Rodriguez-Peralto JL, Rueda OM, Caldas C, Colomer R, Quintela-Fandino M, Bueno MJ. FGFR1 amplification or overexpression and hormonal resistance in luminal breast cancer: rationale for a triple blockade of ER, CDK4/6, and FGFR1. Breast Cancer Res 2021; 23:21. [PMID: 33579347 PMCID: PMC7881584 DOI: 10.1186/s13058-021-01398-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND FGFR1 amplification, but not overexpression, has been related to adverse prognosis in hormone-positive breast cancer (HRPBC). Whether FGFR1 overexpression and amplification are correlated, what is their distribution among luminal A or B HRPBC, and if there is a potential different prognostic role for amplification and overexpression are currently unknown features. The role of FGFR1 inhibitors in HRPBC is also unclear. METHODS FGFR1 amplification (FISH) and overexpression (RNAscope) were investigated in a N = 251 HRPBC patients cohort and the METABRIC cohort; effects on survival and FISH-RNAscope concordance were determined. We generated hormonal deprivation resistant (LTED-R) and FGFR1-overexpressing cell line variants of the ER+ MCF7 and T47-D and the ER+, FGFR1-amplified HCC1428 cell lines. The role of ER, CDK4/6, and/or FGFR1 blockade alone or in combinations in Rb phosphorylation, cell cycle, and survival were studied. RESULTS FGFR1 overexpression and amplification was non-concordant in > 20% of the patients, but both were associated to a similar relapse risk (~ 2.5-fold; P < 0.05). FGFR1 amplification or overexpression occurred regardless of the luminal subtype, but the incidence was higher in luminal B (16.3%) than A (6.6%) tumors; P < 0.05. The Kappa index for overexpression and amplification was 0.69 (P < 0.001). Twenty-four per cent of the patients showed either amplification and/or overexpression of FGFR1, what was associated to a hazard ratio for relapse of 2.6 (95% CI 1.44-4.62, P < 0.001). In vitro, hormonal deprivation led to FGFR1 overexpression. Primary FGFR1 amplification, engineered mRNA overexpression, or LTED-R-acquired FGFR1 overexpression led to resistance against hormonotherapy alone or in combination with the CDK4/6 inhibitor palbociclib. Blocking FGFR1 with the kinase-inhibitor rogaratinib led to suppression of Rb phosphorylation, abrogation of the cell cycle, and resistance-reversion in all FGFR1 models. CONCLUSIONS FGFR1 amplification and overexpression are associated to similar adverse prognosis in hormone-positive breast cancer. Capturing all the patients with adverse prognosis-linked FGFR1 aberrations requires assessing both features. Hormonal deprivation leads to FGFR1 overexpression, and FGFR1 overexpression and/or amplification are associated with resistance to hormonal monotherapy or in combination with palbociclib. Both resistances are reverted with triple ER, CDK4/6, and FGFR1 blockade.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor
- Breast Neoplasms/diagnosis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/etiology
- Cell Line, Tumor
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/genetics
- Disease Management
- Disease Susceptibility
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Female
- Gene Amplification
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Middle Aged
- Molecular Targeted Therapy
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Estrogen/metabolism
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Silvana Mouron
- Breast Cancer Clinical Research Unit, CNIO - Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Luis Manso
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Oscar M Rueda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Ramon Colomer
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Medical Oncology Department, Hospital Universitario La Princesa, Madrid, Spain
- Endowed Chair of Personalized Precision Medicine, Universidad Autonoma de Madrid - Fundación Instituto Roche, Madrid, Spain
- Unidad de Investigación Clínica y Ensayos Clínicos (UICEC) of Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, CNIO - Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain.
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain.
- Medical Oncology Department, Hospital Universitario de Fuenlabrada, Madrid, Spain.
- Medical Oncology Department, Hospital Universitario Quiron Pozuelo, Madrid, Spain.
| | - Maria J Bueno
- Breast Cancer Clinical Research Unit, CNIO - Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
93
|
Sobhani N, Fassl A, Mondani G, Generali D, Otto T. Targeting Aberrant FGFR Signaling to Overcome CDK4/6 Inhibitor Resistance in Breast Cancer. Cells 2021; 10:293. [PMID: 33535617 PMCID: PMC7912842 DOI: 10.3390/cells10020293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) is the most common cause of cancer-related death in women worldwide. Therapies targeting molecular pathways altered in BC had significantly enhanced treatment options for BC over the last decades, which ultimately improved the lives of millions of women worldwide. Among various molecular pathways accruing substantial interest for the development of targeted therapies are cyclin-dependent kinases (CDKs)-in particular, the two closely related members CDK4 and CDK6. CDK4/6 inhibitors indirectly trigger the dephosphorylation of retinoblastoma tumor suppressor protein by blocking CDK4/6, thereby blocking the cell cycle transition from the G1 to S phase. Although the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib gained FDA approval for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative BC as they significantly improved progression-free survival (PFS) in randomized clinical trials, regrettably, some patients showed resistance to these therapies. Though multiple molecular pathways could be mechanistically responsible for CDK4/6 inhibitor therapy resistance, one of the most predominant ones seems to be the fibroblast growth factor receptor (FGFR) pathway. FGFRs are involved in many aspects of cancer formation, such as cell proliferation, differentiation, and growth. Importantly, FGFRs are frequently mutated in BC, and their overexpression and/or hyperactivation correlates with CDK4/6 inhibitor resistance and shortened PFS in BC. Intriguingly, the inhibition of aberrant FGFR activity is capable of reversing the resistance to CDK4/6 inhibitors. This review summarizes the molecular background of FGFR signaling and discusses the role of aberrant FGFR signaling during cancer development in general and during the development of CDK4/6 inhibitor resistance in BC in particular, together with other possible mechanisms for resistance to CDK4/6 inhibitors. Subsequently, future directions on novel therapeutic strategies targeting FGFR signaling to overcome such resistance during BC treatment will be further debated.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Giuseppina Mondani
- Department Breast Oncoplastic Surgery Royal Cornwall Hospital, Treliske, Truro TR13LJ, UK;
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, 34149 Trieste, Italy;
| | - Tobias Otto
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
94
|
Gomatou G, Trontzas I, Ioannou S, Drizou M, Syrigos N, Kotteas E. Mechanisms of resistance to cyclin-dependent kinase 4/6 inhibitors. Mol Biol Rep 2021; 48:915-925. [PMID: 33409716 DOI: 10.1007/s11033-020-06100-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
Cyclin-dependent kinase (CDK) 4/6 inhibitors have emerged in the treatment of metastatic hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. However, most patients will eventually present disease progression, highlighting the inevitable resistance of cancer cells to CDK4/6 inhibition. Several studies have suggested that resistance mechanisms involve aberrations of the molecules that regulate the cell cycle, and the re-wiring of the cell to escape CDK4/6 dependence and turn to alternative pathways. Loss of retinoblastoma function, overexpression of CDK 6, upregulation of cyclin E, overexpression of CDK 7, and dysregulation of several signaling pathways, notably the PI3/AKT/mTOR pathway, have been implicated in the development of resistance to CDK4/6 inhibitors. Overlap with endocrine resistance mechanisms might be possible. Combinational therapeutic strategies should be explored in order to prevent resistance and optimize the management of patients after progression under CDK 4/6 inhibition.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis Trontzas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephanie Ioannou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Drizou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Syrigos
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
95
|
Yuan K, Wang X, Dong H, Min W, Hao H, Yang P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm Sin B 2021; 11:30-54. [PMID: 33532179 PMCID: PMC7838032 DOI: 10.1016/j.apsb.2020.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 01/02/2023] Open
Abstract
The sustained cell proliferation resulting from dysregulation of the cell cycle and activation of cyclin-dependent kinases (CDKs) is a hallmark of cancer. The inhibition of CDKs is a highly promising and attractive strategy for the development of anticancer drugs. In particular, third-generation CDK inhibitors can selectively inhibit CDK4/6 and regulate the cell cycle by suppressing the G1 to S phase transition, exhibiting a perfect balance between anticancer efficacy and general toxicity. To date, three selective CDK4/6 inhibitors have received approval from the U.S. Food and Drug Administration (FDA), and 15 CDK4/6 inhibitors are in clinical trials for the treatment of cancers. In this perspective, we discuss the crucial roles of CDK4/6 in regulating the cell cycle and cancer cells, analyze the rationale for selectively inhibiting CDK4/6 for cancer treatment, review the latest advances in highly selective CDK4/6 inhibitors with different chemical scaffolds, explain the mechanisms associated with CDK4/6 inhibitor resistance and describe solutions to overcome this issue, and briefly introduce proteolysis targeting chimera (PROTAC), a new and revolutionary technique used to degrade CDK4/6.
Collapse
Key Words
- AKT, protein kinase B
- AML, acute myeloid leukemia
- CDK4/6
- CDKs, cyclin-dependent kinases
- CIP/KIP, cyclin-dependent kinase inhibitor 1/kinase inhibitory protein
- CKIs, cyclin-dependent kinase inhibitors
- CPU, China Pharmaceutical University
- CRPC, castration-resistant prostate cancer
- Cancer
- Cell cycle
- Drug resistance
- ER, estrogen receptor
- ERK, extracellular regulated protein kinases
- FDA, U.S. Food and Drug Administration
- FLT, fms-like tyrosine kinase
- HER2, human epidermal growth factor receptor 2
- INK4, inhibitors of CDK4
- JAK, janus kinase
- MCL, mantle cell lymphoma
- MM, multiple myeloma
- NSCLC, non-small cell lung cancer
- ORR, overall response rates
- PDK1, 3-phosphoinositide-dependent protein kinase 1
- PFS, progression-free survival
- PI3K, phosphatidylinositol 3-hydroxy kinase
- PR, progesterone receptor
- PROTAC
- PROTAC, proteolysis targeting chimera
- RB, retinoblastoma protein
- SPH, Shanghai Pharmaceuticals Holding Co., Ltd.
- STATs, signal transducers and activators of transcription
- Selectivity
- UNISA, University of South Australia
Collapse
Affiliation(s)
- Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haojie Dong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
96
|
Gao HF, Zhang JS, Zhang QZ, Zhu T, Yang CQ, Zhang LL, Yang M, Ji F, Li JQ, Cheng MY, Niu G, Wang K. Peritoneal Metastasis After Treated With Abemaciclib Plus Fulvestrant for Metastatic Invasive Lobular Breast Cancer: A Case Report and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:659537. [PMID: 34690920 PMCID: PMC8531720 DOI: 10.3389/fendo.2021.659537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Peritoneal metastases from invasive lobular carcinoma (ILC) of breast are uncommon and usually related to poor prognosis due to difficulty of detection in clinical practice and drug resistance. Therefore, recognizing the entities of peritoneal metastases of ILC and the potential mechanism of drug resistance is of great significance for early detection and providing accurate management. We herein report a case of a 60-year-old female who presented with nausea and vomiting as the first manifestation after treated with abemaciclib (a CDK4/6 inhibitor) plus fulvestrant for 23 months due to bone metastasis of ILC. Exploratory laparotomy found multiple nodules in the peritoneum and omentum, and immunohistochemistry confirmed that the peritoneal metastatic lesions were consistent with ILC. Palliative therapy was initiated, but the patient died two months later due to disease progression with malignant ascites. Whole exome sequencing (WES) was used to detect the tumor samples and showed the peritoneal metastatic lesions had acquired ESR1 and PI3KCA mutations, potentially explaining the mechanism of endocrine therapy resistance. We argue that early diagnosis of peritoneal metastasis from breast cancer is crucial for prompt and adequate treatment and WES might be an effective supplementary technique for detection of potential gene mutations and providing accurate treatment for metastatic breast cancer patients.
Collapse
Affiliation(s)
- Hong-Fei Gao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jun-Sheng Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | | | - Teng Zhu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ci-Qiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liu-Lu Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fei Ji
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Qing Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Min-Yi Cheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Gang Niu
- Phil Rivers Technology, Beijing, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
- *Correspondence: Kun Wang,
| |
Collapse
|
97
|
A review of the use of next generation sequencing methodologies to identify biomarkers of resistance to CDK4/6 inhibitors in ER+/HER2- breast cancer. Crit Rev Oncol Hematol 2020; 157:103191. [PMID: 33309572 DOI: 10.1016/j.critrevonc.2020.103191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
The development of cyclin-dependent kinases (CDK) 4 and 6 inhibitors represented a substantial breakthrough in the treatment of estrogen receptor positive (ER+), human epidermal growth factor receptor 2 (HER2) negative metastatic breast cancer. These drugs showed a significant clinical benefit in pivotal clinical trials. However, resistance eventually occurs, leading to disease progression. Next Generation Sequencing methodologies have been employed to investigate predictive biomarkers of response or resistance to CDK4/6 inhibitors. Whole exome and targeted sequencing of solid and liquid biopsies have revealed several possible genomic alterations associated with resistance. Notably, genomic alterations identified by DNA-sequencing did not fully recapitulate the entire landscape of resistance to CDK4/6 inhibitors. Gene expression analysis, such as RNA-Seq methodologies, have provided insights into transcriptional profiles and may need further application. Herein, we report the main findings derived from the use of NGS analysis in the context of resistance to CDK4/6 inhibitors in ER + breast cancer.
Collapse
|
98
|
Migliaccio I, Bonechi M, McCartney A, Guarducci C, Benelli M, Biganzoli L, Di Leo A, Malorni L. CDK4/6 inhibitors: A focus on biomarkers of response and post-treatment therapeutic strategies in hormone receptor-positive HER2-negative breast cancer. Cancer Treat Rev 2020; 93:102136. [PMID: 33360919 DOI: 10.1016/j.ctrv.2020.102136] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
CDK4/6 inhibitors (CDK4/6i) in combination with endocrine therapy are the mainstay of treatment for patients with hormone receptor-positive, HER2 negative (HR+/HER2neg) metastatic breast cancer. However, resistance - either de novo or acquired - invariably occurs, leading to treatment failure and cancer progression. Genomic alterations, gene expression data and circulating biomarkers have been correlated to response to treatment, but to date no biomarker has been approved to stratify patients. Treatment strategies after progression on CDK4/6i are yet to be standardized. Current approaches include endocrine therapy alone or in combination with target therapy, or chemotherapy. New agents are in clinical development based on potential mechanisms of acquired resistance. Here we will review recent advancements in biomarkers of response to CDK4/6i, and in post- treatment therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy.
| | - Martina Bonechi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Amelia McCartney
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy; School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Laura Biganzoli
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Angelo Di Leo
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy; "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| |
Collapse
|
99
|
Li Z, Zou W, Zhang J, Zhang Y, Xu Q, Li S, Chen C. Mechanisms of CDK4/6 Inhibitor Resistance in Luminal Breast Cancer. Front Pharmacol 2020; 11:580251. [PMID: 33364954 PMCID: PMC7751736 DOI: 10.3389/fphar.2020.580251] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
As a new-generation CDK inhibitor, a CDK4/6 inhibitor combined with endocrine therapy has been successful in the treatment of advanced estrogen receptor-positive (ER+) breast cancer. Although there has been overall progress in the treatment of cancer, drug resistance is an emerging cause for breast cancer-related death. Overcoming CDK4/6 resistance is an urgent problem. Overactivation of the cyclin-CDK-Rb axis related to uncontrolled cell proliferation is the main cause of CDK4/6 inhibitor resistance; however, the underlying mechanisms need to be clarified further. We review various resistance mechanisms of CDK4/6 inhibitors in luminal breast cancer. The cell signaling pathways involved in therapy resistance are divided into two groups: upstream response mechanisms and downstream bypass mechanisms. Finally, we discuss possible strategies to overcome CDK4/6 inhibitor resistance and identify novel resistance targets for future clinical application.
Collapse
Affiliation(s)
- Zhen Li
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Zou
- Queen Mary Institute, Nanchang University, Nanchang, China
| | - Ji Zhang
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunjiao Zhang
- Kunming Medical University Haiyuan College, Kunming, China
| | - Qi Xu
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX, United States
| | - Siyuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute of Translation Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
100
|
|