51
|
Ribociclib-Loaded Ethylcellulose-Based Nanosponges: Formulation, Physicochemical Characterization, and Cytotoxic Potential against Breast Cancer. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/1922263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the present study, ribociclib-loaded nanosponges (RCNs) composed of ethylcellulose and polyvinyl alcohol were developed using an emulsion-solvent evaporation method. Preliminary evaluations of the developed RCNs (RCN1 to RCN7) were performed in terms of size, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE), and drug loading (DL), which allowed us to select the optimized formulation. RCN3 was selected as the optimized carrier system with particle size (
), PDI (
), zeta potential (
), EE (
), and DL (
). Further, the optimized nanosponges (RCN3) were subjected to FTIR, XRD, DSC, and SEM studies, and results confirmed the proper encapsulation of the drug within the porous polymeric matrix. In vitro drug release studies showed that the drug release was significantly enhanced with a maximum drug release through RCN3 formulation (
) and followed the Higuchi model. Moreover, the RCN3 system showed greater cytotoxicity than free ribociclib (RC) against MDA-MB-231 and MCF-7 breast cancer cell lines. The percentage of apoptosis induced by RCN3 was found significantly higher than that of free RC (
). Overall, ribociclib-loaded ethylcellulose nanosponges could be a potential nanocarrier to enhance the effectiveness of ribociclib in breast cancer treatment.
Collapse
|
52
|
Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res 2022; 24:17. [PMID: 35248122 PMCID: PMC8898415 DOI: 10.1186/s13058-022-01510-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Pharmacological inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are now an established standard of care for patients with advanced hormone receptor-positive breast cancer. The canonical mechanism underlying CDK4/6 inhibitor activity is the suppression of phosphorylation of the retinoblastoma tumor suppressor protein, which serves to prevent cancer cell proliferation. Recent data suggest that these agents induce other diverse effects within both tumor and stromal compartments, which serve to explain aspects of their clinical activity. Here, we review these phenomena and discuss how they might be leveraged in the development of novel CDK4/6 inhibitor-containing combination treatments. We also briefly review the various known mechanisms of acquired resistance in the clinical setting.
Collapse
Affiliation(s)
- April C Watt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Shom Goel
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
53
|
Scheidemann ER, Shajahan-Haq AN. Resistance to CDK4/6 Inhibitors in Estrogen Receptor-Positive Breast Cancer. Int J Mol Sci 2021; 22:12292. [PMID: 34830174 PMCID: PMC8625090 DOI: 10.3390/ijms222212292] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common form of breast cancer. Antiestrogens were the first therapy aimed at treating this subtype, but resistance to these warranted the development of a new treatment option. CDK4/6 inhibitors address this problem by halting cell cycle progression in ER+ cells, and have proven to be successful in the clinic. Unfortunately, both intrinsic and acquired resistance to CDK4/6 inhibitors are common. Numerous mechanisms of how resistance occurs have been identified to date, including the activation of prominent growth signaling pathways, the loss of tumor-suppressive genes, and noncanonical cell cycle function. Many of these have been successfully targeted and demonstrate the ability to overcome resistance to CDK4/6 inhibitors in preclinical and clinical trials. Future studies should focus on the development of biomarkers so that patients likely to be resistant to CDK4/6 inhibition can initially be given alternative methods of treatment.
Collapse
Affiliation(s)
| | - Ayesha N. Shajahan-Haq
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA;
| |
Collapse
|
54
|
Kim JY, Oh JM, Park YH, Ahn JS, Im YH. Which Clinicopathologic Parameters Suggest Primary Resistance to Palbociclib in Combination With Letrozole as the First-Line Treatment for Hormone Receptor-Positive, HER2-Negative Advanced Breast Cancer? Front Oncol 2021; 11:759150. [PMID: 34745997 PMCID: PMC8566811 DOI: 10.3389/fonc.2021.759150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
In this study, we evaluated clinical parameters to predict the primary resistance of palbociclib in combination with endocrine therapy as the first-line treatment in patients with hormone receptor (HR)+, human epidermal growth factor receptor 2 (HER2)- metastatic breast cancer (MBC). We performed a data analysis of patients diagnosed with HR+, HER2-MBC who received palbociclib plus letrozole as the first-line treatment in the metastatic setting from the clinical data warehouse in Samsung Medical Center. In this study, 305 patients were included in the final data analysis. The median follow-up duration was 31 months, and we observed 123 cases of disease progression. The median progression-free survival (PFS) was 28.7 months, and 38 patients (12.5%) had less than a 6-month PFS. The multivariate analysis suggested that primary resistance to adjuvant endocrine therapy (ET) (hazard ratio: 1.91), presence of liver metastasis (hazard ratio: 2.17), initial elevation of serum CA-15-3 (hazard ratio: 1.99), weak positivity of estrogen receptor (ER) (hazard ratio: 2.28), Ki-67 3+ or 4+ (hazard ratios: 2.58 and 10.28), and presence of mutation (hazard ratio: 9.59) were associated with a short PFS duration. A further prediction model was developed with data from 256 patients and 33 cases of disease progression in 6 months. This model included five factors-primary resistance to adjuvant ET (odds ratio, OR: 1.14), liver metastasis (OR: 1.56), initial CA-15-3 elevation (OR: 1.51), weak ER expression (OR: 2.22), and BRCA2 mutation (OR: 2.85)-and the area under the receiver operating characteristic curve was 0.842 (95% CI: 0.775, 0.909; p < 0.001). Finally, we divided them into four risk groups according to the prediction model with the five risk factors. These four groups had different PFS (p < 0.001) and primary resistance of palbociclib with letrozole [OR of group 2 vs. group 1 (ref): 2.18 (p = 0.002), OR of group 3: 3.91 (p < 0.001), and OR of group 4: 4.25 (p < 0.001)]. We developed a prediction model of primary resistance to palbociclib with letrozole as the first-line treatment for HR+, HER2-MBC. Our prediction model might be helpful for considering the first-line treatment strategies. Further well-designed clinical trials would be warranted to validate our prediction model.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung Min Oh
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
55
|
Alves CL, Ehmsen S, Terp MG, Portman N, Tuttolomondo M, Gammelgaard OL, Hundebøl MF, Kaminska K, Johansen LE, Bak M, Honeth G, Bosch A, Lim E, Ditzel HJ. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 2021; 12:5112. [PMID: 34433817 PMCID: PMC8387387 DOI: 10.1038/s41467-021-25422-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) combined with endocrine therapy have shown impressive efficacy in estrogen receptor-positive advanced breast cancer. However, most patients will eventually experience disease progression on this combination, underscoring the need for effective subsequent treatments or better initial therapies. Here, we show that triple inhibition with fulvestrant, CDK4/6i and AKT inhibitor (AKTi) durably impairs growth of breast cancer cells, prevents progression and reduces metastasis of tumor xenografts resistant to CDK4/6i-fulvestrant combination or fulvestrant alone. Importantly, switching from combined fulvestrant and CDK4/6i upon resistance to dual combination with AKTi and fulvestrant does not prevent tumor progression. Furthermore, triple combination with AKTi significantly inhibits growth of patient-derived xenografts resistant to combined CDK4/6i and fulvestrant. Finally, high phospho-AKT levels in metastasis of breast cancer patients treated with a combination of CDK4/6i and endocrine therapy correlates with shorter progression-free survival. Our findings support the clinical development of ER, CDK4/6 and AKT co-targeting strategies following progression on CDK4/6i and endocrine therapy combination, and in tumors exhibiting high phospho-AKT levels, which are associated with worse clinical outcome.
Collapse
Affiliation(s)
- Carla L Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Monique F Hundebøl
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kamila Kaminska
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lene E Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Sydvestjysk Sygehus, Esbjerg, Denmark
| | - Gabriella Honeth
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ana Bosch
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
56
|
Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. Int J Mol Sci 2021; 22:ijms22158149. [PMID: 34360912 PMCID: PMC8347619 DOI: 10.3390/ijms22158149] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.
Collapse
Affiliation(s)
- Angel Cayo
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Raúl Segovia
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Whitney Venturini
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Nelson Brown
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Correspondence:
| |
Collapse
|
57
|
The mechanisms involved in the resistance of estrogen receptor-positive breast cancer cells to palbociclib are multiple and change over time. J Cancer Res Clin Oncol 2021; 147:3211-3224. [PMID: 34244855 PMCID: PMC8484193 DOI: 10.1007/s00432-021-03722-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are widely used for the treatment of advanced estrogen receptor (ER)-positive breast cancer. To develop a treatment strategy for cancers resistant to CDK4/6 inhibitors, here, we established palbociclib-resistant sublines and analyzed their resistance mechanisms. METHODS Palbociclib-resistant sublines were established from T47D and MCF7 cells. Sensitivity to other drugs was assessed via the WST assay. Altered expression/phosphorylation of proteins related to signal transduction and cell cycle regulation was examined using western blotting. Copy number alterations and mutations in the retinoblastoma (RB1) gene were also analyzed. RESULTS Although an increase in CDK6 and decrease in retinoblastoma protein (Rb) expression/phosphorylation were commonly observed in the resistant sublines, changes in other cell cycle-related proteins were heterogeneous. Upon extended exposure to palbociclib, the expression/phosphorylation of these proteins became altered, and the long-term removal of palbociclib did not restore the Rb expression/phosphorylation patterns. Consistently a copy number decrease, as well as RB1 mutations were detected. Moreover, although the resistant sublines exhibited cross-resistance to abemaciclib, their response to dinaciclib was the same as that of wild-type cells. Of note, the cell line exhibiting increased mTOR phosphorylation also showed a higher sensitivity to everolimus. However, the sensitivity to chemotherapeutic agents was unchanged in palbociclib-resistant sublines. CONCLUSION ER-positive breast cancer cells use multiple molecular mechanisms to survive in the presence of palbociclib, suggesting that targeting activated proteins may be an effective strategy to overcome resistance. Additionally, palbociclib monotherapy induces mutations and copy number alterations in the RB1 gene.
Collapse
|
58
|
Hu Y, Gao J, Wang M, Li M. Potential Prospect of CDK4/6 Inhibitors in Triple-Negative Breast Cancer. Cancer Manag Res 2021; 13:5223-5237. [PMID: 34234565 PMCID: PMC8257068 DOI: 10.2147/cmar.s310649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive, difficult-to-treat subtype of cancer with a poor prognosis; there is an urgent need for effective, targeted molecular therapies. The cyclin D/cyclin-dependent kinase (CDK)4/6–retinoblastoma protein (Rb) pathway plays a critical role in regulating cell cycle checkpoints, a process which is often disrupted in cancer cells. Selective CDK4/6 inhibitors can prevent retinoblastoma protein phosphorylation by invoking cell cycle arrest in the first growth phase (G1), and may therefore represent an effective treatment option. In this article, we review the molecular mechanisms and therapeutic efficacy of CDK4/6 inhibitors in combination with other targeted therapies for the treatment of triple-negative breast cancer. Three selective CDK4/6 inhibitors have so far received the approval of the Food and Drug Administration (FDA) for patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2) breast cancer. Trilaciclib, a small molecule short-acting inhibitor of CDK4/6, has also been approved recently for people with small cell lung cancer, and is also expected to be clinically effective against breast cancer. Although the efficacy of CDK4/6 inhibitors in patients with triple-negative breast cancer remains uncertain, their use in conjunction with other targeted therapies may improve outcomes and is therefore currently being explored. Identifying biomarkers for response or resistance to CDK4/6 inhibitor treatment may optimize the personalization of treatment strategies for this disease. Ongoing and future clinical trials and biomarker studies will shed further light on these topics, and help to realize the full potential of CDK4/6 inhibitor treatment in triple-negative breast cancer.
Collapse
Affiliation(s)
- Ye Hu
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jiyue Gao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Meiling Wang
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Man Li
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
59
|
Jeong H, Jeong JH, Kim JE, Ahn JH, Jung KH, Kim SB. Comparison of the Effectiveness and Clinical Outcome of Everolimus Followed by CDK4/6 Inhibitors with the Opposite Treatment Sequence in Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Cancer Res Treat 2021; 54:469-477. [PMID: 34176251 PMCID: PMC9016296 DOI: 10.4143/crt.2021.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose In hormone receptor-positive, human epidermal growth factor receptor 2–negative metastatic breast cancer (HR+ HER2− MBC), the mainstay treatment options include cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) and everolimus (EVE) in combination with endocrine treatment. This study aims to compare the outcomes of the following treatment sequences: CDK4/6i followed by EVE and EVE followed by CDK4/6i. Materials and Methods Data from HR+ HER2− MBC patients treated between January 2014 and November 2020 with both CDK4/6i and EVE were retrospectively analyzed. Results Among the 88 patients included in the study, 51 received CDK4/6i before EVE (C→E group), and 37 received EVE before CDK4/6i (E→C group) with endocrine treatment. More patients in the E→C group had endocrine resistance (13.7% vs. 40.5%), experienced palliative chemotherapy (7.8% vs. 40.5%), and were heavily treated (treated as ≥ 3rd line, 5.9% vs. 40.5%). Median overall survival was 46.8 months in the C→E group and 38.9 months in the E→C group (p=0.151). Median composite progression-free survival (PFS), defined as the time from the start of the preceding regimen to disease progression on the following regimen or death, was 24.8 months in the C→E group vs. 21.8 months in the E→C group (p=0.681). Median PFS2/PFS1 ratio did not differ significantly between groups (0.5 in the C→E group, 0.6 in the E→C group; p=0.775). Ten patients (11.4%) discontinued EVE, and two patients (2.3%) discontinued CDK4/6i during treatment. Conclusion Although the CDK4/6i-based regimen should be considered as an earlier line of treatment, CDK4/6i- and EVE-based treatments can be valid options in circumstances where the other treatment had been already given.
Collapse
Affiliation(s)
- Hyehyun Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
60
|
Chen M, Li S, Liang Y, Zhang Y, Luo D, Wang W. Integrative Multi-Omics Analysis of Identified NUF2 as a Candidate Oncogene Correlates With Poor Prognosis and Immune Infiltration in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:656509. [PMID: 34178642 PMCID: PMC8222979 DOI: 10.3389/fonc.2021.656509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023] Open
Abstract
Background Lung cancer is one of the most common malignant tumors and the leading causes of cancer-related deaths worldwide. As a component of the nuclear division cycle 80 complex, NUF2 is a part of the conserved protein complex related to the centromere. Although the high expression of NUF2 has been reported in many different types of human cancers, the multi-omics analysis in non-small cell lung cancer (NSCLC) of NUF2 remains to be elucidated. Methods In this analysis, NUF2 expression difference analysis in non-small cell lung cancer was evaluated by Oncomine, TIMER, GEO, and TCGA database. And the prognosis analysis of NUF2 based on Kaplan-Meier was performed. R language was used to analyze the differential expression genes, functional annotation and protein-protein interaction (PPI). GSEA analysis of differential expression genes was also carried out. Mechanism analysis about exploring the characteristic of NUF2, multi-omics, and correlation analysis was carried out using UALCAN, cBioportal, GEPIA, TIMER, and TISIDB, respectively. Results The expression of NUF2 in NSCLC, both lung adenocarcinoma (LUAD) and squamous lung cancer (LUSC), was significantly higher than that in normal tissues. The analysis of UALCAN database samples proved that NUF2 expression was connected with stage and smoking habits. Meanwhile, the overall survival curve also validated that high expression of NUF2 has a poorer prognosis in NSCLC. GO, KEGG, GSEA, subcellular location from COMPARTMENTS indicated that NUF2 may regulate the cell cycle. Correlation analysis also showed that NUF2 was mainly positively associated with cell cycle and tumor-related genes. NUF2 altered group had a poorer prognosis than unaltered group in NSCLC. Immune infiltration analysis showed that the NUF2 expression mainly have negatively correlation with immune cells and immune subtypes in LUAD and LUSC. Furthermore, quantitative PCR was used to validate the expression difference of NUF2 in LUAD and LUSC. Conclusion Our findings elucidated that NUF2 may play an important role in cell cycle, and significantly associated with tumor-related gene in NSCLC; we consider that NUF2 may be a prognostic biomarkers in NSCLC.
Collapse
Affiliation(s)
- Mengqing Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shangkun Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Liang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Respiratory and Critical Care Medicine, Southwest Medical University, Luzhou, China
| | - Dan Luo
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
61
|
Basile D, Gerratana L, Corvaja C, Pelizzari G, Franceschin G, Bertoli E, Palmero L, Zara D, Alberti M, Buriolla S, Da Ros L, Bonotto M, Mansutti M, Spazzapan S, Cinausero M, Minisini AM, Fasola G, Puglisi F. First- and second-line treatment strategies for hormone-receptor (HR)-positive HER2-negative metastatic breast cancer: A real-world study. Breast 2021; 57:104-112. [PMID: 33812267 PMCID: PMC8053791 DOI: 10.1016/j.breast.2021.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Endocrine therapy (ET) plus cyclin-dependent-kinases 4/6 inhibitors (CDK4/6i) represents the standard treatment for luminal-metastatic breast cancer (MBC). However, prospective head-to-head comparisons are still lacking for 1st line (L) options, and it is still crucial to define the best strategy between 1st and 2nd L. MATERIALS AND METHODS 717 consecutive luminal-MBC pts treated between 2008 and 2020 were analyzed at the Oncology Department of Aviano and Udine, Italy. Differences about survival outcomes (OS, PFS and PPS) were tested by log-rank test. The attrition rate (AR) between 1st and 2ndL was calculated. RESULTS At 1stL, pts were treated with ET (49%), chemotherapy (CT) (31%) and ET-CDKi (20%) while, at 2ndL, 33% received ET, 33% CT and 8% ET-CDKi. Overall AR was 10%, 7% for CT, 8% for ET and 17% for ET-CDKi. By multivariate analysis, 1stL ET-CDK4/6i showed a better mPFS1 and OS. Moreover, 2ndL ET-CDK4/6i demonstrated better mPFS2 compared to ET and CT. Notably, 1stL ET-CDKi resulted in higher mPFS than 2ndL ET-CDKi. Intriguingly, 1stL ET-CDK4/6i was associated with worse mPPS compared to CT and ET. Secondarily, 1stL ET-CDK4/6i followed by CT had worse OS compared to 1stL ET-CDK4/6i followed by ET. Notably, none of baseline characteristics at 2ndL influenced 2ndL treatment choice (ET vs. CT) after ET-CDKi. CONCLUSION Our real-world data demonstrated that ET-CDKi represents the best option for 1stL luminal-MBC compared to ET and CT. Also, the present study pointed out that 2ndL ET, potentially combined with other molecules, could be a feasible option after CDK4/6i failure, postponing CT on later lines.
Collapse
Affiliation(s)
- Debora Basile
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy.
| | - Lorenzo Gerratana
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Carla Corvaja
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Giacomo Pelizzari
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Oncology, ASUFC Santa Maria Della Misericordia, Udine, Italy
| | | | - Elisa Bertoli
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Oncology, ASUFC Santa Maria Della Misericordia, Udine, Italy
| | - Lorenza Palmero
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Oncology, ASUFC Santa Maria Della Misericordia, Udine, Italy
| | - Diego Zara
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Oncology, ASUFC Santa Maria Della Misericordia, Udine, Italy
| | - Martina Alberti
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Silvia Buriolla
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Lucia Da Ros
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Marta Bonotto
- Department of Oncology, ASUFC Santa Maria Della Misericordia, Udine, Italy
| | - Mauro Mansutti
- Department of Oncology, ASUFC Santa Maria Della Misericordia, Udine, Italy
| | - Simon Spazzapan
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Marika Cinausero
- Department of Oncology, ASUFC Santa Maria Della Misericordia, Udine, Italy
| | | | - Gianpiero Fasola
- Department of Oncology, ASUFC Santa Maria Della Misericordia, Udine, Italy
| | - Fabio Puglisi
- Department of Medicine, University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| |
Collapse
|
62
|
Johnson TI, Minteer CJ, Kottmann D, Dunlop CR, Fernández SBDQ, Carnevalli LS, Wallez Y, Lau A, Richards FM, Jodrell DI. Quantifying cell cycle-dependent drug sensitivities in cancer using a high throughput synchronisation and screening approach. EBioMedicine 2021; 68:103396. [PMID: 34049239 PMCID: PMC8170111 DOI: 10.1016/j.ebiom.2021.103396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemotherapy and targeted agent anti-cancer efficacy is largely dependent on the proliferative state of tumours, as exemplified by agents that target DNA synthesis/replication or mitosis. As a result, cell cycle specificities of a number of cancer drugs are well known. However, they are yet to be described in a quantifiable manner. METHODS A scalable cell synchronisation protocol used to screen a library of 235 anti-cancer compounds exposed over six hours in G1 or S/G2 accumulated AsPC-1 cells to generate a cell cycle specificity (CCS) score. FINDINGS The synchronisation method was associated with reduced method-related cytotoxicity compared to nocodazole, delivering sufficient cell cycle purity and cell numbers to run high-throughput drug library screens. Compounds were identified with G1 and S/G2-associated specificities that, overall, functionally matched with a compound's target/mechanism of action. This annotation was used to describe a synergistic schedule using the CDK4/6 inhibitor, palbociclib, prior to gemcitabine/AZD6738 as well as describe the correlation between the CCS score and published synergistic/antagonistic drug schedules. INTERPRETATION This is the first highly quantitative description of cell cycle-dependent drug sensitivities that utilised a tractable and tolerated method with potential uses outside the present study. Drug treatments such as those shown to be G1 or S/G2 associated may benefit from scheduling considerations such as after CDK4/6 inhibitors and being first in drug sequences respectively. FUNDING Cancer Research UK (CRUK) Institute core grants C14303/A17197 and C9545/A29580. The Li Ka Shing Centre where this work was performed was generously funded by CK Hutchison Holdings Limited, the University of Cambridge, CRUK, The Atlantic Philanthropies and others.
Collapse
Affiliation(s)
- Timothy I Johnson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | | | - Daniel Kottmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Charles R Dunlop
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Yann Wallez
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Alan Lau
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
63
|
NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev 2021; 99:102238. [PMID: 34098219 DOI: 10.1016/j.ctrv.2021.102238] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS. STATEMENT OF SIGNIFICANCE: An estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.
Collapse
|
64
|
Migliaccio I, Leo A, Galardi F, Guarducci C, Fusco GM, Benelli M, Di Leo A, Biganzoli L, Malorni L. Circulating Biomarkers of CDK4/6 Inhibitors Response in Hormone Receptor Positive and HER2 Negative Breast Cancer. Cancers (Basel) 2021; 13:2640. [PMID: 34072070 PMCID: PMC8199335 DOI: 10.3390/cancers13112640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) and endocrine therapy are the standard treatment for patients with hormone receptor-positive and HER2 negative (HR+/HER2-) metastatic breast cancer. Patients might show intrinsic and acquired resistance, which leads to treatment failure and progression. Circulating biomarkers have the potential advantages of recognizing patients who might not respond to treatment, monitoring treatment effects and identifying markers of acquired resistance during tumor progression with a simple withdrawal of peripheral blood. Genomic alterations on circulating tumor DNA and serum thymidine kinase activity, but also circulating tumor cells, epigenetic or exosome markers are currently being tested as markers of CDK4/6i treatment response, even though none of these have been integrated into clinical practice. In this review, we discuss the recent advancements in the development of circulating biomarkers of CDK4/6i response in patients with HR+/HER2-breast cancer.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Angela Leo
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Francesca Galardi
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Giulio Maria Fusco
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy;
| | - Angelo Di Leo
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| | - Laura Biganzoli
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| | - Luca Malorni
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.L.); (F.G.); (G.M.F.); (L.M.)
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100 Prato, Italy; (A.D.L.); (L.B.)
| |
Collapse
|
65
|
Wang B, Li R, Wu S, Liu X, Ren J, Li J, Bi K, Wang Y, Jia H. Breast Cancer Resistance to Cyclin-Dependent Kinases 4/6 Inhibitors: Intricacy of the Molecular Mechanisms. Front Oncol 2021; 11:651541. [PMID: 34123801 PMCID: PMC8187902 DOI: 10.3389/fonc.2021.651541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is a common malignant tumor in women, with a highest incidence and mortality among all of the female malignant tumors. Notably, targeted therapy has achieved impressive success in the treatment of breast cancer. As one class of the anti-tumor targeted therapeutics, Cyclin-Dependent Kinases 4/6CDK4/6inhibitors have shown good clinical activity in treating breast cancer. Nevertheless, despite the promising clinical outcomes, intrinsic or acquired resistance to CDK4/6 inhibitors has limited the benefits of this novel target therapy. In the present review, we provide an overview of the currently known molecular mechanisms of resistance to CDK4/6 inhibitors, and discuss the potential strategies to overcoming drug resistance improving the outcomes for breast cancer patients treated with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Wu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Liu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianlin Ren
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaixin Bi
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
66
|
Advances in endocrine and targeted therapy for hormone-receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer. Chin Med J (Engl) 2021; 133:1099-1108. [PMID: 32265426 PMCID: PMC7213629 DOI: 10.1097/cm9.0000000000000745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nearly 70% of breast cancer (BC) is hormone-receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, and endocrine therapy is the mainstay of treatment for this subtype. However, intrinsic or acquired endocrine resistance can occur during the endocrine treatment. Based on insights of endocrine resistance mechanisms, a number of targeted therapies have been and continue to be developed. With regard to HR-positive, HER2-negative advanced BC, aromatase inhibitor (AI) is superior to tamoxifen, and fulvestrant is a better option for patients previously exposed to endocrine therapy. Targeted drugs, such as cyclin-dependent kinases (CDK) 4/6 inhibitors, mammalian target of rapamycin (mTOR) inhibitors, phosphoinositide-3-kinase (PI3K) inhibitors, and histone deacetylase (HDAC) inhibitors, play a significant role in the present and show a promising future. With the application of CDK4/6 inhibitors becoming common, mechanisms of acquired resistance to them should also be taken into consideration.
Collapse
|
67
|
Romero-Pozuelo J, Figlia G, Kaya O, Martin-Villalba A, Teleman AA. Cdk4 and Cdk6 Couple the Cell-Cycle Machinery to Cell Growth via mTORC1. Cell Rep 2021; 31:107504. [PMID: 32294430 DOI: 10.1016/j.celrep.2020.03.068] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Cell growth is coupled to cell-cycle progression in mitotically proliferating mammalian cells, but the underlying molecular mechanisms are not well understood. CyclinD-Cdk4/6 is known to phosphorylate RB to promote S-phase entry, but recent work suggests they have additional functions. We show here that CyclinD-Cdk4/6 activates mTORC1 by binding and phosphorylating TSC2 on Ser1217 and Ser1452. Pharmacological inhibition of Cdk4/6 leads to a rapid, TSC2-dependent reduction of mTORC1 activity in multiple human and mouse cell lines, including breast cancer cells. By simultaneously driving mTORC1 and E2F, CyclinD-Cdk4/6 couples cell growth to cell-cycle progression. Consistent with this, we see that mTORC1 activity is cell cycle dependent in proliferating neural stem cells of the adult rodent brain. We find that Cdk4/6 inhibition reduces cell proliferation partly via TSC2 and mTORC1. This is of clinical relevance, because Cdk4/6 inhibitors are used for breast cancer therapy.
Collapse
Affiliation(s)
- Jesús Romero-Pozuelo
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Gianluca Figlia
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Oguzhan Kaya
- Heidelberg University, 69120 Heidelberg, Germany; Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
68
|
Narayan P, Prowell TM, Gao JJ, Fernandes LL, Li E, Jiang X, Qiu J, Fan J, Song P, Yu J, Zhang X, King-Kallimanis BL, Chen W, Ricks TK, Gong Y, Wang X, Windsor K, Rhieu SY, Geiser G, Banerjee A, Chen X, Reyes Turcu F, Chatterjee DK, Pathak A, Seidman J, Ghosh S, Philip R, Goldberg KB, Kluetz PG, Tang S, Amiri-Kordestani L, Theoret MR, Pazdur R, Beaver JA. FDA Approval Summary: Alpelisib Plus Fulvestrant for Patients with HR-positive, HER2-negative, PIK3CA-mutated, Advanced or Metastatic Breast Cancer. Clin Cancer Res 2021. [PMID: 33168657 DOI: 10.1158/1078-0432.ccr-20-3652/78947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
On May 24, 2019, the FDA granted regular approval to alpelisib in combination with fulvestrant for postmenopausal women, and men, with hormone receptor (HR)-positive, HER2-negative, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-mutated, advanced or metastatic breast cancer as detected by an FDA-approved test following progression on or after an endocrine-based regimen. Approval was based on the SOLAR-1 study, a randomized, double-blind, placebo-controlled trial of alpelisib plus fulvestrant versus placebo plus fulvestrant. The primary endpoint was investigator-assessed progression-free survival (PFS) per RECIST v1.1 in the cohort of trial participants whose tumors had a PIK3CA mutation. The estimated median PFS by investigator assessment in the alpelisib plus fulvestrant arm was 11 months [95% confidence interval (CI), 7.5-14.5] compared with 5.7 months (95% CI, 3.7-7.4) in the placebo plus fulvestrant arm (HR, 0.65; 95% CI, 0.50-0.85; two-sided P = 0.001). The median overall survival was not yet reached for the alpelisib plus fulvestrant arm (95% CI, 28.1-NE) and was 26.9 months (95% CI, 21.9-NE) for the fulvestrant control arm. No PFS benefit was observed in trial participants whose tumors did not have a PIK3CA mutation (HR, 0.85; 95% CI, 0.58-1.25). The most common adverse reactions, including laboratory abnormalities, on the alpelisib plus fulvestrant arm were increased glucose, increased creatinine, diarrhea, rash, decreased lymphocyte count, increased gamma glutamyl transferase, nausea, increased alanine aminotransferase, fatigue, decreased hemoglobin, increased lipase, decreased appetite, stomatitis, vomiting, decreased weight, decreased calcium, decreased glucose, prolonged activated partial thromboplastin time, and alopecia.
Collapse
Affiliation(s)
- Preeti Narayan
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland.
| | - Tatiana M Prowell
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Jennifer J Gao
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Laura L Fernandes
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Emily Li
- Oncology Center of Excellence Summer Scholars Program, Silver Spring, Maryland
| | - Xiling Jiang
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Junshan Qiu
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Jianghong Fan
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Pengfei Song
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Jingyu Yu
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Xinyuan Zhang
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | - Wei Chen
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Tiffany K Ricks
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Yutao Gong
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Xing Wang
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Katherine Windsor
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Steve Y Rhieu
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Gerlie Geiser
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Anamitro Banerjee
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Xiaohong Chen
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Francisca Reyes Turcu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Deb K Chatterjee
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Anand Pathak
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Jeffrey Seidman
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Soma Ghosh
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Reena Philip
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Kirsten B Goldberg
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Paul G Kluetz
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Shenghui Tang
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Laleh Amiri-Kordestani
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Marc R Theoret
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Richard Pazdur
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Julia A Beaver
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
69
|
Georgopoulou D, Callari M, Rueda OM, Shea A, Martin A, Giovannetti A, Qosaj F, Dariush A, Chin SF, Carnevalli LS, Provenzano E, Greenwood W, Lerda G, Esmaeilishirazifard E, O'Reilly M, Serra V, Bressan D, Mills GB, Ali HR, Cosulich SS, Hannon GJ, Bruna A, Caldas C. Landscapes of cellular phenotypic diversity in breast cancer xenografts and their impact on drug response. Nat Commun 2021; 12:1998. [PMID: 33790302 PMCID: PMC8012607 DOI: 10.1038/s41467-021-22303-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
The heterogeneity of breast cancer plays a major role in drug response and resistance and has been extensively characterized at the genomic level. Here, a single-cell breast cancer mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic signalling states in a biobank of patient-derived tumour xenograft (PDTX) models representing the diversity of human breast cancer. The BCMC panel identifies 13 cellular phenotypes (11 human and 2 murine), associated with both breast cancer subtypes and specific genomic features. Pre-treatment cellular phenotypic composition is a determinant of response to anticancer therapies. Single-cell profiling also reveals drug-induced cellular phenotypic dynamics, unravelling previously unnoticed intra-tumour response diversity. The comprehensive view of the landscapes of cellular phenotypic heterogeneity in PDTXs uncovered by the BCMC panel, which is mirrored in primary human tumours, has profound implications for understanding and predicting therapy response and resistance.
Collapse
Affiliation(s)
- Dimitra Georgopoulou
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Maurizio Callari
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Oscar M Rueda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Abigail Shea
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Alistair Martin
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Agnese Giovannetti
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fatime Qosaj
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Ali Dariush
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Institute of Astronomy, University of Cambridge, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Elena Provenzano
- Breast Cancer Programme, CRUK Cambridge Centre, Cambridge, UK
- Cambridge Breast Cancer Research Unit, NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wendy Greenwood
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Elham Esmaeilishirazifard
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Bioscience, Oncology, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Martin O'Reilly
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Dario Bressan
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Gordon B Mills
- Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Sciences University, Portland, OR, USA
| | - H Raza Ali
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Sabina S Cosulich
- Bioscience, Oncology, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- Breast Cancer Programme, CRUK Cambridge Centre, Cambridge, UK.
- Cambridge Breast Cancer Research Unit, NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
70
|
AMPK Is the Crucial Target for the CDK4/6 Inhibitors Mediated Therapeutic Responses in PANC-1 and MIA PaCa-2 Pancreatic Cancer Cell Lines. STRESSES 2021. [DOI: 10.3390/stresses1010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The survival rate of pancreatic ductal adenocarcinoma (PDAC) patients is short, and PDAC is a cancer type that ranks fourth in the statistics regarding death due to cancer. Mutation in the KRAS gene, which plays a role in pancreatic cancer development, activates the PI3K/AKT/mTOR signaling pathway. The activity of the AMPK as a cellular energy sensor is one of the fundamental mechanisms that can induce effective therapeutic responses against CDK4/6 inhibitors via adjusting the cellular and tumor microenvironment stress management. The phosphorylation of AMPKα at the different phosphorylation residues such as Thr172 and Ser 377 causes metabolic differentiation in the cells following CDK4/6 inhibitor treatment in accordance with an increased cell cycle arrest and senescence under the control of different cellular players. In this study, we examined the competencies of the CDK4/6 inhibitors LY2835219 and PD-0332991 on the mechanism of cell survival and death based on AMPK signaling. Both CDK4/6 inhibitors LY2835219 and PD-0332991 modulated different molecular players on the PI3K/AKT/mTOR and AMPK signaling axis in different ways to reduce cell survival in a cell type dependent manner. These drugs are potential inducers of apoptosis and senescence that can alter the therapeutic efficacy cells.
Collapse
|
71
|
Dong C, Wu J, Chen Y, Nie J, Chen C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front Pharmacol 2021; 12:628690. [PMID: 33790792 PMCID: PMC8005514 DOI: 10.3389/fphar.2021.628690] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Although chemotherapy, targeted therapy and endocrine therapy decrease rate of disease recurrence in most breast cancer patients, many patients exhibit acquired resistance. Hyperactivation of the PI3K/AKT/mTOR pathway is associated with drug resistance and cancer progression. Currently, a number of drugs targeting PI3K/AKT/mTOR are being investigated in clinical trials by combining them with standard therapies to overcome acquired resistance in breast cancer. In this review, we summarize the critical role of the PI3K/AKT/mTOR pathway in drug resistance, the development of PI3K/AKT/mTOR inhibitors, and strategies to overcome acquired resistance to standard therapies in breast cancer.
Collapse
Affiliation(s)
- Chao Dong
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Yin Chen
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jianyun Nie
- Department of the Third Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
72
|
Riess C, Irmscher N, Salewski I, Strüder D, Classen CF, Große-Thie C, Junghanss C, Maletzki C. Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer Metastasis Rev 2021; 40:153-171. [PMID: 33161487 PMCID: PMC7897202 DOI: 10.1007/s10555-020-09940-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Cyclin-dependent kinases (CDK) control the cell cycle and play a crucial role in oncogenesis. Pharmacologic inhibition of CDK has contributed to the recent clinical approval of dual CDK4/6 inhibitors for the treatment of breast and small cell lung cancer. While the anticancer cell effects of CDK inhibitors are well-established, preclinical and early clinical studies describe additional mechanisms of action such as chemo- and radiosensitization or immune stimulation. The latter offers great potential to incorporate CDK inhibitors in immune-based treatments. However, dosing schedules and accurate timing of each combination partner need to be respected to prevent immune escape and resistance. In this review, we provide a detailed summary of CDK inhibitors in the two solid cancer types head and neck cancer and glioblastoma multiforme; it describes the molecular mechanisms of response vs. resistance and covers strategies to avoid resistance by the combination of immunotherapy or targeted therapy.
Collapse
Affiliation(s)
- Christin Riess
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Nina Irmscher
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Inken Salewski
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| | - Carl-Friedrich Classen
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Christina Große-Thie
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
73
|
Rencuzogulları O, Yerlikaya PO, Gürkan AÇ, Arısan ED, Telci D. Palbociclib negatively regulates fatty acid synthesis due to upregulation of AMPKα and miR-33a levels to increase apoptosis in Panc-1 and MiaPaCa-2 cells. Biotechnol Appl Biochem 2021; 69:342-354. [PMID: 33538066 DOI: 10.1002/bab.2113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/10/2021] [Indexed: 12/11/2022]
Abstract
Fatty acids (FAs) synthesis mechanism has various regulators such as fatty acid synthase (FASN), AMP-regulated protein kinase (AMPK), or mammalian target of rapamycin (mTOR), which are aberrantly dysregulated in various pancreatic cancer cells. In this study, we aim to understand the regulatory role of palbociclib, a CDK4/6 inhibitor, on the cellular energy metabolism through regulation of AMPK/mTOR signaling by modulation of intracellular miR-33a levels in Panc-1 and MiaPaCa-2 cells. Palbociclib downregulated FAs metabolism more effectively in MiaPaCa-2 cells than Panc-1 cells. Moreover, palbociclib treatment increased the levels of miR-33a in each cell line albeit a higher increase was evident in MiaPaCa-2 cells. Stress-mediated activation of mTOR signaling axis was found associated with palbociclib-mediated AMPKα activation and miR33a upregulation. These findings provided that a deeper understanding about possible interactions of cell cycle activity and reduction of FAs synthesis may facilitate the enhancement of cell death mechanisms in pancreatic cancer cells.
Collapse
Affiliation(s)
- Ozge Rencuzogulları
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Istanbul, Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Pınar Obakan Yerlikaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Istanbul, Turkey
| | - Ajda Çoker Gürkan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Istanbul, Turkey
| | - Elif Damla Arısan
- Department of Biotechnology, Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
74
|
Intrinsic and acquired resistance to CDK4/6 inhibitors and potential overcoming strategies. Acta Pharmacol Sin 2021; 42:171-178. [PMID: 32504067 DOI: 10.1038/s41401-020-0416-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Abnormal activation of the cyclin-dependent kinases (CDKs), which result in aberrant cell proliferation, is one of the inherent characteristics of tumor. Thus targeting the activity of CDKs represents a promising tumor therapeutic strategy. Currently, the specific inhibitors that target CDK4 and CDK6 have been approved for the treatment of estrogen receptor positive, human epidermal growth factor receptor 2 negative (ER+ HER2-) breast cancer in combination with endocrine therapy; other combination strategies are being tested in a number of clinical trials. However, the acquired resistance to CDK4/6 inhibitors has emerged. As the cell cycle is orchestrated by a series of biological events, the alterations of other molecular events that regulate the cell cycle progression may be involved in intrinsic resistance to CDK4/6 inhibitors. In this review we mainly discuss the mechanisms underlying intrinsic resistance and acquired resistance to CDK4/6 inhibitors as well as combination strategies with other signal pathway inhibitors being tested in clinical and pre-clinical studies, to extend the use of CDK4/6 inhibitors in tumor treatment.
Collapse
|
75
|
Braal CL, Jongbloed EM, Wilting SM, Mathijssen RHJ, Koolen SLW, Jager A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs 2021; 81:317-331. [PMID: 33369721 PMCID: PMC7952354 DOI: 10.1007/s40265-020-01461-2] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/22/2022]
Abstract
The cyclin-dependent kinase (CDK) 4/6 inhibitors belong to a new class of drugs that interrupt proliferation of malignant cells by inhibiting progression through the cell cycle. Three such inhibitors, palbociclib, ribociclib, and abemaciclib were recently approved for breast cancer treatment in various settings and combination regimens. On the basis of their impressive efficacy, all three CDK4/6 inhibitors now play an important role in the treatment of patients with HR+, HER2- breast cancer; however, their optimal use still needs to be established. The three drugs have many similarities in both pharmacokinetics and pharmacodynamics. However, there are some differences on the basis of which the choice for a particular CDK4/6 inhibitor for an individual patient can be important. In this article, the clinical pharmacokinetic and pharmacodynamic profiles of the three CDK4/6 inhibitors are reviewed and important future directions of the clinical applicability of CDK4/6 inhibitors will be discussed.
Collapse
Affiliation(s)
- C Louwrens Braal
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Elisabeth M Jongbloed
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
76
|
Gomatou G, Trontzas I, Ioannou S, Drizou M, Syrigos N, Kotteas E. Mechanisms of resistance to cyclin-dependent kinase 4/6 inhibitors. Mol Biol Rep 2021; 48:915-925. [PMID: 33409716 DOI: 10.1007/s11033-020-06100-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
Cyclin-dependent kinase (CDK) 4/6 inhibitors have emerged in the treatment of metastatic hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. However, most patients will eventually present disease progression, highlighting the inevitable resistance of cancer cells to CDK4/6 inhibition. Several studies have suggested that resistance mechanisms involve aberrations of the molecules that regulate the cell cycle, and the re-wiring of the cell to escape CDK4/6 dependence and turn to alternative pathways. Loss of retinoblastoma function, overexpression of CDK 6, upregulation of cyclin E, overexpression of CDK 7, and dysregulation of several signaling pathways, notably the PI3/AKT/mTOR pathway, have been implicated in the development of resistance to CDK4/6 inhibitors. Overlap with endocrine resistance mechanisms might be possible. Combinational therapeutic strategies should be explored in order to prevent resistance and optimize the management of patients after progression under CDK 4/6 inhibition.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis Trontzas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephanie Ioannou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Drizou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Syrigos
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
77
|
Maskey RS, Wang F, Lehman E, Wang Y, Emmanuel N, Zhong W, Jin G, Abraham RT, Arndt KT, Myers JS, Mazurek A. Sustained mTORC1 activity during palbociclib-induced growth arrest triggers senescence in ER+ breast cancer cells. Cell Cycle 2020; 20:65-80. [PMID: 33356791 DOI: 10.1080/15384101.2020.1859195] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Palbociclib, a selective CDK4/6 kinase inhibitor, is approved in combination with endocrine therapies for the treatment of advanced estrogen receptor positive (ER+) breast cancer. In pre-clinical cancer models, CDK4/6 inhibitors act primarily as cytostatic agents. In two commonly studied ER+ breast cancer cell lines (MCF7 and T47D), CDK4/6 inhibition drives G1-phase arrest and the acquisition of a senescent-like phenotype, both of which are reversible upon palbociclib withdrawal (incomplete senescence). Here we identify an ER+ breast cancer cell line, CAMA1, in which palbociclib treatment induces irreversible cell cycle arrest and senescence (complete senescence). In stark contrast to T47D and MCF7 cells, mTORC1 activity is not stably suppressed in CAMA1 cells during palbociclib treatment. Importantly, inhibition of mTORC1 signaling either by the mTORC1 inhibitor rapamycin or by knockdown of Raptor, a unique component of mTORC1, during palbociclib treatment of CAMA1 cells blocks the induction of complete senescence. These results indicate that sustained mTORC1 activity promotes complete senescence in ER+ breast cancer cells during CDK4/6 inhibitor-induced cell cycle arrest. Consistent with this mechanism, genetic depletion of TSC2, a negative regulator of mTORC1, in MCF7 cells resulted in sustained mTORC1 activity during palbociclib treatment and evoked a complete senescence response. These findings demonstrate that persistent mTORC1 signaling during palbociclib-induced G1 arrest is a potential liability for ER+ breast cancer cells, and suggest a strategy for novel drug combinations with palbociclib.
Collapse
Affiliation(s)
- Reeja S Maskey
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Fang Wang
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Elyssa Lehman
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Yiqun Wang
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Natasha Emmanuel
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Wenyan Zhong
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Guixian Jin
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Robert T Abraham
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Kim T Arndt
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Jeremy S Myers
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| | - Anthony Mazurek
- Oncology Research & Development, Pfizer Worldwide Research and Development , Pearl River, NY, USA
| |
Collapse
|
78
|
Montalto FI, De Amicis F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020; 9:cells9122648. [PMID: 33317149 PMCID: PMC7763888 DOI: 10.3390/cells9122648] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin D1, an important regulator of cell cycle, carries out a central role in the pathogenesis of cancer determining uncontrolled cellular proliferation. In normal cells, Cyclin D1 expression levels are strictly regulated, conversely, in cancer, its activity is intensified in various manners. Different studies demonstrate that CCDN1 gene is amplified in several tumor types considering it as a negative prognostic marker of this pathology. Cyclin D1 is known for its role in the nucleus, but recent clinical studies associate the amount located in the cytoplasmic membrane with tumor invasion and metastasis. Cyclin D1 has also other functions: it governs the expression of specific miRNAs and it plays a crucial role in the tumor-stroma interactions potentiating most of the cancer hallmarks. In the present review, we will summarize the current scientific evidences that highlight the involvement of Cyclin D1 in the pathogenesis of different types of cancer, best of all in breast cancer. We will also focus on recent insights regarding the Cyclin D1 as molecular bridge between cell cycle control, adhesion, invasion, and tumor/stroma/immune-system interplay in cancer.
Collapse
Affiliation(s)
- Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-984-496204
| |
Collapse
|
79
|
Migliaccio I, Bonechi M, McCartney A, Guarducci C, Benelli M, Biganzoli L, Di Leo A, Malorni L. CDK4/6 inhibitors: A focus on biomarkers of response and post-treatment therapeutic strategies in hormone receptor-positive HER2-negative breast cancer. Cancer Treat Rev 2020; 93:102136. [PMID: 33360919 DOI: 10.1016/j.ctrv.2020.102136] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
CDK4/6 inhibitors (CDK4/6i) in combination with endocrine therapy are the mainstay of treatment for patients with hormone receptor-positive, HER2 negative (HR+/HER2neg) metastatic breast cancer. However, resistance - either de novo or acquired - invariably occurs, leading to treatment failure and cancer progression. Genomic alterations, gene expression data and circulating biomarkers have been correlated to response to treatment, but to date no biomarker has been approved to stratify patients. Treatment strategies after progression on CDK4/6i are yet to be standardized. Current approaches include endocrine therapy alone or in combination with target therapy, or chemotherapy. New agents are in clinical development based on potential mechanisms of acquired resistance. Here we will review recent advancements in biomarkers of response to CDK4/6i, and in post- treatment therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy.
| | - Martina Bonechi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Amelia McCartney
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy; School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Laura Biganzoli
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Angelo Di Leo
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy; "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| |
Collapse
|
80
|
Kuei CH, Lin HY, Lin MH, Lee HH, Lin CH, Lee WJ, Chen YL, Lu LS, Zheng JQ, Hung RC, Chiu HW, Chen KC, Lin YF. DNA polymerase theta repression enhances the docetaxel responsiveness in metastatic castration-resistant prostate cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165954. [PMID: 32877750 DOI: 10.1016/j.bbadis.2020.165954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Docetaxel remains a main treatment for metastatic castration-resistant prostate cancer (mCRPC); however, the development of docetaxel resistance has been found in some mCRPC patients. The aim of this work is to identify an effective biomarker for predicting therapeutic effectiveness of docetaxel in mCRPC patients. METHODS We examined DNA polymerase theta (POLQ) expression in The Cancer Genome Atlas (TCGA) database and Tissue microarray. Kaplan-Meier analyses were performed to estimate the prognostic significance of POLQ. A series of functional analyses were conducted in cell lines and xenograft models. Regulated pathways were predicted by Geneset Enrichment Analysis (GSEA) software and further investigated by luciferase reporter and RT-PCR assays. RESULTS We found that POLQ mRNA levels in CRPC tissues was significantly higher than that of other DNA polymerases in non-CRPC prostate tissues. POLQ upregulation was extensively detected in mCRPC and strongly predicted a poor prognosis. POLQ knockdown enhanced docetaxel sensitivity in a cell-based cytotoxicity assay and promoted the therapeutic effect on the tumor growth of metastatic PC-3M cells in xenograft models. The computational simulation by GSEA software significantly predicted the association between POLQ upregulation and the activation of E2F/G2M checkpoint-related pathways. Moreover, luciferase reporter and RT-PCR assays demonstrated that POLQ knockdown downregulated the transcriptional regulatory activity of E2F and repressed E2F/G2M checkpoint-regulated CDK1 in mCRPC cells. CONCLUSION Our results suggest that POLQ serves as a predictive factor for poor docetaxel response and provide a novel strategy to enhance the anticancer effects of docetaxel therapy by targeting POLQ in mCRPC patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- DNA-Directed DNA Polymerase/genetics
- DNA-Directed DNA Polymerase/metabolism
- Docetaxel/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- PC-3 Cells
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tumor Cells, Cultured
- DNA Polymerase theta
Collapse
Affiliation(s)
- Chia-Hao Kuei
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Division of Surgery, Cardinal Tien Hospital, Xindian District, New Taipei City 23148, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Breast Surgery and General Surgery, Division of Surgery, Cardinal Tien Hospital, Xindian district, New Taipei City 23148, Taiwan
| | - Min-Hsuan Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsun-Hua Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23148, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Che-Hsuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 23148, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Chest Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Ruei-Chen Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| |
Collapse
|
81
|
Marinelli O, Romagnoli E, Maggi F, Nabissi M, Amantini C, Morelli MB, Santoni M, Battelli N, Santoni G. Exploring treatment with Ribociclib alone or in sequence/combination with Everolimus in ER +HER2 -Rb wild-type and knock-down in breast cancer cell lines. BMC Cancer 2020; 20:1119. [PMID: 33213401 PMCID: PMC7678099 DOI: 10.1186/s12885-020-07619-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Breast cancer (BC) is the second most common type of cancer worldwide. Among targeted therapies for Hormone Receptor-positive (HR+) and Human Epidermal growth factor Receptor 2-negative (HER2−) BC, the Cyclin-Dependent Kinases (CDK4/6) are targeted by inhibitors such as Ribociclib (Rib); however, resistance to CDK4/6 inhibitors frequently develops. The aim of this work is to assess in vitro activity of Rib and Everolimus (Eve) in HR+HER2− MCF-7 and HR−HER2−BT-549 BC cell lines. Methods HR+HER2− MCF-7 and HR−HER2− BT-549 BC cell lines were treated with increasing concentration of Rib and Eve (up to 80 μg/mL) for 48–72 h. Subsequently, HR+HER2− MCF-7 cells were silenced for Retinoblastoma (Rb) gene, and thus, the effect of Rib in sequential or concurrent schedule with Eve for the treatment of both Rb wild type or Rb knock-down MCF-7 in vitro was evaluated. Cell viability of HR+HER2− MCF-7cells treated with sequential and concurrent dosing schedule was analyzed by MTT assay. Moreover, cell cycle phases, cell death and senescence were evaluated by cytofluorimetric analysis after treatment with Rib or Eve alone or in combination. Results The sequential treatment didn’t produce a significant increase of cytotoxicity, compared to Rib alone. Instead, the cotreatment synergized to increase the cytotoxicity compared to Rib alone. The cotreatment reduced the percentage of cells in S and G2/M phases and induced apoptosis. Rib triggered senescence and Eve completely reversed this effect in Rb wild type BC cells. Rib also showed Rb-independent effects as shown by results in Rb knock-down MCF-7. Conclusion Overall, the Rib/Eve concurrent therapy augmented the in vitro cytotoxic effect, compared to Rib/Eve sequential therapy or single treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07619-1.
Collapse
Affiliation(s)
| | | | - Federica Maggi
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy.,Department of Molecular Medicine, University of Rome Sapienza, Rome, Italy
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Consuelo Amantini
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | | | - Matteo Santoni
- Medical Oncology Unit, Hospital of Macerata, Macerata, Italy
| | - Nicola Battelli
- Medical Oncology Unit, Hospital of Macerata, Macerata, Italy
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy.
| |
Collapse
|
82
|
Li Z, Zou W, Zhang J, Zhang Y, Xu Q, Li S, Chen C. Mechanisms of CDK4/6 Inhibitor Resistance in Luminal Breast Cancer. Front Pharmacol 2020; 11:580251. [PMID: 33364954 PMCID: PMC7751736 DOI: 10.3389/fphar.2020.580251] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
As a new-generation CDK inhibitor, a CDK4/6 inhibitor combined with endocrine therapy has been successful in the treatment of advanced estrogen receptor-positive (ER+) breast cancer. Although there has been overall progress in the treatment of cancer, drug resistance is an emerging cause for breast cancer-related death. Overcoming CDK4/6 resistance is an urgent problem. Overactivation of the cyclin-CDK-Rb axis related to uncontrolled cell proliferation is the main cause of CDK4/6 inhibitor resistance; however, the underlying mechanisms need to be clarified further. We review various resistance mechanisms of CDK4/6 inhibitors in luminal breast cancer. The cell signaling pathways involved in therapy resistance are divided into two groups: upstream response mechanisms and downstream bypass mechanisms. Finally, we discuss possible strategies to overcome CDK4/6 inhibitor resistance and identify novel resistance targets for future clinical application.
Collapse
Affiliation(s)
- Zhen Li
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Zou
- Queen Mary Institute, Nanchang University, Nanchang, China
| | - Ji Zhang
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunjiao Zhang
- Kunming Medical University Haiyuan College, Kunming, China
| | - Qi Xu
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX, United States
| | - Siyuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute of Translation Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
83
|
Narayan P, Prowell TM, Gao JJ, Fernandes LL, Li E, Jiang X, Qiu J, Fan J, Song P, Yu J, Zhang X, King-Kallimanis BL, Chen W, Ricks TK, Gong Y, Wang X, Windsor K, Rhieu SY, Geiser G, Banerjee A, Chen X, Reyes Turcu F, Chatterjee DK, Pathak A, Seidman J, Ghosh S, Philip R, Goldberg KB, Kluetz PG, Tang S, Amiri-Kordestani L, Theoret MR, Pazdur R, Beaver JA. FDA Approval Summary: Alpelisib Plus Fulvestrant for Patients with HR-positive, HER2-negative, PIK3CA-mutated, Advanced or Metastatic Breast Cancer. Clin Cancer Res 2020; 27:1842-1849. [DOI: 10.1158/1078-0432.ccr-20-3652] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
|
84
|
Kuenzi BM, Park J, Fong SH, Sanchez KS, Lee J, Kreisberg JF, Ma J, Ideker T. Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells. Cancer Cell 2020; 38:672-684.e6. [PMID: 33096023 PMCID: PMC7737474 DOI: 10.1016/j.ccell.2020.09.014] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Most drugs entering clinical trials fail, often related to an incomplete understanding of the mechanisms governing drug response. Machine learning techniques hold immense promise for better drug response predictions, but most have not reached clinical practice due to their lack of interpretability and their focus on monotherapies. We address these challenges by developing DrugCell, an interpretable deep learning model of human cancer cells trained on the responses of 1,235 tumor cell lines to 684 drugs. Tumor genotypes induce states in cellular subsystems that are integrated with drug structure to predict response to therapy and, simultaneously, learn biological mechanisms underlying the drug response. DrugCell predictions are accurate in cell lines and also stratify clinical outcomes. Analysis of DrugCell mechanisms leads directly to the design of synergistic drug combinations, which we validate systematically by combinatorial CRISPR, drug-drug screening in vitro, and patient-derived xenografts. DrugCell provides a blueprint for constructing interpretable models for predictive medicine.
Collapse
Affiliation(s)
- Brent M Kuenzi
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jisoo Park
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Samson H Fong
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kyle S Sanchez
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - John Lee
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jason F Kreisberg
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jianzhu Ma
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
85
|
c-myc regulates the sensitivity of breast cancer cells to palbociclib via c-myc/miR-29b-3p/CDK6 axis. Cell Death Dis 2020; 11:760. [PMID: 32934206 PMCID: PMC7493901 DOI: 10.1038/s41419-020-02980-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
Abstract
Palbociclib, a CDK4/6 inhibitor, has been granted accelerated approval by US FDA for hormone receptor-positive HER2-negative metastatic breast cancer. To determine potential biomarkers of palbociclib sensitivity to assist in patient selection and clinical development, we investigated the effects of palbociclib in a panel of molecularly characterized breast cancer cell lines. We quantified palbociclib sensitivity and c-myc expression in 11 breast cancer cell lines, 124 breast cancer samples, and The Cancer Genome Atlas database. We found non-TNBC subtypes were more sensitive to palbociclib than TNBC. Activation of c-myc led to differential palbociclib sensitivities, and further inhibition of c-myc enhanced palbociclib sensitivity. Moreover, we identified for the first time a c-myc/miR-29b-3p/CDK6 axis in breast cancer that could be responsible for c-myc-induced palbociclib insensitivity, in which c-myc activation resulted in downregulation of miR-29b-3p, further activated CDK6 and inhibited cell-cycle arrest at G1 phase. Moreover, downregulated (inactived) c-myc-induced oncogenic addiction could increase palbociclib efficacy, using both Xenograft model and patient-derived tumor xenograft (PDTX) model. Our finding extends the concept of combined blockade of the CDK4/6 and c-myc signaling pathways to increase palbociclib sensitivity, making c-myc a promising biomarker for palbociclib sensitivity in breast cancer.
Collapse
|
86
|
Gary JM, Simmons JK, Xu J, Zhang S, Peat TJ, Watson N, Gamache BJ, Zhang K, Kovalchuk AL, Michalowski AM, Chen JQ, Thaiwong T, Kiupel M, Gaikwad S, Etienne M, Simpson RM, Dubois W, Testa JR, Mock BA. Hypomorphic mTOR Downregulates CDK6 and Delays Thymic Pre-T LBL Tumorigenesis. Mol Cancer Ther 2020; 19:2221-2232. [PMID: 32747423 DOI: 10.1158/1535-7163.mct-19-0671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/14/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
PI3K/AKT/mTOR pathway hyperactivation is frequent in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL). To model inhibition of mTOR, pre-T-cell lymphoblastic leukemia/lymphoma (pre-T LBL) tumor development was monitored in mice with T lymphocyte-specific, constitutively active AKT (Lck-MyrAkt2) that were either crossed to mTOR knockdown (KD) mice or treated with the mTOR inhibitor everolimus. Lck-MyrAkt2;mTOR KD mice lived significantly longer than Lck-MyrAkt2;mTOR wild-type (WT) mice, although both groups ultimately developed thymic pre-T LBL. An increase in survival was also observed when Lck-MyrAkt2;mTOR WT mice were treated for 8 weeks with everolimus. The transcriptional profiles of WT and KD thymic lymphomas were compared, and Ingenuity Pathway Upstream Regulator Analysis of differentially expressed genes in tumors from mTOR WT versus KD mice identified let-7 and miR-21 as potential regulatory genes. mTOR KD mice had higher levels of let-7a and miR-21 than mTOR WT mice, and rapamycin induced their expression in mTOR WT cells. CDK6 was one of the most downregulated targets of both let-7 and miR21 in mTOR KD tumors. CDK6 overexpression and decreased expression of let-7 in mTOR KD cells rescued a G1 arrest phenotype. Combined mTOR (rapamycin) and CDK4/6 (palbociclib) inhibition decreased tumor size and proliferation in tumor flank transplants, increased survival in an intravenous transplant model of disseminated leukemia compared with single agent treatment, and cooperatively decreased cell viability in human T-ALL/LBL cell lines. Thus, mTOR KD mice provide a model to explore drug combinations synergizing with mTOR inhibitors and can be used to identify downstream targets of inhibition.
Collapse
Affiliation(s)
- Joy M Gary
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland.,Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - John K Simmons
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Jinfei Xu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Tyler J Peat
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Nicholas Watson
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Benjamin J Gamache
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland.,American University, Washington, DC
| | - Ke Zhang
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | | | | | - Jin-Qiu Chen
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Tuddow Thaiwong
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Matti Kiupel
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Snehal Gaikwad
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Maudeline Etienne
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
87
|
Paul MR, Pan TC, Pant DK, Shih NN, Chen Y, Harvey KL, Solomon A, Lieberman D, Morrissette JJ, Soucier-Ernst D, Goodman NG, Stavropoulos SW, Maxwell KN, Clark C, Belka GK, Feldman M, DeMichele A, Chodosh LA. Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J Clin Invest 2020; 130:4252-4265. [PMID: 32657779 PMCID: PMC7410083 DOI: 10.1172/jci129941] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Nearly all breast cancer deaths result from metastatic disease. Despite this, the genomic events that drive metastatic recurrence are poorly understood. We performed whole-exome and shallow whole-genome sequencing to identify genes and pathways preferentially mutated or copy-number altered in metastases compared with the paired primary tumors from which they arose. Seven genes were preferentially mutated in metastases - MYLK, PEAK1, SLC2A4RG, EVC2, XIRP2, PALB2, and ESR1 - 5 of which are not significantly mutated in any type of human primary cancer. Four regions were preferentially copy-number altered: loss of STK11 and CDKN2A/B, as well as gain of PTK6 and the membrane-bound progesterone receptor, PAQR8. PAQR8 gain was mutually exclusive with mutations in the nuclear estrogen and progesterone receptors, suggesting a role in treatment resistance. Several pathways were preferentially mutated or altered in metastases, including mTOR, CDK/RB, cAMP/PKA, WNT, HKMT, and focal adhesion. Immunohistochemical analyses revealed that metastases preferentially inactivate pRB, upregulate the mTORC1 and WNT signaling pathways, and exhibit nuclear localization of activated PKA. Our findings identify multiple therapeutic targets in metastatic recurrence that are not significantly mutated in primary cancers, implicate membrane progesterone signaling and nuclear PKA in metastatic recurrence, and provide genomic bases for the efficacy of mTORC1, CDK4/6, and PARP inhibitors in metastatic breast cancer.
Collapse
Affiliation(s)
- Matt R. Paul
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Tien-chi Pan
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Dhruv K. Pant
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Natalie N.C. Shih
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Pathology and Laboratory Medicine
| | - Yan Chen
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Kyra L. Harvey
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Aaron Solomon
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | | | | | - Danielle Soucier-Ernst
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - Noah G. Goodman
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - S. William Stavropoulos
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Radiology, and
| | - Kara N. Maxwell
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - Candace Clark
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - George K. Belka
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Michael Feldman
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Pathology and Laboratory Medicine
| | - Angela DeMichele
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lewis A. Chodosh
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
- Department of Medicine
| |
Collapse
|
88
|
Fang Z, Jung KH, Lee JE, Cho J, Lim JH, Hong SS. MEK blockade overcomes the limited activity of palbociclib in head and neck cancer. Transl Oncol 2020; 13:100833. [PMID: 32712554 PMCID: PMC7385517 DOI: 10.1016/j.tranon.2020.100833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Head and neck cancer (HNC) is characterized with multiple aberrations in cell cycle pathways, including amplification of cyclin D1. Palbociclib (PAL), a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has been reported to regulate cell cycle progression in HNC. However, recent studies have revealed the acquired resistance of certain cells to PAL through activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Therefore, we investigated whether the inhibition of MEK/ERK pathway by trametinib (TRA) may overcome the limited efficacy of PAL in HNC. We evaluated the effect of PAL alone and in combination with TRA on the viability of HNC cells, and found that the combination treatment synergistically inhibited the proliferation of HNC cells. The combination treatment induced G0/G1 cell cycle arrest and apoptotic cell death. In particular, apoptosis mediated by the combination treatment was accompanied with an increase in caspase-3 activity and the number of TUNEL-positive apoptotic cells. These results were consistent with the decrease in cell cycle progression and mitogen-activated protein kinase (MAPK) pathway activation. In a xenograft mouse model of HNC, PAL and TRA synergistically inhibited tumor growth and enhanced tumor cell apoptosis, consistent with the increase in the number of TUNEL-positive cells. The anti-proliferative effects were evident in tumor tissues subjected to the combination treatment as compared with those treated with single drug. Taken together, our study demonstrates that the combination of PAL and TRA exerts synergistic anticancer effects and inhibits cell cycle check points and MEK/ERK pathway in HNC, suggestive of their potential application for HNC treatment.
Collapse
Affiliation(s)
- Zhenghuan Fang
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Ji Eun Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Jinhyun Cho
- Department of Internal Medicine, Inha University Hospital, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Joo Han Lim
- Department of Internal Medicine, Inha University Hospital, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea.
| |
Collapse
|
89
|
Nakayama T, Fujisawa F. Therapy options after CDK4/6 inhibitors for HR+, HER2- postmenopausal metastatic/recurrent breast cancer in Japan: a role for mammalian target of rapamycin inhibitors? Future Oncol 2020; 16:1851-1862. [PMID: 32614252 DOI: 10.2217/fon-2020-0326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite advances in the treatment of hormone receptor-positive, HER2- metastatic breast cancer, the disease is rarely curable. In this review, we focus on the use of CDK4/6 inhibitors, examining clinical experience and the mechanisms underlying the development of resistance, and evaluating treatment options after failure to respond to CDK4/6 inhibitors. Current basic research supports the use of mammalian target of rapamycin inhibitors after CDK4/6 inhibitor failure; however, more data are needed, particularly regarding treatment sequencing. Real-world data studies may help to fill the current knowledge gap, particularly where large-scale randomized controlled studies are not feasible.
Collapse
Affiliation(s)
- Takahiro Nakayama
- Breast & Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Fumie Fujisawa
- Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
90
|
Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P, Wei M, Brandhorst S, Zucal C, Driehuis E, Ferrando L, Piacente F, Tagliafico A, Cilli M, Mastracci L, Vellone VG, Piazza S, Cremonini AL, Gradaschi R, Mantero C, Passalacqua M, Ballestrero A, Zoppoli G, Cea M, Arrighi A, Odetti P, Monacelli F, Salvadori G, Cortellino S, Clevers H, De Braud F, Sukkar SG, Provenzani A, Longo VD, Nencioni A. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020; 583:620-624. [PMID: 32669709 PMCID: PMC7881940 DOI: 10.1038/s41586-020-2502-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.
Collapse
Affiliation(s)
- Irene Caffa
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vanessa Spagnolo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Claudio Vernieri
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Valdemarin
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Pamela Becherini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Min Wei
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Brandhorst
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Chiara Zucal
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Else Driehuis
- Oncode Institute and Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lorenzo Ferrando
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Francesco Piacente
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Michele Cilli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Valerio G Vellone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Silvano Piazza
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Anna Laura Cremonini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alberto Ballestrero
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Gabriele Zoppoli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Michele Cea
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Annalisa Arrighi
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Patrizio Odetti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Fiammetta Monacelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Giulia Salvadori
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Hans Clevers
- Oncode Institute and Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Filippo De Braud
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Alessandro Provenzani
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.
| |
Collapse
|
91
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
92
|
Liu Y, Zhao R, Fang S, Li Q, Jin Y, Liu B. Abemaciclib sensitizes HPV-negative cervical cancer to chemotherapy via specifically suppressing CDK4/6-Rb-E2F and mTOR pathways. Fundam Clin Pharmacol 2020; 35:156-164. [PMID: 32446293 DOI: 10.1111/fcp.12574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Cervical cancer is the second most common malignancy in women, and the novel therapeutic treatment is needed. Abemaciclib is a FDA-approved drug for breast cancer treatment. In this work, we identified that abemaciclib has potent anti-cervical cancer activity. We demonstrate that abemaciclib is the most effective drug against human papillomavirus (HPV)-negative cervical cancer cells compared to ribociclib and palbociclib, with its IC50 at nanomolar concentration range. This is achieved by the inhibition of proliferation and induction of apoptosis, through specifically suppressing CDK4/6-Rb-E2F and mTOR pathways by abemaciclib in HPV-negative cervical cancer cells. Of note, the combination of abemaciclib with paclitaxel and cisplatin at sublethal concentration results in much greater efficacy than chemotherapy alone. In addition, we confirm the efficacy of abemaciclib and its combination with paclitaxel or cisplatin at the doses that are not toxic to mice in HPV-negative cervical cancer xenograft mouse model. Interestingly, we show that abemaciclib and other CDK4/6 inhibitors are not effective in targeting HPV-positive cervical cancer cells, and this is likely to be associated with the high p16 and low Rb expression in HPV-positive cervical cancer cells. Our work is the first to provide the preclinical evidence to demonstrate the potential of abemaciclib for the treatment of HPV-negative cervical cancer. The mechanism analysis highlights the therapeutic value of inhibiting CDK4/6 in HPV-negative but not HPV-positive cervical cancer.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Runsheng Zhao
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Shanshan Fang
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Quan Li
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Yiqiang Jin
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Bo Liu
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| |
Collapse
|
93
|
Sharifi MN, Anandan A, Grogan P, O'Regan RM. Therapy after cyclin-dependent kinase inhibition in metastatic hormone receptor-positive breast cancer: Resistance mechanisms and novel treatment strategies. Cancer 2020; 126:3400-3416. [PMID: 32426848 DOI: 10.1002/cncr.32931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022]
Abstract
Endocrine therapy has been the standard of care for patients with metastatic hormone receptor (HR)-positive, HER2-negative breast cancer since the 1970s, improving survival while avoiding the toxicities associated with cytotoxic chemotherapy. However, all HR-positive tumors ultimately develop resistance to endocrine therapy. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have more recently become an important component of the management of this breast cancer subtype, significantly delaying time to the disease progression and improving survival when combined with endocrine therapy. However, as with endocrine therapy alone, treatment resistance remains a universal phenomenon. As more women receive CDK4/6 inhibitors as part of their treatment, the management of de novo and acquired resistance to combined CDK4/CDK6 inhibitor plus endocrine therapy regimens has emerged as an important clinical challenge. Several resistance mechanisms have been described, including alterations in the CDK4/6/cyclin D complex or its major effector retinoblastoma protein (pRb), bypass signaling through other cyclin/CDK complexes and activation of upstream signaling pathways, in particular the PI3K/mTOR pathway, but robust biomarkers to predict resistance remain elusive, and the role for continuing CDK4/6 inhibitors after progression remains under investigation. Novel strategies being evaluated in clinical trials include the continuation of CDK4/6 inhibitors through progression, as well as triplet therapy combinations with PI3K inhibitors or immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Marina N Sharifi
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Internal Medicine Pathway for Academic Career Training (IMPACT) Physician Scientist Program, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Apoorva Anandan
- Internal Medicine Residency Program, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Patrick Grogan
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Internal Medicine Pathway for Academic Career Training (IMPACT) Physician Scientist Program, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ruth M O'Regan
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
94
|
Sequencing Endocrine Therapy for Metastatic Breast Cancer: What Do We Do After Disease Progression on a CDK4/6 Inhibitor? Curr Oncol Rep 2020; 22:57. [PMID: 32415339 DOI: 10.1007/s11912-020-00917-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors have revolutionized the treatment landscape for patients with hormone receptor-positive (HR+) and HER2-negative (HER2-) metastatic breast cancer (MBC). However, optimal therapy after CDK4/6 inhibitors is unknown. This review provides an update on recent understanding of potential resistance mechanisms to CDK4/6 inhibitors and therapeutic strategies. RECENT FINDINGS CDK4/6 inhibitors are broadly effective for HR+/HER2- MBC. However, intrinsic and acquired resistance is inevitable. Although there are no established clinical predictors of response aside from ER positivity, several cell cycle-specific and non-specific mechanisms have emerged as potential resistance biomarkers and therapeutic targets in recent studies. Examples include loss of function mutations in RB1 or FAT1, overexpression or amplification of CDK6 and CCNE1, alterations of FGFR, and PI3K/mTOR-mediated CDK2 activation. Biomarker studies and clinical trials targeting CDK4/6 inhibitor resistance are critical to improve treatments for HR+/HER2- MBC.
Collapse
|
95
|
Chen F, Zhang Z, Yu Y, Liu Q, Pu F. HSulf‑1 and palbociclib exert synergistic antitumor effects on RB‑positive triple‑negative breast cancer. Int J Oncol 2020; 57:223-236. [PMID: 32377705 PMCID: PMC7252455 DOI: 10.3892/ijo.2020.5057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Human sulfatase-1 (HSulf-1) is emerging as a novel prognostic biomarker in breast cancer. Previous studies demonstrated HSulf-1 to function as a negative regulator of cyclin D1 in breast cancer. Accumulating preclinical evidence is supporting the efficacy of cyclin-dependent kinase (CDK) 4/6 inhibitors against the luminal androgen receptor sub-type of triple-negative breast cancer (TNBC). It was therefore hypothesized that HSulf-1 may cooperate with CDK4/6 inhibitors to control cell cycle progression in breast cancer cells. HSulf-1 expression was found to be downregulated in TNBC tissues and cell lines compared with that in healthy tissues and non-breast cancer cell lines, respectively. High levels of HSulf-1 expression was also found to be associated with increased progression-free survival and overall survival in patients with TNBC. Functionally, it was demonstrated that HSulf-1 served as tumor suppressor in TNBC by inducing cell cycle arrest and apoptosis whilst inhibiting proliferation, epithelial-mesenchymal transition, migration and invasion. Subsequent overexpression of HSulf-1 coupled with treatment with the CDK4/6 inhibitor palbociclib exhibited a synergistic antitumor effect on retinoblastoma (RB)-positive TNBC. Further studies revealed the mechanism underlying this cooperative antiproliferative effect involved to be due to the prohibitive effects of HSulf-1 on the palbociclib-induced accumulation of cyclin D1 through AKT/STAT3 and ERK1/2/STAT3 signaling. Taken together, findings from the present study not only suggest that HSulf-1 may be a potential therapeutic target for TNBC, but also indicate that combinatorial treatment could be an alternative therapeutic option for RB-positive TNBC, which may open novel perspectives.
Collapse
Affiliation(s)
- Fengxia Chen
- Department of Medical Oncology, General Hospital of The Yangtze River Shipping, Wuhan Polytechnic University, Wuhan, Hubei 430010, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yihan Yu
- Department of Pediatrics, The Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiuyu Liu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
96
|
Combined inhibition of PIM and CDK4/6 suppresses both mTOR signaling and Rb phosphorylation and potentiates PI3K inhibition in cancer cells. Oncotarget 2020; 11:1478-1492. [PMID: 32391118 PMCID: PMC7197449 DOI: 10.18632/oncotarget.27539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/14/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant activation of mitogenic signaling pathways in cancer promotes growth and proliferation of cells by activating mTOR and S6 phosphorylation, and D-cyclin kinases and Rb phosphorylation, respectively. Correspondingly, inhibition of phosphorylation of both Rb and S6 is required for robust anti-tumor efficacy of drugs that inhibit cell signaling. The best-established mechanism of mTOR activation in cancer is via PI3K/Akt signaling, but mTOR activity can also be stimulated by CDK4 and PIM kinases. In this study, we show that the CDK4/6 inhibitor abemaciclib inhibits PIM kinase and S6 phosphorylation in cancer cells and concurrent inhibition of PIM, CDK4, and CDK6 suppresses both S6 and Rb phosphorylation. TSC2 or PIK3CA mutations obviate the requirement for PIM kinase and circumvent the inhibition of S6 phosphorylation by abemaciclib. Combination with a PI3K inhibitor restored suppression of S6 phosphorylation and synergized to curtail cell growth. By combining abemaciclib with a PI3K inhibitor, three pathways (Akt, PIM, and CDK4) to mTOR activation are neutralized, suggesting a potential combination strategy for the treatment of PIK3CA-mutant ER+ breast cancer.
Collapse
|
97
|
Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol 2020; 20:669-679. [PMID: 32346095 DOI: 10.1038/s41577-020-0300-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Cell cycle proteins that are often dysregulated in malignant cells, such as cyclin-dependent kinase 4 (CDK4) and CDK6, have attracted considerable interest as potential targets for cancer therapy. In this context, multiple inhibitors of CDK4 and CDK6 have been developed, including three small molecules (palbociclib, abemaciclib and ribociclib) that are currently approved for the treatment of patients with breast cancer and are being extensively tested in individuals with other solid and haematological malignancies. Accumulating preclinical and clinical evidence indicates that the anticancer activity of CDK4/CDK6 inhibitors results not only from their ability to block the cell cycle in malignant cells but also from a range of immunostimulatory effects. In this Review, we discuss the ability of anticancer cell cycle inhibitors to modulate various immune functions in support of effective antitumour immunity.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Selina Chen-Kiang
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université de Paris, Paris, France.
| |
Collapse
|
98
|
Pancholi S, Ribas R, Simigdala N, Schuster E, Nikitorowicz-Buniak J, Ressa A, Gao Q, Leal MF, Bhamra A, Thornhill A, Morisset L, Montaudon E, Sourd L, Fitzpatrick M, Altelaar M, Johnston SR, Marangoni E, Dowsett M, Martin LA. Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities. Oncogene 2020; 39:4781-4797. [PMID: 32307447 PMCID: PMC7299844 DOI: 10.1038/s41388-020-1284-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023]
Abstract
Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)-positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene-copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of ‘classical’ oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB-signalling and G2/M–checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7. Noteworthy, sensitivity to CDK7 inhibition was associated with loss of ER and RB1 CN. Overall, we show that resistance to CDK4/6 inhibitors is dependent on kinase re-wiring and the redeployment of signalling cascades previously associated with endocrine resistance and highlights new therapeutic networks that can be exploited upon relapse after CDK4/6 inhibition.
Collapse
Affiliation(s)
- Sunil Pancholi
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Ricardo Ribas
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Nikiana Simigdala
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Eugene Schuster
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Anna Ressa
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Qiong Gao
- CRUK, Bioinformatic Cofacility, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Mariana Ferreira Leal
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Amandeep Bhamra
- Proteomic Unit, Institute of Cancer Research, London, SW7 3RP, UK
| | - Allan Thornhill
- Centre for Cancer Imaging, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | | | - Elodie Montaudon
- Department of Translational Research, Institut Curie, Paris, France
| | - Laura Sourd
- Department of Translational Research, Institut Curie, Paris, France
| | - Martin Fitzpatrick
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | | | - Mitch Dowsett
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK.,Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Lesley-Ann Martin
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
99
|
Occhipinti G, Romagnoli E, Santoni M, Cimadamore A, Sorgentoni G, Cecati M, Giulietti M, Battelli N, Maccioni A, Storti N, Cheng L, Principato G, Montironi R, Piva F. Sequential or Concomitant Inhibition of Cyclin-Dependent Kinase 4/6 Before mTOR Pathway in Hormone-Positive HER2 Negative Breast Cancer: Biological Insights and Clinical Implications. Front Genet 2020; 11:349. [PMID: 32351542 PMCID: PMC7174681 DOI: 10.3389/fgene.2020.00349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
About 75% of all breast cancers are hormone receptor-positive (HR+). However, the efficacy of endocrine therapy is limited due to the high rate of either pre-existing or acquired resistance. In this work we reconstructed the pathways around estrogen receptor (ER), mTOR, and cyclin D in order to compare the effects of CDK4/6 and PI3K/AKT/mTOR inhibitors. A positive feedback loop links mTOR and ER that support each other. We subsequently considered whether a combined or sequential inhibition of CDK4/6 and PI3K/AKT/mTOR could ensure better results. Studies indicate that inhibition of CDK4/6 activates mTOR as an escape mechanism to ensure cell proliferation. In literature, the little evidence dealing with this topic suggests that pre-treatment with mTOR pathway inhibitors could prevent or delay the onset of CDK4/6 inhibitor resistance. Additional studies are needed in order to find biomarkers that can identify patients who will develop this resistance and in whom the sensitivity to CDK4/6 inhibitors can be restored.
Collapse
Affiliation(s)
- Giulia Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | | | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | | - Nadia Storti
- Direzione Sanitaria Azienda Sanitaria Unica Regionale, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Giovanni Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
100
|
Álvarez-Fernández M, Malumbres M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020; 37:514-529. [PMID: 32289274 DOI: 10.1016/j.ccell.2020.03.010] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Inhibiting the cell-cycle kinases CDK4 and CDK6 results in significant therapeutic effect in patients with advanced hormone-positive breast cancer. The efficacy of this strategy is, however, limited by innate or acquired resistance mechanisms and its application to other tumor types is still uncertain. Here, through an integrative analysis of sensitivity and resistance mechanisms, we discuss the use of CDK4/6 inhibitors in combination with available targeted therapies, immunotherapy, or classical chemotherapy with the aim of improving future therapeutic uses of CDK4/6 inhibition in a variety of cancers.
Collapse
Affiliation(s)
- Mónica Álvarez-Fernández
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|