51
|
Lakshmanan I, Seshacharyulu P, Haridas D, Rachagani S, Gupta S, Joshi S, Guda C, Yan Y, Jain M, Ganti AK, Ponnusamy MP, Batra SK. Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells. Oncotarget 2016; 6:21085-99. [PMID: 26035354 PMCID: PMC4673252 DOI: 10.18632/oncotarget.3912] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/05/2015] [Indexed: 01/28/2023] Open
Abstract
Several studies have demonstrated that MUC4 is involved in progression and metastasis of pancreatic cancer (PC). Here, we report that HER3/MUC4 interaction in HER2 low cells is critical in driving pancreatic tumorigenesis. Upon HER2 knockdown, we observed elevated expression of HER3 and MUC4 and their interactions, which was confirmed by immunoprecipitation and bioinformatics analyses. In paired human PC tissues, higher percentage of HER3 positivity (10/33, 30.3%; p = 0.001) was observed than HER2 (5/33, 15.1%; p = 0.031), which was further confirmed in spontaneous mice (KPC; KrasG12D; Trp53R172H/+; Pdx-Cre) tumors of different weeks. Mechanistically, increased phosphorylation of ERK and expression of PI3K and c-Myc were observed in HER2 knockdown cells, suggesting a positive role for HER3/MUC4 in HER2 low cells. Further, HER2 knockdown resulted in increased proliferation, motility and tumorigenicity of PC cells. Consistently, transient knockdown of HER3 by siRNA in HER2 knockdown cells led to decreased proliferation. These observations led us to conclude that HER3 interacts with MUC4 to promote proliferation in HER2 low PC cells. Further, deficiency of both HER2 and HER3 leads to decreased proliferation of PC cells. Hence targeting these newly identified HER3/MUC4 signals would improve the PC patients survival by intercepting MUC4 mediated oncogenic signaling.
Collapse
Affiliation(s)
- Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Dhanya Haridas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Suprit Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Suhasini Joshi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Yan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Apar K Ganti
- Department of Medicine, VA Nebraska Western Iowa Health Care System, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
52
|
Tang J, Zhu Y, Xie K, Zhang X, Zhi X, Wang W, Li Z, Zhang Q, Wang L, Wang J, Xu Z. The role of the AMOP domain in MUC4/Y-promoted tumour angiogenesis and metastasis in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:91. [PMID: 27287498 PMCID: PMC4902942 DOI: 10.1186/s13046-016-0369-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND MUC4 is a high molecular weight membrane protein that is overexpressed in pancreatic cancer (PC) and is associated with the development and progression of this disease. However, the exact mechanisms through which MUC4 domains promote these biological processes have rarely been studied, partly because of its high molecular weight, difficulty to overexpress it. Here, we use MUC4/Y, one of the MUC4 transcript variants, as a model molecule to investigate the AMOP-domain of MUC4(MUC/Y). METHODS We used cell proliferation, migration, invasion and tube formation assays in vitro to explore the abilities of AMOP domain in PC. In vivo, the matrigel plug assay, orthotopic implantation and Kaplan-Meier survival curves were used to check the results we observed in vitro. Finally, we discovered the underlying mechanism through western blot and immunofluorescence. RESULTS We found that MUC4/Y overexpression could enhance the angiogenic and metastatic properties of PC cells, both in vitro and in vivo. However, the deletion of AMOP domain could cutback these phenomena. Additionally, Kaplan-Meier survival curves showed that mice injected with MUC4/Y overexpressed cells had shorter survival time, compared with empty-vector-transfected cells (MUC4/Y-EV), or cells expressing MUC4/Y without the AMOP domain (MUC4/Y-AMOP(△)). Our data also showed that overexpression of MUC4/Y could activate NOTCH3 signaling, increasing the expression of downstream genes: VEGF-A, MMP-9 and ANG-2. CONCLUSIONS The AMOP domain had an important role in MUC4/Y (MUC4)-mediated tumour angiogenesis and metastasis of PC cells; and the NOTCH3 signaling was involved. These findings provided new insights into PC therapies. Our study also supplies a new method to study other high molecular membrane proteins.
Collapse
Affiliation(s)
- Jie Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Zhu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kunling Xie
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, the People's Hospital of Bozhou, Bozhou, Anhui, China
| | - Xiaoyu Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, Huai'an People's Hospital, Xuzhou Medical College, Huai'an, Jiangsu, China
| | - Xiaofei Zhi
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weizhi Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qun Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjun Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiwei Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
53
|
Piché A. Pathobiological role of MUC16 mucin (CA125) in ovarian cancer: Much more than a tumor biomarker. World J Obstet Gynecol 2016; 5:39-49. [DOI: 10.5317/wjog.v5.i1.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 02/05/2023] Open
Abstract
MUC16 (CA125) has remained the mainstay for ovarian cancer assessment and management since the early 1980’s. With the exception of HE4, it is the only reliable serum biomarker for ovarian cancer. MUC16 belongs to a family of high-molecular weight glycoproteins known as mucins. The mucin family is comprised of large secreted transmembrane proteins that includes MUC1, MUC4 and MUC16. These mucins are often overexpressed in a variety of malignancies. MUC1 and MUC4 have been shown to contribute to breast and pancreatic tumorigenesis. Recent studies have uncovered unique biological functions for MUC16 that go beyond its role as a biomarker for ovarian cancer. Here, we provide an overview of the literature to highlight the importance of MUC16 in ovarian cancer tumorigenesis. We focus on the growing literature describing the role of MUC16 in proliferation, migration, metastasis, tumorigenesis and drug resistance. Accumulating experimental evidence suggest that the C-terminal domain of MUC16 is critical to mediate theses effects. The importance of MUC16 in the pathogenesis of ovarian cancer emphasizes the need to fully understand the signaling capabilities of MUC16 C-terminal domain to develop more efficient strategies for the successful treatment of ovarian cancer.
Collapse
|
54
|
Seshacharyulu P, Ponnusamy MP, Rachagani S, Lakshmanan I, Haridas D, Yan Y, Ganti AK, Batra SK. Targeting EGF-receptor(s) - STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget 2016; 6:5164-81. [PMID: 25686822 PMCID: PMC4467140 DOI: 10.18632/oncotarget.3286] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022] Open
Abstract
Transmembrane proteins MUC4, EGFR and HER2 are shown to be critical in invasion and metastasis of pancreatic cancer. Besides, we and others have demonstrated de novo expression of MUC4 in ~70-90% of pancreatic cancer patients and its stabilizing effects on HER2 downstream signaling in pancreatic cancer. Here, we found that use of canertinib or afatinib resulted in reduction of MUC4 and abrogation of in vitro and in vivo oncogenic functions of MUC4 in pancreatic cancer cells. Notably, silencing of EGFR family member in pancreatic cancer cells decreased MUC4 expression through reduced phospho-STAT1. Furthermore, canertinib and afatinib treatment also inhibited proliferation, migration and survival of pancreatic cancer cells by attenuation of signaling events including pERK1/2 (T202/Y204), cyclin D1, cyclin A, pFAK (Y925) and pAKT (Ser473). Using in vivo bioluminescent imaging, we demonstrated that canertinib treatment significantly reduced tumor burden (P=0.0164) and metastasis to various organs. Further, reduced expression of MUC4 and EGFR family members were confirmed in xenografts. Our results for the first time demonstrated the targeting of EGFR family members along with MUC4 by using pan-EGFR inhibitors. In conclusion, our studies will enhance the translational acquaintance of pan-EGFR inhibitors for combinational therapies to combat against lethal pancreatic cancer.
Collapse
Affiliation(s)
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhanya Haridas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Yan
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Apar K Ganti
- Department of Internal Medicine, VA Nebraska-Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
55
|
Pai P, Rachagani S, Lakshmanan I, Macha MA, Sheinin Y, Smith LM, Ponnusamy MP, Batra SK. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol 2015; 10:224-39. [PMID: 26526617 DOI: 10.1016/j.molonc.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/15/2023] Open
Abstract
Aberrant Wnt signaling frequently occurs in pancreatic cancer (PC) and contributes to disease progression/metastases. Likewise, the transmembrane-mucin MUC4 is expressed de novo in early pancreatic intraepithelial neoplasia (PanINs) and incrementally increases with PC progression, contributing to metastasis. To determine the mechanism of MUC4 upregulation in PC, we examined factors deregulated in early PC progression, such as Wnt/β-catenin signaling. MUC4 promoter analysis revealed the presence of three putative TCF/LEF-binding sites, leading us to hypothesize that MUC4 can be regulated by β-catenin. Immunohistochemical (IHC) analysis of rapid autopsy PC tissues showed a correlation between MUC4 and cytosolic/nuclear β-catenin expression. Knock down (KD) of β-catenin in CD18/HPAF and T3M4 cell lines resulted in decreased MUC4 transcript and protein. Three MUC4 promoter luciferase constructs, p3778, p3000, and p2700, were generated. The construct p3778, encompassing the entire MUC4 promoter, elicited increased luciferase activity in the presence of stabilized β-catenin. Mutation of the TCF/LEF site closest to the transcription start site (i.e., -2629/-2612) and furthest from the start site (i.e., -3425/-3408) reduced MUC4 promoter luciferase activity. Transfection with dominant negative TCF4 decreased MUC4 transcript and protein levels. Chromatin immunoprecipitation confirmed enrichment of β-catenin on -2629/-2612 and -3425/-3408 of the MUC4 promoter in CD18/HPAF. Functionally, CD18/HPAF and T3M4 β-catenin KD cells showed decreased migration and decreased Vimentin, N-cadherin, and pERK1/2 expression. Tumorigenicity studies in athymic nude mice showed CD18/HPAF β-catenin KD cells significantly reduced primary tumor sizes and metastases compared to scrambled control cells. We show for the first time that β-catenin directly governs MUC4 in PC.
Collapse
Affiliation(s)
- Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA
| | - Yuri Sheinin
- Department of Pathology and Microbiology, UNMC, Omaha, NE 68198-5900, USA
| | - Lynette M Smith
- Department of Biostatistics, UNMC College of Public Health, UNMC, Omaha, NE 68198-4375, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, UNMC, Omaha, NE 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, UNMC, Omaha, NE 68198-5950, USA; Fred and Pamela Buffett Cancer Center, UNMC, Omaha, NE 68198, USA.
| |
Collapse
|
56
|
Samman M, Wood HM, Conway C, Stead L, Daly C, Chalkley R, Berri S, Senguven B, Ross L, Egan P, Chengot P, Ong TK, Pentenero M, Gandolfo S, Cassenti A, Cassoni P, Al Ajlan A, Samkari A, Barrett W, MacLennan K, High A, Rabbitts P. A novel genomic signature reclassifies an oral cancer subtype. Int J Cancer 2015; 137:2364-73. [PMID: 26014678 DOI: 10.1002/ijc.29615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022]
Abstract
Verrucous carcinoma of the oral cavity (OVC) is considered a subtype of classical oral squamous cell carcinoma (OSCC). Diagnosis is problematic, and additional biomarkers are needed to better stratify patients. To investigate their molecular signature, we performed low-coverage copy number (CN) sequencing on 57 OVC and exome and RNA sequencing on a subset of these and compared the data to the same OSCC parameters. CN results showed that OVC lacked any of the classical OSCC patterns such as gain of 3q and loss of 3p and demonstrated considerably fewer genomic rearrangements compared to the OSCC cohort. OVC and OSCC samples could be clearly differentiated. Exome sequencing showed that OVC samples lacked mutations in genes commonly associated with OSCC (TP53, NOTCH1, NOTCH2, CDKN2A and FAT1). RNA sequencing identified genes that were differentially expressed between the groups. In silico functional analysis showed that the mutated and differentially expressed genes in OVC samples were involved in cell adhesion and keratinocyte proliferation, while those in the OSCC cohort were enriched for cell death and apoptosis pathways. This is the largest and most detailed genomic and transcriptomic analysis yet performed on this tumour type, which, as an example of non-metastatic cancer, may shed light on the nature of metastases. These three independent investigations consistently show substantial differences between the cohorts. Taken together, they lead to the conclusion that OVC is not a subtype of OSCC, but should be classified as a distinct entity.
Collapse
Affiliation(s)
- Manar Samman
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom.,Pathology and Clinical Laboratory Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Henry M Wood
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Caroline Conway
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Lucy Stead
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Catherine Daly
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Rebecca Chalkley
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Stefano Berri
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Burcu Senguven
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Lisa Ross
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Philip Egan
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Preetha Chengot
- St James's Institute of Oncology, St James's University Hospital, Leeds, United Kingdom
| | - Thian K Ong
- Leeds Dental Institute, Leeds General Infirmary, Leeds, United Kingdom
| | - Monica Pentenero
- Oral Medicine and Oral Oncology Unit, Department of Oncology, University of Torino, Turin, Italy
| | - Sergio Gandolfo
- Oral Medicine and Oral Oncology Unit, Department of Oncology, University of Torino, Turin, Italy
| | - Adele Cassenti
- Pathology Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | | | - Alaa Samkari
- National Guard Health Affairs, Riyadh, Saudi Arabia
| | | | - Kenneth MacLennan
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom.,St James's Institute of Oncology, St James's University Hospital, Leeds, United Kingdom
| | - Alec High
- St James's Institute of Oncology, St James's University Hospital, Leeds, United Kingdom.,Leeds Dental Institute, Leeds General Infirmary, Leeds, United Kingdom
| | - Pamela Rabbitts
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
57
|
Wang F, Ren X, Zhang X. Role of microRNA-150 in solid tumors. Oncol Lett 2015; 10:11-16. [PMID: 26170969 DOI: 10.3892/ol.2015.3170] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 02/17/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of small endogenous noncoding RNAs and their altered expression has been associated with various cellular functions, including cell development, proliferation, differentiation, apoptosis, signal transduction, tumorigenesis and cancer progression. Accumulating evidence has indicated that miRNA (miR)-150 plays an essential regulatory role in normal hematopoiesis and tumorigenesis; therefore, miR-150 may be a potential biomarker and therapeutic target in the diagnosis and treatment of various malignancies. The aim of the present review was to summarize the current knowledge on the functions and regulatory mechanism of miR-150 as an oncogene or tumor suppressor gene in solid tumors. In addition, its potential application as a tumor biomarker, targeted therapeutic strategy and index of prognosis in various cancer types was investigated.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China ; National Clinical Research Center of Cancer, Tianjin 300060, P.R. China ; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, P.R. China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China ; National Clinical Research Center of Cancer, Tianjin 300060, P.R. China ; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, P.R. China
| | - Xinwei Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China ; National Clinical Research Center of Cancer, Tianjin 300060, P.R. China ; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, P.R. China
| |
Collapse
|
58
|
Macha MA, Rachagani S, Pai P, Gupta S, Lydiatt WM, Smith RB, Johansson SL, Lele SM, Kakar SS, Lee JH, Meza J, Ganti AK, Jain M, Batra SK. MUC4 regulates cellular senescence in head and neck squamous cell carcinoma through p16/Rb pathway. Oncogene 2015; 34:1698-708. [PMID: 24747969 PMCID: PMC4205229 DOI: 10.1038/onc.2014.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/13/2022]
Abstract
The limited effectiveness of therapy for patients with advanced stage head and neck squamous cell carcinoma (HNSCC) or recurrent disease is a reflection of an incomplete understanding of the molecular basis of HNSCC pathogenesis. MUC4, a high molecular weight glycoprotein, is differentially overexpressed in many human cancers and implicated in cancer progression and resistance to several chemotherapies. However, its clinical relevance and the molecular mechanisms through which it mediates HNSCC progression are not well understood. This study revealed a significant upregulation of MUC4 in 78% (68/87) of HNSCC tissues compared with 10% positivity (1/10) in benign samples (P=0.006, odds ratio (95% confidence interval)=10.74 (2.0-57.56). MUC4 knockdown (KD) in SCC1 and SCC10B HNSCC cell lines resulted in significant inhibition of growth in vitro and in vivo, increased senescence as indicated by an increase in the number of flat, enlarged and senescence-associated β-galactosidase (SA-β-Gal)-positive cells. Decreased cellular proliferation was associated with G0/G1 cell cycle arrest and decrease expression of cell cycle regulatory proteins like cyclin E, cyclin D1 and decrease in BrdU incorporation. Mechanistic studies revealed upregulation of p16, pRb dephosphorylation and its interaction with histone deacetylase 1/2. This resulted in decreased histone acetylation (H3K9) at cyclin E promoter leading to its downregulation. Orthotopic implantation of MUC4 KD SCC1 cells into the floor of the mouth in nude mice resulted in the formation of significantly smaller tumors (170±18.30 mg) compared to those (375±17.29 mg) formed by control cells (P=0.00007). In conclusion, our findings showed that MUC4 overexpression has a critical role by regulating proliferation and cellular senescence of HNSCC cells. Downregulation of MUC4 may be a promising therapeutic approach for treating HNSCC patients.
Collapse
Affiliation(s)
- Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Suprit Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Williams M. Lydiatt
- Department of Otolaryngology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Russell B. Smith
- Department of Otolaryngology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Sonny L. Johansson
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Subodh M. Lele
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Sham S. Kakar
- Department of Physiology and Biophysics, University of Louisville, KY 40208
| | - John H. Lee
- Sanford ENT-Head and Neck Surgery, Sanford Cancer Research Center, Sioux Falls SD 57104-0589
| | - Jane Meza
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198
| | - Apar K. Ganti
- Department of Internal Medicine, VA Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, NE
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
59
|
Glavey SV, Huynh D, Reagan MR, Manier S, Moschetta M, Kawano Y, Roccaro AM, Ghobrial IM, Joshi L, O'Dwyer ME. The cancer glycome: carbohydrates as mediators of metastasis. Blood Rev 2015; 29:269-79. [PMID: 25636501 DOI: 10.1016/j.blre.2015.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Abstract
Glycosylation is a frequent post-translational modification which results in the addition of carbohydrate determinants, "glycans", to cell surface proteins and lipids. These glycan structures form the "glycome" and play an integral role in cell-cell and cell-matrix interactions through modulation of adhesion and cell trafficking. Glycosylation is increasingly recognized as a modulator of the malignant phenotype of cancer cells, where the interaction between cells and the tumor micro-environment is altered to facilitate processes such as drug resistance and metastasis. Changes in glycosylation of cell surface adhesion molecules such as selectin ligands, integrins and mucins have been implicated in the pathogenesis of several solid and hematological malignancies, often with prognostic implications. In this review we focus on the functional significance of alterations in cancer cell glycosylation, in terms of cell adhesion, trafficking and the metastatic cascade and provide insights into the prognostic and therapeutic implications of recent findings in this fast-evolving niche.
Collapse
Affiliation(s)
- Siobhan V Glavey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Glycoscience Research Group, National University of Ireland, Galway, Ireland.
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Michaela R Reagan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Lokesh Joshi
- Glycoscience Research Group, National University of Ireland, Galway, Ireland.
| | - Michael E O'Dwyer
- Glycoscience Research Group, National University of Ireland, Galway, Ireland; Department of Hematology National University of Ireland, Galway and Galway University Hospital, Ireland.
| |
Collapse
|
60
|
Reduced MUC4 Expression is a Late Event in Breast Carcinogenesis and is Correlated With Increased Infiltration of Immune Cells as Well as Promoter Hypermethylation in Invasive Breast Carcinoma. Appl Immunohistochem Mol Morphol 2015; 23:44-53. [DOI: 10.1097/pai.0000000000000041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Soejima Y, Inoue M, Takahashi Y, Uozaki H, Sawabe M, Fukusato T. Integrins αvβ6, α6β4 and α3β1 are down-regulated in cholangiolocellular carcinoma but not cholangiocarcinoma. Hepatol Res 2014; 44:E320-34. [PMID: 24552196 DOI: 10.1111/hepr.12312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/02/2014] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
AIM The aim of this study was to evaluate integrin expression and immunolocalization of the extracellular matrix proteins in cholangiolocellular carcinoma (CoCC). METHODS Tissue specimens of 23 CoCC, 28 cholangiocarcinomas (CCC), 42 hepatocellular carcinomas (HCC) and 11 classical type combined hepatocellular cholangiocarcinomas (CHC) were immunostained for β6, β4 and α3 integrins, fibronectin and laminin. ITGB6, B4 and A3 mRNA levels in six HCC cell lines, five CCC cell lines and two CHC cell lines were quantified by quantitative reverse transcription polymerase chain reaction. RESULTS Little or no positivity for β6, β4 and α3 integrins was shown in 91%, 91% and 52% of CoCC and 100%, 98% and 81% of HCC, respectively, according to immunostaining, whereas intense positive staining for these integrins was demonstrated in 64%, 96% and 75% of CCC, respectively. There was a close correlation between β4 and α3 integrin expression and intracytoplasmic laminin in CoCC, CCC and HCC, but not between β6 expression and its ligand, fibronectin. Integrin mRNA levels were increased in four of five CCC cell lines, but nearly undetectable in five of six HCC cell lines and one CHC cell line. Tubular differentiation of a CHC cell line cultured in collagen gel matrix induced upregulation of these integrins. CONCLUSION Our results first indicated downregulation of αvβ6, α6β4 and α3β1 integrins in CoCC, in contrast to its high expression in CCC, suggesting a diagnostic value of integrins in the differential diagnosis of CoCC and CCC, as well as a useful inducible marker of the intermediate features of CoCC.
Collapse
Affiliation(s)
- Yurie Soejima
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan; Department of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
62
|
González-Vallinas M, Vargas T, Moreno-Rubio J, Molina S, Herranz J, Cejas P, Burgos E, Aguayo C, Custodio A, Reglero G, Feliu J, Ramírez de Molina A. Clinical relevance of the differential expression of the glycosyltransferase gene GCNT3 in colon cancer. Eur J Cancer 2014; 51:1-8. [PMID: 25466507 DOI: 10.1016/j.ejca.2014.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/19/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
Altered glycosylation is considered a universal cancer hallmark. Mucin-type core 2 1,6-N-acetylglucosaminyltransferase enzyme (C2GnT-M), encoded by the GCNT3 gene, has been reported to be altered in tumours and to possess tumour suppressor properties. In this work, we aimed to determine the possible role of GCNT3 gene expression as prognostic marker in colon cancer. We investigated the differential expression of GCNT3 gene among tumour samples from stage II colon cancer patients by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Univariate and Multivariate Cox regression analyses were used to determine the correlation between GCNT3 expression and disease-free survival. The risk of relapse in GCNT3 low-expressing cancer patients was significantly higher than that in GCNT3 high-expressing patients in both training (Hazard Ratio (HR) 4.26, p=0.002) and validation (HR 3.06, p=0.024) series of patients, and this association was independent of clinical factors. Additionally, qRT-PCR was used to explore the modulation of GCNT3 expression by different antitumour drugs. Three chemotherapeutic agents with different mechanism of action (5-fluorouracil, bortezomib and paclitaxel) significantly induced GCNT3 expression in several cancer cells, being observed the correlation between antitumour action and GCNT3 modulation, whereas this gene was not modulated in cells that do not respond to treatment. Overall, these results indicate that low GCNT3 expression is a promising prognostic biomarker for colon cancer that could be used to identify early-stage colon cancer patients at high risk of relapse. Additionally, our results suggest that this enzyme might also constitute a biomarker to monitor tumour response to chemotherapy in cancer patients.
Collapse
Affiliation(s)
| | | | - Juan Moreno-Rubio
- Translational Oncology Laboratory, La Paz University Hospital (IdiPAZ-UAM), Madrid 28046, Spain; Medical Oncology, Infanta Sofía University Hospital, Madrid 28702, Spain
| | - Susana Molina
- IMDEA-Food Institute, CEI UAM+CSIC, Madrid 28049, Spain
| | - Jesús Herranz
- IMDEA-Food Institute, CEI UAM+CSIC, Madrid 28049, Spain
| | - Paloma Cejas
- Translational Oncology Laboratory, La Paz University Hospital (IdiPAZ-UAM), Madrid 28046, Spain
| | - Emilio Burgos
- Pathology Department, La Paz University Hospital (IdiPAZ-UAM), Madrid 28046, Spain
| | - Cristina Aguayo
- Medical Oncology, La Paz University Hospital (IdiPAZ-UAM), Madrid 28046, Spain
| | - Ana Custodio
- Medical Oncology, La Paz University Hospital (IdiPAZ-UAM), Madrid 28046, Spain
| | - Guillermo Reglero
- IMDEA-Food Institute, CEI UAM+CSIC, Madrid 28049, Spain; Food Research Institute (CIAL), CEI UAM+CSIC, C/Nicolás Cabrera 9, Madrid 28049, Spain
| | - Jaime Feliu
- Medical Oncology, La Paz University Hospital (IdiPAZ-UAM), Madrid 28046, Spain
| | | |
Collapse
|
63
|
Zhu Y, Zhang JJ, Xie KL, Tang J, Liang WB, Zhu R, Zhu Y, Wang B, Tao JQ, Zhi XF, Li Z, Gao WT, Jiang KR, Miao Y, Xu ZK. Specific-detection of clinical samples, systematic functional investigations, and transcriptome analysis reveals that splice variant MUC4/Y contributes to the malignant progression of pancreatic cancer by triggering malignancy-related positive feedback loops signaling. J Transl Med 2014; 12:309. [PMID: 25367394 PMCID: PMC4236435 DOI: 10.1186/s12967-014-0309-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Background MUC4 plays important roles in the malignant progression of human pancreatic cancer. But the huge length of MUC4 gene fragment restricts its functional and mechanism research. As one of its splice variants, MUC4/Y with coding sequence is most similar to that of the full-length MUC4 (FL-MUC4), together with alternative splicing of the MUC4 transcript has been observed in pancreatic carcinomas but not in normal pancreas. So we speculated that MUC4/Y might be involved in malignant progression similarly to FL-MUC4, and as a research model of MUC4 in pancreatic cancer. The conjecture was confirmed in the present study. Methods MUC4/Y expression was detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) using gene-specific probe in the clinic samples. The effects of MUC4/Y were observed by serial in vitro and in vivo experiments based on stable over-expressed cell model. The underlying mechanisms were investigated by sequence-based transcriptome analysis and verified by qRT-PCR, Western blot and enzyme-linked immunosorbent assays. Results The detection of clinical samples indicates that MUC4/Y is significantly positive-correlated with tumor invasion and distant metastases. Based on stable forced-expressed pancreatic cancer PANC-1 cell model, functional studies show that MUC4/Y enhances malignant activity in vitro and in vivo, including proliferation under low-nutritional-pressure, resistance to apoptosis, motility, invasiveness, angiogenesis, and distant metastasis. Mechanism studies indicate the novel finding that MUC4/Y triggers malignancy-related positive feedback loops for concomitantly up-regulating the expression of survival factors to resist adverse microenvironment and increasing the expression of an array of cytokines and adhesion molecules to affect the tumor milieu. Conclusions In light of the enormity of the potential regulatory circuitry in cancer afforded by MUC4 and/or MUC4/Y, repressing MUC4 transcription, inhibiting post-transcriptional regulation, including alternative splicing, or blocking various pathways simultaneously may be helpful for controlling malignant progression. MUC4/Y- expression model is proven to a valuable tool for the further dissection of MUC4-mediated functions and mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0309-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Zhu
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Jing-Jing Zhang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Kun-Ling Xie
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Jie Tang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Wen-Biao Liang
- Jiangsu Province Blood Center, Nanjing, 210042, People's Republic of China.
| | - Rong Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Yan Zhu
- Department of Pathology, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| | - Jin-Qiu Tao
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Xiao-Fei Zhi
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Zheng Li
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Wen-Tao Gao
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Kui-Rong Jiang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Yi Miao
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Ze-Kuan Xu
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
64
|
Kim C, Galloway JF, Lee KH, Searson PC. Universal antibody conjugation to nanoparticles using the Fcγ receptor I (FcγRI): quantitative profiling of membrane biomarkers. Bioconjug Chem 2014; 25:1893-901. [PMID: 25215471 PMCID: PMC4198097 DOI: 10.1021/bc5003778] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibodies are a class of molecules widely used in bioengineering and nanomedicine for applications involving protein recognition and targeting. Here we report an efficient method for universal conjugation of antibodies to lipid-coated nanoparticles using radially oriented FcγRIs. This method is performed in physiological solution with no additional coupling reagents, thereby avoiding problems with antibody stability and functionality. Coupling to the Fc region of the antibody avoids aggregation and polymerization allowing high yield. In addition, the antibody is oriented perpendicular to the surface so that the binding sites are fully functional. Using this method we demonstrate quantitative profiling of a panel of four membrane-bound cancer biomarkers (claudin-4, mesothelin, mucin-4, and cadherin-11) on four cell lines (Panc-1, MIA PaCa-2, Capan-1, and HPDE). We show that by designing the lipid coating to minimize aggregation and nonspecific binding, we can obtain absolute values of biomarker expression levels as number per unit area on the cell surface. This method is applicable to a wide range of technologies, including solution based protein detection assays and active targeting of cell surface membrane biomarkers.
Collapse
Affiliation(s)
- Chloe Kim
- Department of Materials Science and Engineering and ‡Institute for Nanobiotechnology, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | | | | |
Collapse
|
65
|
Soares AS, Costa VM, Diniz C, Fresco P. The combination of Cl-IB-MECA with paclitaxel: a new anti-metastatic therapeutic strategy for melanoma. Cancer Chemother Pharmacol 2014; 74:847-60. [PMID: 25119183 DOI: 10.1007/s00280-014-2557-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Metastatic melanoma is considered one of the most aggressive malignant tumours, representing the deadliest form of skin cancer. Melanoma progression is associated with the abrogation of normal controls that limit cell proliferation, migration, and invasion, eventually leading to metastasis. Based on the variety of cellular mechanisms involved in metastatic progression, we aimed to evaluate the effect of inosine (50 μM) and of the combination of Cl-IB-MECA (10 μM) with paclitaxel (10 ng/mL) on several stages of melanoma progression. METHODS Proliferation, migration, adhesion, invasion, and colony formation assays were performed on human C32 and A375 metastatic melanoma cells. Levels of ERK1/2 were also determined using an ELISA kit. Moreover, mouse aortic rings were treated with vascular endothelial growth factor in order to assess the microvessel sprouting (an indicator of angiogenesis) in the presence of the referred compounds. RESULTS We demonstrate that inosine induced, through A3 adenosine receptor activation, proliferation, migration, adhesion, and invasion on C32 and A375 melanoma cells, although with dissimilar importance on the two melanoma cell lines. Inosine also increased colony formation on A375 cells. Levels of ERK1/2 were increased after inosine exposure and that increase was dependent on A3 adenosine receptor activation in both cell lines. Moreover, microvessel sprouting stimulated by inosine was decreased by the combination of Cl-IB-MECA with paclitaxel. CONCLUSIONS Cl-IB-MECA combined with paclitaxel was able to impair almost all of the referred metastatic related mechanisms induced by inosine, making this approach a valuable tool for combinatory therapy against metastatic melanoma.
Collapse
Affiliation(s)
- Ana S Soares
- REQUIMTE/Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
66
|
McAllister F, Bailey JM, Alsina J, Nirschl CJ, Sharma R, Fan H, Rattigan Y, Roeser JC, Lankapalli RH, Zhang H, Jaffee EM, Drake CG, Housseau F, Maitra A, Kolls JK, Sears CL, Pardoll DM, Leach SD. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 2014; 25:621-37. [PMID: 24823639 PMCID: PMC4072043 DOI: 10.1016/j.ccr.2014.03.014] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/12/2014] [Accepted: 03/12/2014] [Indexed: 02/06/2023]
Abstract
Many human cancers are dramatically accelerated by chronic inflammation. However, the specific cellular and molecular elements mediating this effect remain largely unknown. Using a murine model of pancreatic intraepithelial neoplasia (PanIN), we found that Kras(G12D) induces expression of functional IL-17 receptors on PanIN epithelial cells and also stimulates infiltration of the pancreatic stroma by IL-17-producing immune cells. Both effects are augmented by associated chronic pancreatitis, resulting in functional in vivo changes in PanIN epithelial gene expression. Forced IL-17 overexpression dramatically accelerates PanIN initiation and progression, while inhibition of IL-17 signaling using genetic or pharmacologic techniques effectively prevents PanIN formation. Together, these studies suggest that a hematopoietic-to-epithelial IL-17 signaling axis is a potent and requisite driver of PanIN formation.
Collapse
MESH Headings
- Animals
- Carcinoma in Situ/genetics
- Carcinoma in Situ/metabolism
- Carcinoma in Situ/prevention & control
- Cell Transformation, Neoplastic
- Chemoprevention
- Epithelial Cells/metabolism
- Hematopoietic System/cytology
- Hematopoietic System/metabolism
- Humans
- Inflammation
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Mice
- Mice, Transgenic
- Pancreas/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/prevention & control
- Proto-Oncogene Proteins p21(ras)/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Interleukin-17/biosynthesis
- Receptors, Interleukin-17/metabolism
- Signal Transduction/genetics
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Florencia McAllister
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer M Bailey
- Department of Surgery and McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Janivette Alsina
- Department of Surgery and McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Rajni Sharma
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hongni Fan
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yanique Rattigan
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeffrey C Roeser
- Department of Surgery and McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Charles G Drake
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anirban Maitra
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Cynthia L Sears
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Steven D Leach
- Department of Surgery and McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
67
|
Jonckheere N, Skrypek N, Van Seuningen I. Mucins and tumor resistance to chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2014; 1846:142-51. [PMID: 24785432 DOI: 10.1016/j.bbcan.2014.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022]
Abstract
Epithelial cancer patients not considered eligible for surgical resection frequently benefit from chemotherapy. Chemotherapy is the treatment of cancer with one or combination of cytotoxic or cytostatic drugs. Recent advances in chemotherapy allowed a great number of cancer patients to receive treatment with significant results. Unfortunately, resistance to chemotherapeutic drug treatment is a major challenge for clinicians in the majority of epithelial cancers because it is responsible for the inefficiency of therapies. Mucins belong to a heterogeneous group of large O-glycoproteins that can be either secreted or membrane-bound. Implications of mucins have been described in relation to cancer cell behavior and cell signaling pathways associated with epithelial tumorigenesis. Because of the frequent alteration of the pattern of mucin expression in cancers as well as their structural and functional characteristics, mucins are thought to also be involved in response to therapies. In this report, we review the roles of mucins in chemoresistance and the associated underlying molecular mechanisms (physical barrier, resistance to apoptosis, drug metabolism, cell stemness, epithelial-mesenchymal transition) and discuss the therapeutic tools/strategies and/or prognosis biomarkers for personalized chemotherapy that could be proposed from these studies.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France.
| | - Nicolas Skrypek
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| | - Isabelle Van Seuningen
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| |
Collapse
|
68
|
Zhu Y, Zhang JJ, Liang WB, Zhu R, Wang B, Miao Y, Xu ZK. Pancreatic cancer counterattack: MUC4 mediates Fas-independent apoptosis of antigen-specific cytotoxic T lymphocyte. Oncol Rep 2014; 31:1768-76. [PMID: 24534824 DOI: 10.3892/or.2014.3016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/23/2014] [Indexed: 11/06/2022] Open
Abstract
Tumor-associated MUC4 mucin has considerable potential as an immunotherapy target for pancreatic cancer. In previous studies, we developed dendritic cell (DC) vaccines which elicited MUC4 antigen-specific cytotoxic T lymphocyte (MS-CTL) response against tumor cells in vitro. Due to the observation that MS-CTL apoptotic rate increased significantly when co-cultured with MUC4+ tumor cells compared with T2 cells, we investigated whether high expression levels of MUC4 in pancreatic cancer cells would have an effect on the significant increase of apoptosis rate of MS-CTLs. First, the adverse influence of regulatory T cells (Tregs) was eliminated by CD8+ T lymphocyte sorting before the induction of MS-CTLs. Then, we constructed clonal MUC4-knockdown HPAC pancreatic cancer sublines with different MUC4 expression for co-incubation system. By utilizing appropriate control to rule out the possible apoptosis-induced pathway of intrinsic activated cell-autonomous death (ACAD) and analogous antigen-dependent apoptosis of CTL (ADAC) in our study system, further analysis of the effect of MUC4 membrane-expression, supernatants and blockade of CTL surface Fas receptor on MS-CTL apoptosis was carried out. The results demonstrated that the level of MUC4 membrane expression strongly positively correlated with MS-CTL apoptosis and the influence of supernatants and Fas-blockade did not significantly correlate with MS-CTL apoptosis. This evidence suggested that there may be a novel counterattack pathway of pancreatic cancer cells, which is a MUC4-mediated, cell contact-dependent and Fas-independent process, to induce CTL apoptosis. Therefore, further exploration and understanding of the potential counterattack mechanisms is beneficial to enhance the efficacy of MUC4 specific tumor vaccines.
Collapse
Affiliation(s)
- Yi Zhu
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing-Jing Zhang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen-Biao Liang
- Jiangsu Province Blood Center, Nanjing, Jiangsu 210042, P.R. China
| | - Rong Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Bin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Nanjing 215006, P.R. China
| | - Yi Miao
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ze-Kuan Xu
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
69
|
Kaur S, Momi N, Chakraborty S, Wagner DG, Horn AJ, Lele SM, Theodorescu D, Batra SK. Altered expression of transmembrane mucins, MUC1 and MUC4, in bladder cancer: pathological implications in diagnosis. PLoS One 2014; 9:e92742. [PMID: 24671186 PMCID: PMC3966814 DOI: 10.1371/journal.pone.0092742] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/25/2014] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Radical changes in both expression and glycosylation pattern of transmembrane mucins have been observed in various malignancies. We and others have shown that MUC1 and MUC4, two transmembrane mucins, play a sentinel role in cell signaling events that drive several epithelial malignancies. In the present study, we investigated the expression profile of MUC1 and MUC4 in the non-neoplastic bladder urothelium, in various malignant neoplasms of bladder and in bladder carcinoma cell lines. MATERIAL AND METHODS Immunohistochemistry was performed on tissue sections from the urinary bladder biopsies, resection samples and tissue microarrays (TMAs) with monoclonal antibodies specific for MUC1 and MUC4. We also investigated their expression in bladder carcinoma cell lines by RT-PCR and immunoblotting. RESULTS MUC1 is expressed on the apical surface or in umbrella cells of the normal non-neoplastic bladder urothelium. Strong expression of MUC1 was also observed in urothelial carcinoma (UC). MUC1 staining increased from normal urothelium (n = 27, 0.35±0.12) to urothelial carcinoma (UC, n = 323, H-score, 2.4±0.22, p≤0.0001). In contrast to MUC1, MUC4 was expressed in all the layers of non-neoplastic bladder urothelium (n = 14, 2.5±0.28), both in the cell membrane and cytoplasm. In comparison to non-neoplastic urothelium, the loss of MUC4 expression was observed during urothelial carcinoma (n = 211, 0.56±0.06). However, re-expression of MUC4 was observed in a subset of metastatic cases of urothelial carcinoma (mean H-score 0.734±0.9). CONCLUSION The expression of MUC1 is increased while that of MUC4 decreased in UC compared to the normal non-neoplastic urothelium. Expression of both MUC1 and MUC4, however, are significantly higher in urothelial carcinoma metastatic cases compared to localized UC. These results suggest differential expression of MUC1 and MUC4 during development and progression of bladder carcinoma.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Navneet Momi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David G. Wagner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Adam J. Horn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subodh M. Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SML); (SKB)
| | - Dan Theodorescu
- University of Colorado Comprehensive Cancer Center, Aurora, Colorado, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SML); (SKB)
| |
Collapse
|
70
|
Lahdaoui F, Delpu Y, Vincent A, Renaud F, Messager M, Duchêne B, Leteurtre E, Mariette C, Torrisani J, Jonckheere N, Van Seuningen I. miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene 2014; 34:780-8. [PMID: 24608432 DOI: 10.1038/onc.2014.11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/29/2013] [Accepted: 01/01/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers in the world with one of the worst outcome. The oncogenic mucin MUC4 has been identified as an actor of pancreatic carcinogenesis as it is involved in many processes regulating pancreatic cancer cell biology. MUC4 is not expressed in healthy pancreas whereas it is expressed very early in pancreatic carcinogenesis. Targeting MUC4 in these early steps may thus appear as a promising strategy to slow-down pancreatic tumorigenesis. miRNA negative regulation of MUC4 could be one mechanism to efficiently downregulate MUC4 gene expression in early pancreatic neoplastic lesions. Using in silico studies, we found two putative binding sites for miR-219-1-3p in the 3'-UTR of MUC4 and showed that miR-219-1-3p expression is downregulated both in PDAC-derived cell lines and human PDAC tissues compared with their normal counterparts. We then showed that miR-219-1-3p negatively regulates MUC4 mucin expression via its direct binding to MUC4 3'-UTR. MiR-219-1-3p overexpression (transient and stable) in pancreatic cancer cell lines induced a decrease of cell proliferation associated with a decrease of cyclin D1 and a decrease of Akt and Erk pathway activation. MiR-219-1-3p overexpression also decreased cell migration. Furthermore, miR-219-1-3p expression was found to be conversely correlated with Muc4 expression in early pancreatic intraepithelial neoplasia lesions of Pdx1-Cre;LSL-Kras(G12D) mice. Most interestingly, in vivo studies showed that miR-219-1-3p injection in xenografted pancreatic tumors in mice decreased both tumor growth and MUC4 mucin expression. Altogether, these results identify miR-219-1-3p as a new negative regulator of MUC4 oncomucin that possesses tumor-suppressor activity in PDAC.
Collapse
Affiliation(s)
- F Lahdaoui
- 1] Inserm, UMR837, Jean Pierre Aubert Research Center (JPARC), Team 5 'Mucins, epithelial differentiation and carcinogenesis', rue Polonovski, Lille Cedex, France [2] Université Lille Nord de France, Lille, France [3] Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Y Delpu
- 1] Inserm, UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France [2] Université Paul Sabatier, Toulouse, France
| | - A Vincent
- 1] Inserm, UMR837, Jean Pierre Aubert Research Center (JPARC), Team 5 'Mucins, epithelial differentiation and carcinogenesis', rue Polonovski, Lille Cedex, France [2] Université Lille Nord de France, Lille, France [3] Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - F Renaud
- 1] Inserm, UMR837, Jean Pierre Aubert Research Center (JPARC), Team 5 'Mucins, epithelial differentiation and carcinogenesis', rue Polonovski, Lille Cedex, France [2] Université Lille Nord de France, Lille, France [3] Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - M Messager
- 1] Inserm, UMR837, Jean Pierre Aubert Research Center (JPARC), Team 5 'Mucins, epithelial differentiation and carcinogenesis', rue Polonovski, Lille Cedex, France [2] Université Lille Nord de France, Lille, France [3] Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - B Duchêne
- 1] Inserm, UMR837, Jean Pierre Aubert Research Center (JPARC), Team 5 'Mucins, epithelial differentiation and carcinogenesis', rue Polonovski, Lille Cedex, France [2] Université Lille Nord de France, Lille, France [3] Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - E Leteurtre
- 1] Inserm, UMR837, Jean Pierre Aubert Research Center (JPARC), Team 5 'Mucins, epithelial differentiation and carcinogenesis', rue Polonovski, Lille Cedex, France [2] Université Lille Nord de France, Lille, France [3] Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - C Mariette
- 1] Inserm, UMR837, Jean Pierre Aubert Research Center (JPARC), Team 5 'Mucins, epithelial differentiation and carcinogenesis', rue Polonovski, Lille Cedex, France [2] Université Lille Nord de France, Lille, France [3] Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - J Torrisani
- 1] Inserm, UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France [2] Université Paul Sabatier, Toulouse, France
| | - N Jonckheere
- 1] Inserm, UMR837, Jean Pierre Aubert Research Center (JPARC), Team 5 'Mucins, epithelial differentiation and carcinogenesis', rue Polonovski, Lille Cedex, France [2] Université Lille Nord de France, Lille, France [3] Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - I Van Seuningen
- 1] Inserm, UMR837, Jean Pierre Aubert Research Center (JPARC), Team 5 'Mucins, epithelial differentiation and carcinogenesis', rue Polonovski, Lille Cedex, France [2] Université Lille Nord de France, Lille, France [3] Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| |
Collapse
|
71
|
Lili LN, Matyunina LV, Walker LD, Daneker GW, McDonald JF. Evidence for the importance of personalized molecular profiling in pancreatic cancer. Pancreas 2014; 43:198-211. [PMID: 24518497 PMCID: PMC4206352 DOI: 10.1097/mpa.0000000000000020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES There is a growing body of evidence that targeted gene therapy holds great promise for the future treatment of cancer. A crucial step in this therapy is the accurate identification of appropriate candidate genes/pathways for targeted treatment. One approach is to identify variant genes/pathways that are significantly enriched in groups of afflicted individuals relative to control subjects. However, if there are multiple molecular pathways to the same cancer, the molecular determinants of the disease may be heterogeneous among individuals and possibly go undetected by group analyses. METHODS In an effort to explore this question in pancreatic cancer, we compared the most significantly differentially expressed genes/pathways between cancer and control patient samples as determined by group versus personalized analyses. RESULTS We found little to no overlap between genes/pathways identified by gene expression profiling using group analyses relative to those identified by personalized analyses. CONCLUSIONS Our results indicate that personalized and not group molecular profiling is the most appropriate approach for the identification of putative candidates for targeted gene therapy of pancreatic and perhaps other cancers with heterogeneous molecular etiology.
Collapse
Affiliation(s)
- Loukia N. Lili
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| | - Lilya V. Matyunina
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| | - L. DeEtte Walker
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| | - George W. Daneker
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| | - John F. McDonald
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| |
Collapse
|
72
|
Kaur S, Sharma N, Krishn SR, Lakshmanan I, Rachagani S, Baine MJ, Smith LM, Lele SM, Sasson AR, Guha S, Mallya K, Anderson JM, Hollingsworth MA, Batra SK. MUC4-mediated regulation of acute phase protein lipocalin 2 through HER2/AKT/NF-κB signaling in pancreatic cancer. Clin Cancer Res 2014; 20:688-700. [PMID: 24240113 PMCID: PMC3946494 DOI: 10.1158/1078-0432.ccr-13-2174] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE MUC4 shows aberrant expression in early pancreatic lesions and a high specificity for pancreatic cancer. It thus has a high potential to be a sensitive and specific biomarker. Unfortunately, its low serum level limits its diagnostic/prognostic potential. We here report that a multifaceted acute phase protein lipocalin 2, regulated by MUC4, could be a potential diagnostic/prognostic marker for pancreatic cancer. Experimental Designs and RESULTS Overexpression/knockdown, luciferase reporter and molecular inhibition studies revealed that MUC4 regulates lipocalin 2 by stabilizing HER2 and stimulating AKT, which results in the activation of NF-κB. Immunohistochemical analyses of lipocalin 2 and MUC4 showed a significant positive correlation between MUC4 and lipocalin 2 in primary, metastatic tissues (Spearman correlation coefficient 0.71, P = 0.002) from rapid autopsy tissue sample from patients with pancreatic cancer as well as in serum and tissue samples from spontaneous KRASG(12)D mouse pancreatic cancer model (Spearman correlation coefficient 0.98, P < 0.05). Lipocalin 2 levels increased progressively with disease advancement (344.2 ± 22.8 ng/mL for 10 weeks to 3067.2 ± 572.6 for 50 weeks; P < 0.0001). In human pancreatic cancer cases, significantly elevated levels of lipocalin 2 were observed in patients with pancreatic cancer (148 ± 13.18 ng/mL) in comparison with controls (73.27 ± 4.9 ng/mL, P = 0.014). Analyses of pre- and postchemotherapy patients showed higher lipocalin 2 levels in prechemotherapy patients [121.7 ng/mL; 95% confidence interval (CI), 98.1-150.9] in comparison with the postchemotherapy (92.6 ng/mL; 95% CI, 76.7-111.6; P = 0.06) group. CONCLUSIONS This study delineates the association and the downstream mechanisms of MUC4-regulated elevation of lipocalin-2 (via HER2/AKT/NF-κB) and its clinical significance for prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Neil Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Imay Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael J. Baine
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette M. Smith
- Department of Statistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Subodh M. Lele
- Department of Pathology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aaron R. Sasson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sushovan Guha
- Division of Gastroenterology, Hepatology and Nutrition, UT Health-UT Health Science Center and Medical School at Houston, Houston, Texas, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Judy M. Anderson
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A. Hollingsworth
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
73
|
Zhi X, Tao J, Xie K, Zhu Y, Li Z, Tang J, Wang W, Xu H, Zhang J, Xu Z. MUC4-induced nuclear translocation of β-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett 2013; 346:104-13. [PMID: 24374017 DOI: 10.1016/j.canlet.2013.12.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/22/2013] [Accepted: 12/13/2013] [Indexed: 12/11/2022]
Abstract
The membrane mucin MUC4 is aberrantly expressed in multiple cancers and is of clinical significance to diagnosis and prognosis in pancreatic cancer. However, the role of MUC4 in angiogenesis and the potential association among these malignant capabilities have not been explored. In this study, we investigated the collective signaling mechanisms associated with MUC4-induced growth, metastasis and angiogenesis in pancreatic cancer. Knockdown of MUC4 in two pancreatic cancer cell lines led to downregulation of lysosomal degradation of E-cadherin by Src kinase through downregulation of pFAK and pSrc pathway. The downregulation of lysosomal degradation of E-cadherin in turn induced the formation of E-cadherin/β-catenin complex and membrane translocation of β-catenin, resulting in the downregulation of Wnt/β-catenin signaling pathway. Thus, the Wnt/β-catenin target genes c-Myc, Cyclin D1, CD44 and VEGF were down-regulated and their malignant functions proliferation, metastasis and angiogenesis were reduced. Taken together, MUC4-induced nuclear translocation of β-catenin is a novel mechanism for growth, metastasis and angiogenesis of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaofei Zhi
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinqiu Tao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kunling Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingjing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
74
|
Radhakrishnan P, Mohr AM, Grandgenett PM, Steele MM, Batra SK, Hollingsworth MA. MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer. PLoS One 2013; 8:e73356. [PMID: 24204560 PMCID: PMC3808362 DOI: 10.1371/journal.pone.0073356] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/19/2013] [Indexed: 01/07/2023] Open
Abstract
Transmembrane mucins, MUC4 and MUC16 are associated with tumor progression and metastatic potential in human pancreatic adenocarcinoma. We discovered that miR-200c interacts with specific sequences within the coding sequence of MUC4 and MUC16 mRNAs, and evaluated the regulatory nature of this association. Pancreatic cancer cell lines S2.028 and T3M-4 transfected with miR-200c showed a 4.18 and 8.50 fold down regulation of MUC4 mRNA, and 4.68 and 4.82 fold down regulation of MUC16 mRNA compared to mock-transfected cells, respectively. A significant reduction of glycoprotein expression was also observed. These results indicate that miR-200c overexpression regulates MUC4 and MUC16 mucins in pancreatic cancer cells by directly targeting the mRNA coding sequence of each, resulting in reduced levels of MUC4 and MUC16 mRNA and protein. These data suggest that, in addition to regulating proteins that modulate EMT, miR-200c influences expression of cell surface mucins in pancreatic cancer.
Collapse
Affiliation(s)
- Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ashley M. Mohr
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Paul M. Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maria M. Steele
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
75
|
Kaur S, Kumar S, Momi N, Sasson AR, Batra SK. Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 2013; 10:607-20. [PMID: 23856888 PMCID: PMC3934431 DOI: 10.1038/nrgastro.2013.120] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer remains a lethal malignancy with poor prognosis owing to therapeutic resistance, frequent recurrence and the absence of treatment strategies that specifically target the tumour and its supporting stroma. Deregulated cell-surface proteins drive neoplastic transformations and are envisioned to mediate crosstalk between the tumour and its microenvironment. Emerging studies have elaborated on the role of mucins in diverse biological functions, including enhanced tumorigenicity, invasiveness, metastasis and drug resistance through their characteristic O-linked and N-linked oligosaccharides (glycans), extended structures and unique domains. Multiple mucin domains differentially interact and regulate different components of the tumour microenvironment. This Review discusses: the expression pattern of various mucins in the pancreas under healthy, inflammatory, and cancerous conditions; the context-dependent attributes of mucins that differ under healthy and pathological conditions; the contribution of the tumour microenvironment in pancreatic cancer development and/or progression; diagnostic and/or prognostic efficacy of mucins; and mucin-based therapeutic strategies. Overall, this information should help to delineate the intricacies of pancreatic cancer by exploring the family of mucins, which, through various mechanisms in both tumour cells and the microenvironment, worsen disease outcome.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Navneet Momi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Aaron R. Sasson
- Department of Surgery, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| |
Collapse
|
76
|
Ansari D, Urey C, Gundewar C, Bauden MP, Andersson R. Comparison of MUC4 expression in primary pancreatic cancer and paired lymph node metastases. Scand J Gastroenterol 2013; 48:1183-1187. [PMID: 24047396 DOI: 10.3109/00365521.2013.832368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED OBJECTIVE. Mucin 4 (MUC4) is a transmembrane glycoprotein that is expressed in pancreatic ductal adenocarcinoma (PDAC), but not in normal pancreatic tissue. MUC4 has a proposed role in pancreatic tumor progression and metastasis. The purpose of this pilot study was to investigate MUC4 expression during PDAC metastasis by comparing the expression in the primary tumor and paired lymph node metastases from the same patient. MATERIAL AND METHODS. Surgical specimens from 17 cases of primary PDAC and paired lymph node metastases were immunohistochemically analyzed for MUC4 expression. The modified histochemical score (H-score) was used for staining assessment. RESULTS. Positive staining for MUC4 was detected in most primary and metastatic PDAC tumors (15/17 vs. 14/17). The concordance for MUC4 expression in primary tumors and corresponding lymph node metastases was 82%. In two cases, the primary tumor was MUC4-positive and the lymph node metastases were negative, while in one patient with a MUC4-negative primary tumor, the lymph node metastasis was positive. The distribution of H-score for expression of MUC4 significantly correlated (r = 0.615; p = 0.009) between primary tumors and paired metastatic lesions. CONCLUSIONS MUC4 was observed in both primary and matched metastatic tumors with a high level of concordance, suggesting that MUC4 expression is retained following PDAC metastasis.
Collapse
Affiliation(s)
- Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, and Skåne University Hospital , Lund , Sweden
| | | | | | | | | |
Collapse
|
77
|
Abstract
INTRODUCTION Altered expression of MUC4 plays an oncogenic role in various cancers, including pancreatic, ovarian, and breast. This study evaluates the expression and role of MUC4 in non-small-cell lung cancer (NSCLC). METHODS We used a paired system of MUC4-expressing (H292) and MUC4-nonexpressing (A549) NSCLC cell lines to analyze MUC4-dependent changes in growth rate, migration, and invasion using these sublines. We also evaluated the alterations of several tumor suppressor, proliferation, and metastasis markers with altered MUC4 expression. Furthermore, the association of MUC4 expression (by immunohistochemistry) in lung cancer samples with patient survival was evaluated. RESULTS MUC4-expressing lung cancer cells demonstrated a less proliferative and metastatic phenotype. Up-regulation of p53 in MUC4-expressing lung cancer cells led to the accumulation of cells at the G2/M phase of cell cycle progression. MUC4 expression attenuated Akt activation and decreased the expression of Cyclins D1 and E, but increased the expression of p21 and p27. MUC4 expression abrogated cancer cell migration and invasion by altering N- & E-cadherin expression and FAK phosphorylation. A decrease in MUC4 expression was observed with increasing tumor stage (mean composite score: stage I, 2.4; stage II, 1.8; stage III, 1.4; and metastatic, 1.2; p = 0.0093). Maximal MUC4 expression was associated with a better overall survival (p = 0.042). CONCLUSION MUC4 plays a tumor-suppressor role in NSCLC by altering p53 expression in NSCLC. Decrease in MUC4 expression in advanced tumor stages also seems to confirm the novel protective function of MUC4 in NSCLC.
Collapse
|
78
|
Kozinn SI, Harty NJ, Delong JM, Deliyiannis C, Logvinenko T, Summerhayes IC, Libertino JA, Holway AH, Rieger-Christ KM. MicroRNA Profile to Predict Gemcitabine Resistance in Bladder Carcinoma Cell Lines. Genes Cancer 2013; 4:61-9. [PMID: 23946872 DOI: 10.1177/1947601913484495] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/03/2013] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNA) are small, noncoding RNAs with important regulatory roles in development, differentiation, cell proliferation, and death as well as the complex process of acquired drug resistance. The goal of this study was to identify specific miRNAs and their potential protein targets that confer acquired resistance to gemcitabine in urothelial carcinoma of the bladder (UCB) cell lines. Gemcitabine-resistant cells were established from 6 cell lines following exposure to escalating concentrations of the drug and by passaging cells in the presence of the drug over a 2- to 3-month period. Differential miRNA expression was identified in a microarray format comparing untreated controls with resistant cell lines, representing the maximum tolerated concentration, and results were validated via qRT-PCR. The involvement of specific miRNAs in chemoresistance was confirmed with transfection experiments, followed by clonogenic assays and Western blot analysis. Gemcitabine resistance was generated in 6 UCB cell lines. Microarray analysis comparing miRNA expression between gemcitabine-resistant and parental cells identified the differential expression of 66 miRNAs. Confirmation of differential expression was recorded via qRT-PCR in a subset of these miRNAs. Within this group, let-7b and let-7i exhibited decreased expression, while miR-1290 and miR-138 displayed increased expression levels in gemcitabine-resistant cells. Transfection of pre-miR-138 and pre-miR-1290 into parental cells attenuated cell death after exposure to gemcitabine, while transfection of pre-miR-let-7b and pre-miR-let-7i into the resistant cells augmented cell death. Mucin-4 was up-regulated in gemcitabine-resistant cells. Ectopic expression of let-7i and let-7b in the resistant cells resulted in the down-regulation of mucin-4. These results suggest a role for miRNAs 1290, 138, let-7i, and let-7b in imparting resistance to gemcitabine in UCB cell lines in part through the modulation of mucin-4. Alterations in these miRNAs and/or mucin-4 may constitute a potential therapeutic strategy for improving the efficacy of gemcitabine in UCB.
Collapse
|
79
|
Guggulsterone decreases proliferation and metastatic behavior of pancreatic cancer cells by modulating JAK/STAT and Src/FAK signaling. Cancer Lett 2013; 341:166-77. [PMID: 23920124 DOI: 10.1016/j.canlet.2013.07.037] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/15/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022]
Abstract
Inadequate efficacy, high toxicity and drug resistance associated with existing chemotherapeutic agents mandate a need for novel therapeutic strategies for highly aggressive Pancreatic Cancer (PC). Guggulsterone (GS) exhibits potent anti-proliferative effects against various cancer cells and has emerged as an attractive candidate for use in complementary or preventive cancer therapies. However, the knowledge regarding the therapeutic potential of GS in PC is still limited and needs to be explored. We studied the effect of GS on PC cell growth, motility and invasion and elucidated the molecular mechanisms associated with its anti-tumor effects. Treatment of Capan1 and CD18/HPAF PC cells with GS resulted in dose- and time-dependent growth inhibition and decreased colony formation. Further, GS treatment induced apoptosis and cell cycle arrest as assessed by Annexin-V assay and FACS analysis. Increased apoptosis following GS treatment was accompanied with Bad dephosphorylation and its translocation to the mitochondria, increased Caspase-3 activation, decreased Cyclin D1, Bcl-2 and xIAP expression. Additionally, GS treatment decreased motility and invasion of PC cells by disrupting cytoskeletal organization, inhibiting activation of FAK and Src signaling and decreased MMP9 expression. More importantly, GS treatment decreased mucin MUC4 expression in Capan1 and CD18/HPAF cells through transcriptional regulation by inhibiting Jak/STAT pathway. In conclusion, our results support the utility of GS as a potential therapeutic agent for lethal PC.
Collapse
|
80
|
Shimizu T, Torres MP, Chakraborty S, Souchek JJ, Rachagani S, Kaur S, Macha M, Ganti AK, Hauke RJ, Batra SK. Holy Basil leaf extract decreases tumorigenicity and metastasis of aggressive human pancreatic cancer cells in vitro and in vivo: potential role in therapy. Cancer Lett 2013; 336:270-80. [PMID: 23523869 DOI: 10.1016/j.canlet.2013.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
There is an urgent need to develop alternative therapies against lethal pancreatic cancer (PC). Ocimum sanctum ("Holy Basil") has been used for thousands of years in traditional Indian medicine, but its anti-tumorigenic effect remains largely unexplored. Here, we show that extracts of O. sanctum leaves inhibit the proliferation, migration, invasion, and induce apoptosis of PC cells in vitro. The expression of genes that promote the proliferation, migration and invasion of PC cells including activated ERK-1/2, FAK, and p65 (subunit of NF-κB), was downregulated in PC cells after O. sanctum treatment. Intraperitoneal injections of the aqueous extract significantly inhibited the growth of orthotopically transplanted PC cells in vivo (p<0.05). Genes that inhibit metastasis (E-cadherin) and induce apoptosis (BAD) were significantly upregulated in tumors isolated from mice treated with O. sanctum extracts, while genes that promote survival (Bcl-2 and Bcl-xL) and chemo/radiation resistance (AURKA, Chk1 and Survivin) were downregulated. Overall, our study suggests that leaves of O. sanctum could be a potential source of novel anticancer compounds in the future.
Collapse
Affiliation(s)
- Tomohiro Shimizu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Remmers N, Anderson JM, Linde EM, DiMaio DJ, Lazenby AJ, Wandall HH, Mandel U, Clausen H, Yu F, Hollingsworth MA. Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res 2013; 19:1981-93. [PMID: 23446997 DOI: 10.1158/1078-0432.ccr-12-2662] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Mucin expression is a common feature of most adenocarcinomas and features prominently in current attempts to improve diagnosis and therapy for pancreatic cancer and other adenocarcinomas. We investigated the expression of a number of mucin core proteins and associated O-linked glycans expressed in pancreatic adenocarcinoma-sialyl Tn (STn), Tn, T antigen, sialyl Lewis A (CA19-9), sialyl Lewis C (SLeC), Lewis X (LeX), and sialyl LeX (SLeX)-during the progression of pancreatic cancer from early stages to metastatic disease. EXPERIMENTAL DESIGN Immunohistochemical analyses of mucin and associated glycan expression on primary tumor and liver metastatic tumor samples were conducted with matched sets of tissues from 40 autopsy patients diagnosed with pancreatic adenocarcinoma, 14 surgically resected tissue samples, and 8 normal pancreata. RESULTS There were significant changes in mucin expression patterns throughout disease progression. MUC1 and MUC4 were differentially glycosylated as the disease progressed from early pancreatic intraepithelial neoplasias to metastatic disease. De novo expression of several mucins correlated with increased metastasis indicating a potentially more invasive phenotype, and we show the expression of MUC6 in acinar cells undergoing acinar to ductal metaplasia. A "cancer field-effect" that included changes in mucin protein expression and glycosylation in the adjacent normal pancreas was also seen. CONCLUSIONS There are significant alterations in mucin expression and posttranslational processing during progression of pancreatic cancer from early lesions to metastasis. The results are presented in the context of how mucins influence the biology of tumor cells and their microenvironment during progression of pancreatic cancer.
Collapse
Affiliation(s)
- Neeley Remmers
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mukhopadhyay P, Lakshmanan I, Ponnusamy MP, Chakraborty S, Jain M, Pai P, Smith LM, Lele SM, Batra SK. MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells. PLoS One 2013; 8:e54455. [PMID: 23408941 PMCID: PMC3569463 DOI: 10.1371/journal.pone.0054455] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Current studies indicate that triple negative breast cancer (TNBC), an aggressive breast cancer subtype, is associated with poor prognosis and an early pattern of metastasis. Emerging evidence suggests that MUC4 mucin is associated with metastasis of various cancers, including breast cancer. However, the functional role of MUC4 remains unclear in breast cancers, especially in TNBCs. METHOD In the present study, we investigated the functional and mechanistic roles of MUC4 in potentiating pathogenic signals including EGFR family proteins to promote TNBC aggressiveness using in vitro and in vivo studies. Further, we studied the expression of MUC4 in invasive TNBC tissue and normal breast tissue by immunostaining. RESULTS MUC4 promotes proliferation, anchorage-dependent and-independent growth of TNBC cells, augments TNBC cell migratory and invasive potential in vitro, and enhances tumorigenicity and metastasis in vivo. In addition, our studies demonstrated that MUC4 up-regulates the EGFR family of proteins, and augments downstream Erk1/2, PKC-γ, and FAK mediated oncogenic signaling. Moreover, our studies also showed that knockdown of MUC4 in TNBC cells induced molecular changes suggestive of mesenchymal to epithelial transition. We also demonstrated in this study, for the first time, that knockdown of MUC4 was associated with reduced expression of EGFR and ErbB3 (EGFR family proteins) in TNBC cells, suggesting that MUC4 uses an alternative to ErbB2 mechanism to promote aggressiveness. We further demonstrate that MUC4 is differentially over-expressed in invasive TNBC tissues compared to normal breast tissue. CONCLUSIONS MUC4 mucin expression is associated with TNBC pathobiology, and its knockdown reduced aggressiveness in vitro, and tumorigenesis and metastasis in vivo. Overall, our findings suggest that MUC4 mucin promotes invasive activities of TNBC cells by altering the expression of EGFR, ErbB2, and ErbB3 molecules and their downstream signaling.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lynette M. Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subodh M. Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
83
|
Rachagani S, Torres MP, Kumar S, Haridas D, Baine M, Macha MA, Kaur S, Ponnusamy MP, Dey P, Seshacharyulu P, Johansson SL, Jain M, Wagner KU, Batra SK. Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy. J Hematol Oncol 2012; 5:68. [PMID: 23102107 PMCID: PMC3511181 DOI: 10.1186/1756-8722-5-68] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
Background Pancreatic cancer (PC) is a lethal malignancy primarily driven by activated Kras mutations and characterized by the deregulation of several genes including mucins. Previous studies on mucins have identified their significant role in both benign and malignant human diseases including PC progression and metastasis. However, the initiation of MUC expression during PC remains unknown because of lack of early stage tumor tissues from PC patients. Methods In the present study, we have evaluated stage specific expression patterns of mucins during mouse PC progression in (KrasG12D;Pdx1-Cre (KC)) murine PC model from pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC) by immunohistochemistry and quantitative real-time PCR. Results In agreement with previous studies on human PC, we observed a progressive increase in the expression of mucins particularly Muc1, Muc4 and Muc5AC in the pancreas of KC (as early as PanIN I) mice with advancement of PanIN lesions and PDAC both at mRNA and protein levels. Additionally, mucin expression correlated with the increased expression of inflammatory cytokines IFN-γ (p < 0.0062), CXCL1 (p < 0.00014) and CXCL2 (p < 0.08) in the pancreas of KC mice, which are known to induce mucin expression. Further, we also observed progressive increase in inflammation in pancreas of KC mice from 10 to 50 weeks of age as indicated by the increase in the macrophage infiltration. Overall, this study corroborates with previous human studies that indicated the aberrant overexpression of MUC1, MUC4 and MUC5AC mucins during the progression of PC. Conclusions Our study reinforces the potential utility of the KC murine model for determining the functional role of mucins in PC pathogenesis by crossing KC mice with corresponding mucin knockout mice and evaluating mucin based diagnostic and therapeutic approaches for lethal PC.
Collapse
Affiliation(s)
- Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Lafitte M, Rousseau B, Moranvillier I, Taillepierre M, Peuchant E, Guyonnet-Dupérat V, Bedel A, Dubus P, de Verneuil H, Moreau-Gaudry F, Dabernat S. In vivo gene transfer targeting in pancreatic adenocarcinoma with cell surface antigens. Mol Cancer 2012; 11:81. [PMID: 23088623 PMCID: PMC3546072 DOI: 10.1186/1476-4598-11-81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is a deadly malignancy resistant to current therapies. It is critical to test new strategies, including tumor-targeted delivery of therapeutic agents. This study tested the possibility to target the transfer of a suicide gene in tumor cells using an oncotropic lentiviral vector. RESULTS Three cell surface markers were evaluated to target the transduction of cells by lentiviruses pseudotyped with a modified glycoprotein from Sindbis virus. Only Mucin-4 and the Claudin-18 proteins were found efficient for targeted lentivirus transductions in vitro. In subcutaneous xenografts of human pancreatic cancer cells models, Claudin-18 failed to achieve efficient gene transfer but Mucin-4 was found very potent. Human pancreatic tumor cells were modified to express a fluorescent protein detectable in live animals by bioimaging, to perform a direct non invasive and costless follow up of the tumor growth. Targeted gene transfer of a bicistronic transgene bearing a luciferase gene and the herpes simplex virus thymidine kinase gene into orthotopic grafts was carried out with Mucin-4 oncotropic lentiviruses. By contrast to the broad tropism VSV-G carrying lentivirus, this oncotropic lentivirus was found to transduce specifically tumor cells, sparing normal pancreatic cells in vivo. Transduced cells disappeared after ganciclovir treatment while the orthotopic tumor growth was slowed down. CONCLUSION This work considered for the first time three aspect of pancreatic adenocarcinoma targeted therapy. First, lentiviral transduction of human pancreatic tumor cells was possible when cells were grafted orthotopically. Second, we used a system targeting the tumor cells with cell surface antigens and sparing the normal cells. Finally, the TK/GCV anticancer system showed promising results in vivo. Importantly, the approach presented here appeared to be a safer, much more specific and an as efficient way to perform gene delivery in pancreatic tumors, in comparison with a broad tropism lentivirus. This study will be useful in future designing of targeted therapies for pancreatic cancer.
Collapse
|
85
|
Torres MP, Chakraborty S, Souchek J, Batra SK. Mucin-based targeted pancreatic cancer therapy. Curr Pharm Des 2012; 18:2472-81. [PMID: 22372499 DOI: 10.2174/13816128112092472] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 12/12/2022]
Abstract
The prognosis of pancreatic cancer (PC) patients is very poor with a five-year survival of less than 5%. One of the major challenges in developing new therapies for PC is the lack of expression of specific markers by pancreatic tumor cells. Mucins are heavily Oglycosylated proteins characterized by the presence of short stretches of amino acid sequences repeated several times in tandem. The expression of several mucins including MUC1, MUC4, MUC5AC, and MUC16 is strongly upregulated in PC. Recent studies have also demonstrated a link between the aberrant expression and differential overexpression of mucin glycoproteins to the initiation, progression, and poor prognosis of the disease. These studies have led to increasing recognition of mucins as potential diagnostic markers and therapeutic targets in PC. In this focused review we present an overview of the therapies targeting mucins in PC, including immunotherapy (i.e. vaccines, antibodies, and radioimmunoconjugates), gene therapy, and other novel therapeutic strategies.
Collapse
Affiliation(s)
- Maria P Torres
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, U.S.A
| | | | | | | |
Collapse
|
86
|
Yang M, Yang B, Yan X, Ouyang J, Zeng W, Ai H, Ren J, Huang L. Nucleotide variability and linkage disequilibrium patterns in the porcine MUC4 gene. BMC Genet 2012; 13:57. [PMID: 22793500 PMCID: PMC3505144 DOI: 10.1186/1471-2156-13-57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/28/2012] [Indexed: 11/24/2022] Open
Abstract
Background MUC4 is a type of membrane anchored glycoprotein and serves as the major constituent of mucus that covers epithelial surfaces of many tissues such as trachea, colon and cervix. MUC4 plays important roles in the lubrication and protection of the surface epithelium, cell proliferation and differentiation, immune response, cell adhesion and cancer development. To gain insights into the evolution of the porcine MUC4 gene, we surveyed the nucleotide variability and linkage disequilibrium (LD) within this gene in Chinese indigenous breeds and Western commercial breeds. Results A total of 53 SNPs covering the MUC4 gene were genotyped on 5 wild boars and 307 domestic pigs representing 11 Chinese breeds and 3 Western breeds. The nucleotide variability, haplotype phylogeny and LD extent of MUC4 were analyzed in these breeds. Both Chinese and Western breeds had considerable nucleotide diversity at the MUC4 locus. Western pig breeds like Duroc and Large White have comparable nucleotide diversity as many of Chinese breeds, thus artificial selection for lean pork production have not reduced the genetic variability of MUC4 in Western commercial breeds. Haplotype phylogeny analyses indicated that MUC4 had evolved divergently in Chinese and Western pigs. The dendrogram of genetic differentiation between breeds generally reflected demographic history and geographical distribution of these breeds. LD patterns were unexpectedly similar between Chinese and Western breeds, in which LD usually extended less than 20 kb. This is different from the presumed high LD extent (more than 100 kb) in Western commercial breeds. The significant positive Tajima’D, and Fu and Li’s D statistics in a few Chinese and Western breeds implied that MUC4 might undergo balancing selection in domestic breeds. Nevertheless, we cautioned that the significant statistics could be upward biased by SNP ascertainment process. Conclusions Chinese and Western breeds have similar nucleotide diversity but evolve divergently in the MUC4 region. Western breeds exhibited unusual low LD extent at the MUC4 locus, reflecting the complexity of nucleotide variability of pig genome. The finding suggests that high density (e.g. 1SNP/10 kb) markers are required to capture the underlying causal variants at such regions.
Collapse
Affiliation(s)
- Ming Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Rachagani S, Macha MA, Ponnusamy MP, Haridas D, Kaur S, Jain M, Batra SK. MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis 2012; 33:1953-64. [PMID: 22791819 DOI: 10.1093/carcin/bgs225] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MUC4 is a type-1 transmembrane mucin differentially expressed in multiple cancers and has previously been shown to potentiate progression and metastasis of pancreatic cancer. In this study, we investigated the molecular mechanisms associated with the MUC4-induced invasion and metastasis in pancreatic cancer. Stable silencing of MUC4 in multiple pancreatic cancer cells resulted in the downregulation of N-cadherin and its interacting partner fibroblast growth factor receptor 1 (FGFR1) through downregulation of partly by pFAK, pMKK7, pJNK and pc-Jun pathway and partly through PI-3K/Akt pathway. The downregulation of FGFR1 in turn led to downregulation of pAkt, pERK1/2, pNF-κB, pIkBα, uPA, MMP-9, vimentin, N-cadherin, Twist, Slug and Zeb1 and upregulation of E-cadherin, Occludin, Cytokeratin-18 and Caspase-9 in MUC4 knockdown BXPC3 and Capan1 cells compared with scramble vector transfected cells. Further, downregulation of FGFR1 was associated with a significant change in morphology and reorganization of the actin-cytoskeleton, leading to a significant decrease in motility (P < 0.00001) and invasion (P < 0.0001) in vitro and decreased tumorigenicity and incidence of metastasis in vivo upon orthotopic implantation in the athymic mice. Taken together, the results of the present study suggest that MUC4 promotes invasion and metastasis by FGFR1 stabilization through the N-cadherin upregulation.
Collapse
Affiliation(s)
- Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska MedicalCenter, Omaha, NE 68198-5870, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
CCN1 promotes tumorigenicity through Rac1/Akt/NF-κB signaling pathway in pancreatic cancer. Tumour Biol 2012; 33:1745-58. [PMID: 22752926 DOI: 10.1007/s13277-012-0434-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/30/2012] [Indexed: 01/22/2023] Open
Abstract
Aberrant CCN1 expression has been reported to play an important role in the tumor development. However, the pattern and the role of CCN1 in pancreatic cancer remain largely unknown. Therefore, we further deciphered the role CCN1 played in pancreatic cancer. We first evaluated the CCN1 expression in human pancreatic cancer tissues and pancreatic cancer cells. Then we forced expression and silenced CCN1 expression in pancreatic cancer cell lines MIA PaCa2 and PANC-1 respectively, using lentivirus vectors. We characterized the stable cells in vitro and in vivo using a nude mouse xenograft model. In this study, we found that CCN1 expression was significantly higher in cancer specimens which positively correlated with the expression level of phosphorylated Akt and p65. and poorer outcome. Moreover, our results demonstrated that CCN1 positively regulated pancreatic cell growth in vitro and in vivo and helped cancer cells resist to tumor necrosis factor alpha-induced apoptosis. Furthermore, we disclosed that activation of CCN1/ras-related c3 botulinum toxin substrate 1 (Rac1)/V-akt murine thymoma viral oncogene homolog (Akt)/nuclear factor-kappa B pathway inhibited apoptosis in pancreatic cancer cells. CCN1 is upregulated in pancreatic cancer and promotes the survival of pancreatic cancer cells. Taken together, these results indicate that CCN1 may be a potential target for pancreatic cancer therapy.
Collapse
|
89
|
Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through α7nAChR-mediated MUC4 upregulation. Oncogene 2012; 32:1384-95. [PMID: 22614008 PMCID: PMC3427417 DOI: 10.1038/onc.2012.163] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite evidence that long-term smoking is the leading risk factor for pancreatic malignancies, the underlying mechanism(s) for cigarette-smoke (CS)-induced pancreatic cancer (PC) pathogenesis has not been well-established. Our previous studies revealed an aberrant expression of the MUC4 mucin in PC as compared to the normal pancreas and its association with cancer progression and metastasis. Interestingly, here we explore a potential link between MUC4 expression and smoking-mediated PC pathogenesis and report that both cigarette-smoke-extract (CSE) and nicotine, which is the major component of CS, significantly up-regulates MUC4 in PC cells. This nicotine-mediated MUC4 overexpression was via α7 subunit of nicotinic acetylcholine receptor (nAChR) stimulation and subsequent activation of the JAK2/STAT3 downstream signaling cascade in cooperation with the MEK/ERK1/2 pathway; this effect was blocked by the α7nAChR antagonists, α-bungarotoxin and mecamylamine, and by specific siRNA-mediated STAT3 inhibition. Additionally, we demonstrated that nicotine-mediated MUC4 up-regulation promotes the PC cell migration through the activation of the downstream effectors such as HER2, c-Src and FAK; this effect was attenuated by shRNA-mediated MUC4 abrogation, further implying that these nicotine-mediated pathological effects on PC cells are MUC4 dependent. Furthermore, the in-vivo studies demonstrated a dramatic increase in the mean pancreatic tumor weight [low-dose (100 mg/m3 TSP), p=0.014; high-dose (247 mg/m3 TSP), p=0.02] and significant tumor metastasis to various distant organs in the CS-exposed-mice, orthotopically implanted with luciferase-transfected PC cells, as compared to the sham-controls. Moreover, the CS-exposed mice had elevated levels of serum cotinine [low-dose, 155.88±35.96 ng/ml; high-dose, 216.25±29.95 ng/ml] and increased MUC4, α7nAChR and pSTAT3 expression in the pancreatic tumor tissues. Altogether, our findings revealed for the first time that CS up-regulates the MUC4 mucin in PC via α7nAChR/JAK2/STAT3 downstream signaling cascade, thereby promoting metastasis of pancreatic cancer.
Collapse
|
90
|
Winter C, Kristiansen G, Kersting S, Roy J, Aust D, Knösel T, Rümmele P, Jahnke B, Hentrich V, Rückert F, Niedergethmann M, Weichert W, Bahra M, Schlitt HJ, Settmacher U, Friess H, Büchler M, Saeger HD, Schroeder M, Pilarsky C, Grützmann R. Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput Biol 2012; 8:e1002511. [PMID: 22615549 PMCID: PMC3355064 DOI: 10.1371/journal.pcbi.1002511] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 03/18/2012] [Indexed: 12/11/2022] Open
Abstract
Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice. Why do some people with the same type of cancer die early and some live long? Apart from influences from the environment and personal lifestyle, we believe that differences in the individual tumor genome account for different survival times. Recently, powerful methods have become available to systematically read genomic information of patient samples. The major remaining challenge is how to spot, among the thousands of changes, those few that are relevant for tumor aggressiveness and thereby affecting patient survival. Here, we make use of the fact that genes and proteins in a cell never act alone, but form a network of interactions. Finding the relevant information in big networks of web documents and hyperlinks has been mastered by Google with their PageRank algorithm. Similar to PageRank, we have developed an algorithm that can identify genes that are better indicators for survival than genes found by traditional algorithms. Our method can aid the clinician in deciding if a patient should receive chemotherapy or not. Reliable prediction of survival and response to therapy based on molecular markers bears a great potential to improve and personalize patient therapies in the future.
Collapse
Affiliation(s)
- Christof Winter
- Department of Bioinformatics, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Skrypek N, Duchêne B, Hebbar M, Leteurtre E, van Seuningen I, Jonckheere N. The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family. Oncogene 2012; 32:1714-23. [PMID: 22580602 DOI: 10.1038/onc.2012.179] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The fluorinated analog of deoxycytidine, Gemcitabine (Gemzar), is the main chemotherapeutic drug in pancreatic cancer, but survival remains weak mainly because of the high resistance of tumors to the drug. Recent works have shown that the mucin MUC4 may confer an advantage to pancreatic tumor cells by modifying their susceptibility to drugs. However, the cellular mechanism(s) responsible for this MUC4-mediated resistance is unknown. The aim of this work was to identify the cellular mechanisms responsible for gemcitabine resistance linked to MUC4 expression. CAPAN-2 and CAPAN-1 adenocarcinomatous pancreatic cancer (PC) cell lines were used to establish stable MUC4-deficient clones (MUC4-KD) by shRNA interference. Measurement of the IC50 index using tetrazolium salt test indicated that MUC4-deficient cells were more sensitive to gemcitabine. This was correlated with increased Bax/BclXL ratio and apoptotic cell number. Expression of Equilibrative/Concentrative Nucleoside Transporter (hENT1, hCNT1/3), deoxycytidine kinase (dCK), ribonucleotide reductase (RRM1/2) and Multidrug-Resistance Protein (MRP3/4/5) was evaluated by quantitative RT-PCR (qRT-PCR) and western blotting. Alteration of MRP3, MRP4, hCNT1 and hCNT3 expression was observed in MUC4-KD cells, but only hCNT1 alteration was correlated to MUC4 expression and sensitivity to gemcitabine. Decreased activation of MAPK, JNK and NF-κB pathways was observed in MUC4-deficient cells, in which the NF-κB pathway was found to have an important role in both sensitivity to gemcitabine and hCNT1 regulation. Finally, and in accordance with our in vitro data, we found that MUC4 expression was conversely correlated to that of hCNT1 in tissues from patients with pancreatic adenocarcinoma. This work describes a new mechanism of PC cell resistance to gemcitabine, in which the MUC4 mucin negatively regulates the hCNT1 transporter expression via the NF-κB pathway. Altogether, these data point out to MUC4 and hCNT1 as potential targets to ameliorate the response of pancreatic tumors to gemcitabine treatment.
Collapse
Affiliation(s)
- N Skrypek
- Inserm, UMR837, Jean-Pierre Aubert Research Center, Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
92
|
Kunigal S, Ponnusamy MP, Momi N, Batra SK, Chellappan SP. Nicotine, IFN-γ and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades. Mol Cancer 2012; 11:24. [PMID: 22537161 PMCID: PMC3464875 DOI: 10.1186/1476-4598-11-24] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/26/2012] [Indexed: 12/12/2022] Open
Abstract
Background The membrane-bound mucins are thought to play an important biological role in cell–cell and cell–matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. Results Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. Conclusions Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of pancreatic cancer cells.
Collapse
Affiliation(s)
- Sateesh Kunigal
- Dept, of Tumor Biology H, Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
93
|
Torres MP, Rachagani S, Purohit V, Pandey P, Joshi S, Moore ED, Johansson SL, Singh PK, Ganti AK, Batra SK. Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett 2012; 323:29-40. [PMID: 22475682 DOI: 10.1016/j.canlet.2012.03.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/25/2012] [Accepted: 03/26/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic tumors are resistant to conventional chemotherapies. The present study was aimed at evaluating the potential of a novel plant-derived product as a therapeutic agent for pancreatic cancer (PC). The effects of an extract from the tropical tree Annona Muricata, commonly known as Graviola, was evaluated for cytotoxicity, cell metabolism, cancer-associated protein/gene expression, tumorigenicity, and metastatic properties of PC cells. Our experiments revealed that Graviola induced necrosis of PC cells by inhibiting cellular metabolism. The expression of molecules related to hypoxia and glycolysis in PC cells (i.e. HIF-1α, NF-κB, GLUT1, GLUT4, HKII, and LDHA) were downregulated in the presence of the extract. In vitro functional assays further confirmed the inhibition of tumorigenic properties of PC cells. Overall, the compounds that are naturally present in a Graviola extract inhibited multiple signaling pathways that regulate metabolism, cell cycle, survival, and metastatic properties in PC cells. Collectively, alterations in these parameters led to a decrease in tumorigenicity and metastasis of orthotopically implanted pancreatic tumors, indicating promising characteristics of the natural product against this lethal disease.
Collapse
Affiliation(s)
- María P Torres
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA
| | | | - Vinee Purohit
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA
| | - Poomy Pandey
- Department of Environmental, Agricultural & Occupational Health, Omaha, NE 68198-5870, USA
| | - Suhasini Joshi
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA
| | - Erik D Moore
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA
| | - Sonny L Johansson
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA; Department of Pathology and Microbiology, Omaha, NE 68198-5870, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA
| | - Apar K Ganti
- Department of Internal Medicine VA Nebraska-Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA; Department of Pathology and Microbiology, Omaha, NE 68198-5870, USA.
| |
Collapse
|
94
|
Srivastava SK, Bhardwaj A, Singh S, Arora S, Wang B, Grizzle WE, Singh AP. MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 2011; 32:1832-9. [PMID: 21983127 PMCID: PMC3220613 DOI: 10.1093/carcin/bgr223] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/19/2011] [Accepted: 10/02/2011] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer (PC) has the worst prognosis among all cancers due to its late diagnosis and lack of effective therapies. Therefore, identification of novel gene targets, which are differentially expressed in PC and functionally involved in malignant phenotypes, is critical to achieve early diagnosis and development of effective therapeutic strategies. We have shown previously that MUC4, an aberrantly overexpressed transmembrane mucin, promotes growth, invasion and metastasis of PC cells, thus underscoring its potential as a clinical target. Here, we report a novel microRNA (miRNA)-mediated mechanism underlying aberrant expression of MUC4 in PC. We demonstrate that the 3' untranslated region of MUC4 contains a highly conserved miRNA-150 (miR-150) binding motif and its direct interaction with miR-150 downregulates endogenous MUC4 protein levels. We also show that miR-150-mediated MUC4 downregulation is associated with a concomitant decrease in human epidermal growth factor receptor 2 and its phosphorylated form, leading to reduced activation of downstream signaling. Furthermore, our findings demonstrate that miR-150 overexpression inhibits growth, clonogenicity, migration and invasion and enhances intercellular adhesion in PC cells. Finally, our data reveal a downregulated expression of miR-150 in malignant pancreatic tissues, which is inversely associated with MUC4 protein levels. Altogether, these findings establish miR-150 as a novel regulator of MUC4 and a tumor suppressor miRNA in PC.
Collapse
Affiliation(s)
- Sanjeev K. Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688-0002, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-1150, USA
| | - Ajay P. Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| |
Collapse
|
95
|
Abstract
MUC4 is a large transmembrane type I glycoprotein that is overexpressed in pancreatic cancer (PC) and has been shown to be associated with its progression and metastasis. However, the exact cellular and molecular mechanism(s) through which MUC4 promotes metastasis of PC cells has been sparsely studied. Here we showed that the NIDO domain of MUC4, which is similar to the G1-domain present in the nidogen or entactin (an extracellular matrix protein), contributes to the protein-protein interaction property of MUC4. By this interaction, MUC4 promotes breaching of basement membrane integrity, and spreading of cancer cells. These observations are corroborated with the data from our study using an engineered MUC4 protein without the NIDO domain, which was ectopically expressed in the MiaPaCa PC cells, lacking endogenous MUC4 and nidogen protein. The in vitro studies demonstrated an enhanced invasiveness of MiaPaCa cells expressing MUC4 (MiaPaCa-MUC4) compared to vector-transfected cells (MiaPaCa-Vec; p=0.003) or cells expressing MUC4 without the NIDO domain (MiaPaCa-MUC4-NIDOΔ; p=0.03). However, the absence of NIDO-domain has no significant role on cell growth and motility (p=0.93). In the in-vivo studies, all the mice orthotopically implanted with MiPaCa-MUC4 cells developed metastasis to the liver as compared to MiaPaCa-Vec or the MiaPaCa-MUC4-NIDOΔ group, hence, supporting our in vitro observations. Additionally, a reduced binding (p=0.0004) of MiaPaCa-MUC4-NIDOΔ cells to the fibulin-2 coated plates compared to MiaPaCa-MUC4 cells indicated a possible interaction between the MUC4-NIDO domain and fibulin-2, a nidogen-interacting protein. Furthermore, in PC tissue samples, MUC4 colocalized with the fibulin-2 present in the basement membrane. Altogether, our findings demonstrate that the MUC4-NIDO domain significantly contributes to the MUC4-mediated metastasis of PC cells. This may be partly due to the interaction between the MUC4-NIDO domain and fibulin-2.
Collapse
|
96
|
Haridas D, Chakraborty S, Ponnusamy MP, Lakshmanan I, Rachagani S, Cruz E, Kumar S, Das S, Lele SM, Anderson JM, Wittel UA, Hollingsworth MA, Batra SK. Pathobiological implications of MUC16 expression in pancreatic cancer. PLoS One 2011; 6:e26839. [PMID: 22066010 PMCID: PMC3204976 DOI: 10.1371/journal.pone.0026839] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022] Open
Abstract
MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.
Collapse
Affiliation(s)
- Dhanya Haridas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Eric Cruz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Srustidhar Das
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subodh M. Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Judy M. Anderson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Uwe A. Wittel
- Department of General and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany
| | - Michael A. Hollingsworth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
97
|
Chauhan SC, Ebeling MC, Maher DM, Koch MD, Watanabe A, Aburatani H, Lio Y, Jaggi M. MUC13 mucin augments pancreatic tumorigenesis. Mol Cancer Ther 2011; 11:24-33. [PMID: 22027689 DOI: 10.1158/1535-7163.mct-11-0598] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The high death rate of pancreatic cancer is attributed to the lack of reliable methods for early detection and underlying molecular mechanisms of its aggressive pathogenesis. Although MUC13, a newly identified transmembrane mucin, is known to be aberrantly expressed in ovarian and gastro-intestinal cancers, its role in pancreatic cancer is unknown. Herein, we investigated the expression profile and functions of MUC13 in pancreatic cancer progression. The expression profile of MUC13 in pancreatic cancer was investigated using a recently generated monoclonal antibody (clone PPZ0020) and pancreatic tissue microarrays. The expression of MUC13 was significantly (P < 0.005) higher in cancer samples compared with normal/nonneoplastic pancreatic tissues. For functional analyses, full-length MUC13 was expressed in MUC13 null pancreatic cancer cell lines, MiaPaca and Panc1. MUC13 overexpression caused a significant (P < 0.05) increase in cell motility, invasion, proliferation, and anchorage-dependent or -independent clonogenicity while decreasing cell-cell and cell-substratum adhesion. Exogenous MUC13 expression significantly (P < 0.05) enhanced pancreatic tumor growth and reduced animal survival in a xenograft mouse model. These tumorigenic characteristics correlated with the upregulation/phosphorylation of HER2, p21-activated kinase 1 (PAK1), extracellular signal-regulated kinase (ERK), Akt, and metastasin (S100A4), and the suppression of p53. Conversely, suppression of MUC13 in HPAFII pancreatic cancer cells by short hairpin RNA resulted in suppression of tumorigenic characteristics, repression of HER2, PAK1, ERK, and S100A4, and upregulation of p53. MUC13 suppression also significantly (P < 0.05) reduced tumor growth and increased animal survival. These results imply a role of MUC13 in pancreatic cancer and suggest its potential use as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Subhash C Chauhan
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Bruyère E, Jonckheere N, Frénois F, Mariette C, Van Seuningen I. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein. Biochem Biophys Res Commun 2011; 413:325-9. [DOI: 10.1016/j.bbrc.2011.08.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 12/24/2022]
|
99
|
Hamada T, Wakamatsu T, Miyahara M, Nagata S, Nomura M, Kamikawa Y, Yamada N, Batra SK, Yonezawa S, Sugihara K. MUC4: a novel prognostic factor of oral squamous cell carcinoma. Int J Cancer 2011; 130:1768-76. [PMID: 21618516 DOI: 10.1002/ijc.26187] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 04/21/2011] [Indexed: 12/15/2022]
Abstract
MUC4 mucin is now known to be expressed in various normal and cancer tissues. We have previously reported that MUC4 expression is a novel prognostic factor in several malignant tumors; however, it has not been investigated in oral squamous cell carcinoma (OSCC). The aim of our study is to evaluate the prognostic significance of MUC4 expression in OSCC. We examined the expression profile of MUC4 in OSCC tissues from 150 patients using immunohistochemistry. Its prognostic significance in OSCC was statistically analyzed. MUC4 was expressed in 61 of the 150 patients with OSCC. MUC4 expression was significantly correlated with higher T classification (p = 0.0004), positive nodal metastasis (p = 0.049), advanced tumor stage (p = 0.002), diffuse invasion of cancer cells (p = 0.004) and patient's death (p = 0.004) in OSCC. Multivariate analysis showed that MUC4 expression (p = 0.011), tumor location (p = 0.032) and diffuse invasion (p = 0.009) were statistically significant risk factors. Backward stepwise multivariate analysis demonstrated MUC4 expression (p = 0.0015) and diffuse invasion (p = 0.018) to be statistically significant independent risk factors of poor survival in OSCC. The disease-free and overall survival of patients with MUC4 expression was significantly worse than those without MUC4 expression (p < 0.0001 and p = 0.0001). In addition, the MUC4 expression was a significant risk factor for local recurrence and subsequent nodal metastasis in OSCC (p = 0.017 and p = 0.0001). We first report MUC4 overexpression is an independent factor for poor prognosis of patients with OSCC; therefore, patients with OSCC showing positive MUC4 expression should be followed up carefully.
Collapse
Affiliation(s)
- Tomofumi Hamada
- Department of Oral Surgery, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Rachagani S, Senapati S, Chakraborty S, Ponnusamy MP, Kumar S, Smith LM, Jain M, Batra SK. Activated KrasG¹²D is associated with invasion and metastasis of pancreatic cancer cells through inhibition of E-cadherin. Br J Cancer 2011; 104:1038-48. [PMID: 21364589 PMCID: PMC3065271 DOI: 10.1038/bjc.2011.31] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Pancreatic cancer (PC) harbours an activated point mutation (KrasG12D) in the Kras proto-oncogene that has been demonstrated to promote the development of PC. Methods: This study was designed to investigate the effect of the oncogenic KrasG12D allele on aggressiveness and metastatic potential of PC cells. We silenced the oncogenic KrasG12D allele expression in CD18/HPAF and ASPC1 cell lines by stable expression of shRNA specific to the KrasG12Dallele. Results: The KrasG12D knockdown cells exhibited a significant decrease in motility (P<0.0001), invasion (P<0.0001), anchorage-dependent (P<0.0001) and anchorage-independent growth (P<0.0001), proliferation (P<0.005) and an increase in cell doubling time (P<0.005) in vitro and a decrease in the incidence of metastases upon orthotopic implantation into nude mice. The knockdown of the KrasG12D allele led to a significant increase in the expression of E-cadherin (mRNA and protein) both in vitro and in vivo. This was associated with a decrease in the expression of phoshpo-ERK-1/2, NF-κB and MMP-9, and transcription factors such as δEF1, Snail and ETV4. Furthermore, the expression of several proteins involved in cell survival, invasion and metastasis was decreased in the KrasG12D knockdown cells. Conclusions: The results of this study suggest that the KrasG12D allele promotes metastasis in PC cells partly through the downregulation of E-cadherin.
Collapse
Affiliation(s)
- S Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | |
Collapse
|