51
|
Tavakoli-Rouzbehani OM, Maleki V, Shadnoush M, Taheri E, Alizadeh M. A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: a review. ACTA ACUST UNITED AC 2020; 28:779-787. [PMID: 33140312 DOI: 10.1007/s40199-020-00376-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Nigella sativa (NS) is a known medicinal herb with numerous therapeutic effects such as antidiabetic, anti-proliferative, anti-inflammatory, and anti-cancer activities. It has been indicated that NS can regulate cellular metabolism by adjusting transduction signaling pathways. Adenosine monophosphate-activated protein kinase (AMPK) is one of the main physiological processes, such as energy hemostasis, cellular metabolism, and autophagy regulators. Herb-derived medicines have always been considered as one of the main AMPK activators, and surprisingly recent data has demonstrated that it can be a target for NS and its derivatives. EVIDENCE ACQUISITION The literature search was conducted in PubMed, SCOPUS, Embase, ProQuest, and Google Scholar electronic resources. Published articles up to September 2020 were considered, and those of which investigated Nigella sativa effects on the AMPK pathway after meeting the inclusion criteria were included. RESULTS The search was performed on several online databases such as PubMed, Scopus, Embase, ProQuest, and Google Scholar from inception until January 2020. Among the initial search, 245 studies were found. After removing duplicated data and meeting the inclusion criteria, only 14 studies were selected. They included the effects of NS and its bioactive compounds as anti-hyperglycemic (n = 5), on liver function (n = 4), cancers (n = 3), and on Neuroinflammation and Atherosclerosis (n = 2). Most of the included studies are animals or in-vitro investigations. CONCLUSION In this review, we discuss the latest findings on the molecular mechanism of NS effecting the AMPK signaling pathway. We also focus on the therapeutic effects of NS, including the prevention and treatment of metabolic and pro-inflammatory disease by targeting the AMPK pathway.
Collapse
Affiliation(s)
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition & Food Technology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ehsaneh Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
52
|
Tong Y, Gao WQ, Liu Y. Metabolic heterogeneity in cancer: An overview and therapeutic implications. Biochim Biophys Acta Rev Cancer 2020; 1874:188421. [PMID: 32835766 DOI: 10.1016/j.bbcan.2020.188421] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Recent research on cancer metabolism has revealed that individual tumors have highly heterogeneous metabolic profiles that contribute to the connective metabolic networks within the tumor and its environment. Indeed, tumor-associated cells types, including tumor cells, cancer-associated fibroblasts (CAFs) and immune cells, reprogram their metabolism in many different ways due to diverse genetic backgrounds and complex environmental stimuli. This intratumoral metabolic heterogeneity and the derived metabolic interactions play an instrumental role in cancer progression. Understanding how this heterogeneity occurs may provide promising therapeutic strategies. Here, we review the diverse metabolic profiles of several important cell subpopulations in tumors and their impact on tumor progression and discuss the consequent metabolic interactions as well as the related therapeutic concerns.
Collapse
Affiliation(s)
- Yu Tong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Yanfeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
53
|
The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol 2020; 18:711-722. [PMID: 32728200 DOI: 10.1038/s41423-020-0501-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
In cancer, myeloid cells have tumor-supporting roles. We reported that the protein GPNMB (glycoprotein nonmetastatic B) was profoundly upregulated in macrophages interacting with tumor cells. Here, using mouse tumor models, we show that macrophage-derived soluble GPNMB increases tumor growth and metastasis in Gpnmb-mutant mice (DBA/2J). GPNMB triggers in the cancer cells the formation of self-renewing spheroids, which are characterized by the expression of cancer stem cell markers, prolonged cell survival and increased tumor-forming ability. Through the CD44 receptor, GPNMB mechanistically activates tumor cells to express the cytokine IL-33 and its receptor IL-1R1L. We also determined that recombinant IL-33 binding to IL-1R1L is sufficient to induce tumor spheroid formation with features of cancer stem cells. Overall, our results reveal a new paracrine axis, GPNMB and IL-33, which is activated during the cross talk of macrophages with tumor cells and eventually promotes cancer cell survival, the expansion of cancer stem cells and the acquisition of a metastatic phenotype.
Collapse
|
54
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
55
|
Matheson CJ, Casalvieri KA, Backos DS, Minhajuddin M, Jordan CT, Reigan P. Substituted oxindol-3-ylidenes as AMP-activated protein kinase (AMPK) inhibitors. Eur J Med Chem 2020; 197:112316. [PMID: 32334266 PMCID: PMC7409528 DOI: 10.1016/j.ejmech.2020.112316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/05/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a central metabolic regulator that promotes cancer growth and survival under hypoxia and plays a role in the maintenance of cancer stem cells. A major challenge to interrogating the potential of targeting AMPK in cancer is the lack of potent and selective small molecule inhibitors. Compound C has been widely used as an AMPK inhibitor, but it lacks potency and has a poor selectivity profile. The multi-kinase inhibitor, sunitinib, has demonstrated potent nanomolar inhibition of AMPK activity and has scope for modification. Here, we have designed and synthesized several series of oxindoles to determine the structural requirements for AMPK inhibition and to improve selectivity. We identified two potent, novel oxindole-based AMPK inhibitors that were designed to interact with the DFG motif in the ATP-binding site of AMPK, this key feature evades interaction with the common recptor tyrosine kinase targets of sunitinib. Cellular engagement of AMPK by these oxindoles was confirmed by the inhibition of phosphorylation of acetyl-CoA carboxylase (ACC), a known substrate of AMPK, in myeloid leukemia cells. Interestingly, although AMPK is highly expressed and activated in K562 cells these oxindole-based AMPK inhibitors did not impact cell viability or result in significant cytotoxicity. Our studies serve as a platform for the further development of oxindole-based AMPK inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Christopher J Matheson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Kimberly A Casalvieri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Donald S Backos
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Mohammed Minhajuddin
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19th Avenue, Aurora, CO, 80045, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19th Avenue, Aurora, CO, 80045, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA.
| |
Collapse
|
56
|
Gutiérrez-Salmerón M, García-Martínez JM, Martínez-Useros J, Fernández-Aceñero MJ, Viollet B, Olivier S, Chauhan J, Lucena SR, De la Vieja A, Goding CR, Chocarro-Calvo A, García-Jiménez C. Paradoxical activation of AMPK by glucose drives selective EP300 activity in colorectal cancer. PLoS Biol 2020; 18:e3000732. [PMID: 32603375 PMCID: PMC7326158 DOI: 10.1371/journal.pbio.3000732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Coordination of gene expression with nutrient availability supports proliferation and homeostasis and is shaped by protein acetylation. Yet how physiological/pathological signals link acetylation to specific gene expression programs and whether such responses are cell-type–specific is unclear. AMP-activated protein kinase (AMPK) is a key energy sensor, activated by glucose limitation to resolve nutrient supply–demand imbalances, critical for diabetes and cancer. Unexpectedly, we show here that, in gastrointestinal cancer cells, glucose activates AMPK to selectively induce EP300, but not CREB-binding protein (CBP). Consequently, EP300 is redirected away from nuclear receptors that promote differentiation towards β-catenin, a driver of proliferation and colorectal tumorigenesis. Importantly, blocking glycogen synthesis permits reactive oxygen species (ROS) accumulation and AMPK activation in response to glucose in previously nonresponsive cells. Notably, glycogen content and activity of the ROS/AMPK/EP300/β-catenin axis are opposite in healthy versus tumor sections. Glycogen content reduction from healthy to tumor tissue may explain AMPK switching from tumor suppressor to activator during tumor evolution. Metabolic context determines whether the key energy sensor AMPK is a tumor suppressor or tumor promoter. This paradoxical behavior is explained through glucose inhibition of AMPK in healthy tissue versus glucose induction of AMPK in cancer colon epithelial cells.
Collapse
Affiliation(s)
- María Gutiérrez-Salmerón
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | | | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Diaz-UAM, Madrid, Spain
| | | | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Severine Olivier
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia R. Lucena
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Antonio De la Vieja
- Unidad de Tumores Endocrinos (UFIEC), Instituto de Salud Carlos III and CiberOnc, Majadahonda, Madrid, Spain
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Chocarro-Calvo
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail: (ACC); (CGJ)
| | - Custodia García-Jiménez
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
- * E-mail: (ACC); (CGJ)
| |
Collapse
|
57
|
Abdel-Wahab AHA, Effat H, Mahrous EA, Ali MA, Al-Shafie TA. A Licorice Roots Extract Induces Apoptosis and Cell Cycle Arrest and Improves Metabolism via Regulating MiRNAs in Liver Cancer Cells. Nutr Cancer 2020; 73:1047-1058. [PMID: 32578448 DOI: 10.1080/01635581.2020.1783329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Targeting altered metabolism in cancer provides a promising preventive and therapeutic approach. Natural products interplay between gene expression and metabolism either by targeting altered metabolic enzymes and/or affecting the regulating miRNAs. Licorice is a widely known product used as flavoring agent. Glycyrrhizin and other metabolites were reported to exert several metabolic benefits. Here, we investigated the effect of licorice roots extract on some metabolic pathways and their regulating miRNAs in hepatocellular carcinoma cells. Our data showed various beneficial effects of licorice roots extract including induction of apoptosis and cell cycle arrest. Second, upregulating tumor suppressor miRNAs; let7a-3p, miR-34c-5p, miR-122-5p, miR-126-3p, miR195-5p, miR-199a-5p, miR-206, and miR-326-5p. Third, inhibiting HIF1α, PI3K and C-Myc and activating AMPK and p53. Fourth, inhibiting enzymes of glycolysis; HK-2, LDH-A and PK-M2; pentose phosphate pathway; G6PD and glutaminolysis; glutaminase. However, such an extract upregulated oncogenic miRNAs; miR-21, miR-221, and miR-222. Although the present data highlights the ability of licorice roots extract to enhance apoptosis and cell cycle arrest and correct altered metabolism, it warns against its unfavorable effects, hence, its use for prevention and therapy should proceed with caution. Further experiments are required to investigate whether a specific bioactive ingredient is responsible for upregulating the oncogenic miRNAs.
Collapse
Affiliation(s)
| | - Heba Effat
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Engy A Mahrous
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mennatallah A Ali
- Pharmacology and Therapeutics Department, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Tamer A Al-Shafie
- Biochemistry Department, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
58
|
Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells 2020; 9:cells9061380. [PMID: 32498358 PMCID: PMC7349292 DOI: 10.3390/cells9061380] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
The available evidence suggests a complex relationship between diabetes and cancer. Epidemiological data suggest a positive correlation, however, in certain types of cancer, a more complex picture emerges, such as in some site-specific cancers being specific to type I diabetes but not to type II diabetes. Reports share common and differential mechanisms which affect the relationship between diabetes and cancer. We discuss the use of antidiabetic drugs in a wide range of cancer therapy and cancer therapeutics in the development of hyperglycemia, especially antineoplastic drugs which often induce hyperglycemia by targeting insulin/IGF-1 signaling. Similarly, dipeptidyl peptidase 4 (DPP-4), a well-known target in type II diabetes mellitus, has differential effects on cancer types. Past studies suggest a protective role of DPP-4 inhibitors, but recent studies show that DPP-4 inhibition induces cancer metastasis. Moreover, molecular pathological mechanisms of cancer in diabetes are currently largely unclear. The cancer-causing mechanisms in diabetes have been shown to be complex, including excessive ROS-formation, destruction of essential biomolecules, chronic inflammation, and impaired healing phenomena, collectively leading to carcinogenesis in diabetic conditions. Diabetes-associated epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndMT) contribute to cancer-associated fibroblast (CAF) formation in tumors, allowing the epithelium and endothelium to enable tumor cell extravasation. In this review, we discuss the risk of cancer associated with anti-diabetic therapies, including DPP-4 inhibitors and SGLT2 inhibitors, and the role of catechol-o-methyltransferase (COMT), AMPK, and cell-specific glucocorticoid receptors in cancer biology. We explore possible mechanistic links between diabetes and cancer biology and discuss new therapeutic approaches.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| |
Collapse
|
59
|
D’Amico S, Krasnowska EK, Manni I, Toietta G, Baldari S, Piaggio G, Ranalli M, Gambacurta A, Vernieri C, Di Giacinto F, Bernassola F, de Braud F, Lucibello M. DHA Affects Microtubule Dynamics Through Reduction of Phospho-TCTP Levels and Enhances the Antiproliferative Effect of T-DM1 in Trastuzumab-Resistant HER2-Positive Breast Cancer Cell Lines. Cells 2020; 9:1260. [PMID: 32438775 PMCID: PMC7290969 DOI: 10.3390/cells9051260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trastuzumab emtansine (T-DM1) is an anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugated to the microtubule-targeting agent emtansine (DM1). T-DM1 is an effective agent in the treatment of patients with HER2-positive breast cancer whose disease has progressed on the first-line trastuzumab containing chemotherapy. However, both primary and acquired tumour resistance limit its efficacy. Increased levels of the phosphorylated form of Translationally Controlled Tumour Protein (phospho-TCTP) have been shown to be associated with a poor clinical response to trastuzumab therapy in HER2-positive breast cancer. Here we show that phospho-TCTP is essential for correct mitosis in human mammary epithelial cells. Reduction of phospho-TCTP levels by dihydroartemisinin (DHA) causes mitotic aberration and increases microtubule density in the trastuzumab-resistant breast cancer cells HCC1954 and HCC1569. Combinatorial studies show that T-DM1 when combined with DHA is more effective in killing breast cells compared to the effect induced by any single agent. In an orthotopic breast cancer xenograft model (HCC1954), the growth of the tumour cells resumes after having achieved a complete response to T-DM1 treatment. Conversely, DHA and T-DM1 treatment induces a severe and irreversible cytotoxic effect, even after treatment interruption, thus, improving the long-term efficacy of T-DM1. These results suggest that DHA increases the effect of T-DM1 as poison for microtubules and supports the clinical development of the combination of DHA and T-DM1 for the treatment of aggressive HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Silvia D’Amico
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Ewa Krystyna Krasnowska
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Marco Ranalli
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flavio Di Giacinto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- Oncology and Hemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Maria Lucibello
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| |
Collapse
|
60
|
Dengler F. Activation of AMPK under Hypoxia: Many Roads Leading to Rome. Int J Mol Sci 2020; 21:ijms21072428. [PMID: 32244507 PMCID: PMC7177550 DOI: 10.3390/ijms21072428] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is known as a pivotal cellular energy sensor, mediating the adaptation to low energy levels by deactivating anabolic processes and activating catabolic processes in order to restore the cellular ATP supply when the cellular AMP/ATP ratio is increased. Besides this well-known role, it has also been shown to exert protective effects under hypoxia. While an insufficient supply with oxygen might easily deplete cellular energy levels, i.e., ATP concentration, manifold other mechanisms have been suggested and are heavily disputed regarding the activation of AMPK under hypoxia independently from cellular AMP concentrations. However, an activation of AMPK preceding energy depletion could induce a timely adaptation reaction preventing more serious damage. A connection between AMPK and the master regulator of hypoxic adaptation via gene transcription, hypoxia-inducible factor (HIF), has also been taken into account, orchestrating their concerted protective action. This review will summarize the current knowledge on mechanisms of AMPK activation under hypoxia and its interrelationship with HIF.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
61
|
Dragan M, Nguyen MU, Guzman S, Goertzen C, Brackstone M, Dhillo WS, Bech PR, Clarke S, Abbara A, Tuck AB, Hess DA, Pine SR, Zong WX, Wondisford FE, Su X, Babwah AV, Bhattacharya M. G protein-coupled kisspeptin receptor induces metabolic reprograming and tumorigenesis in estrogen receptor-negative breast cancer. Cell Death Dis 2020; 11:106. [PMID: 32034133 PMCID: PMC7005685 DOI: 10.1038/s41419-020-2305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic and deadly disease. TNBC tumors lack estrogen receptor (ERα), progesterone receptor (PR), and HER2 (ErbB2) and exhibit increased glutamine metabolism, a requirement for tumor growth. The G protein-coupled kisspeptin receptor (KISS1R) is highly expressed in patient TNBC tumors and promotes malignant transformation of breast epithelial cells. This study found that TNBC patients displayed elevated plasma kisspeptin levels compared with healthy subjects. It also provides the first evidence that in addition to promoting tumor growth and metastasis in vivo, KISS1R-induced glutamine dependence of tumors. In addition, tracer-based metabolomics analyses revealed that KISS1R promoted glutaminolysis and nucleotide biosynthesis by increasing c-Myc and glutaminase levels, key regulators of glutamine metabolism. Overall, this study establishes KISS1R as a novel regulator of TNBC metabolism and metastasis, suggesting that targeting KISS1R could have therapeutic potential in the treatment of TNBC.
Collapse
Affiliation(s)
- Magdalena Dragan
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Mai-Uyen Nguyen
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cameron Goertzen
- Cancer Invasion and Metastasis Laboratory, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Muriel Brackstone
- Department of Surgery, London Health Sciences Centre, London, ON, Canada
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Paul R Bech
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Sophie Clarke
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Alan B Tuck
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Sharon R Pine
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, NJ, USA
| | - Frederic E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.,Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Andy V Babwah
- Child Health Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA. .,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA. .,Child Health Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
62
|
Valdez BC, Li Y, Murray D, Liu Y, Nieto Y, Bashir Q, Qazilbash MH, Andersson BS. Panobinostat and venetoclax enhance the cytotoxicity of gemcitabine, busulfan, and melphalan in multiple myeloma cells. Exp Hematol 2020; 81:32-41. [PMID: 31954171 DOI: 10.1016/j.exphem.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Gemcitabine (Gem), busulfan (Bu), and melphalan (Mel) are used for hematopoietic stem cell transplantation. To further improve their efficacy, a preclinical study on their synergism with the histone deacetylase inhibitor panobinostat (Pano) and the BCL2 inhibitor venetoclax/ABT199 was performed. Multiple myeloma cell lines MM.1R and MC/CAR were exposed to ∼IC20 levels of the drugs. Synergistic cytotoxicity was observed in cells exposed to the five-drug combination as indicated by combination indexes <1, supported by ∼86% inhibition of proliferation and ∼84% annexin V positivity in MM.1R and ∼58% inhibition of proliferation and ∼46% annexin V positivity in MC/CAR cells. Activation of the DNA damage response and apoptosis were suggested by a modest increase in the phosphorylation of ATM and its substrates; significant cleavage of PARP1, caspase 3, and heat shock protein 90; DNA fragmentation; mitochondrial membrane depolarization; and reactive oxygen species production. The five-drug combination significantly decreased the levels of PI3K, AKT, mTOR, RAPTOR, P-P70S6K, and eIF2α, with concomitant increases in P-AMPK and its substrate Tuberin/TSC2, suggesting that the mTOR signaling pathway was compromised. Endoplasmic reticulum stress through activation of the unfolded protein response was also observed as suggested by increases in the levels of calnexin, BiP/GRP78, ERO1-Lα, and protein disulfide isomerase, which may relate to venetoclax-mediated inhibition of BCL2 in the endoplasmic reticulum. This is the first report on the effects of a venetoclax-containing regimen on the unfolded protein response. These results provide a rationale to propose a clinical trial on use of Gem + Bu + Mel + Pano + Venetoclax as part of a conditioning regimen for multiple myeloma patients undergoing autologous hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Benigno C Valdez
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Houston, TX.
| | - Yang Li
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - David Murray
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, AL T6G1Z2, Canada
| | - Yan Liu
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Yago Nieto
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Qaiser Bashir
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Muzaffar H Qazilbash
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Borje S Andersson
- Department of Stem Cell Transplantation & Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
63
|
Colaprico A, Olsen C, Bailey MH, Odom GJ, Terkelsen T, Silva TC, Olsen AV, Cantini L, Zinovyev A, Barillot E, Noushmehr H, Bertoli G, Castiglioni I, Cava C, Bontempi G, Chen XS, Papaleo E. Interpreting pathways to discover cancer driver genes with Moonlight. Nat Commun 2020; 11:69. [PMID: 31900418 PMCID: PMC6941958 DOI: 10.1038/s41467-019-13803-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer driver gene alterations influence cancer development, occurring in oncogenes, tumor suppressors, and dual role genes. Discovering dual role cancer genes is difficult because of their elusive context-dependent behavior. We define oncogenic mediators as genes controlling biological processes. With them, we classify cancer driver genes, unveiling their roles in cancer mechanisms. To this end, we present Moonlight, a tool that incorporates multiple -omics data to identify critical cancer driver genes. With Moonlight, we analyze 8000+ tumor samples from 18 cancer types, discovering 3310 oncogenic mediators, 151 having dual roles. By incorporating additional data (amplification, mutation, DNA methylation, chromatin accessibility), we reveal 1000+ cancer driver genes, corroborating known molecular mechanisms. Additionally, we confirm critical cancer driver genes by analysing cell-line datasets. We discover inactivation of tumor suppressors in intron regions and that tissue type and subtype indicate dual role status. These findings help explain tumor heterogeneity and could guide therapeutic decisions.
Collapse
Affiliation(s)
- Antonio Colaprico
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels, Belgium.
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| | - Catharina Olsen
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore), VUB-ULB, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Matthew H Bailey
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University, St. Louis, MO, 63108, USA
| | - Gabriel J Odom
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biostatistics, Stempel College of Public Health, Florida International University, Miami, FL, 33199, USA
| | - Thilde Terkelsen
- Computational Biology Laboratory, and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Tiago C Silva
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Genetics, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - André V Olsen
- Computational Biology Laboratory, and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Laura Cantini
- Institut Curie, 26 rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris, F-75248, France
- Mines ParisTech, Fontainebleau, F-77300, France
- Computational Systems Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005, Paris, France
| | - Andrei Zinovyev
- Institut Curie, 26 rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris, F-75248, France
- Mines ParisTech, Fontainebleau, F-77300, France
| | - Emmanuel Barillot
- Institut Curie, 26 rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris, F-75248, France
- Mines ParisTech, Fontainebleau, F-77300, France
| | - Houtan Noushmehr
- Department of Genetics, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Neurosurgery, Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xi Steven Chen
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Elena Papaleo
- Computational Biology Laboratory, and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Translational Disease System Biology, Faculty of Health and Medical Science, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
64
|
Seth Nanda C, Venkateswaran SV, Patani N, Yuneva M. Defining a metabolic landscape of tumours: genome meets metabolism. Br J Cancer 2020; 122:136-149. [PMID: 31819196 PMCID: PMC7051970 DOI: 10.1038/s41416-019-0663-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex disease of multiple alterations occuring at the epigenomic, genomic, transcriptomic, proteomic and/or metabolic levels. The contribution of genetic mutations in cancer initiation, progression and evolution is well understood. However, although metabolic changes in cancer have long been acknowledged and considered a plausible therapeutic target, the crosstalk between genetic and metabolic alterations throughout cancer types is not clearly defined. In this review, we summarise the present understanding of the interactions between genetic drivers of cellular transformation and cancer-associated metabolic changes, and how these interactions contribute to metabolic heterogeneity of tumours. We discuss the essential question of whether changes in metabolism are a cause or a consequence in the formation of cancer. We highlight two modes of how metabolism contributes to tumour formation. One is when metabolic reprogramming occurs downstream of oncogenic mutations in signalling pathways and supports tumorigenesis. The other is where metabolic reprogramming initiates transformation being either downstream of mutations in oncometabolite genes or induced by chronic wounding, inflammation, oxygen stress or metabolic diseases. Finally, we focus on the factors that can contribute to metabolic heterogeneity in tumours, including genetic heterogeneity, immunomodulatory factors and tissue architecture. We believe that an in-depth understanding of cancer metabolic reprogramming, and the role of metabolic dysregulation in tumour initiation and progression, can help identify cellular vulnerabilities that can be exploited for therapeutic use.
Collapse
Affiliation(s)
| | | | - Neill Patani
- The Francis Crick Institute, 1 Midland Road, London, UK
| | - Mariia Yuneva
- The Francis Crick Institute, 1 Midland Road, London, UK.
| |
Collapse
|
65
|
Saito Y. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess. J Clin Biochem Nutr 2020; 66:1-7. [PMID: 32001950 PMCID: PMC6983434 DOI: 10.3164/jcbn.19-31] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
Abstract
Selenoprotein P (encoded by SELENOP) contains the essential trace element selenium in the form of selenocysteine, which is an analog of cysteine that contains selenium instead of sulfur. Selenoprotein P is a major selenium-containing protein in human plasma and is mainly synthesized in the liver. It functions as a selenium-transporter to maintain antioxidative selenoenzymes in several tissues, such as the brain and testis, and plays a pivotal role in selenium-metabolism and antioxidative defense. A decrease of selenoprotein P and selenoproteins causes various dysfunctions related to oxidative stress. On the other hand, recent studies indicate that excess selenoprotein P exacerbates glucose metabolism and promotes type 2 diabetes. This review focuses on the biological functions of selenoprotein P, particularly its role in selenium-metabolism and antioxidative defense. Furthermore, the effects of excess selenoprotein P on glucose metabolism, and resulting diseases are described. The development of a therapeutic agent that targets excess selenoprotein P is discussed.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
66
|
Fujiwara H, Tateishi K, Misumi K, Hayashi A, Igarashi K, Kato H, Nakatsuka T, Suzuki N, Yamamoto K, Kudo Y, Hayakawa Y, Nakagawa H, Tanaka Y, Ijichi H, Kogure H, Nakai Y, Isayama H, Hasegawa K, Fukayama M, Soga T, Koike K. Mutant IDH1 confers resistance to energy stress in normal biliary cells through PFKP-induced aerobic glycolysis and AMPK activation. Sci Rep 2019; 9:18859. [PMID: 31827136 PMCID: PMC6906335 DOI: 10.1038/s41598-019-55211-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolism is a critical regulator of cell fate determination. Recently, the significance of metabolic reprogramming in environmental adaptation during tumorigenesis has attracted much attention in cancer research. Recurrent mutations in the isocitrate dehydrogenase (IDH) 1 or 2 genes have been identified in several cancers, including intrahepatic cholangiocarcinoma (ICC). Mutant IDHs convert α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), which affects the activity of multiple α-KG-dependent dioxygenases including histone lysine demethylases. Although mutant IDH can be detected even in the early stages of neoplasia, how IDH mutations function as oncogenic drivers remains unclear. In this study, we aimed to address the biological effects of IDH1 mutation using intrahepatic biliary organoids (IBOs). We demonstrated that mutant IDH1 increased the formation of IBOs as well as accelerated glucose metabolism. Gene expression analysis and ChIP results revealed the upregulation of platelet isoform of phosphofructokinase-1 (PFKP), which is a rate-limiting glycolytic enzyme, through the alteration of histone modification. Knockdown of the Pfkp gene alleviated the mutant IDH1-induced increase in IBO formation. Notably, the high expression of PFKP was observed more frequently in patients with IDH-mutant ICC compared to in those with wild-type IDH (p < 0.01, 80.9% vs. 42.5%, respectively). Furthermore, IBOs expressing mutant IDH1 survived the suppression of ATP production caused by growth factor depletion and matrix detachment by retaining high ATP levels through 5' adenosine monophosphate-activated protein kinase (AMPK) activation. Our findings provide a systematic understanding as to how mutant IDH induces tumorigenic preconditioning by metabolic rewiring in intrahepatic cholangiocytes.
Collapse
Affiliation(s)
- Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, 2-2-6 Bakurocho, Chuo-ku, Tokyo, 103-0002, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kento Misumi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Akimasa Hayashi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kaori Igarashi
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Hiroyuki Kato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirofumi Kogure
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
67
|
Okubo K, Isono M, Miyai K, Asano T, Sato A. Fluvastatin potentiates anticancer activity of vorinostat in renal cancer cells. Cancer Sci 2019; 111:112-126. [PMID: 31675763 PMCID: PMC6942444 DOI: 10.1111/cas.14225] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Drug repositioning is an emerging approach to developing novel cancer treatments. Vorinostat is a histone deacetylase inhibitor approved for cancer treatment, but it could attenuate its anticancer activity by activating the mTOR pathway. The HMG‐CoA reductase inhibitor fluvastatin reportedly activates the mTOR inhibitor AMP‐activated protein kinase (AMPK), and we thought that it would potentiate vorinostat's anticancer activity in renal cancer cells. The combination of vorinostat and fluvastatin induced robust apoptosis and inhibited renal cancer growth effectively both in vitro and in vivo. Vorinostat activated the mTOR pathway, as evidenced by the phosphorylation of ribosomal protein S6, and fluvastatin inhibited this phosphorylation by activating AMPK. Fluvastatin also enhanced vorinostat‐induced histone acetylation. Furthermore, the combination induced endoplasmic reticulum (ER) stress that was accompanied by aggresome formation. We also found that there was a positive feedback cycle among AMPK activation, histone acetylation, and ER stress induction. This is the first study to report the beneficial combined effect of vorinostat and fluvastatin in cancer cells.
Collapse
Affiliation(s)
- Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
68
|
Jiang S, Shi F, Lin H, Ying Y, Luo L, Huang D, Luo Z. Inonotus obliquus polysaccharides induces apoptosis of lung cancer cells and alters energy metabolism via the LKB1/AMPK axis. Int J Biol Macromol 2019; 151:1277-1286. [PMID: 31751687 DOI: 10.1016/j.ijbiomac.2019.10.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022]
Abstract
The present study explores the mechanisms underlying the anti-cancer action of Inonotus obliquus polysaccharides (IOP). Thus, we characterized the IOP components extracted from Chaga sclerotium and, found that the extracts contained 70% polysaccharides with an average molecular weight of 4.5 × 104 Da consisting of 75% glucose. We then showed that IOP extract activated AMPK in lung cancer cells expressing LKB1, suppressed cell viability, colony-formation, and triggered cell apoptosis. In conjunction, IOP downregulated Bcl-2, upregulated Bax, and enhanced cleavage of Caspase-3 and PARP. All of these effects were prevented by treatment with Compound C, a chemical inhibitor of AMPK. IOP diminished mitochondrial membrane potential (MMP), concurrent with decreases in oxidative phosphorylation and glycolysis, which was dependent on LKB1/AMPK. Finally, IOP at a dosage of 50 mg/kg significantly inhibited allograft tumor growth of the LLC1 cells in association with increased apoptosis. Collectively, our results demonstrate that IOP acts on cancer cells through a mechanism by which AMPK triggers the apoptotic pathway via the opening of mitochondrial permeability transition pore, and reducing MMP, leading to an inhibition of ATP production. Therefore, our study provides a solid foundation for the use of IOP as a promising alternative or supplementary medicine for cancer therapy.
Collapse
Affiliation(s)
- Shuping Jiang
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Fuli Shi
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Hui Lin
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China.
| |
Collapse
|
69
|
Dong Z, Liu Y, Wang Q, Wang H, Ji J, Huang T, Khanal A, Niu H, Cao Y. The circular RNA-NRIP1 plays oncogenic roles by targeting microRNA-505 in the renal carcinoma cell lines. J Cell Biochem 2019; 121:2236-2246. [PMID: 31692056 DOI: 10.1002/jcb.29446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
We explored the roles and regulatory mechanisms of the circular RNA (circRNA) nuclear receptor-interacting protein 1 (NRIP1; circNRIP1) in ACHN and CAKI-1 cells. ACHN and CAKI-1 cells were transfected with small-interfering-circNRIP1 (si-circNRIP1) and microRNA-505 (miR-505) inhibitor or the corresponding controls. Cell viability was detected with the Cell Counting Kit-8. The protein expression levels of Bcl-2, Bax, cleaved-caspase-3, matrix metalloproteinase (MMP)-2, MMP-9, adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), protein kinase B (AKT), phosphatidylinositol 3-kinase (PI3K), and mammalian target of rapamycin (mTOR) were individually determined via Western blot. Quantitative reverse transcription polymerase chain reaction was used to examine the expressions of circNRIP1 and miR-505 both in tumor cells and tissues. The apoptotic rate, the colony numbers, and the migration rate were separately determined by the Annexin V-fluorescein isothiocyanate/propidium iodide and flow cytometer, colony formation assay, and migration assay. We found that circNRIP1 was overexpressed in tumor tissue but miR-505 was overproduced. Silencing circZNF292 induced inhibition of cell viability, colony formation, and migration, as well as the activity of AMPK and PI3K/AKT/mTOR cascades but enhancement of apoptosis. si-circNRIP1 stimulated the upregulation of miR-505, whose silence abolished the effects of si-circNRIP1 on these elements mentioned above. In conclusion, the circNRIP1 played oncogenic roles in the ACHN and the CAKI-1 cell lines by targeting miR-505 via stimulating AMPK and PI3K/AKT/mTOR cascades.
Collapse
Affiliation(s)
- Zhen Dong
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yidong Liu
- Department of Urology, Taian City Central Hospital, Taian, Shandong, China
| | - Qinghai Wang
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hongyang Wang
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianlei Ji
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tao Huang
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Aashish Khanal
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haitao Niu
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanwei Cao
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
70
|
Dong S, Ruiz-Calderon B, Rathinam R, Eastlack S, Maziveyi M, Alahari SK. Knockout model reveals the role of Nischarin in mammary gland development, breast tumorigenesis and response to metformin treatment. Int J Cancer 2019; 146:2576-2587. [PMID: 31525254 DOI: 10.1002/ijc.32690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023]
Abstract
Previously, our lab discovered the protein Nischarin and uncovered its role in regulating cell migration and invasion via its interactions with several proteins. We subsequently described a role for Nischarin in breast cancer, in which it is frequently underexpressed. To characterize Nischarin's role in breast tumorigenesis and mammary gland development more completely, we deleted a critical region of the Nisch gene (exons 7-10) from the mouse genome and observed the effects. Mammary glands in mutant animals showed delayed terminal end bud formation but did not develop breast tumors spontaneously. Therefore, we interbred the animals with transgenic mice expressing the mouse mammary tumor virus-polyoma middle T-antigen (MMTV-PyMT) oncogene. The MMTV-PyMT mammary glands lacking Nischarin showed increased hyperplasia compared to wild-type animal tissues. Furthermore, we observed significantly increased tumor growth and metastasis in Nischarin mutant animals. Surprisingly, Nischarin deletion decreased activity of AMPK and subsequently its downstream effectors. Given this finding, we treated these animals with metformin, which enhances AMPK activity. Here, we show for the first time, metformin activates AMPK signaling and inhibits tumor growth of Nischarin lacking PyMT tumors suggesting a potential use for metformin as a cancer therapeutic, particularly in the case of Nischarin-deficient breast cancers.
Collapse
Affiliation(s)
- Shengli Dong
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| | | | - Rajamani Rathinam
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| | - Steven Eastlack
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| | - Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| |
Collapse
|
71
|
Stauffer S, Zeng Y, Santos M, Zhou J, Chen Y, Dong J. Cyclin-dependent kinase 1-mediated AMPK phosphorylation regulates chromosome alignment and mitotic progression. J Cell Sci 2019; 132:jcs.236000. [PMID: 31519809 DOI: 10.1242/jcs.236000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric serine/threonine kinase and cellular metabolic sensor, has been found to regulate cell cycle checkpoints in cancer cells in response to energetic stress, to harmonize proliferation with energy availability. Despite AMPK's emergent association with the cell cycle, it still has not been fully delineated how AMPK is regulated by upstream signaling pathways during mitosis. We report, for the first time, direct CDK1 phosphorylation of both the catalytic α1 and α2 subunits, as well as the β1 regulatory subunit, of AMPK in mitosis. We found that AMPK-knockout U2OS osteosarcoma cells have reduced mitotic indexes and that CDK1 phosphorylation-null AMPK is unable to rescue the phenotype, demonstrating a role for CDK1 regulation of mitotic entry through AMPK. Our results also denote a vital role for AMPK in promoting proper chromosomal alignment, as loss of AMPK activity leads to misaligned chromosomes and concomitant metaphase delay. Importantly, AMPK expression and activity was found to be critical for paclitaxel chemosensitivity in breast cancer cells and positively correlated with relapse-free survival in systemically treated breast cancer patients.
Collapse
Affiliation(s)
- Seth Stauffer
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yongji Zeng
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Montserrat Santos
- Department of Chemistry and Department of Biology, College of Saint Mary, Omaha, NE 68106, USA
| | - Jiuli Zhou
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
72
|
Dhar D, Raina K, Kant R, Wempe MF, Serkova NJ, Agarwal C, Agarwal R. Bitter melon juice-intake modulates glucose metabolism and lactate efflux in tumors in its efficacy against pancreatic cancer. Carcinogenesis 2019; 40:1164-1176. [PMID: 31194859 PMCID: PMC7384253 DOI: 10.1093/carcin/bgz114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
The established role of bitter melon juice (BMJ), a natural product, in activating master metabolic regulator adenosine monophosphate-activated protein kinase in pancreatic cancer (PanC) cells served as a basis for pursuing deeper investigation into the underlying metabolic alterations leading to BMJ efficacy in PanC. We investigated the comparative metabolic profiles of PanC cells with differential KRAS mutational status on BMJ exposure. Specifically, we employed nuclear magnetic resonance (NMR) metabolomics and in vivo imaging platforms to understand the relevance of altered metabolism in PanC management by BMJ. Multinuclear NMR metabolomics was performed, as a function of time, post-BMJ treatment followed by partial least square discriminant analysis assessments on the quantitative metabolic data sets to visualize the treatment group clustering; altered glucose uptake, lactate export and energy state were identified as the key components responsible for cell death induction. We next employed PANC1 xenograft model for assessing in vivo BMJ efficacy against PanC. Positron emission tomography ([18FDG]-PET) and magnetic resonance imaging on PANC1 tumor-bearing animals reiterated the in vitro results, with BMJ-associated significant changes in tumor volumes, tumor cellularity and glucose uptake. Additional studies in BMJ-treated PanC cells and xenografts displayed a strong decrease in the expression of glucose and lactate transporters GLUT1 and MCT4, respectively, supporting their role in metabolic changes by BMJ. Collectively, these results highlight BMJ-induced modification in PanC metabolomics phenotype and establish primarily lactate efflux and glucose metabolism, specifically GLUT1 and MCT4 transporters, as the potential metabolic targets underlying BMJ efficacy in PanC.
Collapse
Affiliation(s)
- Deepanshi Dhar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Natalie J Serkova
- Department of Radiology, Animal Imaging Shared Resources, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
73
|
Affiliation(s)
- Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
74
|
Ahn JI, Yoo JY, Kim TH, Kim YI, Broaddus RR, Ahn JY, Lim JM, Jeong JW. G-protein coupled receptor 64 (GPR64) acts as a tumor suppressor in endometrial cancer. BMC Cancer 2019; 19:810. [PMID: 31412816 PMCID: PMC6694613 DOI: 10.1186/s12885-019-5998-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endometrial cancer is the most common gynecological cancer. G-protein coupled receptor 64 (GPR64) belongs to a family of adhesion GPCRs and plays an important role in male fertility. However, the function of GPR64 has not been studied in endometrial cancer. Our objective is to investigate the role of GPR64 in endometrial cancer. METHODS We examined the levels of GPR64 in human endometrioid endometrial carcinoma by immunohistochemistry analysis. To determine a tumor suppressor role of GPR64 in endometrial cancer, we used a siRNA loss of function approach in human endometrial adenocarcinoma cell lines. RESULTS GPR64 levels were remarkably lower in 10 of 21 (47.62%) of endometrial carcinoma samples compared to control. Depletion of GPR64 by siRNA transfection revealed an increase of colony formation ability, cell proliferation, cell migration, and invasion activity in Ishikawa and HEC1A cells. The expression of Connexin 43 (Cx43), a member of the large family of gap junction proteins, was reduced through activation of AMP-activated protein kinase (AMPK) in Ishikawa cells with GPR64-deficicy. CONCLUSIONS These results suggest that GPR64 plays an important tumor suppressor role in endometrial cancer.
Collapse
Affiliation(s)
- Jong Il Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jung-Yoon Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Tae Hoon Kim
- Department of Obstetrics and Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503 USA
| | - Young Im Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Russell R. Broaddus
- Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Ji Yeon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jae-Wook Jeong
- Department of Obstetrics and Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503 USA
| |
Collapse
|
75
|
Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy PA, Zarkovic N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells 2019; 8:E793. [PMID: 31366062 PMCID: PMC6721558 DOI: 10.3390/cells8080793] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/20/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
The importance of reactive oxygen species (ROS) has been gradually acknowledged over the last four decades. Initially perceived as unwanted products of detrimental oxidative stress, they have been upgraded since, and now ROS are also known to be essential for the regulation of physiological cellular functions through redox signaling. In the majority of cases, metabolic demands, along with other stimuli, are vital for ROS formation and their actions. In this review, we focus on the role of ROS in regulating cell functioning and communication among themselves. The relevance of ROS in therapy concepts is also addressed here.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Ana Cipak Gasparovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Marina Cindric
- Laboratory for Molecular Pathology, Department of Pathology and Cytology, University Hospital Centre Zagreb, Salata 10, 10000 Zagreb, Croatia
| | - Pierre-Alexis Mouthuy
- National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
76
|
Tam SY, Wu VWC, Law HKW. Dynamics of oxygen level-driven regulators in modulating autophagy in colorectal cancer cells. Biochem Biophys Res Commun 2019; 517:193-200. [PMID: 31331640 DOI: 10.1016/j.bbrc.2019.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is a common cancer with metachronous distant metastases still threatening overall survival. Tumor oxygen level influences tumor radiosensitivity in relation to autophagy and apoptosis. The objective of this study is to evaluate the expression and interaction between multiple key regulators in different oxygen levels. Human colorectal adenocarcinoma HT-29 cells were cultured in 1% or 10% oxygen level and irradiated by 2 Gy with different incubation time. Autophagy key regulators, AMPK, HIFs and JNK were evaluated by Western blot. Sequential autophagy key regulator activation was observed in the order of AMPK, HIF-1α, HIF-2α and JNK. 10% oxygen level could promote autophagy with similar degree of autophagy activation as 1% oxygen level in 48-h while irradiation could slightly inhibit autophagy. The results of this study supported prior evaluation of oxygen level and autophagy regulators for improving treatment efficacy and indicated the possible directions in developing individualized radiotherapy by selective targeting of hypoxic regions.
Collapse
Affiliation(s)
- Shing Yau Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Vincent W C Wu
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Helen K W Law
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
77
|
Lun XK, Szklarczyk D, Gábor A, Dobberstein N, Zanotelli VRT, Saez-Rodriguez J, von Mering C, Bodenmiller B. Analysis of the Human Kinome and Phosphatome by Mass Cytometry Reveals Overexpression-Induced Effects on Cancer-Related Signaling. Mol Cell 2019; 74:1086-1102.e5. [PMID: 31101498 PMCID: PMC6561723 DOI: 10.1016/j.molcel.2019.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 02/06/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner. Based on these data, we expanded the functional classification of human kinases and phosphatases and showed that the overexpression effects include non-catalytic roles. We detected 208 previously unreported signaling relationships. The signaling dynamics analysis indicated that the overexpression of ERK-specific phosphatases sustains proliferative signaling. This suggests a phosphatase-driven mechanism of cancer progression. Moreover, our analysis revealed a drug-resistant mechanism through which overexpression of tyrosine kinases, including SRC, FES, YES1, and BLK, induced MEK-independent ERK activation in melanoma A375 cells. These proteins could predict drug sensitivity to BRAF-MEK concurrent inhibition in cells carrying BRAF mutations.
Collapse
Affiliation(s)
- Xiao-Kang Lun
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; Molecular Life Sciences PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Attila Gábor
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Nadine Dobberstein
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Vito Riccardo Tomaso Zanotelli
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; Systems Biology PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, CB10 1SD Cambridge, UK; Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, BIOQUANT, 69120 Heidelberg, Germany
| | - Christian von Mering
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
78
|
Thirupathi A, Chang YZ. Role of AMPK and its molecular intermediates in subjugating cancer survival mechanism. Life Sci 2019; 227:30-38. [DOI: 10.1016/j.lfs.2019.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
|
79
|
Salminen A, Kauppinen A, Kaarniranta K. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J Mol Med (Berl) 2019; 97:1049-1064. [PMID: 31129755 PMCID: PMC6647228 DOI: 10.1007/s00109-019-01795-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
AMP-activated protein kinase (AMPK) has a crucial role not only in the regulation of tissue energy metabolism but it can also control immune responses through its cooperation with immune signaling pathways, thus affecting immunometabolism and the functions of immune cells. It is known that AMPK signaling inhibits the activity of the NF-κB system and thus suppresses pro-inflammatory responses. Interestingly, AMPK activation can inhibit several major immune signaling pathways, e.g., the JAK-STAT, NF-κB, C/EBPβ, CHOP, and HIF-1α pathways, which induce the expansion and activation of myeloid-derived suppressor cells (MDSC). MDSCs induce an immunosuppressive microenvironment in tumors and thus allow the escape of tumor cells from immune surveillance. Chronic inflammation has a key role in the expansion and activation of MDSCs in both tumors and inflammatory disorders. The numbers of MDSCs also significantly increase during the aging process concurrently with the immunosenescence associated with chronic low-grade inflammation. Increased fatty acid oxidation and lactate produced by aerobic glycolysis are important immunometabolic enhancers of MDSC functions. However, it seems that AMPK signaling regulates the functions of MDSCs in a context-dependent manner. Currently, the activators of AMPK signaling are promising drug candidates for cancer therapy and possibly for the extension of healthspan and lifespan. We will describe in detail the AMPK-mediated regulation of the signaling pathways controlling the expansion and activation of immunosuppressive MDSCs. We will propose that the beneficial effects mediated by AMPK activation, e.g., in cancers and the aging process, could be induced by the inhibition of MDSC functions.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| |
Collapse
|
80
|
de Groot S, Pijl H, van der Hoeven JJM, Kroep JR. Effects of short-term fasting on cancer treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:209. [PMID: 31113478 PMCID: PMC6530042 DOI: 10.1186/s13046-019-1189-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022]
Abstract
Growing preclinical evidence shows that short-term fasting (STF) protects from toxicity while enhancing the efficacy of a variety of chemotherapeutic agents in the treatment of various tumour types. STF reinforces stress resistance of healthy cells, while tumor cells become even more sensitive to toxins, perhaps through shortage of nutrients to satisfy their needs in the context of high proliferation rates and/or loss of flexibility to respond to extreme circumstances. In humans, STF may be a feasible approach to enhance the efficacy and tolerability of chemotherapy. Clinical research evaluating the potential of STF is in its infancy. This review focuses on the molecular background, current knowledge and clinical trials evaluating the effects of STF in cancer treatment. Preliminary data show that STF is safe, but challenging in cancer patients receiving chemotherapy. Ongoing clinical trials need to unravel if STF can also diminish toxicity and increase efficacy of chemotherapeutic regimes in daily practice.
Collapse
Affiliation(s)
- Stefanie de Groot
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Jacobus J M van der Hoeven
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands.
| |
Collapse
|
81
|
Steele HE, Guo Y, Li BY, Na S. Mechanotransduction of mitochondrial AMPK and its distinct role in flow-induced breast cancer cell migration. Biochem Biophys Res Commun 2019; 514:524-529. [PMID: 31060777 DOI: 10.1016/j.bbrc.2019.04.191] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/28/2019] [Indexed: 01/05/2023]
Abstract
The biophysical microenvironment of the tumor site has significant impact on breast cancer progression and metastasis. The importance of altered mechanotransduction in cancerous tissue has been documented, yet its role in the regulation of cellular metabolism and the potential link between cellular energy and cell migration remain poorly understood. In this study, we investigated the role of mechanotransduction in AMP-activated protein kinase (AMPK) activation in breast cancer cells in response to interstitial fluid flow (IFF). Additionally, we explored the involvement of AMPK in breast cancer cell migration. IFF was applied to the 3D cell-matrix construct. The subcellular signaling activity of Src, FAK, and AMPK was visualized in real-time using fluorescent resonance energy transfer (FRET). We observed that breast cancer cells (MDA-MB-231) are more sensitive to IFF than normal epithelial cells (MCF-10A). AMPK was activated at the mitochondria of MDA-MB-231 cells by IFF, but not in other subcellular compartments (i.e., cytosol, plasma membrane, and nucleus). The inhibition of FAK or Src abolished flow-induced AMPK activation in the mitochondria of MDA-MB-231 cells. We also observed that global AMPK activation reduced MDA-MB-231 cell migration. Interestingly, specific AMPK inhibition in the mitochondria reduced cell migration and blocked flow-induced cell migration. Our results suggest the linkage of FAK/Src and mitochondria-specific AMPK in mechanotransduction and the differential role of AMPK in breast cancer cell migration depending on its subcellular compartment-specific activation.
Collapse
Affiliation(s)
- Hannah E Steele
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yunxia Guo
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
82
|
Okubo K, Isono M, Asano T, Sato A. Metformin Augments Panobinostat's Anti-Bladder Cancer Activity by Activating AMP-Activated Protein Kinase. Transl Oncol 2019; 12:669-682. [PMID: 30849634 PMCID: PMC6402380 DOI: 10.1016/j.tranon.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/09/2023] Open
Abstract
Panobinostat, a histone deacetylase inhibitor, induces histone acetylation and acts against cancer but attenuates its anticancer activity by activating the mammalian target of rapamycin (mTOR) pathway. AMP-activated protein kinase (AMPK) is a cellular energy sensor that reportedly inhibits the mTOR pathway. The antidiabetic drug metformin is also a potent AMPK activator and we investigated whether it augmented panobinostat's antineoplastic activity in bladder cancer cells (UMUC3, J82, T24 and MBT-2). Metformin enhanced panobinostat-induced apoptosis and the combination inhibited the growth of bladder cancer cells cooperatively in vitro and in vivo. As expected, metformin increased the phosphorylation of AMPK and decreased the panobinostat-caused phosphorylation of S6 ribosomal protein, thus inhibiting the panobinostat-activated mTOR pathway. The AMPK activation was shown to play a pivotal role in the combination's action because the AMPK inhibitor compound C attenuated the combination's anticancer activity. Furthermore, the AMPK activation by metformin enhanced panobinostat-induced histone and non-histone acetylation. This acetylation was especially remarkable in the proteins in the detergent-insoluble fraction, which would be expected if the combination also induced endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kazuki Okubo
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
83
|
Johnson J, Rychahou P, Sviripa VM, Weiss HL, Liu C, Watt DS, Evers BM. Induction of AMPK activation by N,N'-diarylurea FND-4b decreases growth and increases apoptosis in triple negative and estrogen-receptor positive breast cancers. PLoS One 2019; 14:e0209392. [PMID: 30875375 PMCID: PMC6420029 DOI: 10.1371/journal.pone.0209392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Triple negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer. AMP-activated protein kinase (AMPK) is a major energy regulator that suppresses tumor growth, and 1-(3-chloro-4-((trifluoromethyl)thio)phenyl)-3-(4-(trifluoromethoxy)phenyl)urea (FND-4b) is a novel AMPK activator that inhibits growth and induces apoptosis in colon cancer. The purpose of this project was to test the effects of FND-4b on AMPK activation, proliferation, and apoptosis in breast cancer with a particular emphasis on TNBC. Materials and methods (i) Estrogen-receptor positive breast cancer (ER+BC; MCF-7, and T-47D), TNBC (MDA-MB-231 and HCC-1806), and breast cancer stem cells were treated with FND-4b for 24h. Immunoblot analysis assessed AMPK, acetyl-CoA carboxylase (ACC), ribosomal protein S6, cyclin D1, and cleaved PARP. (ii) Sulforhodamine B growth assays were performed after treating ER+BC and TNBC cells with FND-4b for 72h. Proliferation was also assessed by counting cells after 72h of FND-4b treatment. (iii) Cell death ELISA assays were performed after treating ER+BC and TNBC cells with FND-4b for 72h. Results (i) FND-4b increased AMPK activation with concomitant decreases in ACC activity, phosphorylated S6, and cyclin D1 in all subtypes. (ii) FND-4b decreased proliferation in all cells, while dose-dependent growth decreases were found in ER+BC and TNBC. (iii) Increases in apoptosis were observed in ER+BC and the MDA-MB-231 cell line with FND-4b treatment. Conclusions Our findings indicate that FND-4b decreases proliferation for a variety of breast cancers by activating AMPK and has notable effects on TNBC. The growth reductions were mediated through decreases in fatty acid synthesis (ACC), mTOR signaling (S6), and cell cycle flux (cyclin D1). ER+BC cells were more susceptible to FND-4b-induced apoptosis, but MDA-MB-231 cells still underwent apoptosis with higher dose treatment. Further development of FND compounds could result in a novel therapeutic for TNBC.
Collapse
Affiliation(s)
- Jeremy Johnson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Piotr Rychahou
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Vitaliy M. Sviripa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Heidi L. Weiss
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - David S. Watt
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - B. Mark Evers
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
84
|
Jeon D, Kim SW, Kim HS. Platycodin D, a bioactive component of Platycodon grandiflorum, induces cancer cell death associated with extreme vacuolation. Anim Cells Syst (Seoul) 2019; 23:118-127. [PMID: 30949399 PMCID: PMC6440520 DOI: 10.1080/19768354.2019.1588163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/08/2019] [Accepted: 02/24/2019] [Indexed: 12/25/2022] Open
Abstract
Platycodin D (PD) is a major active component of the roots of Platycodon grandiflorum (Jacq.) A.DC. and possesses multiple biological and pharmacological properties, including anti-cancer activity. The aim of this study was to characterize PD-induced cytoplasmic vacuolation in human cancer cells and investigate the underlying mechanisms. PD-induced cancer cell death was associated with cytoplasmic pinocytic and autophagic vacuolation. Cellular energy levels were decreased by this compound, leading to the activation of AMP-activated protein kinase (AMPK). Additionally, compound C, an inhibitor of AMPK, completely prevented PD-induced vacuolation. These results suggest that PD induces cancer cell death, associated with excessive vacuolation through AMPK activation when cellular energy levels are low. Therefore, our findings provide a mechanistic rationale for a novel combinatorial approach using PD to treat cancer.
Collapse
Affiliation(s)
- Daun Jeon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
85
|
Teh JT, Zhu WL, Newgard CB, Casey PJ, Wang M. Respiratory Capacity and Reserve Predict Cell Sensitivity to Mitochondria Inhibitors: Mechanism-Based Markers to Identify Metformin-Responsive Cancers. Mol Cancer Ther 2019; 18:693-705. [DOI: 10.1158/1535-7163.mct-18-0766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
|
86
|
Eichner LJ, Brun SN, Herzig S, Young NP, Curtis SD, Shackelford DB, Shokhirev MN, Leblanc M, Vera LI, Hutchins A, Ross DS, Shaw RJ, Svensson RU. Genetic Analysis Reveals AMPK Is Required to Support Tumor Growth in Murine Kras-Dependent Lung Cancer Models. Cell Metab 2019; 29:285-302.e7. [PMID: 30415923 PMCID: PMC6365213 DOI: 10.1016/j.cmet.2018.10.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 04/26/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022]
Abstract
AMPK, a conserved sensor of low cellular energy, can either repress or promote tumor growth depending on the context. However, no studies have examined AMPK function in autochthonous genetic mouse models of epithelial cancer. Here, we examine the role of AMPK in murine KrasG12D-mediated non-small-cell lung cancer (NSCLC), a cancer type in humans that harbors frequent inactivating mutations in the LKB1 tumor suppressor-the predominant upstream activating kinase of AMPK and 12 related kinases. Unlike LKB1 deletion, AMPK deletion in KrasG12D lung tumors did not accelerate lung tumor growth. Moreover, deletion of AMPK in KrasG12D p53f/f tumors reduced lung tumor burden. We identified a critical role for AMPK in regulating lysosomal gene expression through the Tfe3 transcription factor, which was required to support NSCLC growth. Thus, AMPK supports the growth of KrasG12D-dependent lung cancer through the induction of lysosomes, highlighting an unrecognized liability of NSCLC.
Collapse
Affiliation(s)
- Lillian J Eichner
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Sonja N Brun
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Sébastien Herzig
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Nathan P Young
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Stephanie D Curtis
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - David B Shackelford
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Maxim N Shokhirev
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Mathias Leblanc
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Liliana I Vera
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Amanda Hutchins
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Debbie S Ross
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA.
| | - Robert U Svensson
- Molecular and Cell Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA.
| |
Collapse
|
87
|
Im JH, Kang KW, Kim SY, Kim YG, An YJ, Park S, Jeong BH, Choi SY, Lee JS, Kang KW. GPR119 agonist enhances gefitinib responsiveness through lactate-mediated inhibition of autophagy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:295. [PMID: 30497501 PMCID: PMC6267899 DOI: 10.1186/s13046-018-0949-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Background Ligand-dependent activation of the G-protein coupled receptor 119 (GPR119) lowers blood glucose via glucose-dependent insulin secretion and intestinal glucagon-like peptide-1 production. However, the function of GPR119 in cancer cells has not been studied. Methods GPR119 expression was assessed by real-time qPCR and immunohistochemistry in human breast cancer cell lines and breast cancer tissues. Cell proliferation and cell cycle analyses were performed by Incucyte® live cell analysis system and flow cutometry, respectively. Autophagy activity was estimeated by western blottings and LC3-GFP transfection. Results mRNA or protein expression of GPR119 was detected in 9 cancer cell lines and 19 tissue samples. Cotreatment with GPR119 agonist (MBX-2982 or GSK1292263) significantly potentiated gefitinib-induced cell growth inhibition in gefitinib-insensitive MCF-7 and MDA-MB-231 breast cancer cells. We observed that caspase-3/7 activity was enhanced with the downregulation of Bcl-2 in MCF-7 cells exposed to MBX-2982. Gefitinib-induced autophagy is related with cancer cell survival and chemoresistance. GPR119 agonists inhibit gefitinib-induced autophagosome formation in MCF-7 and MDA-MB-231 cells. MBX-2982 also caused a metabolic shift to enhanced glycolysis accompanied by reduced mitochondrial oxidative phosphorylation. MBX-2982 increased intracellular (~ 2.5 mM) and extracellular lactate (~ 20 mM) content. Gefitinib-mediated autophagy was suppressed by 20 mM lactate in MCF-7 cells. Conclusions GPR119 agonists reduced mitochondrial OXPHOS and stimulated glycolysis in breast cancer cells, with consequent overproduction of lactate that inhibited autophagosome formation. Because autophagy is crucial for the survival of cancer cells exposed to TKIs, GPR119 agonists potentiated the anticancer effects of TKIs. Electronic supplementary material The online version of this article (10.1186/s13046-018-0949-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Hye Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sun Young Kim
- College of Pharmacy, Dankook University, Cheonan-si, Republic of Korea
| | - Yoon Gyoon Kim
- College of Pharmacy, Dankook University, Cheonan-si, Republic of Korea
| | - Yong Jin An
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sunghyouk Park
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byung Hwa Jeong
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Song-Yi Choi
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin-Sun Lee
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
88
|
Zheng S, Qu Z, Zanetti M, Lam B, Chin-Sang I. C. elegans PTEN and AMPK block neuroblast divisions by inhibiting a BMP-insulin-PP2A-MAPK pathway. Development 2018; 145:145/23/dev166876. [PMID: 30487179 DOI: 10.1242/dev.166876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
Caenorhabditis elegans that hatch in the absence of food stop their postembryonic development in a process called L1 arrest. Intriguingly, we find that the postembryonic Q neuroblasts divide and migrate during L1 arrest in mutants that have lost the energy sensor AMP-activated protein kinase (AMPK) or the insulin/IGF-1 signaling (IIS) negative regulator DAF-18/PTEN. We report that DBL-1/BMP works upstream of IIS to promote agonistic insulin-like peptides during L1 arrest. However, the abnormal Q cell divisions that occur during L1 arrest use a novel branch of the IIS pathway that is independent of the terminal transcription factor DAF-16/FOXO. Using genetic epistasis and drug interactions we show that AMPK functions downstream of, or in parallel with DAF-18/PTEN and IIS to inhibit PP2A function. Further, we show that PP2A regulates the abnormal Q cell divisions by activating the MPK-1/ERK signaling pathway via LIN-45/RAF, independently of LET-60/RAS. PP2A acts as a tumor suppressor in many oncogenic signaling cascades. Our work demonstrates a new role for PP2A that is needed to induce neuroblast divisions during starvation and is regulated by both insulin and AMPK.
Collapse
Affiliation(s)
- Shanqing Zheng
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Zhi Qu
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Michael Zanetti
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brandon Lam
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
89
|
De Veirman K, Menu E, Maes K, De Beule N, De Smedt E, Maes A, Vlummens P, Fostier K, Kassambara A, Moreaux J, Van Ginderachter JA, De Bruyne E, Vanderkerken K, Van Valckenborgh E. Myeloid-derived suppressor cells induce multiple myeloma cell survival by activating the AMPK pathway. Cancer Lett 2018; 442:233-241. [PMID: 30419344 DOI: 10.1016/j.canlet.2018.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/17/2018] [Accepted: 11/03/2018] [Indexed: 01/07/2023]
Abstract
Multiple Myeloma (MM) is an incurable malignancy of terminally differentiated plasma cells, which are predominantly localized in the bone marrow. Myeloid-derived suppressor cells (MDSC) are described to promote MM progression by immunosuppression and induction of angiogenesis. However, their direct role in drug resistance and tumor survival is still unknown. In this study, we performed co-culture experiments of myeloma cells with 5TMM derived MDSC in vitro, leading to increased survival and proliferation of MM cells. Co-culture experiments resulted in MDSC-induced AMPK phosphorylation in MM cells, which was associated with an increase in the anti-apoptotic factors MCL-1 and BCL-2, and the autophagy-marker LC3II. In addition, 5TMM cells inoculated in mice showed a clear upregulation of AMPK phosphorylation in vivo. Targeting the AMPK pathway by Compound C resulted in apoptosis of human myeloma cell lines, primary MM cells and 5TMM cells. Importantly, we observed that the tumor-promoting effect of MDSC was partially mediated by AMPK activation. In conclusion, our data clearly demonstrate that MDSC directly increase the survival of MM cells, partially through AMPK activation, identifying this pathway as a new target in the treatment of MM patients.
Collapse
Affiliation(s)
- Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium.
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| | - Nathan De Beule
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| | - Eva De Smedt
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| | - Anke Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| | - Karel Fostier
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| | - Alboukadel Kassambara
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; IGH, CNRS, Univ Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; IGH, CNRS, Univ Montpellier, France; University of Montpellier, UFR de Médecine, Montpellier, France
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, 9000, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
90
|
Role of AMP activated protein kinase signaling pathway in intestinal development of mammals. Ann Anat 2018; 220:51-54. [DOI: 10.1016/j.aanat.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
|
91
|
Zhang H, Kuick R, Park SS, Peabody C, Yoon J, Fernández EC, Wang J, Thomas D, Viollet B, Inoki K, Camelo-Piragua S, Rual JF. Loss of AMPKα2 Impairs Hedgehog-Driven Medulloblastoma Tumorigenesis. Int J Mol Sci 2018; 19:ijms19113287. [PMID: 30360486 PMCID: PMC6274763 DOI: 10.3390/ijms19113287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that has a dual role in cancer, i.e., pro- or anti-tumorigenic, depending on the context. In medulloblastoma, the most frequent malignant pediatric brain tumor, several in vitro studies previously showed that AMPK suppresses tumor cell growth. The role of AMPK in this disease context remains to be tested in vivo. Here, we investigate loss of AMPKα2 in a genetically engineered mouse model of sonic hedgehog (SHH)-medulloblastoma. In contrast to previous reports, our study reveals that AMPKα2 KO impairs SHH medulloblastoma tumorigenesis. Moreover, we performed complementary molecular and genomic analyses that support the hypothesis of a pro-tumorigenic SHH/AMPK/CNBP axis in medulloblastoma. In conclusion, our observations further underline the context-dependent role of AMPK in cancer, and caution is warranted for the previously proposed hypothesis that AMPK agonists may have therapeutic benefits in medulloblastoma patients. Note: an abstract describing the project was previously submitted to the American Society for Investigative Pathology PISA 2018 conference and appears in The American Journal of Pathology (Volume 188, Issue 10, October 2018, Page 2433).
Collapse
Affiliation(s)
- Honglai Zhang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Rork Kuick
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sung-Soo Park
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Claire Peabody
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Justin Yoon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Ester Calvo Fernández
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Junying Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Dafydd Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, 75014 Paris, France.
- CNRS, UMR8104, 75014 Paris, France.
- Université Paris Descartes, Sorbonne Paris cité, 75014 Paris, France.
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sandra Camelo-Piragua
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
92
|
Zadra G, Loda M. Metabolic Vulnerabilities of Prostate Cancer: Diagnostic and Therapeutic Opportunities. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a030569. [PMID: 29229664 DOI: 10.1101/cshperspect.a030569] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer cells hijack metabolic pathways to support bioenergetics and biosynthetic requirements for their uncontrolled growth. Thus, cancer can be considered as a metabolic disease. In this review, we discuss the main metabolic features of prostate cancer with a particular focus on the link between oncogene-directed cancer metabolic regulation, metabolism rewiring, and epigenetic regulation. The potential of using metabolic profiling as a means to predict disease behavior and to identify novel therapeutic targets and new diagnostic markers will be addressed as well as the current challenges in metabolomics analyses. Finally, diagnostic and prognostic metabolic imaging approaches, including positron emission tomography, mass spectrometry, nuclear magnetic resonance, and their translational applications, will be discussed. Here, we emphasize how targeting metabolic vulnerabilities in prostate cancer may pave the way for novel personalized diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Giorgia Zadra
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215.,The Broad Institute, Cambridge, Massachusetts 02142
| |
Collapse
|
93
|
Abstract
While cancer cell proliferation depends on access to extracellular nutrients, inadequate tumour perfusion means that glucose, amino acids and lipids are often in short supply. To overcome this obstacle to growth, cancer cells utilize multiple scavenging strategies, obtaining macromolecules from the microenvironment and breaking them down in the lysosome to produce substrates for ATP generation and anabolism. Recent studies have revealed four scavenging pathways that support cancer cell proliferation in low-nutrient environments: scavenging of extracellular matrix proteins via integrins, receptor-mediated albumin uptake and catabolism, macropinocytic consumption of multiple components of the tumour microenvironment and the engulfment and degradation of entire live cells via entosis. New evidence suggests that blocking these pathways alone or in combination could provide substantial benefits to patients with incurable solid tumours. Both US Food and Drug Administration (FDA)-approved drugs and several agents in preclinical or clinical development shut down individual or multiple scavenging pathways. These therapies may increase the extent and durability of tumour growth inhibition and/or prevent the development of resistance when used in combination with existing treatments. This Review summarizes the evidence suggesting that scavenging pathways drive tumour growth, highlights recent advances that define the oncogenic signal transduction pathways that regulate scavenging and considers the benefits and detriments of therapeutic strategies targeting scavenging that are currently under development.
Collapse
Affiliation(s)
- Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Vaishali Jayashankar
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
94
|
Is TAK1 a Direct Upstream Kinase of AMPK? Int J Mol Sci 2018; 19:ijms19082412. [PMID: 30111748 PMCID: PMC6121279 DOI: 10.3390/ijms19082412] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Alongside Liver kinase B1 (LKB1) and Ca2+/Calmodulin-dependent protein kinase kinase 2 (CaMKK2), Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) has been suggested as a direct upstream kinase of AMP-activated protein kinase (AMPK). Several subsequent studies have reported on the TAK1-AMPK relationship, but the interpretation of the respective data has led to conflicting views. Therefore, to date the acceptance of TAK1 as a genuine AMPK kinase is lagging behind. This review provides with argumentation, whether or not TAK1 functions as a direct upstream kinase of AMPK. Several specific open questions that may have precluded the consensus are discussed based on available data. In brief, TAK1 can function as direct AMPK upstream kinase in specific contexts and in response to a subset of TAK1 activating stimuli. Further research is needed to define the intricate signals that are conditional for TAK1 to phosphorylate and activate AMPKα at T172.
Collapse
|
95
|
Wegiel B, Vuerich M, Daneshmandi S, Seth P. Metabolic Switch in the Tumor Microenvironment Determines Immune Responses to Anti-cancer Therapy. Front Oncol 2018; 8:284. [PMID: 30151352 PMCID: PMC6099109 DOI: 10.3389/fonc.2018.00284] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor-induced immune tolerance permits growth and spread of malignant cells. Cancer cells have strong influence on surrounding cells and shape the hypoxic tumor microenvironment (TME) facilitating cancer progression. A dynamic change in glucose metabolism occurring in cancer cells and its influence on the TME are still poorly understood. Indeed, cancer and/or immune cells undergo rapid adaptation in metabolic pathways during cancer progression. Metabolic reprograming affects macrophages, T cells, and myeloid derived suppressor cells (MDSCs) among other immune cells. Their role in the TME depends on a nature and concentration of factors, such as cytokines, reactive oxygen species (ROS), growth factors, and most importantly, diffusible metabolites (i.e., lactate). Further, the amounts of available nutrients and oxygen as well as activity of microbiota may influence metabolic pathways in the TME. The roles of metabolites in regulating of the interaction between immune and cancer cell are highlighted in this review. Targeting metabolic reprogramming or signaling pathways controlling cell metabolism in the TME might be a potential strategy for anti-cancer therapy alone or in combination with current immunotherapies.
Collapse
Affiliation(s)
- Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marta Vuerich
- Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Saeed Daneshmandi
- Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Pankaj Seth
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
96
|
Sureechatchaiyan P, Hamacher A, Brockmann N, Stork B, Kassack MU. Adenosine enhances cisplatin sensitivity in human ovarian cancer cells. Purinergic Signal 2018; 14:395-408. [PMID: 30078088 DOI: 10.1007/s11302-018-9622-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the deadliest gynecologic cancer due to lack of early effective diagnosis and development of resistance to platinum-based chemotherapy. Several studies reported that adenosine concentrations are higher in tumor microenvironment than in non-tumor tissue. This finding inspired us to study the role of adenosine in ovarian cancer cells and to investigate if adenosine pathways offer new treatment options urgently needed to prevent or overcome chemoresistance. The ovarian cancer cell lines HEY, A2780, and its cisplatin-resistant subline A2780CisR were used in this study. Expression and functional activity of adenosine receptors were investigated by RT-PCR, Western blotting, and cAMP assay. A1 and A2B adenosine receptors were expressed and functionally active in all three cell lines. Adenosine showed moderate cytotoxicity (MTT-IC50 values were between 700 and 900 μM) and induced apoptosis in a concentration-dependent manner by increasing levels of sub-G1 and cleaved PARP. Apoptosis was diminished by QVD-OPh, confirming caspase-dependent induction of apoptosis. Forty-eight hours pre-incubation of adenosine prior to cisplatin significantly enhanced cisplatin-induced cytotoxicity in a synergistic manner and increased apoptosis. SLV320 or PSB603, selective A1 and A2B antagonists, was not able to inhibit adenosine-induced increase in cisplatin cytotoxicity or apoptosis whereas dipyridamole, a nucleoside transporter inhibitor, completely abrogated both effects. Mechanistically, adenosine increased pAMPK and reduced pS6K which was prevented by dipyridamole. In conclusion, application of adenosine prior to cisplatin could be a new therapeutic option to increase the potency of cisplatin in a synergistic manner and thus overcome platinum resistance in ovarian cancer.
Collapse
Affiliation(s)
- Parichat Sureechatchaiyan
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Building 26.23.02, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Building 26.23.02, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Nicole Brockmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Building 26.23.02, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Bjoern Stork
- Institute of Molecular Medicine, Heinrich-Heine University, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Building 26.23.02, Universitaetsstrasse 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
97
|
Gómez de Cedrón M, Vargas T, Madrona A, Jiménez A, Pérez-Pérez MJ, Quintela JC, Reglero G, San-Félix A, Ramírez de Molina A. Novel Polyphenols That Inhibit Colon Cancer Cell Growth Affecting Cancer Cell Metabolism. J Pharmacol Exp Ther 2018; 366:377-389. [PMID: 29871992 DOI: 10.1124/jpet.118.248278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
New series of polyphenols with a hydrophilic galloyl-based head and a hydrophobic N-acyl tail, linked through a serinol moiety, have been synthesized and tested against colon cancer cell growth. Our structure activity relationship studies revealed that galloyl moieties are essential for growth inhibition. Moreover, the length of the N-acyl chain is crucial for the activity. Introduction of a (Z) double bond in the acyl chain increased the anticancer properties. Our findings demonstrate that 16, the most potent compound within this series, has inhibitory effects on colon cancer cell growth and metabolism (glycolysis and mitochondrial respiration) at the same time that it activates 5'AMP-activated kinase (AMPK) and induces apoptotic cell death. Based on these results, we propose that 16 might reprogram colon cancer cell metabolism through AMPK activation. This might lead to alterations on cancer cell bioenergy compromising cancer cell viability. Importantly, these antiproliferative and proapoptotic effects are selective for cancer cells. Accordingly, these results indicate that 16, with an unsaturated C18 chain, might be a useful prototype for the development of novel colon cancer cell growth inhibitors affecting cell metabolism.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Teodoro Vargas
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Andrés Madrona
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Aranza Jiménez
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - María-Jesús Pérez-Pérez
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - José-Carlos Quintela
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Ana San-Félix
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| |
Collapse
|
98
|
Endo H, Owada S, Inagaki Y, Shida Y, Tatemichi M. Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells. Sci Rep 2018; 8:10122. [PMID: 29973599 PMCID: PMC6031623 DOI: 10.1038/s41598-018-28074-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer cells utilise the glycolytic pathway to support their rapid growth and proliferation. Since cells in most solid tumours are subjected to severe microenvironmental stresses including low nutrient and oxygen availability, such cancer cells must develop mechanisms to overcome these unfavourable growth conditions by metabolic adaptation. Although the liver kinase B1 (LKB1)-adenosine monophosphate-activated kinase (AMPK) signalling pathway plays a pivotal role in maintaining energy homeostasis under conditions of metabolic stress, the role of LKB1-AMPK signalling in aiding cancer cell survival and in malignant tumours has not yet been fully elucidated. We show that glucose starvation promotes cancer cell invasiveness and migration through LKB1-AMPK-regulated MMP-9 expression. Most intriguingly, triggering the LKB1-AMPK signalling pathway by glucose starvation-induced oxidative stress facilitates selective autophagy, which in turn enhances Keap1 degradation and the subsequent activation of Nrf2. Following this, Nrf2 regulates the transactivation of MMP-9 via Nrf2 binding sites in the promoter region of the MMP-9 gene. These mechanisms also contribute to the suppression of excessive oxidative stress under glucose starvation, and protect against cell death. Our data clearly shows that LKB1-AMPK signalling not only maintains energy and oxidative stress homeostasis, but could also promote cancer progression during metabolic stress conditions by MMP-9 induction.
Collapse
Affiliation(s)
- Hitoshi Endo
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Satoshi Owada
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Department of Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yukari Shida
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masayuki Tatemichi
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
99
|
Kim SM, Nguyen TT, Ravi A, Kubiniok P, Finicle BT, Jayashankar V, Malacrida L, Hou J, Robertson J, Gao D, Chernoff J, Digman MA, Potma EO, Tromberg BJ, Thibault P, Edinger AL. PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 2018; 8:866-883. [PMID: 29572236 PMCID: PMC6030497 DOI: 10.1158/2159-8290.cd-17-1215] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/22/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
We report that PTEN-deficient prostate cancer cells use macropinocytosis to survive and proliferate under nutrient stress. PTEN loss increased macropinocytosis only in the context of AMPK activation, revealing a general requirement for AMPK in macropinocytosis and a novel mechanism by which AMPK promotes survival under stress. In prostate cancer cells, albumin uptake did not require macropinocytosis, but necrotic cell debris proved a specific macropinocytic cargo. Isotopic labeling confirmed that macropinocytosed necrotic cell proteins fueled new protein synthesis in prostate cancer cells. Supplementation with necrotic debris, but not albumin, also maintained lipid stores, suggesting that macropinocytosis can supply nutrients other than amino acids. Nontransformed prostatic epithelial cells were not macropinocytic, but patient-derived prostate cancer organoids and xenografts and autochthonous prostate tumors all exhibited constitutive macropinocytosis, and blocking macropinocytosis limited prostate tumor growth. Macropinocytosis of extracellular material by prostate cancer cells is a previously unappreciated tumor-microenvironment interaction that could be targeted therapeutically.Significance: As PTEN-deficient prostate cancer cells proliferate in low-nutrient environments by scavenging necrotic debris and extracellular protein via macropinocytosis, blocking macropinocytosis by inhibiting AMPK, RAC1, or PI3K may have therapeutic value, particularly in necrotic tumors and in combination with therapies that cause nutrient stress. Cancer Discov; 8(7); 866-83. ©2018 AACR.See related commentary by Commisso and Debnath, p. 800This article is highlighted in the In This Issue feature, p. 781.
Collapse
Affiliation(s)
- Seong M Kim
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Tricia T Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Archna Ravi
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Peter Kubiniok
- Department of Chemistry, Université de Montréal, Quebec, Canada
| | - Brendan T Finicle
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Vaishali Jayashankar
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Leonel Malacrida
- Laboratory for Fluorescence Dynamics, University of California, Irvine, California
- Departamento de Fisiopatología, Hospital del Clínicas, Facultad de Medicia, Universidad de la República, Montevideo, Uruguay
| | - Jue Hou
- Laser Microbeam and Medical Program, Beckman Laser Institute and Medical Clinic, University of California, Irvine, California
| | - Jane Robertson
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Dong Gao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, University of California, Irvine, California
| | - Eric O Potma
- Laser Microbeam and Medical Program, Beckman Laser Institute and Medical Clinic, University of California, Irvine, California
| | - Bruce J Tromberg
- Laser Microbeam and Medical Program, Beckman Laser Institute and Medical Clinic, University of California, Irvine, California
| | - Pierre Thibault
- Department of Chemistry, Université de Montréal, Quebec, Canada
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, California.
| |
Collapse
|
100
|
Wang C, Qu J, Yan S, Gao Q, Hao S, Zhou D. PFK15, a PFKFB3 antagonist, inhibits autophagy and proliferation in rhabdomyosarcoma cells. Int J Mol Med 2018; 42:359-367. [PMID: 29620138 PMCID: PMC5979828 DOI: 10.3892/ijmm.2018.3599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/23/2018] [Indexed: 11/15/2022] Open
Abstract
Due to the high-level of metastatic and relapsed rates, rhabdomyosarcoma (RD) patients have a poor prognosis, and novel treatment strategies are required. Thereby, the present study evaluated the efficacy of PFK15, a PFKFB3 inhibitor, in RD cells to explore its potential underlying mechanism on the regulation of autophagy and proliferation in these cells. The effects of PFK15 on cell viability loss and cell death in different treatment groups, were evaluated by MTS assay, colony growth assay and immunoblotting, respectively. In addition, the autophagy levels were detected by electron microscopy, fluorescence microscopy and immunoblotting following PFK15 treatment, and the autophagic flux was analyzed with the addition of chloroquine diphosphate salt or by monitoring the level of p62. PFK15 was observed to evidently decrease the viability of RD cells, inhibit the colony growth and cause abnormal nuclear morphology. Furthermore, PFK15 inhibited the autophagic flux and cell proliferation, as well as induced apoptotic cell death in RD cells through downregulation of the adenosine monophosphate‑activated protein kinase (AMPK) signaling pathway. An AMPK agonist rescued the inhibited cell proliferation and autophagy induced by PFK15. In conclusion, PFK15 inhibits autophagy and cell proliferation via downregulating the AMPK signaling pathway in RD cells.
Collapse
Affiliation(s)
- Chunhui Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021
| | - Jianghong Qu
- Department of Gynecology, Zhangqiu People's Hospital, Jinan, Shandong 250200
| | - Siyuan Yan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101
| | - Quan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101
| | - Sibin Hao
- Department of Orthopedics, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021
| |
Collapse
|