51
|
Looi CK, Loo EM, Lim HC, Chew YL, Chin KY, Cheah SC, Goh BH, Mai CW. Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies. Front Immunol 2024; 15:1484535. [PMID: 39450176 PMCID: PMC11499120 DOI: 10.3389/fimmu.2024.1484535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy of the nasopharynx and is consistently associated with the Epstein-Barr virus (EBV) infection. Its unique anatomical location and complex aetiology often result in advanced-stage disease at first diagnosis. While radiotherapy (RT) and chemotherapy have been the mainstays of treatment, they often fail to prevent tumour recurrence and metastasis, leading to high rates of treatment failure and mortality. Recent advancement in cell-based therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown great promise in hematological malignancies and are now being investigated for NPC. However, challenges such as targeting specific tumour antigens, limited T cell persistence and proliferation, and managing treatment-related toxicities must be addressed. Extensive research is needed to enhance the effectiveness and safety of these therapies, paving the way for their integration into standard clinical practice for better management of NPC and a better quality of life for human health.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ee-Mun Loo
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Advanced Genomics Laboratory, AGTC Genomics, Kuala Lumpur, Malaysia
| | - Heng-Chee Lim
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
52
|
Frenking JH, Zhou X, Wagner V, Hielscher T, Kauer J, Mai EK, Friedrich MJ, Michel CS, Hajiyianni M, Breitkreutz I, Costello P, Nadeem O, Weinhold N, Goldschmidt H, Schmitt A, Luft T, Schmitt M, Müller-Tidow C, Topp M, Einsele H, Dreger P, Munshi NC, Sperling AS, Rasche L, Sauer S, Raab MS. EASIX-guided risk stratification for complications and outcome after CAR T-cell therapy with ide-cel in relapsed/refractory multiple myeloma. J Immunother Cancer 2024; 12:e009220. [PMID: 39379098 PMCID: PMC11459298 DOI: 10.1136/jitc-2024-009220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy has demonstrated significant benefits in the treatment of relapsed/refractory multiple myeloma (RRMM). However, these outcomes can be compromised by severe complications, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome (ICANS) and immune effector cell-associated hematotoxicity (ICAHT), predisposing for life-threatening infections. METHODS This retrospective observational study examined a total of 129 patients with RRMM who had received idecabtagene vicleucel (ide-cel) at two major myeloma centers in Germany and one center in the USA to assess the Endothelial Activation and Stress Index (EASIX) as a risk marker for an unfavorable clinical course and outcome after CAR T-cell therapy. EASIX is calculated by lactate dehydrogenase (U/L) × creatinine (mg/dL) / platelets (109 cells/L) and was determined before lymphodepletion (baseline) and at the day of CAR T-cell infusion (day 0). The analysis was extended to EASIX derivatives and the CAR-HEMATOTOX score. RESULTS An elevated baseline EASIX (>median) was identified as a risk marker for severe late ICAHT, manifesting with an impaired hematopoietic reconstitution and pronounced cytopenias during the late post-CAR-T period. Patients with high EASIX levels (>upper quartile) were particularly at risk, as evidenced by an increased rate of an aplastic phenotype of neutrophil recovery, severe late-onset infections and ICANS. Finally, we found associations between baseline EASIX and an inferior progression-free and overall survival. Moreover, the EASIX at day 0 also demonstrated potential to serve as a risk marker for post-CAR-T complications and adverse outcomes. CONCLUSIONS In conclusion, EASIX aids in risk stratification at clinically relevant time points prior to CAR T-cell therapy with ide-cel. Increased EASIX levels might help clinicians to identify vulnerable patients to adapt peri-CAR-T management at an early stage.
Collapse
Affiliation(s)
- Jan H Frenking
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Xiang Zhou
- Internal Medicine II, University Hospital of Würzburg, Würzburg, Bayern, Germany
| | - Vivien Wagner
- Internal Medicine II, University Hospital of Würzburg, Würzburg, Bayern, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Joseph Kauer
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Baden-Württemberg, Germany
| | - Elias K Mai
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Mirco J Friedrich
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Christian S Michel
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Marina Hajiyianni
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Iris Breitkreutz
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Patrick Costello
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Omar Nadeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Niels Weinhold
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Hartmut Goldschmidt
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
- National Center for Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Anita Schmitt
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Thomas Luft
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Michael Schmitt
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
- National Center for Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Max Topp
- Internal Medicine II, University Hospital of Würzburg, Würzburg, Bayern, Germany
| | - Hermann Einsele
- Internal Medicine II, University Hospital of Würzburg, Würzburg, Bayern, Germany
| | - Peter Dreger
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Leo Rasche
- Internal Medicine II, University Hospital of Würzburg, Würzburg, Bayern, Germany
| | - Sandra Sauer
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Marc S Raab
- Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
53
|
Kasibante J, Irfanullah E, Wele A, Okafor EC, Ssebambulidde K, Okurut S, Kagimu E, Gakuru J, Rutakingirwa MK, Mugabi T, Nuwagira E, Jjunju S, Mpoza E, Tugume L, Nsangi L, Musibire AK, Muzoora C, Rhein J, Meya DB, Boulware DR, Abassi M. Clinical importance of cerebrospinal fluid protein levels in HIV-associated cryptococcal meningitis: Insights from a prospective cohort study in Uganda. Med Mycol 2024; 62:myae101. [PMID: 39419774 PMCID: PMC11520412 DOI: 10.1093/mmy/myae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/24/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024] Open
Abstract
Cerebrospinal fluid (CSF) protein levels exhibit high variability in HIV-associated cryptococcal meningitis; however, its clinical implications remain unclear. We analyzed data from 890 adults with HIV-associated cryptococcal meningitis randomized into two clinical trials in Uganda between 2015 and 2021. CSF protein was grouped into < 100 mg/dl (72%, n = 641) and ≥ 100 mg/dl (28%, n = 249). We described baseline clinical variables and 18-week mortality by CSF protein groups. Those with CSF protein ≥ 100 mg/dl were more likely to present with Glasgow coma scale score < 15 (P < .01), self-reported seizures at baseline (P = .02), higher CD4 T-cell count (P < .001), and higher CSF white blood cells (P < .001). Moreover, those with a baseline CSF protein ≥ 100 mg/dl also had a lower baseline CSF fungal burden (P < .001) and a higher percentage of sterile CSF cultures at day 14 (P = .02). Individuals with CSF protein ≥ 100 mg/dl demonstrated a more pronounced immune response consisting of upregulation of immune effector molecules, pro-inflammatory cytokines, T-helper cell type 1 and 17 cytokines, and immune-exhaustion marker (P < .05). 18-week mortality risk in individuals with a CSF protein < 100 mg/dl was 34% higher (unadjusted Hazard Ratio 1.34; 95% Confidence Interval, 1.05-1.70; P = .02) than those with CSF protein ≥ 100 mg/dl. In HIV-associated cryptococcal meningitis, individuals with baseline CSF protein ≥ 100 mg/dl more frequently presented with neurological symptoms, higher CSF inflammatory cytokines, reduced fungal burden, and lower mortality risk. The findings underscore the prognostic significance of baseline CSF protein levels in predicting disease severity and mortality risk in cryptococcal meningitis.
Collapse
Affiliation(s)
- John Kasibante
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Eesha Irfanullah
- Department of Medicine, Division of Infectious Diseases & International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Abduljewad Wele
- Department of Medicine, Division of Infectious Diseases & International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth C Okafor
- Department of Medicine, Division of Infectious Diseases & International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth Ssebambulidde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Samuel Okurut
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Enock Kagimu
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Jane Gakuru
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Morris K Rutakingirwa
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Timothy Mugabi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Edwin Nuwagira
- Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Samuel Jjunju
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Edward Mpoza
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Lillian Tugume
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Laura Nsangi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Abdu K Musibire
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Conrad Muzoora
- Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joshua Rhein
- Department of Medicine, Division of Infectious Diseases & International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David B Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O. Box 22418, Kampala, Uganda
- Department of Medicine, Division of Infectious Diseases & International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David R Boulware
- Department of Medicine, Division of Infectious Diseases & International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Mahsa Abassi
- Department of Medicine, Division of Infectious Diseases & International Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
54
|
Khatsuria F, McMullan C, Aiyegbusi OL, Shaw KL, Iqbal R, Kinsella F, Wilson K, Pyatt L, Lewis M, Wheldon SMR, Burns D, Chakraverty R, Calvert M, Hughes SE. Development of a conceptual framework for an electronic patient-reported outcome (ePRO) system measuring symptoms and impacts of CAR T-cell therapies in patients with haematological malignancies. Lancet Oncol 2024; 25:e476-e488. [PMID: 39362259 DOI: 10.1016/s1470-2045(24)00256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 10/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is associated with potentially severe toxicities that create a substantial burden for patients. Patient-reported outcomes (PROs) offer valuable insights into symptoms, functioning, and other complex constructs of interest. In this Review, we aimed to identify symptom and impact concepts important to patients receiving CAR T-cell therapy, construct a conceptual framework for an electronic patient-reported outcome (ePRO) system, and identify timepoints to capture PRO data for CAR T-cell therapies. We searched MEDLINE (OVID) and Web of Science (Clarivate) for articles in English published from Aug 30, 2017, to March 2, 2023. No restrictions on study design were applied. 178 symptoms or constructs were extracted from 44 articles reporting PRO collection in adults with haematological malignancies receiving CAR T-cell therapy. Six health-care professionals and 11 patients and caregiver partners verified construct relevance to clinical management and lived experience, respectively. 109 constructs were sorted according to the four domains of conceptual framework: symptom burden, impact of disease and treatment, tolerability, and health-related quality of life. The identification of concepts beyond symptom burden underscores the importance of PRO measurement for long-term monitoring, to align outcomes with patient concerns. The framework will facilitate PRO measure selection for systematic gathering of PROs from individuals with haematological malignancies receiving CAR T-cell therapies.
Collapse
Affiliation(s)
- Foram Khatsuria
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK; NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.
| | - Christel McMullan
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK; NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, University of Birmingham, Birmingham, UK
| | - Olalekan Lee Aiyegbusi
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK; NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; NIHR Applied Research Collaboration (ARC) West Midlands, University of Birmingham, Birmingham, UK
| | - Karen L Shaw
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK; NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, University of Birmingham, Birmingham, UK
| | - Roshina Iqbal
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Francesca Kinsella
- Birmingham Centre for Cellular Therapy and Transplantation, Birmingham UK
| | - Keith Wilson
- Department of Haematology, Cardiff and Vale University Health Board, Cardiff, UK
| | - Lester Pyatt
- NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, Patient Partners, Birmingham, UK
| | - Marlene Lewis
- NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, Patient Partners, Birmingham, UK
| | - Sophie M R Wheldon
- NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, Patient Partners, Birmingham, UK; Leukaemia Care, Worcester, UK
| | - David Burns
- University Hospitals Birmingham NHS Foundation Trust, Birmingham UK
| | - Ronjon Chakraverty
- NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, University of Birmingham, Birmingham, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Melanie Calvert
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK; NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; NIHR Applied Research Collaboration (ARC) West Midlands, University of Birmingham, Birmingham, UK
| | - Sarah E Hughes
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK; NIHR Blood and Transplant Research Unit (BTRU) in Precision Cellular Therapeutics, University of Birmingham, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; NIHR Applied Research Collaboration (ARC) West Midlands, University of Birmingham, Birmingham, UK
| |
Collapse
|
55
|
Ren T, Kerr A, Oyesanmi O, Muddassir S. Impact of Malnutrition on the Length of Stay for Hospitalized Chimeric Antigen Receptor T-cell (CAR-T) Therapy Patients in the United States (2020). Cureus 2024; 16:e72400. [PMID: 39463912 PMCID: PMC11511674 DOI: 10.7759/cureus.72400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Chimeric antigen receptor T-cell (CAR-T) therapy offers a promising treatment for certain malignancies but can be associated with complications. Malnutrition and cachexia are common in cancer patients and may worsen outcomes. This study investigated the impact of malnutrition on the length of hospital stay (LOS) in patients with hematologic malignancies undergoing CAR-T therapy. The analysis focused on different subpopulations, including those with acute lymphoblastic leukemia (ALL), multiple myeloma (MM), diffuse large B-cell lymphoma (DLBCL), and non-Hodgkin lymphoma (NHL) excluding DLBCL. Methods Utilizing the 2020 National Inpatient Sample (NIS) data, we performed survey-based mean estimation analyses for LOS across various subpopulations of CAR-T therapy patients. These subpopulations were defined by specific diagnoses: ALL, myeloma, DLBCL, and NHL excluding DLBCL. We compared the LOS between patients with and without malnutrition using STATA accounting for the complex survey design. Cachexia was included as disease-induced malnutrition. Results The total CAR-T population used for analyses included 439 patients, and malnutrition was present in 50 (11.39%). The overall CAR-T population demonstrated a significantly longer LOS for patients with malnutrition (30.92 days, 95% CI: 24.30 to 37.54) compared to those without malnutrition (17.97 days, 95% CI: 15.48 to 20.46, p = 0.0002). This trend held true across subgroups. Specifically, the ALL population had a significantly longer LOS with malnutrition (45.25 days, 95% CI: 35.46 to 55.04) compared to non-malnourished patients (27.58 days, 95% CI: 16.74 to 38.42, p = 0.0279). For the DLBCL population, the mean LOS was 24.47 days (95% CI: 19.22 to 29.71) with malnutrition and 17.17 days (95% CI: 13.29 to 21.04, p = 0.0161) without malnutrition. The NHL population excluding DLBCL exhibited a mean LOS of 33.86 days (95% CI: 22.66 to 45.07) for malnourished patients and 17.44 days (95% CI: 14.76 to 20.11, p = 0.0055) for non-malnourished patients. The myeloma population showed a similar trend although not statistically significant, with a mean LOS of 39.00 days (95% CI: -3.54 to 81.54) for malnourished patients and 18.03 days (95% CI: 15.02 to 21.03, p = 0.3337) for non-malnourished patients. These findings highlight significant variations in LOS across different CAR-T-treated cancer subtypes, emphasizing the impact of malnutrition on healthcare resource utilization in oncology. Conclusion Malnutrition is associated with a significantly longer hospital stay among patients undergoing CAR-T therapy. This trend is consistent across various subpopulations, including those with ALL, DLBCL, and NHL (excluding DLBCL). While the impact of malnutrition on LOS was not statistically significant in the myeloma population, this could potentially be attributed to the smaller sample size in this group. Overall, these findings underscore the critical role of nutritional status in managing patients undergoing CAR-T therapy. Future studies should investigate the most effective methods for identifying and treating malnutrition in this patient population to reduce hospital stays and optimize overall patient care.
Collapse
Affiliation(s)
- Tong Ren
- Internal Medicine, University of South Florida (USF) Morsani College of Medicine/HCA Florida Oak Hill Hospital, Brooksville, USA
| | - Alan Kerr
- Hematology and Medical Oncology, University of South Florida (USF) Morsani College of Medicine, Tampa, USA
- Hematology and Medical Oncology, Tampa General Hospital Cancer Institute, Tampa, USA
| | - Olu Oyesanmi
- Internal Medicine, University of South Florida (USF) Morsani College of Medicine/HCA Florida Oak Hill Hospital, Brooksville, USA
| | - Salman Muddassir
- Internal Medicine, University of South Florida (USF) Morsani College of Medicine/HCA Florida Oak Hill Hospital, Brooksville, USA
| |
Collapse
|
56
|
Almotiri A. CAR T-cell therapy in acute myeloid leukemia. Saudi Med J 2024; 45:1007-1019. [PMID: 39379118 PMCID: PMC11463564 DOI: 10.15537/smj.2024.45.10.20240330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive leukemic malignancy that affects myeloid lineage progenitors. Relapsed or refractory AML patients continue to have poor prognoses, necessitating the development of novel therapy alternatives. Adoptive T-cell therapy with chimeric antigen receptors (CARs) is an intriguing possibility in the field of leukemia treatment. Chimeric antigen receptor T-cell therapy is now being tested in clinical trials (mostly in phase I and phase II) using AML targets including CD33, CD123, and CLL-1. Preliminary data showed promising results. However, due to the cellular and molecular heterogeneity of AML and the co-expression of some AML targets on hematopoietic stem cells, these clinical investigations have shown substantial "on-target off-tumor" toxicities, indicating that more research is required. In this review, the latest significant breakthroughs in AML CAR T cell therapy are presented. Furthermore, the limitations of CAR T-cell technology and future directions to overcome these challenges are discussed.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- From the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
| |
Collapse
|
57
|
Ong SY, Baird JH. A Primer on Chimeric Antigen Receptor T-cell Therapy-related Toxicities for the Intensivist. J Intensive Care Med 2024; 39:929-938. [PMID: 37899577 DOI: 10.1177/08850666231205264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an innovative treatment approach that has shown remarkable efficacy against several hematologic malignancies. However, its use can be associated with unique and sometimes severe toxicities that require admission to intensive care unit in 30% of patients, and intensivists should be aware of immune-mediated toxicities of CAR T-cell therapy and management of adverse events. We will review available literature on current diagnostic criteria and therapeutic strategies for mitigating these most common toxicities associated with CAR T-cell therapy including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) in the post-infusion period. The authors will also review other toxicities associated with CAR T-cell therapy including cytopenias, acquired immunocompromised states, and infections, and discuss the available literature on best supportive care and prophylaxis recommendations. Critical care medicine specialists play a crucial role in the management of patients undergoing CAR T-cell therapies. With the expanding use of these products in increasing numbers of treating centers, intensivists' roles as part of the multidisciplinary team caring for these patients will have an outsized impact on the continued success of these promising therapies.
Collapse
Affiliation(s)
- Shin Yeu Ong
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - John H Baird
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
58
|
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM, Au L. Bispecific antibodies: advancing precision oncology. Trends Cancer 2024; 10:893-919. [PMID: 39214782 DOI: 10.1016/j.trecan.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered molecules designed to target two different epitopes or antigens. The mechanism of action is determined by the bsAb molecular targets and structure (or format), which can be manipulated to create variable and novel functionalities, including linking immune cells with tumor cells, or dual signaling pathway blockade. Several bsAbs have already changed the treatment landscape of hematological malignancies and select solid cancers. However, the mechanisms of resistance to these agents are understudied and the management of toxicities remains challenging. Herein, we review the principles in bsAb engineering, current understanding of mechanisms of action and resistance, data for clinical application, and provide a perspective on ongoing challenges and future developments in this field.
Collapse
Affiliation(s)
- Mercedes Herrera
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Giulia Pretelli
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Thiago M Steiner
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lewis Au
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
59
|
Ploch W, Sadowski K, Olejarz W, Basak GW. Advancement and Challenges in Monitoring of CAR-T Cell Therapy: A Comprehensive Review of Parameters and Markers in Hematological Malignancies. Cancers (Basel) 2024; 16:3339. [PMID: 39409959 PMCID: PMC11475293 DOI: 10.3390/cancers16193339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment for relapsed/refractory B-cell lymphomas. Despite its success, this therapy is accompanied by a significant frequency of adverse events, including cytokine release syndrome (CRS), immune-effector-cell-associated neurotoxicity syndrome (ICANS), or cytopenias, reaching even up to 80% of patients following CAR-T cell therapy. CRS results from the uncontrolled overproduction of proinflammatory cytokines, which leads to symptoms such as fever, headache, hypoxia, or neurological complications. CAR-T cell detection is possible by the use of flow cytometry (FC) or quantitative polymerase chain reaction (qPCR) assays, the two primary techniques used for CAR-T evaluation in peripheral blood, bone marrow (BM), and cerebrospinal fluid (CSF). State-of-the-art imaging technologies play a crucial role in monitoring the distribution and persistence of CAR-T cells in clinical trials. Still, they can also be extended with the use of FC and digital PCR (dPCR). Monitoring the changes in cell populations during disease progression and treatment gives an important insight into how the response to CAR-T cell therapy develops on a cellular level. It can help improve the therapeutic design and optimize CAR-T cell therapy to make it more precise and personalized, which is crucial to overcoming the problem of tumor relapse.
Collapse
Affiliation(s)
- Weronika Ploch
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
60
|
Ma Y, Zhou H, Zhang J, Zhang Q, Li Y, Xie R, Zhang B, Shen Z, Li P, Liang A, Zhou K, Han L, Hu Y, Xu K, Sang W, Wang X. The influence of CRS and ICANS on the efficacy of anti-CD19 CAR-T treatment for B-cell acute lymphoblastic leukemia. Front Immunol 2024; 15:1448709. [PMID: 39399502 PMCID: PMC11466746 DOI: 10.3389/fimmu.2024.1448709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background Chimeric antigen receptor T-cell (CAR-T) therapy has offered new opportunities for patients with relapsed/refractory B-cell lymphoblastic leukemia (r/r B-ALL). However, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are the two most common toxicities following CAR-T cell therapy. At present, whether the occurrence of CRS and ICANS will impact CAR-T activity remains unknown; this affects the therapeutic efficacy of CAR-T. Methods In this multicenter retrospective study, we enrolled 93 patients with r/r B-ALL receiving anti-CD19 CAR-T cell therapy at four medical centers. We evaluated their complete response (CR) rates, minimal residual disease (MRD)-negative CR rates, and survival outcomes. Results Among the included patients, 76 (81.7%) developed CRS and 16 (5.3%) developed ICANS. Fifteen patients experienced concurrent CRS and ICANS. However, no significant differences were noted in CR or MRD-negative CR rates between patients with and without CRS/ICANS. Furthermore, no significant difference was noted in leukemia-free survival (LFS) (p = 0.869 for CRS and p = 0.276 for ICANS) or overall survival (OS) (p = 0.677 for CRS and p = 0.326 for ICANS) between patients with and without CRS/ICANS. Similarly, patients with concurrent CRS and ICANS exhibited no differences in OS and LFS when compared with other patients. Multivariate analysis showed that the development of CRS and ICANS was not associated with any difference in OS and LFS. Conclusion Patients with CRS/ICANS experience similar clinical outcomes compared with those without CRS/ICANS following anti-CD19 CAR-T therapy.
Collapse
Affiliation(s)
- Yuhan Ma
- Department of Hematology, Suqian First Hospital, Suqian, China
| | - Hongyuan Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jiaoli Zhang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qing Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Yujie Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ruiyang Xie
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bingpei Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China
| | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Han
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongxian Hu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangmin Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
61
|
Fischer S, von Bonin M, Bornhäuser M, Beste C, Ziemssen T. Neurological complications in oncology and their monitoring and management in clinical practice: a narrative review. Support Care Cancer 2024; 32:685. [PMID: 39317778 PMCID: PMC11422253 DOI: 10.1007/s00520-024-08894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
IMPORTANCE New anti-tumor treatments, such as immune checkpoint inhibitors and CAR T-cell therapy, are associated with an increasing number of neurological issues linked to tumors not arising from nervous system such as neurological and neuropsychological side effects that can significantly impair quality of life in the short or long term. The science of pathomechanisms, therapeutic approaches, and preventive measures is still in its early stages, and the progress is hampered by the lack of studied connection between neurological and oncological disciplines. OBJECTIVES This work aimed to provide an overview of the questions raised in the field of clinical neuroscience that concern the outcomes of oncological diseases and their treatment. Furthermore, we give an outline of how a collaborative approach between neurology and oncology, with the implementation of neuroscience techniques including up-to-date diagnostics and therapy, can help to improve the quality of oncological patients' lives. EVIDENCE REVIEW The covered areas of investigation in the evaluated articles primarily encompassed the review of known neurological complications of oncological diseases caused by neurotoxic mechanisms of performed therapies or those linked to concurrent pathological conditions. Similarly, the methods of their diagnostics were assessed. FINDINGS Our literature review of 65 articles, including clinical trials, cohort studies, reviews, and theoretically based in vitro studies published between 1998 and 2023, outlines the broad spectrum of neurological complications primarily associated with malignant diseases and the anti-tumor therapies employed. Notably, immune-mediated complications, whose incidence is increasing due to the expanding use of new immunotherapies, require early detection and targeted treatment to prevent severe progression. In this context, neurological complications mediated by immune checkpoint inhibitors are often associated with significant impairments and high mortality, necessitating specialist consultation for early detection and differentiation from other phenotypically similar syndromes. Current data on the pathophysiology of these neurological complications are not reliable due to the limited number of studies. Moreover, there is a lack of evidence regarding the appropriate oncological approach in the event of therapy-related complications. Initial study results suggest that the establishment of interdisciplinary treatment interfaces for the management of oncology patients could improve the safety of these therapies and enhance the patients' quality of life. CONCLUSIONS AND RELEVANCE The accumulated knowledge on neurotoxicity caused by oncological diseases shows that the challenges in diagnosing and managing this condition are expanding in tandem with the growing array of therapies being employed. Therefore, it requires interdisciplinary approach with the introduction of new facilities enabling more personalized patient care.
Collapse
Affiliation(s)
- Stefanie Fischer
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Malte von Bonin
- Department of Internal Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany.
| |
Collapse
|
62
|
Larue M, Bouvier A, Maillard A, Cuffel A, Allain V, Ursu R, Carpentier AF, Azoulay E, Thieblemont C, Di Blasi R, Caillat-Zucman S. Neurofilament light chain levels as an early predictive biomarker of neurotoxicity after CAR T-cell therapy. J Immunother Cancer 2024; 12:e009525. [PMID: 39317455 PMCID: PMC11423758 DOI: 10.1136/jitc-2024-009525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
Immune effector cell-associated neurotoxicity syndrome (ICANS) remains a significant cause of morbidity associated with CD19-targeted chimeric antigen receptor (CAR) T-cell therapy. Early prediction of patients who will develop ICANS would be crucial to better guide individualized management of high-risk patients, but specific predictive markers are still missing. Serum neurofilament light chain (NfL) levels are a sensitive indicator of neuroaxonal injury in neurological diseases. Elevated NfL levels at the time of CAR T-cell infusion have been associated with the severity of ICANS, but their utility for earlier identification of patients with subclinical neurological damage has not been evaluated.We studied all consecutive adult patients who received commercial CAR T cells for relapsed/refractory B-cell lymphomas at Saint-Louis Hospital between January 2019 and February 2023. Patients with pre-existing or current neurological disease were excluded. NfL levels were quantified in frozen serum collected at the time of the decision to treat (ie, the day of leukapheresis) and at the time of treatment (ie, the day of infusion).Of the 150 study patients, 28% developed ICANS of any grade, including 15.3% of grade 2-4. Receiving a CAR construct with a CD28 domain (58% of patients) was the strongest predictor of grade 2-4 ICANS. Serum NfL levels were significantly higher in patients with grade 2-4 ICANS than in those with grade 0-1 ICANS, both at the time of leukapheresis and infusion. In multivariate models, NfL above the cut-off value was independently associated with grade 2-4 ICANS at leukapheresis (NfL>75 pg/mL, OR 4.2, 95% CI 1.2 to 14.2, p=0.022) and infusion (NfL>58 pg/mL, OR 4.3, 95% CI 1.3 to 13.7, p=0.015).In conclusion, high NfL levels at the time of the decision to proceed with CAR T-cell manufacturing may represent an early surrogate of underlying loss of neuroaxonal integrity that increases the risk of subsequent neurotoxicity. Incorporating NfL levels into the decision-making process based on each patient's risk profile could help determine the appropriate CAR product when possible, and guide the prophylactic or therapeutic management of ICANS.
Collapse
Affiliation(s)
- Marion Larue
- Laboratoire d’Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Amélie Bouvier
- Laboratoire d’Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Alexis Maillard
- Médecine intensive et réanimation, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| | - Alexis Cuffel
- Laboratoire d’Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- INSERM UMR976, Institut de Recherche St-Louis, Université Paris Cité, Paris, France
| | - Vincent Allain
- Laboratoire d’Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- INSERM UMR976, Institut de Recherche St-Louis, Université Paris Cité, Paris, France
| | - Renata Ursu
- Service de Neurologie, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| | - Antoine F Carpentier
- Service de Neurologie, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| | - Elie Azoulay
- Médecine intensive et réanimation, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| | - Catherine Thieblemont
- Service d’Hémato-Oncologie, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| | - Roberta Di Blasi
- Service d’Hémato-Oncologie, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| | - Sophie Caillat-Zucman
- Laboratoire d’Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- INSERM UMR976, Institut de Recherche St-Louis, Université Paris Cité, Paris, France
| |
Collapse
|
63
|
Kang X, Mita N, Zhou L, Wu S, Yue Z, Babu RJ, Chen P. Nanotechnology in Advancing Chimeric Antigen Receptor T Cell Therapy for Cancer Treatment. Pharmaceutics 2024; 16:1228. [PMID: 39339264 PMCID: PMC11435308 DOI: 10.3390/pharmaceutics16091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and ongoing challenges in CAR-T therapy. We highlight the transformative potential of nanotechnology in enhancing CAR-T therapy by improving targeting precision, modulating the immune-suppressive tumor microenvironment, and overcoming physical barriers. Nanotechnology facilitates efficient CAR gene delivery into T cells, boosting transfection efficiency and potentially reducing therapy costs. Moreover, nanotechnology offers innovative solutions to mitigate cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cutting-edge nanotechnology platforms for real-time monitoring of CAR-T cell activity and cytokine release are also discussed. By integrating these advancements, we aim to provide valuable insights and pave the way for the next generation of CAR-T cell therapies to overcome current limitations and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejia Kang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
- Faculty of Pharmacy, Mulawarman University, Samarinda 75119, Kalimantan Timur, Indonesia
| | - Lang Zhou
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Siqi Wu
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Zongliang Yue
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| |
Collapse
|
64
|
Bashey SZ, Solomon SR, Zhang X, Morris LE, Holland HK, Bachier L, Patel K, Solh MM. Intrathecal chemotherapy as treatment for chimeric antigen receptor T cell (CAR T) therapy associated neurotoxicity. Bone Marrow Transplant 2024:10.1038/s41409-024-02417-w. [PMID: 39300248 DOI: 10.1038/s41409-024-02417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Saffiya Z Bashey
- The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Scott R Solomon
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA, USA
| | - Xu Zhang
- Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lawrence E Morris
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA, USA
| | - H Kent Holland
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA, USA
| | - Lizamarie Bachier
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA, USA
| | - Krishi Patel
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA, USA
| | - Melhem M Solh
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA, USA.
| |
Collapse
|
65
|
Nasiri F, Asaadi Y, Mirzadeh F, Abdolahi S, Molaei S, Gavgani SP, Rahbarizadeh F. Updates on CAR T cell therapy in multiple myeloma. Biomark Res 2024; 12:102. [PMID: 39261906 PMCID: PMC11391811 DOI: 10.1186/s40364-024-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Multiple myeloma (MM) is a hematological cancer characterized by the abnormal proliferation of plasma cells. Initial treatments often include immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and monoclonal antibodies (mAbs). Despite salient progress in diagnosis and treatment, most MM patients typically have a median life expectancy of only four to five years after starting treatment. In recent developments, the success of chimeric antigen receptor (CAR) T-cells in treating B-cell malignancies exemplifies a new paradigm shift in advanced immunotherapy techniques with promising therapeutic outcomes. Ide-cel and cilta-cel stand as the only two FDA-approved BCMA-targeted CAR T-cells for MM patients, a recognition achieved despite extensive preclinical and clinical research efforts in this domain. Challenges remain regarding certain aspects of CAR T-cell manufacturing and administration processes, including the lack of accessibility and durability due to T-cell characteristics, along with expensive and time-consuming processes limiting health plan coverage. Moreover, MM features, such as tumor antigen heterogeneity, antigen presentation alterations, complex tumor microenvironments, and challenges in CAR-T trafficking, contribute to CAR T-cell exhaustion and subsequent therapy relapse or refractory status. Additionally, the occurrence of adverse events such as cytokine release syndrome, neurotoxicity, and on-target, off-tumor toxicities present obstacles to CAR T-cell therapies. Consequently, ongoing CAR T-cell trials are diligently addressing these challenges and barriers. In this review, we provide an overview of the effectiveness of currently available CAR T-cell treatments for MM, explore the primary resistance mechanisms to these treatments, suggest strategies for improving long-lasting remissions, and investigate the potential for combination therapies involving CAR T-cells.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzaneh Mirzadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Molaei
- School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Somayeh Piri Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
66
|
Biery DN, Turicek DP, Diorio C, Schroeder BA, Shah NN. Need for standardization of cytokine profiling in CAR T cell therapy. Mol Ther 2024; 32:2979-2983. [PMID: 38532629 PMCID: PMC11403224 DOI: 10.1016/j.ymthe.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
With expansion of chimeric antigen receptor (CAR) T cell therapy and broader utilization of anti-cytokine directed therapeutics for toxicity mitigation, the routine assessment of cytokines may enhance understanding of toxicity profiles, guide therapeutic interventions, and facilitate cross-trial comparisons. As specific cytokine elevations can correlate with and provide insights into CAR T cell toxicity, mitigation strategies, and response, we explored the reporting of cytokine detection methods and assessed for the correlation of cytokines to cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) across clinical trials. In this analysis, we reviewed 21 clinical trials across 60 manuscripts that featured a US Food and Drug Administration-approved CAR T cell construct or one of its predecessors. We highlight substantial variability and limited reporting of cytokine measurement platforms and panels used across CAR T cell clinical trials. Specifically, across 60 publications, 28 (46.7%) did not report any cytokine data, representing 6 of 21 (28.6%) clinical trials. In the 15 trials reporting cytokine data, at least 4 different platforms were used. Furthermore, correlation of cytokines with ICANS, CRS, and CRS severity was limited. Considering the fundamental role of cytokines in CAR T cell toxicity, our manuscript supports the need to establish standardization of cytokine measurements as a key biomarker essential to improving outcomes of CAR T cell therapy.
Collapse
Affiliation(s)
- D Nathan Biery
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD, USA; George Washington University School of Medicine, Washington, DC, USA
| | - David P Turicek
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD, USA; Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO, USA
| | - Caroline Diorio
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brett A Schroeder
- Department of Hematology and Medical Oncology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD, USA.
| |
Collapse
|
67
|
Jia G, Fu L, Wang L, Yao D, Cui Y. Bayesian network analysis of risk classification strategies in the regulation of cellular products. Artif Intell Med 2024; 155:102937. [PMID: 39137589 DOI: 10.1016/j.artmed.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Cell therapy, a burgeoning therapeutic strategy, necessitates a scientific regulatory framework but faces challenges in risk-based regulation due to the lack of a global consensus on risk classification. This study applies Bayesian network analysis to compare and evaluate the risk classification strategies for cellular products proposed by the Food and Drug Administration (FDA), Ministry of Health, Labour and Welfare (MHLW), and World Health Organization (WHO), using real-world data to validate the models. The appropriateness of key risk factors is assessed within the three regulatory frameworks, along with their implications for clinical safety. The results indicate several directions for refining risk classification approaches. Additionally, a substudy focuses on a specific type of cell and gene therapy (CGT), chimeric antigen receptor (CAR) T cell therapy. It underscores the importance of considering CAR targets, tumor types, and costimulatory domains when assessing the safety risks of CAR T cell products. Overall, there is currently a lack of a regulatory framework based on real-world data for cellular products and a lack of risk-based classification review methods. This study aims to improve the regulatory system for cellular products, emphasizing risk-based classification. Furthermore, the study advocates for leveraging machine learning in regulatory science to enhance the assessment of cellular product safety, illustrating the role of Bayesian networks in aiding regulatory decision-making for the risk classification of cellular products.
Collapse
Affiliation(s)
- Guoshu Jia
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing 211198, China
| | - Lixia Fu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Likun Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dongning Yao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
68
|
Khawaji ZY, Khawaji NY, Alahmadi MA, Elmoneim AA. Prediction of Response to FDA-Approved Targeted Therapy and Immunotherapy in Acute Lymphoblastic Leukemia (ALL). Curr Treat Options Oncol 2024; 25:1163-1183. [PMID: 39102166 DOI: 10.1007/s11864-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/06/2024]
Abstract
OPINION STATEMENT Acute lymphoblastic leukemia (ALL) represents the predominant cancer in pediatric populations, though its occurrence in adults is relatively rare. Pre-treatment risk stratification is crucial for predicting prognosis. Important factors for assessment include patient age, white blood cell (WBC) count at diagnosis, extramedullary involvement, immunophenotype, and cytogenetic aberrations. Minimal residual disease (MRD), primarily assessed by flow cytometry following remission, plays a substantial role in guiding management plans. Over the past decade, significant advancements in ALL outcomes have been witnessed. Conventional chemotherapy has remarkably reduced mortality rates; however, its intensive nature raises safety concerns and has led to the emergence of treatment-resistant cases with recurrence of relapses. Consequently, The U.S. Food and Drug Administration (FDA) has approved several novel treatments for relapsed/refractory ALL due to their demonstrated efficacy, as indicated by improved complete remission and survival rates. These treatments include tyrosine kinase inhibitors (TKIs), the anti-CD19 monoclonal antibody blinatumomab, anti-CD22 inotuzumab ozogamicin, anti-CD20 rituximab, and chimeric antigen receptor (CAR) T-cell therapy. Identifying the variables that influence treatment decisions is a pressing necessity for tailoring therapy based on heterogeneous patient characteristics. Key predictive factors identified in various observational studies and clinical trials include prelymphodepletion disease burden, complex genetic abnormalities, and MRD. Furthermore, the development of serious adverse events following treatment could be anticipated through predictive models, allowing for appropriate prophylactic measures to be considered. The ultimate aim is to incorporate the concept of precision medicine in the field of ALL through valid prediction platform to facilitate the selection of the most suitable treatment approach.
Collapse
Affiliation(s)
| | | | | | - Abeer Abd Elmoneim
- Women and Child Health Department, Taibah University, Madinah, Kingdom of Saudi Arabia
- 2nd Affiliation: Pediatric Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
69
|
Perna F, Parekh S, Diorio C, Smith M, Subklewe M, Mehta R, Locke FL, Shah NN. CAR T-cell toxicities: from bedside to bench, how novel toxicities inform laboratory investigations. Blood Adv 2024; 8:4348-4358. [PMID: 38861351 PMCID: PMC11375260 DOI: 10.1182/bloodadvances.2024013044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024] Open
Abstract
ABSTRACT Multiple chimeric antigen receptor (CAR) T-cell therapies are US Food and Drug Administration-approved, and several are under development. Although effective for some cancers, toxicities remain a limitation. The most common toxicities, that is, cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, are well described. With increasing utilization, providers worldwide are reporting other emergent and often complicated toxicities. Given the evolving toxicity profiles and urgent need to catalog these emerging and emergent CAR T-cell toxicities and describe management approaches, the American Society of Hematology Subcommittee on Emerging Gene and Cell Therapies organized the first scientific workshop on CAR T-cell toxicities during the annual society meeting. The workshop functioned to (1) aggregate reports of CAR T-cell emergent toxicities, including movement disorders after B-cell maturation antigen CAR T cell, coagulation abnormalities, and prolonged cytopenia; (2) disseminate bedside-to-bench efforts elucidating pathophysiological mechanisms of CAR T-cell toxicities, including the intestinal microbiota and systemic immune dysregulation; and (3) highlight gaps in the availability of clinical tests, such as cytokine measurements, which could be used to expand our knowledge around the monitoring of toxicities. Key themes emerged. First, although clinical manifestations may develop before the pathophysiologic mechanisms are understood, they must be studied to aid in the detection and prevention of such toxicities. Second, systemic immune dysregulation appears to be central to these emergent toxicities, and research is needed to elucidate the links between tumors, CAR T cells, and microbiota. Finally, there was a consensus around the urgency to create a repository to capture emergent CAR T-cell toxicities and the real-world management.
Collapse
Affiliation(s)
- Fabiana Perna
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Samir Parekh
- Division of Hematology and Medical Oncology, The Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline Diorio
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Melody Smith
- Department of Medicine, Stanford University, Stanford, CA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rakesh Mehta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Frederick L. Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
70
|
Li J, Chen H, Xu C, Hu M, Li J, Chang W. Systemic toxicity of CAR-T therapy and potential monitoring indicators for toxicity prevention. Front Immunol 2024; 15:1422591. [PMID: 39253080 PMCID: PMC11381299 DOI: 10.3389/fimmu.2024.1422591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Malignant tumors of the hematologic system have a high degree of malignancy and high mortality rates. Chimeric antigen receptor T cell (CAR-T) therapy has become an important option for patients with relapsed/refractory tumors, showing astonishing therapeutic effects and thus, it has brought new hope to the treatment of malignant tumors of the hematologic system. Despite the significant therapeutic effects of CAR-T, its toxic reactions, such as Cytokine Release Syndrome (CRS) and Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS), cannot be ignored since they can cause damage to multiple systems, including the cardiovascular system. We summarize biomarkers related to prediction, diagnosis, therapeutic efficacy, and prognosis, further exploring potential monitoring indicators for toxicity prevention. This review aims to summarize the effects of CAR-T therapy on the cardiovascular, hematologic, and nervous systems, as well as potential biomarkers, and to explore potential monitoring indicators for preventing toxicity, thereby providing references for clinical regulation and assessment of therapeutic effects.
Collapse
Affiliation(s)
- Jingxian Li
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Huiguang Chen
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Chaoping Xu
- Department of Hematology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Mengci Hu
- Department of Hematology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jiangping Li
- Department of Blood Transfusion, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Chang
- Department of Hematology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
71
|
Vinnakota JM, Biavasco F, Schwabenland M, Chhatbar C, Adams RC, Erny D, Duquesne S, El Khawanky N, Schmidt D, Fetsch V, Zähringer A, Salié H, Athanassopoulos D, Braun LM, Javorniczky NR, Ho JNHG, Kierdorf K, Marks R, Wäsch R, Simonetta F, Andrieux G, Pfeifer D, Monaco G, Capitini C, Fry TJ, Blank T, Blazar BR, Wagner E, Theobald M, Sommer C, Stelljes M, Reicherts C, Jeibmann A, Schittenhelm J, Monoranu CM, Rosenwald A, Kortüm M, Rasche L, Einsele H, Meyer PT, Brumberg J, Völkl S, Mackensen A, Coras R, von Bergwelt-Baildon M, Albert NL, Bartos LM, Brendel M, Holzgreve A, Mack M, Boerries M, Mackall CL, Duyster J, Henneke P, Priller J, Köhler N, Strübing F, Bengsch B, Ruella M, Subklewe M, von Baumgarten L, Gill S, Prinz M, Zeiser R. Targeting TGFβ-activated kinase-1 activation in microglia reduces CAR T immune effector cell-associated neurotoxicity syndrome. NATURE CANCER 2024; 5:1227-1249. [PMID: 38741011 DOI: 10.1038/s43018-024-00764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFβ-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Janaki Manoja Vinnakota
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Francesca Biavasco
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marius Schwabenland
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Chintan Chhatbar
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Rachael C Adams
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel Erny
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadia El Khawanky
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Schmidt
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Viktor Fetsch
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Alexander Zähringer
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Henrike Salié
- Department of Medicine II, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitrios Athanassopoulos
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas M Braun
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Nora R Javorniczky
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jenny N H G Ho
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Reinhard Marks
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Federico Simonetta
- Division of Hematology, Geneva University Hospitals Geneva, Geneva, Switzerland
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gianni Monaco
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christian Capitini
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terry J Fry
- Center for Cancer and Blood Disorders, Children's Hospital Colorado and Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Blank
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, USA
| | - Eva Wagner
- Department of Hematology and Medical Oncology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Matthias Theobald
- Department of Hematology and Medical Oncology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Stelljes
- Department of Medicine/Hematology and Oncology, University of Münster, Münster, Germany
| | - Christian Reicherts
- Department of Medicine/Hematology and Oncology, University of Münster, Münster, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Martin Kortüm
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joachim Brumberg
- Department of Nuclear Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, Hematology/Oncology, University Hospital, Ludwig-Maximilians Universität (LMU) Munich, Munich, Germany
| | - Nathalie L Albert
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Mack
- Department of Nephrology, University of Regensburg, Regensburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford, CA, USA
| | - Justus Duyster
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Division of Pediatric Infectious Diseases, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Priller
- Department of Psychiatry, Technischen Universität München (TUM), Munich, Germany
| | - Natalie Köhler
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Felix Strübing
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Marion Subklewe
- Department of Medicine III, Hematology/Oncology, University Hospital, Ludwig-Maximilians Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Louisa von Baumgarten
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Neuro-Oncology, Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Prinz
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Signalling Research Centres BIOSS and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
72
|
Targeting TAK1 in microglia to treat CAR T cell neurotoxicity. NATURE CANCER 2024; 5:1143-1144. [PMID: 38769428 DOI: 10.1038/s43018-024-00765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
|
73
|
Pensato U, Pondrelli F, de Philippis C, Asioli GM, Crespi A, Buizza A, Mannina D, Casadei B, Maffini E, Straffi L, Marcheselli S, Zinzani PL, Bonifazi F, Guarino M, Bramanti S. Primary vs. pre-emptive anti-seizure medication prophylaxis in anti-CD19 CAR T-cell therapy. Neurol Sci 2024; 45:4007-4014. [PMID: 38512531 PMCID: PMC11255041 DOI: 10.1007/s10072-024-07481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Seizures may occur in up to 30% of non-Hodgkin lymphoma patients who received anti-CD19 CAR T-cell therapy, yet the optimal anti-seizure medication (ASM) prevention strategy has not been thoroughly investigated. METHODS Consecutive patients affected by refractory non-Hodgkin lymphoma who received anti-CD19 CAR T-cells were included. Patients were selected and assessed using similar internal protocols. ASM was started either as a primary prophylaxis (PP-group) before CAR T-cells infusion or as a pre-emptive therapy (PET-group) only upon the onset of neurotoxicity development. RESULTS One hundred fifty-six patients were included (PP-group = 88, PET-group = 66). Overall, neurotoxicity and severe neurotoxicity occurred in 45 (29%) and 20 (13%) patients, respectively, equally distributed between the two groups. Five patients experienced epileptic events (PET-group = 3 [4%]; PP-group = 2 [2%]). For all the PET-group patients, seizure/status epilepticus occurred in the absence of overt CAR-T-related neurotoxicity, whereas patients in the PP-group experienced brief seizures only in the context of critical neurotoxicity with progressive severe encephalopathy. ASMs were well-tolerated by all patients, even without titration. No patients developed epilepsy or required long-term ASMs. CONCLUSION Our data suggest that both primary and pre-emptive anti-seizure prophylaxis are safe and effective in anti-CD19 CAR T-cell recipients. Clinical rationale suggests a possible more favourable profile of primary prophylaxis, yet no definitive conclusion of superiority between the two ASM strategies can be drawn from our study.
Collapse
Affiliation(s)
- Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Federica Pondrelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Chiara de Philippis
- BMT and Cell Therapy Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gian Maria Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alessandra Crespi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Alessandro Buizza
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Daniele Mannina
- BMT and Cell Therapy Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
| | - Enrico Maffini
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
| | - Laura Straffi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Simona Marcheselli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Università Di Bologna, Bologna, Italy
| | - Francesca Bonifazi
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
| | - Maria Guarino
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Stefania Bramanti
- BMT and Cell Therapy Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
74
|
Posey AD, Young RM, June CH. Future perspectives on engineered T cells for cancer. Trends Cancer 2024; 10:687-695. [PMID: 38853073 DOI: 10.1016/j.trecan.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a revolutionary treatment for hematological malignancies, but its adaptation to solid tumors is impeded by multiple challenges, particularly T cell dysfunction and exhaustion. The heterogeneity and inhospitableness of the solid tumor microenvironment (TME) contribute to diminished CAR T cell efficacy exhibited by reduced cytotoxicity, proliferation, cytokine secretion, and the upregulation of inhibitory receptors, similar to the phenotype of tumor-infiltrating lymphocytes (TILs). In this review, we highlight recent advances in T cell therapy for solid tumors, particularly brain cancer. Innovative strategies, including locoregional delivery and 'armoring' CAR T cells with cytokines such as interleukin (IL)-18, are under investigation to improve efficacy and safety. We also highlight emerging issues with toxicity management of CAR T cell adverse events. This review discusses the obstacles associated with CAR T cell therapy in the context of solid tumors and outlines current and future strategies to overcome these challenges.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
75
|
Pozzessere C, Mazini B, Omoumi P, Jreige M, Noirez L, Digklia A, Fasquelle F, Sempoux C, Dromain C. Immune-Related Adverse Events Induced by Immune Checkpoint Inhibitors and CAR-T Cell Therapy: A Comprehensive Imaging-Based Review. Cancers (Basel) 2024; 16:2585. [PMID: 39061225 PMCID: PMC11274393 DOI: 10.3390/cancers16142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has revolutionized oncology care, improving patient outcomes in several cancers. However, these therapies are also associated with typical immune-related adverse events due to the enhanced inflammatory and immune response. These toxicities can arise at any time during treatment but are more frequent within the first few months. Any organ and tissue can be affected, ranging from mild to life-threatening. While some manifestations are common and more often mild, such as dermatitis and colitis, others are rarer and more severe, such as myocarditis. Management depends on the severity, with treatment being held for >grade 2 toxicities. Steroids are used in more severe cases, and immunosuppressive treatment may be considered for non-responsive toxicities, along with specific organ support. A multidisciplinary approach is mandatory for prompt identification and management. The diagnosis is primarily of exclusion. It often relies on imaging features, and, when possible, cytologic and/or pathological analyses are performed for confirmation. In case of clinical suspicion, imaging is required to assess the presence, extent, and features of abnormalities and to evoke and rule out differential diagnoses. This imaging-based review illustrates the diverse system-specific toxicities associated with immune checkpoint inhibitors and chimeric antigen receptor T-cells with a multidisciplinary perspective. Clinical characteristics, imaging features, cytological and histological patterns, as well as the management approach, are presented with insights into radiological tips to distinguish these toxicities from the most important differential diagnoses and mimickers-including tumor progression, pseudoprogression, inflammation, and infection-to guide imaging and clinical specialists in the pathway of diagnosing immune-related adverse events.
Collapse
Affiliation(s)
- Chiara Pozzessere
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Bianca Mazini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Leslie Noirez
- Department of Pulmonology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - François Fasquelle
- Department of Pathology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Christine Sempoux
- Department of Pathology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| |
Collapse
|
76
|
Hughes AD, Teachey DT, Diorio C. Riding the storm: managing cytokine-related toxicities in CAR-T cell therapy. Semin Immunopathol 2024; 46:5. [PMID: 39012374 PMCID: PMC11252192 DOI: 10.1007/s00281-024-01013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/18/2024] [Indexed: 07/17/2024]
Abstract
The advent of chimeric antigen receptor T cells (CAR-T) has been a paradigm shift in cancer immunotherapeutics, with remarkable outcomes reported for a growing catalog of malignancies. While CAR-T are highly effective in multiple diseases, salvaging patients who were considered incurable, they have unique toxicities which can be life-threatening. Understanding the biology and risk factors for these toxicities has led to targeted treatment approaches which can mitigate them successfully. The three toxicities of particular interest are cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and immune effector cell-associated hemophagocytic lymphohistiocytosis (HLH)-like syndrome (IEC-HS). Each of these is characterized by cytokine storm and hyperinflammation; however, they differ mechanistically with regard to the cytokines and immune cells that drive the pathophysiology. We summarize the current state of the field of CAR-T-associated toxicities, focusing on underlying biology and how this informs toxicity management and prevention. We also highlight several emerging agents showing promise in preclinical models and the clinic. Many of these established and emerging agents do not appear to impact the anti-tumor function of CAR-T, opening the door to additional and wider CAR-T applications.
Collapse
Affiliation(s)
- Andrew D Hughes
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caroline Diorio
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
77
|
Park J, Lia Palomba M, Perica K, Devlin S, Shah G, Dahi P, Lin R, Salles G, Scordo M, Nath K, Valtis Y, Lynch A, Cathcart E, Zhang H, Schöder H, Leithner D, Liotta K, Yu A, Stocker K, Li J, Dey A, Sellner L, Singh R, Sundaresan V, Zhao F, Mansilla-Soto J, He C, Meyerson J, Hosszu K, McAvoy D, Wang X, Riviere I, Sadelain M. Calibrated CAR Signaling Enables Low-Dose Therapy in Large B-Cell Lymphoma. RESEARCH SQUARE 2024:rs.3.rs-4619285. [PMID: 39011120 PMCID: PMC11247921 DOI: 10.21203/rs.3.rs-4619285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We designed a CD19-targeted CAR comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3z and 4-1BB/CD3z CARs. Here we report the first-in-human, phase 1 clinical trial of 19(T2)28z-1XX CAR T cells in relapsed/refractory large B-cell lymphoma. We hypothesized that 1XX CAR T cells may be effective at low doses and investigated 4 doubling dose levels starting from 25×106 CAR T cells. The overall response rate (ORR) was 82% and complete response (CR) rate 71% in the entire cohort (n=28) and 88% ORR and 75% CR in 16 patients treated at 25×106. With the median follow-up of 24 months, the 1-year EFS was 61% (95% CI: 45-82%). Overall, grade ≥3 CRS and ICANS rates were low at 4% and 7%. The calibrated potency of the 1XX CAR affords excellent efficacy at low cell doses and may benefit the treatment of other hematological malignancies, solid tumors and autoimmunity.
Collapse
Affiliation(s)
- Jae Park
- Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | | | - Gilles Salles
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | | | | | | | | | | | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Alina Yu
- Memorial Sloan Kettering Cancer Center
| | | | - Jia Li
- Takeda Development Center Americas, Inc
| | | | | | | | | | - Faye Zhao
- Takeda Development Center Americas, Inc
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Mo CC, Richardson E, Calabretta E, Corrado F, Kocoglu MH, Baron RM, Connors JM, Iacobelli M, Wei LJ, Rapoport AP, Díaz-Ricart M, Moraleda JM, Carlo-Stella C, Richardson PG. Endothelial injury and dysfunction with emerging immunotherapies in multiple myeloma, the impact of COVID-19, and endothelial protection with a focus on the evolving role of defibrotide. Blood Rev 2024; 66:101218. [PMID: 38852017 DOI: 10.1016/j.blre.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Patients with multiple myeloma (MM) were among the groups impacted more severely by the COVID-19 pandemic, with higher rates of severe disease and COVID-19-related mortality. MM and COVID-19, plus post-acute sequelae of SARS-CoV-2 infection, are associated with endothelial dysfunction and injury, with overlapping inflammatory pathways and coagulopathies. Existing treatment options for MM, notably high-dose therapy with autologous stem cell transplantation and novel chimeric antigen receptor (CAR) T-cell therapies and bispecific T-cell engaging antibodies, are also associated with endothelial cell injury and mechanism-related toxicities. These pathologies include cytokine release syndrome (CRS) and neurotoxicity that may be exacerbated by underlying endotheliopathies. In the context of these overlapping risks, prophylaxis and treatment approaches mitigating the inflammatory and pro-coagulant effects of endothelial injury are important considerations for patient management, including cytokine receptor antagonists, thromboprophylaxis with low-molecular-weight heparin and direct oral anticoagulants, and direct endothelial protection with defibrotide in the appropriate clinical settings.
Collapse
Affiliation(s)
- Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Edward Richardson
- Department of Medicine, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesco Corrado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA; Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Mehmet H Kocoglu
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Lee-Jen Wei
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron P Rapoport
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Maribel Díaz-Ricart
- Hematopathology, Pathology Department, CDB, Hospital Clinic, and IDIBAPS, Barcelona, Spain, and Barcelona Endothelium Team, Barcelona, Spain
| | - José M Moraleda
- Department of Medicine, Faculty of Medicine, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
79
|
Brudno JN, Kochenderfer JN. Current understanding and management of CAR T cell-associated toxicities. Nat Rev Clin Oncol 2024; 21:501-521. [PMID: 38769449 PMCID: PMC11529341 DOI: 10.1038/s41571-024-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of several haematological malignancies and is being investigated in patients with various solid tumours. Characteristic CAR T cell-associated toxicities such as cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are now well-recognized, and improved supportive care and management with immunosuppressive agents has made CAR T cell therapy safer and more feasible than it was when the first regulatory approvals of such treatments were granted in 2017. The increasing clinical experience with these therapies has also improved recognition of previously less well-defined toxicities, including movement disorders, immune effector cell-associated haematotoxicity (ICAHT) and immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), as well as the substantial risk of infection in patients with persistent CAR T cell-induced B cell aplasia and hypogammaglobulinaemia. A more diverse selection of immunosuppressive and supportive-care pharmacotherapies is now being utilized for toxicity management, yet no universal algorithm for their application exists. As CAR T cell products targeting new antigens are developed, additional toxicities involving damage to non-malignant tissues expressing the target antigen are a potential hurdle. Continued prospective evaluation of toxicity management strategies and the design of less-toxic CAR T cell products are both crucial for ongoing success in this field. In this Review, we discuss the evolving understanding and clinical management of CAR T cell-associated toxicities.
Collapse
Affiliation(s)
- Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
80
|
Hu B, Korsos V, Palomba ML. Chimeric antigen receptor T-cell therapy for aggressive B-cell lymphomas. Front Oncol 2024; 14:1394057. [PMID: 39011476 PMCID: PMC11246842 DOI: 10.3389/fonc.2024.1394057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/17/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary approach in the treatment of lymphoma. This review article provides an overview of the four FDA-approved CAR T-cell products for aggressive B-cell lymphoma, including diffuse large B-cell lymphoma and mantle cell lymphoma, highlighting their efficacy and toxicity as well as discussing future directions.
Collapse
Affiliation(s)
- Bei Hu
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute/Wake Forest School of Medicine, Charlotte, NC, United States
| | - Victoria Korsos
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - M. Lia Palomba
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
81
|
Zhang Q, Zhu X, Xiao Y. The critical role of endothelial cell in the toxicity associated with chimeric antigen receptor T cell therapy and intervention strategies. Ann Hematol 2024; 103:2197-2206. [PMID: 38329486 PMCID: PMC11224091 DOI: 10.1007/s00277-024-05640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown promising results in patients with hematological malignancies. However, many patients still have poor prognoses or even fatal outcomes due to the life-threatening toxicities associated with the therapy. Moreover, even after improving the known influencing factors (such as number or type of CAR-T infusion) related to CAR-T cell infusion, the results remain unsatisfactory. In recent years, it has been found that endothelial cells (ECs), which are key components of the organization, play a crucial role in various aspects of immune system activation and inflammatory response. The levels of typical markers of endothelial activation positively correlated with the severity of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxic syndrome (ICANS), suggesting that ECs are important targets for intervention and toxicity prevention. This review focuses on the critical role of ECs in CRS and ICANS and the intervention strategies adopted.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
82
|
Remsik J, Boire A. The path to leptomeningeal metastasis. Nat Rev Cancer 2024; 24:448-460. [PMID: 38871881 PMCID: PMC11404355 DOI: 10.1038/s41568-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/15/2024]
Abstract
The leptomeninges, the cerebrospinal-fluid-filled tissues surrounding the central nervous system, play host to various pathologies including infection, neuroinflammation and malignancy. Spread of systemic cancer into this space, termed leptomeningeal metastasis, occurs in 5-10% of patients with solid tumours and portends a bleak clinical prognosis. Previous, predominantly descriptive, clinical studies have provided few insights. Recent development of preclinical leptomeningeal metastasis models, alongside genomic, transcriptomic and proteomic sequencing efforts, has provided groundwork for mechanistic understanding and identification of long-needed therapeutic targets. Although previously understood as an anatomically isolated compartment, the leptomeninges are increasingly appreciated as a major conduit of communication between the systemic circulation and the central nervous system. Despite the unique nature of the leptomeningeal microenvironment, the general principles of metastasis hold true: cells metastasizing to the leptomeninges must gain access to the new environment, survive within the space and evade the immune system. The study of leptomeningeal metastasis has the potential to uncover novel site-specific metastatic principles and illuminate the physiology of the leptomeningeal space. In this Review, we provide a biology-focused overview of how metastatic cells reach the leptomeninges, thrive in this nutritionally sparse environment and evade the detection of the omnipresent immune system.
Collapse
Affiliation(s)
- Jan Remsik
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Adrienne Boire
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumour Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
83
|
Bindal P, Patell R, Chiasakul T, Lauw MN, Ko A, Wang TF, Zwicker JI. A meta-analysis to assess the risk of bleeding and thrombosis following chimeric antigen receptor T-cell therapy: Communication from the ISTH SSC Subcommittee on Hemostasis and Malignancy. J Thromb Haemost 2024; 22:2071-2080. [PMID: 38574863 PMCID: PMC11437522 DOI: 10.1016/j.jtha.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Chimeric antigen receptor T-cell (CAR T-cell) therapy is increasingly utilized for treatment of hematologic malignancies. Hematologic toxicities including thrombosis and bleeding complications have been reported. Accurate estimates for thrombotic and bleeding outcomes are lacking. OBJECTIVES We performed a systematic review and meta-analysis in patients who received CAR T-cell therapy for an underlying hematologic malignancy with the objective to: a) assess the thrombosis and bleeding risk associated with CAR T-cell therapy, b) assess the impact of CRS and ICANS on the risks of thrombosis and bleeding, and c) assess the safety of anticoagulant or antiplatelet use in the period following treatment with CAR T-cell therapy. METHODS We searched MEDLINE, EMBASE, and Cochrane CENTRAL up to February 2022 for studies reporting thrombotic or bleeding outcomes in patients receiving CAR T-cell therapy. Pooled event rates were calculated using a random-effects model. We performed subgroup analyses stratified by follow-up duration, CAR T-cell target antigen, and underlying hematologic malignancy. RESULTS We included 47 studies with a total of 7040 patients. High heterogeneity between studies precluded reporting of overall pooled rates of thrombotic and bleeding events. In studies with follow-up duration of ≤6 months, the pooled incidence of venous thrombotic events was 2.4% (95% CI, 1.4%-3.4%; I2 = 0%) per patient-month, whereas the rate was 0.1% (95% CI, 0%-0.1%; I2 = 0%) per patient-month for studies with longer follow-up periods (>6 months). The pooled incidences of any bleeding events per patient-month in studies with follow-up duration of ≤6 months and >6 months were 1.9% (95% CI, 0.6%-3.1%; I2 = 78%) and 0.3% (95% CI: 0%-0.8%, I2 = 40%), respectively. Secondary analyses by CAR T-cell target antigen, underlying malignancy, and primary outcome of the studies did not reveal significant differences in the rates of thromboembolism, any bleeding events, or major bleeding events. CONCLUSION The risk of both thrombosis and bleeding following CAR T-cell therapy appears to be highest in the initial months following infusion.
Collapse
Affiliation(s)
- Poorva Bindal
- Division of Hematologic Malignancies and Cellular Therapies, University of Massachusetts, Worcester, Massachusetts, USA
| | - Rushad Patell
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/rushadpatell
| | - Thita Chiasakul
- Center of Excellence in Translational Hematology, Division of Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Mandy N Lauw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Amica Ko
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tzu-Fei Wang
- Department of Medicine, University of Ottawa at The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jeffrey I Zwicker
- Department of Medicine, Hematology Service, Memorial Sloan Kettering Cancer Center, New York City, New York, USA; Weill Cornell Medical School, New York City, New York, USA.
| |
Collapse
|
84
|
Denlinger N, Song NJ, Zhang X, Jeon H, Peterson C, Wang Y, Reynolds K, Bolz RM, Miao J, Song C, Wu D, Chan WK, Bezerra E, Epperla N, Voorhees TJ, Brammer J, Kittai AS, Bond DA, Sawalha Y, Sigmund A, Reneau JC, Rubinstein MP, Hanel W, Christian B, Baiocchi RA, Maddocks K, Alinari L, Vasu S, de Lima M, Chung D, Jaglowski S, Li Z, Huang X, Yang Y. Postinfusion PD-1+ CD8+ CAR T cells identify patients responsive to CD19 CAR T-cell therapy in non-Hodgkin lymphoma. Blood Adv 2024; 8:3140-3153. [PMID: 38607381 PMCID: PMC11222947 DOI: 10.1182/bloodadvances.2023012073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment for relapsed/refractory B-cell non-Hodgkin lymphoma (NHL). Robust biomarkers and a complete understanding of CAR T-cell function in the postinfusion phase remain limited. Here, we used a 37-color spectral flow cytometry panel to perform high dimensional single-cell analysis of postinfusion samples in 26 patients treated with CD28 costimulatory domain containing commercial CAR T cells for NHL and focused on computationally gated CD8+ CAR T cells. We found that the presence of postinfusion Programmed cell death protein 1 (PD-1)+ CD8+ CAR T cells at the day 14 time point highly correlated with the ability to achieve complete response (CR) by 6 months. Further analysis identified multiple subtypes of CD8+ PD-1+ CAR T cells, including PD-1+ T cell factor 1 (TCF1)+ stem-like CAR T cells and PD-1+ T-cell immunoglobulin and mucin-domain containing-3 (TIM3)+ effector-like CAR T cells that correlated with improved clinical outcomes such as response and progression-free survival. Additionally, we identified a subset of PD-1+ CD8+ CAR+ T cells with effector-like function that was increased in patients who achieved a CR and was associated with grade 3 or higher immune effector cell-associated neurotoxicity syndrome. Here, we identified robust biomarkers of response to CD28 CAR T cells and highlight the importance of PD-1 positivity in CD8+ CAR T cells after infusion in achieving CR.
Collapse
Affiliation(s)
- Nathan Denlinger
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - No-Joon Song
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH
| | - Hyeongseon Jeon
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH
| | - Chelsea Peterson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Kelsi Reynolds
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Robert M. Bolz
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jessica Miao
- Department of Neuroscience, The Ohio State University, Columbus, OH
| | - Chunhua Song
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Dayong Wu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Evandro Bezerra
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Narendranath Epperla
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Timothy J. Voorhees
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jonathan Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Adam S. Kittai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - David A. Bond
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Yazeed Sawalha
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Audrey Sigmund
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - John C. Reneau
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Mark P. Rubinstein
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Walter Hanel
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Beth Christian
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Kami Maddocks
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Sumithira Vasu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Marcos de Lima
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Dongjun Chung
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH
| | | | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Xiaopei Huang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Yiping Yang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
85
|
Luo J, Zhang X. Challenges and innovations in CAR-T cell therapy: a comprehensive analysis. Front Oncol 2024; 14:1399544. [PMID: 38919533 PMCID: PMC11196618 DOI: 10.3389/fonc.2024.1399544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Recent years have seen a marked increase in research on chimeric antigen receptor T (CAR-T) cells, with specific relevance to the treatment of hematological malignancies. Here, the structural principles, iterative processes, and target selection of CAR-T cells for therapeutic applications are described in detail, as well as the challenges faced in the treatment of solid tumors and hematological malignancies. These challenges include insufficient infiltration of cells, off-target effects, cytokine release syndrome, and tumor lysis syndrome. In addition, directions in the iterative development of CAR-T cell therapy are discussed, including modifications of CAR-T cell structures, improvements in specificity using multi-targets and novel targets, the use of Boolean logic gates to minimize off-target effects and control toxicity, and the adoption of additional protection mechanisms to improve the durability of CAR-T cell treatment. This review provides ideas and strategies for the development of CAR-T cell therapy through an in-depth exploration of the underlying mechanisms of action of CAR-T cells and their potential for innovative modification.
Collapse
Affiliation(s)
| | - Xianwen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
86
|
Storci G, De Felice F, Ricci F, Santi S, Messelodi D, Bertuccio SN, Laprovitera N, Dicataldo M, Rossini L, De Matteis S, Casadei B, Vaglio F, Ursi M, Barbato F, Roberto M, Guarino M, Asioli GM, Arpinati M, Cortelli P, Maffini E, Tomassini E, Tassoni M, Cavallo C, Iannotta F, Naddeo M, Tazzari PL, Dan E, Pellegrini C, Guadagnuolo S, Carella M, Sinigaglia B, Pirazzini C, Severi C, Garagnani P, Kwiatkowska KM, Ferracin M, Zinzani PL, Bonafè M, Bonifazi F. CAR+ extracellular vesicles predict ICANS in patients with B cell lymphomas treated with CD19-directed CAR T cells. J Clin Invest 2024; 134:e173096. [PMID: 38833312 PMCID: PMC11245152 DOI: 10.1172/jci173096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUNDPredicting immune effector cell-associated neurotoxicity syndrome (ICANS) in patients infused with CAR T cells is still a conundrum. This complication, thought to be consequent to CAR T cell activation, arises a few days after infusion, when circulating CAR T cells are scarce and specific CAR T cell-derived biomarkers are lacking.METHODSCAR+ extracellular vesicle (CAR+EV) release was assessed in human CD19.CAR T cells cocultured with CD19+ target cells. A prospective cohort of 100 patients with B cell lymphoma infused with approved CD19.CAR T cell products was assessed for plasma CAR+EVs as biomarkers of in vivo CD19.CAR T cell activation. Human induced pluripotent stem cell-derived (iPSC-derived) neural cells were used as a model for CAR+EV-induced neurotoxicity.RESULTSIn vitro release of CAR+EVs occurs within 1 hour after target engagement. Plasma CAR+EVs are detectable 1 hour after infusion. A concentration greater than 132.8 CAR+EVs/μL at hour +1 or greater than 224.5 CAR+EVs/μL at day +1 predicted ICANS in advance of 4 days, with a sensitivity and a specificity outperforming other ICANS predictors. ENO2+ nanoparticles were released by iPSC-derived neural cells upon CAR+EV exposure and were increased in plasma of patients with ICANS.CONCLUSIONPlasma CAR+EVs are an immediate signal of CD19.CAR T cell activation, are suitable predictors of neurotoxicity, and may be involved in ICANS pathogenesis.TRIAL REGISTRATIONNCT04892433, NCT05807789.FUNDINGLife Science Hub-Advanced Therapies (financed by Health Ministry as part of the National Plan for Complementary Investments to the National Recovery and Resilience Plan [NRRP]: E.3 Innovative health ecosystem for APC fees and immunomonitoring).
Collapse
Affiliation(s)
- Gianluca Storci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco De Felice
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Francesca Ricci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Spartaco Santi
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | - Daria Messelodi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Michele Dicataldo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Lucrezia Rossini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Vaglio
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Ursi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Francesco Barbato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Marcello Roberto
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Maria Guarino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Mario Arpinati
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, Università di Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Enrico Maffini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Enrica Tomassini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marta Tassoni
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Carola Cavallo
- Laboratory Ramses, Research & Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Maria Naddeo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Elisa Dan
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Matteo Carella
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Chiara Pirazzini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Paolo Garagnani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero–Università di Bologna, Istituto di Ematologia “Seràgnoli,” Bologna, Italy
| | - Massimiliano Bonafè
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | |
Collapse
|
87
|
Haghikia A, Schett G, Mougiakakos D. B cell-targeting chimeric antigen receptor T cells as an emerging therapy in neuroimmunological diseases. Lancet Neurol 2024; 23:615-624. [PMID: 38760099 DOI: 10.1016/s1474-4422(24)00140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Neuroimmunology research and development has been marked by substantial advances, particularly in the treatment of neuroimmunological diseases, such as multiple sclerosis, myasthenia gravis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody disease. With more than 20 drugs approved for multiple sclerosis alone, treatment has become more personalised. The approval of disease-modifying therapies, particularly those targeting B cells, has highlighted the role of immunotherapeutic interventions in the management of these diseases. Despite these successes, challenges remain, particularly for patients who do not respond to conventional therapies, underscoring the need for innovative approaches. RECENT DEVELOPMENTS The approval of monoclonal antibodies, such as ocrelizumab and ofatumumab, which target CD20, and inebilizumab, which targets CD19, for the treatment of various neuroimmunological diseases reflects progress in the understanding and management of B-cell activity. However, the limitations of these therapies in halting disease progression or activity in patients with multiple sclerosis or neuromyelitis optica spectrum disorders have prompted the exploration of cell-based therapies, particularly chimeric antigen receptor (CAR) T cells. Initially successful in the treatment of B cell-derived malignancies, CAR T cells offer a novel therapeutic mechanism by directly targeting and eliminating B cells, potentially overcoming the shortcomings of antibody-mediated B cell depletion. WHERE NEXT?: The use of CAR T cells in autoimmune diseases and B cell-driven neuroimmunological diseases shows promise as a targeted and durable option. CAR T cells act autonomously, penetrating deep tissue and effectively depleting B cells, especially in the CNS. Although the therapeutic potential of CAR T cells is substantial, their application faces hurdles such as complex logistics and management of therapy-associated toxic effects. Ongoing and upcoming clinical trials will be crucial in determining the safety, efficacy, and applicability of CAR T cells. As research progresses, CAR T cell therapy has the potential to transform treatment for patients with neuroimmunological diseases. It could offer extended periods of remission and a new standard in the management of autoimmune and neuroimmunological disorders.
Collapse
Affiliation(s)
- Aiden Haghikia
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Haematology, Oncology, and Cell Therapy and Oncology and Health Campus Immunology, Infectiology, and Inflammation (GCI(3)), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
88
|
Benmelech S, Le T, McKay M, Nam J, Subramaniam K, Tellez D, Vlasak G, Mak M. Biophysical and biochemical aspects of immune cell-tumor microenvironment interactions. APL Bioeng 2024; 8:021502. [PMID: 38572312 PMCID: PMC10990568 DOI: 10.1063/5.0195244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
The tumor microenvironment (TME), composed of and influenced by a heterogeneous set of cancer cells and an extracellular matrix, plays a crucial role in cancer progression. The biophysical aspects of the TME (namely, its architecture and mechanics) regulate interactions and spatial distributions of cancer cells and immune cells. In this review, we discuss the factors of the TME-notably, the extracellular matrix, as well as tumor and stromal cells-that contribute to a pro-tumor, immunosuppressive response. We then discuss the ways in which cells of the innate and adaptive immune systems respond to tumors from both biochemical and biophysical perspectives, with increased focus on CD8+ and CD4+ T cells. Building upon this information, we turn to immune-based antitumor interventions-specifically, recent biophysical breakthroughs aimed at improving CAR-T cell therapy.
Collapse
Affiliation(s)
- Shoham Benmelech
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Thien Le
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maggie McKay
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Jungmin Nam
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Krupakar Subramaniam
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Daniela Tellez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Grace Vlasak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
89
|
Zhang G, Wang Y, Lu S, Ding F, Wang X, Zhu C, Wang Y, Wang K. Molecular understanding and clinical outcomes of CAR T cell therapy in the treatment of urological tumors. Cell Death Dis 2024; 15:359. [PMID: 38789450 PMCID: PMC11126652 DOI: 10.1038/s41419-024-06734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Chimeric antigen receptor engineered T (CAR T) cell therapy has developed rapidly in recent years, leading to profound developments in oncology, especially for hematologic malignancies. However, given the pressure of immunosuppressive tumor microenvironments, antigen escape, and diverse other factors, its application in solid tumors is less developed. Urinary system tumors are relatively common, accounting for approximately 24% of all new cancers in the United States. CAR T cells have great potential for urinary system tumors. This review summarizes the latest developments of CAR T cell therapy in urinary system tumors, including kidney cancer, bladder cancer, and prostate cancer, and also outlines the various CAR T cell generations and their pathways and targets that have been developed thus far. Finally, the current advantages, problems, and side effects of CAR T cell therapy are discussed in depth, and potential future developments are proposed in view of current shortcomings.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shiyang Lu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fengzhu Ding
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yibing Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
90
|
Yoshikawa T, Ito Y, Wu Z, Kasuya H, Nakashima T, Okamoto S, Amaishi Y, Zhang H, Li Y, Matsukawa T, Inoue S, Kagoya Y. Development of a chimeric cytokine receptor that captures IL-6 and enhances the antitumor response of CAR-T cells. Cell Rep Med 2024; 5:101526. [PMID: 38670095 PMCID: PMC11148643 DOI: 10.1016/j.xcrm.2024.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/06/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
The efficacy of chimeric antigen receptor (CAR)-engineered T cell therapy is suboptimal in most cancers, necessitating further improvement in their therapeutic actions. However, enhancing antitumor T cell response inevitably confers an increased risk of cytokine release syndrome associated with monocyte-derived interleukin-6 (IL-6). Thus, an approach to simultaneously enhance therapeutic efficacy and safety is warranted. Here, we develop a chimeric cytokine receptor composed of the extracellular domains of GP130 and IL6RA linked to the transmembrane and cytoplasmic domain of IL-7R mutant that constitutively activates the JAK-STAT pathway (G6/7R or G6/7R-M452L). CAR-T cells with G6/7R efficiently absorb and degrade monocyte-derived IL-6 in vitro. The G6/7R-expressing CAR-T cells show superior expansion and persistence in vivo, resulting in durable antitumor response in both liquid and solid tumor mouse models. Our strategy can be widely applicable to CAR-T cell therapy to enhance its efficacy and safety, irrespective of the target antigen.
Collapse
Affiliation(s)
- Toshiaki Yoshikawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Zhiwen Wu
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Hitomi Kasuya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Takahiro Nakashima
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya 467-8601, Japan
| | | | | | - Haosong Zhang
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yang Li
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tetsuya Matsukawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
91
|
Evangelidis P, Evangelidis N, Kalmoukos P, Kourti M, Tragiannidis A, Gavriilaki E. Genetic Susceptibility in Endothelial Injury Syndromes after Hematopoietic Cell Transplantation and Other Cellular Therapies: Climbing a Steep Hill. Curr Issues Mol Biol 2024; 46:4787-4802. [PMID: 38785556 PMCID: PMC11119915 DOI: 10.3390/cimb46050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T) and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement pathway- and endothelial function-related genes have been associated with the development of HSCT-TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are included. Thus, patients with these variations might have a predisposition to complement activation, which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome, and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally, specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS (PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes for our patients.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Nikolaos Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Panagiotis Kalmoukos
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Maria Kourti
- 3rd Department of Pediatrics, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| |
Collapse
|
92
|
Strongyli E, Evangelidis P, Sakellari I, Gavriilaki M, Gavriilaki E. Change in Neurocognitive Function in Patients Who Receive CAR-T Cell Therapies: A Steep Hill to Climb. Pharmaceuticals (Basel) 2024; 17:591. [PMID: 38794161 PMCID: PMC11123727 DOI: 10.3390/ph17050591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Immunotherapy with chimeric antigen receptor T (CAR-T) cell therapies has brought substantial improvement in clinical outcomes in patients with relapsed/refractory B cell neoplasms. However, complications such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) limit the therapeutic efficacy of this treatment approach. ICANS can have a broad range of clinical manifestations, while various scoring systems have been developed for its grading. Cognitive decline is prevalent in CAR-T therapy recipients including impaired attention, difficulty in item naming, and writing, agraphia, and executive dysfunction. In this review, we aim to present the diagnostic methods and tests that have been used for the recognition of cognitive impairment in these patients. Moreover, up-to-date data about the duration of cognitive impairment symptoms after the infusion are presented. More research on the risk factors, pathogenesis, preventive measures, and therapy of neurocognitive impairment is crucial for better outcomes for our patients.
Collapse
Affiliation(s)
- Evlampia Strongyli
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
| | - Paschalis Evangelidis
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
| | - Maria Gavriilaki
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
93
|
Kim SJ, Yoon SE, Kim WS. Current Challenges in Chimeric Antigen Receptor T-cell Therapy in Patients With B-cell Lymphoid Malignancies. Ann Lab Med 2024; 44:210-221. [PMID: 38205527 PMCID: PMC10813822 DOI: 10.3343/alm.2023.0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapy based on genetically engineered T cells derived from patients. The introduction of CAR T-cell therapy has changed the treatment paradigm of patients with B-cell lymphoid malignancies. However, challenging issues including managing life-threatening toxicities related to CAR T-cell infusion and resistance to CAR T-cell therapy, leading to progression or relapse, remain. This review summarizes the issues with currently approved CAR T-cell therapies for patients with relapsed or refractory B-cell lymphoid malignancies, including lymphoma and myeloma. We focus on unique toxicities after CAR T-cell therapy, such as cytokine-related events and hematological toxicities, and the mechanisms underlying post-CAR T-cell failure.
Collapse
Affiliation(s)
- Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
- CAR T-cell Therapy Center, Samsung Comprehensive Cancer Center, Seoul, Korea
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- CAR T-cell Therapy Center, Samsung Comprehensive Cancer Center, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
- CAR T-cell Therapy Center, Samsung Comprehensive Cancer Center, Seoul, Korea
| |
Collapse
|
94
|
Li Y, Hu Z, Li Y, Wu X. Charting new paradigms for CAR-T cell therapy beyond current Achilles heels. Front Immunol 2024; 15:1409021. [PMID: 38751430 PMCID: PMC11094207 DOI: 10.3389/fimmu.2024.1409021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has made remarkable strides in treating hematological malignancies. However, the widespread adoption of CAR-T cell therapy is hindered by several challenges. These include concerns about the long-term and complex manufacturing process, as well as efficacy factors such as tumor antigen escape, CAR-T cell exhaustion, and the immunosuppressive tumor microenvironment. Additionally, safety issues like the risk of secondary cancers post-treatment, on-target off-tumor toxicity, and immune effector responses triggered by CAR-T cells are significant considerations. To address these obstacles, researchers have explored various strategies, including allogeneic universal CAR-T cell development, infusion of non-activated quiescent T cells within a 24-hour period, and in vivo induction of CAR-T cells. This review comprehensively examines the clinical challenges of CAR-T cell therapy and outlines strategies to overcome them, aiming to chart pathways beyond its current Achilles heels.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenhua Hu
- Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
95
|
Lin H, Deng T, Jiang L, Meng F, Cao Y, Zhang Y, Ge R, Zhu X. Adverse Reactions in Relapsed/Refractory B-Cell Lymphoma Administered with Chimeric Antigen Receptor T Cell Alone or in Combination with Autologous Stem Cell Transplantation. Cancers (Basel) 2024; 16:1722. [PMID: 38730674 PMCID: PMC11083715 DOI: 10.3390/cancers16091722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: The combination of CAR-T with ASCT has been observed to enhance the efficacy of CAR-T cell therapy. However, the impact of this combination on adverse reactions is still uncertain. (2) Methods: Between January 2019 and February 2023, 292 patients diagnosed with r/r B-cell lymphoma received either CAR-T therapy alone or in combination with ASCT at our institution. We evaluated the incidence of CRS and CRES and utilized a logistic regression model to identify factors contributing to severe CRS (grade 3-4) and CRES (grade 3-4). (3) Results: The overall incidence of CRS and CRES was 78.9% and 8.2% in 147 patients receiving CAR-T alone, and 95.9% and 15.2% in 145 patients receiving CAR-T combined with ASCT, respectively. The incidence of overall CRS (p < 0.0001) and mild CRS (grade 1-2) (p = 0.021) was elevated in the ASCT combined with CAR-T group. No significant difference was observed in severe CRS and CRES between the groups. Among the 26 cases of lymphoma involving the central nervous system (CNS), 96.2% (25/26) developed CRS (15.4% grade 3-4), and 34.6% (9/26) manifested CRES (7.7% grade 3-4). Female patients had a lower incidence of severe CRS but a higher incidence of severe CRES. Lymphomas with CNS involvement demonstrated a higher risk of CRES compared to those without central involvement. (4) Conclusions: The combination of ASCT with CAR-T demonstrated a preferable option in r/r B-cell lymphoma without an increased incidence of severe CRS and CRES.
Collapse
Affiliation(s)
- Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Ting Deng
- Department of Hematology, Chongqing Fifth People’s Hospital, Chongqing 400062, China;
| | - Lijun Jiang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Renying Ge
- Department of Hematology, Xianning Central Hospital, The First Affiliated Hospital to Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| |
Collapse
|
96
|
Moe A, Rayasam A, Sauber G, Shah RK, Doherty A, Yuan CY, Szabo A, Moore BM, Colonna M, Cui W, Romero J, Zamora AE, Hillard CJ, Drobyski WR. Type 2 cannabinoid receptor expression on microglial cells regulates neuroinflammation during graft-versus-host disease. J Clin Invest 2024; 134:e175205. [PMID: 38662453 PMCID: PMC11142740 DOI: 10.1172/jci175205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype that potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and have implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aniko Szabo
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bob M. Moore
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri, USA
| | - Weiguo Cui
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
| | - Julian Romero
- Faculty of Experimental Sciences, Francisco de Vitoria University, Madrid, Spain
| | | | | | | |
Collapse
|
97
|
Ma S, Wang Y, Qi K, Lu W, Qi Y, Cao J, Niu M, Li D, Sang W, Yan Z, Zhu F, Cheng H, Li Z, Zhao M, Xu K. Associations of granulocyte colony-stimulating factor with toxicities and efficacy of chimeric antigen receptor T-cell therapy in relapsed or refractory B-cell acute lymphoblastic leukemia. Cancer Immunol Immunother 2024; 73:104. [PMID: 38630258 PMCID: PMC11024067 DOI: 10.1007/s00262-024-03661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Few studies have reported the associations of granulocyte colony-stimulating factor (G-CSF) with cytokine release syndrome (CRS), neurotoxic events (NEs) and efficacy after chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). We present a retrospective study of 67 patients with R/R B-ALL who received anti-CD19 CAR T-cell therapy, 41 (61.2%) patients received G-CSF (G-CSF group), while 26 (38.8%) did not (non-G-CSF group). Patients had similar duration of grade 3-4 neutropenia between the two groups. The incidences of CRS and NEs were higher in G-CSF group, while no differences in severity were found. Further stratified analysis showed that the incidence and severity of CRS were not associated with G-CSF administration in patients with low bone marrow (BM) tumor burden. None of the patients with low BM tumor burden developed NEs. However, there was a significant increase in the incidence of CRS after G-CSF administration in patients with high BM tumor burden. The duration of CRS in patients who used G-CSF was longer. There were no significant differences in response rates at 1 and 3 months after CAR T-cell infusion, as well as overall survival (OS) between the two groups. In conclusion, our results showed that G-CSF administration was not associated with the incidence or severity of CRS in patients with low BM tumor burden, but the incidence of CRS was higher after G-CSF administration in patients with high BM tumor burden. The duration of CRS was prolonged in G-CSF group. G-CSF administration was not associated with the efficacy of CAR T-cell therapy.
Collapse
Affiliation(s)
- Sha Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Tianjin, 300192, China
| | - Yuekun Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Depeng Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Zhiling Yan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, No. 24 Fu Kang Road, Tianjin, 300192, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
98
|
Dima D, Rashid A, Davis JA, Shune L, Abdallah AO, Li H, DeJarnette S, Khouri J, Williams L, Hashmi H, Raza S, McGuirk J, Anwer F, Ahmed N. Efficacy and safety of idecabtagene vicleucel in patients with relapsed-refractory multiple myeloma not meeting the KarMMa-1 trial eligibility criteria: A real-world multicentre study. Br J Haematol 2024; 204:1293-1299. [PMID: 38263627 DOI: 10.1111/bjh.19302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Ide-cel received approval for relapsed-refractory multiple myeloma based on the results of the KarMMa-1 trial. However, patients with significant comorbidities, aggressive disease and prior B-cell maturation antigen-directed therapy (BCMA-DT) were excluded. This retrospective study evaluated real-world outcomes of patients who did not meet the KarMMa-1 eligibility criteria and were treated with standard of care (SOC) ide-cel. A total of 69 patients from three US centres who did not meet the KarMMa-1 criteria underwent ide-cel infusion. The main reasons for trial ineligibility included baseline grade 3-4 cytopenia (39%), prior BCMA-DT (26%), renal impairment (19%) and Eastern Cooperative Oncology Group performance status ≥2 (14.5%). Cytokine-release syndrome occurred in 81% vs. 84%, and immune effector cell-associated neurotoxicity syndrome occurred in 28% vs. 18% of SOC versus KarMMa-1 patients, respectively. Early infection (≤8 weeks post-infusion) and severe infection rates were 42% vs. 49% and 30% vs. 22% for the SOC versus KarMMa-1 cohorts, respectively. Grade 3-4 cytopenias for SOC versus KarMMa-1 cohorts were: neutropenia (87% vs. 89%), anaemia (51% vs. 60%) and thrombocytopenia (65% vs. 52%). Overall response rate was higher for the SOC cohort (93% vs. 73%), as was the complete response or better rate (48% vs. 33%). However, median progression-free survival and overall survival were comparable between the two groups. Our findings support broadening the inclusion criteria of future trials evaluating ide-cel.
Collapse
Affiliation(s)
- Danai Dima
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Center, Cleveland, Ohio, USA
| | - Aliya Rashid
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Westwood, Kansas, USA
| | - James A Davis
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
- Department of Hematology-Oncology, Medical College of South Carolina, Charleston, South Carolina, USA
| | - Leyla Shune
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Westwood, Kansas, USA
| | - Al-Ola Abdallah
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Westwood, Kansas, USA
| | - Hong Li
- Department of Biostatistics and Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shaun DeJarnette
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Westwood, Kansas, USA
| | - Jack Khouri
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Center, Cleveland, Ohio, USA
| | - Louis Williams
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Center, Cleveland, Ohio, USA
| | - Hamza Hashmi
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
- Department of Hematology-Oncology, Medical College of South Carolina, Charleston, South Carolina, USA
| | - Shahzad Raza
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
| | - Joseph McGuirk
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Westwood, Kansas, USA
| | - Faiz Anwer
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Center, Cleveland, Ohio, USA
| | - Nausheen Ahmed
- US Myeloma Innovations Research Collaborative (USMIRC), Kansas City, Kansas, USA
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Westwood, Kansas, USA
| |
Collapse
|
99
|
Qian H, Yang X, Zhang T, Zou P, Zhang Y, Tian W, Mao Z, Wei J. Improving the safety of CAR-T-cell therapy: The risk and prevention of viral infection for patients with relapsed or refractory B-cell lymphoma undergoing CAR-T-cell therapy. Am J Hematol 2024; 99:662-678. [PMID: 38197307 DOI: 10.1002/ajh.27198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy, an innovative immunotherapeutic against relapsed/refractory B-cell lymphoma, faces challenges due to frequent viral infections. Despite this, a comprehensive review addressing risk assessment, surveillance, and treatment management is notably absent. This review elucidates immune response compromises during viral infections in CAR-T recipients, collates susceptibility risk factors, and deliberates on preventive strategies. In the post-pandemic era, marked by the Omicron variant, new and severe threats to CAR-T therapy emerge, necessitating exploration of preventive and treatment measures for COVID-19. Overall, the review provides recommendations for viral infection prophylaxis and management, enhancing CAR-T product safety and recipient survival.
Collapse
Affiliation(s)
- Hu Qian
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Ping Zou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zekai Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
100
|
Pourhassan H, Kareem W, Agrawal V, Aldoss I. Important Considerations in the Intensive Care Management of Acute Leukemias. J Intensive Care Med 2024; 39:291-305. [PMID: 37990559 DOI: 10.1177/08850666231193955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In the realm of hematologic disorders, acute leukemia is approached as an emergent disease given the multitude of complications and challenges that present both as a result of inherent disease pathology and adverse events associated with antineoplastic therapies and interventions. The heavy burden of leukemic cells may lead to complications including tumor lysis syndrome, hyperleukocytosis, leukostasis, and differentiation syndrome, and the initiation of treatment can further exacerbate these effects. Capillary leak syndrome is observed as a result of antineoplastic agents used in acute leukemia, and L-asparaginase, a bacterial-derived enzyme, has a unique side effect profile including association with thrombosis. Thrombohemorrhagic syndrome and malignancy-associated thrombosis are also commonly observed complications due to direct disequilibrium in coagulant and anticoagulant factors. Due to inherent effects on the white blood cell milieu, leukemia patients are inherently immunocompromised and vulnerable to life-threatening sepsis. Lastly, the advents of newer therapies such as chimeric antigen receptor (CAR) T-cells have clinicians facing the management of related toxicities on unfamiliar territory. This review aims to discuss these acute leukemia-associated complications, their pathology, and management recommendations.
Collapse
Affiliation(s)
- Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Waasil Kareem
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|