51
|
Peng H, Wu X, Zhang C, Liang Y, Cheng S, Zhang H, Shen L, Chen Y. Analyzing the associations between tertiary lymphoid structures and postoperative prognosis, along with immunotherapy response in gastric cancer: findings from pooled cohort studies. J Cancer Res Clin Oncol 2024; 150:153. [PMID: 38519621 PMCID: PMC10959798 DOI: 10.1007/s00432-024-05672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The clinical significance of tertiary lymphoid structure (TLS) in gastric cancer (GC) was uncertain. METHODS A systematic search was performed in public databases for eligible studies as of April 2, 2023. Meta-analyses were performed to interrogate the associations between TLS levels and prognosis and immunotherapy response of GC. Bioinformatic analyses based on the nine-gene signature of TLS were further conducted to capture the biological underpinnings. RESULTS Eleven studies containing 4224 GC cases were enrolled in the meta-analysis. TLS levels positively correlated with smaller tumor size, earlier T stage and N stage. Moreover, higher TLS levels were detected in diffuse and mix subtypes of GC (P < 0.001). Higher TLS levels strongly predicted favorable postoperative overall survival of GC, with HR of 0.36 (95%CI 0.26-0.50, P < 0.001) and 0.55 (95%CI 0.45-0.68, P < 0.001) of univariate and multivariate Cox analysis, respectively. Higher TLS levels were also in favor of the treatment response of anti-PD-1 inhibitors as later-line therapy of GC. TLS levels positively correlated with immune effector cells infiltration, diversity and richness of T cell receptor and B cell receptor repertoire, immune checkpoint genes expression, and immune-related genes mutation of GC in the TCGA-STAD cohort, representing higher immunogenicity and immunoactivity. Moreover, moderate accuracy of TLS levels in predicting benefit from anti-PD-1 inhibitors in the PRJEB25780 cohort was also validated (AUC 0.758, 95%CI 0.583-0.933), higher than the microsatellite instability-score and Epstein-Barr virus status. CONCLUSIONS TLS levels demonstrated potential in predicting the postoperative prognosis and immunotherapy response of GC.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangrong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yueting Liang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Siyuan Cheng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Honglang Zhang
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Oncology, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
52
|
Wang SY, Wang YX, Shen A, Yang XQ, Liang CC, Huang RJ, Jian R, An N, Xiao YL, Wang LS, Zhao Y, Lin C, Wang CP, Yuan ZP, Yuan SQ. Construction of a gene model related to the prognosis of patients with gastric cancer receiving immunotherapy and exploration of COX7A1 gene function. Eur J Med Res 2024; 29:180. [PMID: 38494472 PMCID: PMC11337786 DOI: 10.1186/s40001-024-01783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND GC is a highly heterogeneous tumor with different responses to immunotherapy, and the positive response depends on the unique interaction between the tumor and the tumor microenvironment (TME). However, the currently available methods for prognostic prediction are not satisfactory. Therefore, this study aims to construct a novel model that integrates relevant gene sets to predict the clinical efficacy of immunotherapy and the prognosis of GC patients based on machine learning. METHODS Seven GC datasets were collected from the Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA) database and literature sources. Based on the immunotherapy cohort, we first obtained a list of immunotherapy related genes through differential expression analysis. Then, Cox regression analysis was applied to divide these genes with prognostic significancy into protective and risky types. Then, the Single Sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to score the two categories of gene sets separately, and the scores differences between the two gene sets were used as the basis for constructing the prognostic model. Subsequently, Weighted Correlation Network Analysis (WGCNA) and Cytoscape were applied to further screen the gene sets of the constructed model, and finally COX7A1 was selected for the exploration and prediction of the relationship between the clinical efficacy of immunotherapy for GC. The correlation between COX7A1 and immune cell infiltration, drug sensitivity scoring, and immunohistochemical staining were performed to initially understand the potential role of COX7A1 in the development and progression of GC. Finally, the differential expression of COX7A1 was verified in those GC patients receiving immunotherapy. RESULTS First, 47 protective genes and 408 risky genes were obtained, and the ssGSEA algorithm was applied for model construction, showing good prognostic discrimination ability. In addition, the patients with high model scores showed higher TMB and MSI levels, and lower tumor heterogeneity scores. Then, it is found that the COX7A1 expressions in GC tissues were significantly lower than those in their corresponding paracancerous tissues. Meanwhile, the patients with high COX7A1 expression showed higher probability of cancer invasion, worse clinical efficacy of immunotherapy, worse overall survival (OS) and worse disease-free survival (DFS). CONCLUSIONS The ssGSEA score we constructed can serve as a biomarker for GC patients and provide important guidance for individualized treatment. In addition, the COX7A1 gene can accurately distinguish the prognosis of GC patients and predict the clinical efficacy of immunotherapy for GC patients.
Collapse
Affiliation(s)
- Si-Yu Wang
- Department of Oncology, The First People's Hospital of Yibin, No. 65, Wenxing Street, Cuiping District, Yibin, 644000, China
| | - Yu-Xin Wang
- The First Hospital of Jilin University, Changchun, 130000, China
| | - Ao Shen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Qi Yang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Cheng-Cai Liang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Run-Jie Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Rui Jian
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Nan An
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yu-Long Xiao
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Li-Shuai Wang
- Department of Oncology, The First People's Hospital of Yibin, No. 65, Wenxing Street, Cuiping District, Yibin, 644000, China
| | - Yin Zhao
- Department of Oncology, The First People's Hospital of Yibin, No. 65, Wenxing Street, Cuiping District, Yibin, 644000, China
| | - Chuan Lin
- Department of Oncology, The First People's Hospital of Yibin, No. 65, Wenxing Street, Cuiping District, Yibin, 644000, China
| | - Chang-Ping Wang
- Department of Oncology, The First People's Hospital of Yibin, No. 65, Wenxing Street, Cuiping District, Yibin, 644000, China
| | - Zhi-Ping Yuan
- Department of Oncology, The First People's Hospital of Yibin, No. 65, Wenxing Street, Cuiping District, Yibin, 644000, China
| | - Shu-Qiang Yuan
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
53
|
Chen DL, Chen N, Sheng H, Zhang DS. Circular RNA circNCOA3 promotes tumor progression and anti-PD-1 resistance in colorectal cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:9. [PMID: 38510750 PMCID: PMC10951830 DOI: 10.20517/cdr.2023.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Aim: Circular RNAs (circRNAs) have been found to be involved in tumor progression, but their role in colorectal cancer (CRC) immune escape remains to be elucidated. Methods: circRNAs differentially expressed in responsive and resistant CRC tissues to programmed cell death 1 (PD-1) antibody therapy were identified by microarray analysis. The clinical and pathological significance of circNCOA3 was validated in a separate cohort of CRC samples. The function of circNCOA3 was explored experimentally. RNA immunoprecipitation and luciferase activity assays were conducted to identify downstream targets of circNCOA3. Results: The circNCOA3 was markedly overexpressed in CRC samples resistant to PD-1 blockade. circNCOA3 expression was significantly correlated with adverse tumor phenotypes and poor outcomes in CRC patients. Knockdown of circNCOA3 expression markedly suppressed the proliferative and invasive capability of CRC cells. Moreover, knockdown of circNCOA3 increased the proportion of CD8+ T cells while decreasing the proportion of myeloid-derived suppressor cells (MDSCs). Knockdown of circNCOA3 inhibited tumor growth and increased the sensitivity to PD-1 antibody treatment in mouse tumor models. Further studies revealed that circNCOA3 acted as a competing endogenous RNA (ceRNA) for miR-203a-3p.1 to influence the level of CXCL1. Conclusion: Our findings indicate that circNCOA3 might be useful as a potential biomarker to predict the efficacy and prognosis of CRC patients treated with anti-PD-1 therapy.
Collapse
Affiliation(s)
- Dong-Liang Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | | | | | | |
Collapse
|
54
|
Tu X, Chen L, Zheng Y, Mu C, Zhang Z, Wang F, Ren Y, Duan Y, Zhang H, Tong Z, Liu L, Sun X, Zhao P, Wang L, Feng X, Fang W, Liu X. S100A9 +CD14 + monocytes contribute to anti-PD-1 immunotherapy resistance in advanced hepatocellular carcinoma by attenuating T cell-mediated antitumor function. J Exp Clin Cancer Res 2024; 43:72. [PMID: 38454445 PMCID: PMC10921725 DOI: 10.1186/s13046-024-02985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The paucity of reliable biomarkers for predicting immunotherapy efficacy in patients with advanced hepatocellular carcinoma (HCC) has emerged as a burgeoning concern with the expanding use of immunotherapy. This study endeavors to delve into the potential peripheral biomarkers capable of prognosticating efficacy in HCC patients who are poised to receive anti-PD-1 monotherapy within the phase III clinical trial, KEYNOTE394. Additionally, we sought to elucidate the underlying molecular mechanisms for resistance to immune checkpoint blockade (ICB) and propose innovative combination immunotherapy strategies for future clinical application. METHODS Patient blood samples were collected for single-cell RNA sequencing to evaluate the immune cell signature before receiving ICB therapy. Subsequently, in vitro assays and in vivo murine model experiments were conducted to validate the mechanism that S100A9+CD14+ monocytes play a role in ICB resistance. RESULTS Our study demonstrates a notable enrichment of S100A9+CD14+ monocytes in the peripheral blood of patients exhibiting suboptimal responses to anti-PD-1 therapy. Moreover, we identified the Mono_S100A9 signature as a predictive biomarker, indicative of reduced efficacy in immunotherapy and decreased survival benefits across various tumor types. Mechanistically, S100A9 activates PD-L1 transcription by directly binding to the CD274 (PD-L1) gene promoter, thereby suppressing T-cell proliferation and cytotoxicity via the PD-1/PD-L1 axis, consequently diminishing the therapeutic effectiveness of subsequent anti-PD-1 treatments. Furthermore, our in vivo studies revealed that inhibiting S100A9 can synergistically enhance the efficacy of anti-PD-1 drugs in the eradication of hepatocellular carcinoma. CONCLUSIONS Our study underscores the significance of S100A9+CD14+ monocytes in predicting inadequate response to ICB treatment and provides insights into the monocyte cell-intrinsic mechanisms of resistance to ICB therapy. We also propose a combined therapeutic approach to enhance ICB efficacy by targeting S100A9.
Collapse
Affiliation(s)
- Xiaoxuan Tu
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Longxian Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yi Zheng
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Chenglin Mu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Zhiwei Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Feiyu Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yiqing Ren
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Yingxin Duan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hangyu Zhang
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhou Tong
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Lulu Liu
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xunqi Sun
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Peng Zhao
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Lie Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, People's Republic of China
| | - Xinhua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, People's Republic of China.
| | - Weijia Fang
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
55
|
Leibold J, Tsanov KM, Amor C, Ho YJ, Sánchez-Rivera FJ, Feucht J, Baslan T, Chen HA, Tian S, Simon J, Wuest A, Wilkinson JE, Lowe SW. Somatic mouse models of gastric cancer reveal genotype-specific features of metastatic disease. NATURE CANCER 2024; 5:315-329. [PMID: 38177458 PMCID: PMC10899107 DOI: 10.1038/s43018-023-00686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
Metastatic gastric carcinoma is a highly lethal cancer that responds poorly to conventional and molecularly targeted therapies. Despite its clinical relevance, the mechanisms underlying the behavior and therapeutic response of this disease are poorly understood owing, in part, to a paucity of tractable models. Here we developed methods to somatically introduce different oncogenic lesions directly into the murine gastric epithelium. Genotypic configurations observed in patients produced metastatic gastric cancers that recapitulated the histological, molecular and clinical features of all nonviral molecular subtypes of the human disease. Applying this platform to both wild-type and immunodeficient mice revealed previously unappreciated links between the genotype, organotropism and immune surveillance of metastatic cells, which produced distinct patterns of metastasis that were mirrored in patients. Our results establish a highly portable platform for generating autochthonous cancer models with flexible genotypes and host backgrounds, which can unravel mechanisms of gastric tumorigenesis or test new therapeutic concepts.
Collapse
Affiliation(s)
- Josef Leibold
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medical Oncology and Pneumology, University Hospital Tuebingen, Tuebingen, Germany.
- iFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany.
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corina Amor
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Judith Feucht
- iFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
- Department I-General Paediatrics, Haematology/Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Hsuan-An Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sha Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Janelle Simon
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra Wuest
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John E Wilkinson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
56
|
Mimura K, Ogata T, Nguyen PHD, Roy S, Kared H, Yuan YC, Fehlings M, Yoshimoto Y, Yoshida D, Nakajima S, Sato H, Machida N, Yamada T, Watanabe Y, Tamaki T, Fujikawa H, Inokuchi Y, Hayase S, Hanayama H, Saze Z, Katoh H, Takahashi F, Oshima T, Goel A, Nardin A, Suzuki Y, Kono K. Combination of oligo-fractionated irradiation with nivolumab can induce immune modulation in gastric cancer. J Immunother Cancer 2024; 12:e008385. [PMID: 38290769 PMCID: PMC10828861 DOI: 10.1136/jitc-2023-008385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Tumor-associated antigen (TAA)-specific CD8(+) T cells are essential for nivolumab therapy, and irradiation has been reported to have the potential to generate and activate TAA-specific CD8(+) T cells. However, mechanistic insights of T-cell response during combinatorial immunotherapy using radiotherapy and nivolumab are still largely unknown. METHODS Twenty patients included in this study were registered in the CIRCUIT trial (ClinicalTrials.gov, NCT03453164). All patients had multiple distant metastases and were intolerance or had progressed after primary and secondary chemotherapy without any immune checkpoint inhibitor. In the CIRCUIT trial, eligible patients were treated with a total of 22.5 Gy/5 fractions/5 days of radiotherapy to the largest or symptomatic lesion prior to receiving nivolumab every 2 weeks. In these 20 patients, T-cell responses during the combinatorial immunotherapy were monitored longitudinally by high-dimensional flow cytometry-based, multiplexed major histocompatibility complex multimer analysis using a total of 46 TAAs and 10 virus epitopes, repertoire analysis of T-cell receptor β-chain (TCRβ), together with circulating tumor DNA analysis to evaluate tumor mutational burden (TMB). RESULTS Although most TAA-specific CD8(+) T cells could be tracked longitudinally, several TAA-specific CD8(+) T cells were detected de novo after irradiation, but viral-specific CD8(+) T cells did not show obvious changes during treatment, indicating potential irradiation-driven antigen spreading. Irradiation was associated with phenotypical changes of TAA-specific CD8(+) T cells towards higher expression of killer cell lectin-like receptor subfamily G, member 1, human leukocyte antigen D-related antigen, T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, CD160, and CD45RO together with lower expression of CD27 and CD127. Of importance, TAA-specific CD8(+) T cells in non-progressors frequently showed a phenotype of CD45RO(+)CD27(+)CD127(+) central memory T cells compared with those in progressors. TCRβ clonality (inverted Pielou's evenness) increased and TCRβ diversity (Pielou's evenness and Diversity Evenness score) decreased during treatment in progressors (p=0.029, p=0.029, p=0.012, respectively). TMB score was significantly lower in non-progressors after irradiation (p=0.023). CONCLUSION Oligo-fractionated irradiation induces an immune-modulating effect with potential antigen spreading and the combination of radiotherapy and nivolumab may be effective in a subset of patients with gastric cancer.
Collapse
Affiliation(s)
- Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Ogata
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | | | - Souvick Roy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, California, USA
| | | | - Yate-Ching Yuan
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, California, USA
- Department of Computational Quantitative Medicine, City of Hope National Medical Center, Duarte, California, USA
| | | | - Yuya Yoshimoto
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hisashi Sato
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nozomu Machida
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Watanabe
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirohito Fujikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yasuhiro Inokuchi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Fumiaki Takahashi
- Department of Information Science, Iwate Medical University, Yahaba, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, California, USA
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
57
|
Dennis MJ, Bylsma S, Madlensky L, Pagadala MS, Carter H, Patel SP. Germline DNA damage response gene mutations as predictive biomarkers of immune checkpoint inhibitor efficacy. Front Immunol 2024; 15:1322187. [PMID: 38348036 PMCID: PMC10859432 DOI: 10.3389/fimmu.2024.1322187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background Impaired DNA damage response (DDR) can affect immune checkpoint inhibitors (ICI) efficacy and lead to heightened immune activation. We assessed the impact of pathogenic or likely pathogenic (P/LP) germline DDR mutations on ICI response and toxicity. Materials and methods A retrospective analysis of 131 cancer patients with germline DNA testing and ICI treatment was performed. Results Ninety-two patients were DDR-negative (DDR-), and 39 had ≥1 DDR mutation (DDR+). DDR+ patients showed higher objective response rates (ORRs) compared to DDR- in univariate and multivariable analyses, adjusting for age and metastatic disease (62% vs. 23%, unadjusted OR = 5.41; 95% CI, 2.41-12.14; adjusted OR 5.94; 95% CI, 2.35-15.06). Similar results were seen in mismatch repair (MMR), DDR pathways with intact MMR (DDR+MMRi), and homologous recombination (HR) subgroups versus DDR- (adjusted OR MMR = 24.52; 95% CI 2.72-221.38, DDR+MMRi = 4.26; 95% CI, 1.57-11.59, HR = 4.74; 95% CI, 1.49-15.11). DDR+ patients also had higher ORRs with concurrent chemotherapy (82% vs. 39% DDR-, p=0.03) or concurrent tyrosine kinase inhibitors (50% vs. 5% DDR-, p=0.03). No significant differences in immune-related adverse events were observed between DDR+ and DDR- cohorts. Conclusion P/LP germline DDR mutations may enhance ICI response without significant additional toxicity.
Collapse
Affiliation(s)
- Michael J. Dennis
- Division of Medical Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Division of Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sophia Bylsma
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Lisa Madlensky
- Division of Genomics and Precision Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Meghana S. Pagadala
- Division of Genomics and Precision Medicine, University of California, San Diego, San Diego, CA, United States
| | - Hannah Carter
- Division of Genomics and Precision Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sandip P. Patel
- Division of Medical Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
58
|
Gulhan DC, Viswanadham V, Muyas F, Jin H, Foote MB, Lee JJK, Barras D, Jung YL, Ljungstrom V, Rousseau B, Galor A, Diplas BH, Maron SB, Cleary JM, Cortés-Ciriano I, Park PJ. Predicting response to immune checkpoint blockade therapy among mismatch repair-deficient patients using mutational signatures. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.19.24301236. [PMID: 38293061 PMCID: PMC10827269 DOI: 10.1101/2024.01.19.24301236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Despite the overall efficacy of immune checkpoint blockade (ICB) for mismatch repair deficiency (MMRD) across tumor types, a sizable fraction of patients with MMRD still do not respond to ICB. We performed mutational signature analysis of panel sequencing data (n = 95) from MMRD cases treated with ICB. We discover that T>C-rich single base substitution (SBS) signatures-SBS26 and SBS54 from the COSMIC Mutational Signatures catalog-identify MMRD patients with significantly shorter overall survival. Tumors with a high burden of SBS26 show over-expression and enriched mutations of genes involved in double-strand break repair and other DNA repair pathways. They also display chromosomal instability (CIN), likely related to replication fork instability, leading to copy number losses that trigger immune evasion. SBS54 is associated with transcriptional activity and not with CIN, defining a distinct subtype. Consistently, cancer cell lines with a high burden of SBS26 and SBS54 are sensitive to treatments targeting pathways related to their proposed etiology. Together, our analysis offers an explanation for the heterogeneous responses to ICB among MMRD patients and supports an SBS signature-based predictor as a prognostic biomarker for differential ICB response.
Collapse
|
59
|
Xagara A, Roumeliotou A, Kokkalis A, Tsapakidis K, Papakonstantinou D, Papadopoulos V, Samaras I, Chantzara E, Kallergi G, Kotsakis A. ES-SCLC Patients with PD-L1 + CTCs and High Percentages of CD8 +PD-1 +T Cells in Circulation Benefit from Front-Line Immunotherapy Treatment. Biomedicines 2024; 12:146. [PMID: 38255251 PMCID: PMC10813758 DOI: 10.3390/biomedicines12010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
SCLC is an aggressive cancer type with high metastatic potential and bad prognosis. CTCs are a valuable source of tumor cells in blood circulation and are among the major contributors to metastasis. In this study we evaluated the number of CTCs that express PD-L1 in treatment-naïve ES-SCLC patients receiving ICI in a front-line setting. Moreover, we explored the percentages of different immune T-cell subsets in circulation to assess their potential role in predicting responses. A total of 43 patients were enrolled-6 of them with LS-SCLC, and 37 with ES-SCLC disease. In addition, PBMCs from 10 healthy donors were used as a control group. Different T-cell subtypes were examined through multicolor FACS analysis and patients' CTCs were detected using immunofluorescence staining. SCLC patients had higher percentages of PD-1-expressing CD3+CD4+ and CD3+CD8+ T-cells, as well as elevated PD-1 protein expression compared to healthy individuals. Additionally, in ES-SCLC patients, a positive correlation between CD3+CD8+PD-1+ T-cells and PD-L1+ CTCs was detected. Importantly, patients harboring higher numbers of CD3+CD8+PD-1+ T-cells together with PD-L1+CTCs had a survival advantage when receiving front-line immunotherapy. Thus, this study proposes, for first time possible, immune cell-CTCs interaction, as well as a potential novel clinical biomarker for ICI responses in ES-SCLC patients.
Collapse
Affiliation(s)
- Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece; (A.X.); (A.K.); (K.T.); (V.P.); (I.S.); (E.C.)
| | - Argyro Roumeliotou
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece; (A.R.); (D.P.); (G.K.)
| | - Alexandros Kokkalis
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece; (A.X.); (A.K.); (K.T.); (V.P.); (I.S.); (E.C.)
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Konstantinos Tsapakidis
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece; (A.X.); (A.K.); (K.T.); (V.P.); (I.S.); (E.C.)
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Dimitris Papakonstantinou
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece; (A.R.); (D.P.); (G.K.)
| | - Vassilis Papadopoulos
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece; (A.X.); (A.K.); (K.T.); (V.P.); (I.S.); (E.C.)
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Ioannis Samaras
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece; (A.X.); (A.K.); (K.T.); (V.P.); (I.S.); (E.C.)
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Evagelia Chantzara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece; (A.X.); (A.K.); (K.T.); (V.P.); (I.S.); (E.C.)
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece; (A.R.); (D.P.); (G.K.)
| | - Athanasios Kotsakis
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece; (A.X.); (A.K.); (K.T.); (V.P.); (I.S.); (E.C.)
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| |
Collapse
|
60
|
Sun B, Xun Z, Zhang N, Liu K, Chen X, Zhao H. Single-cell RNA sequencing in cancer research: discovering novel biomarkers and therapeutic targets for immune checkpoint blockade. Cancer Cell Int 2023; 23:313. [PMID: 38066642 PMCID: PMC10704754 DOI: 10.1186/s12935-023-03158-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/22/2023] [Indexed: 10/30/2024] Open
Abstract
Immune checkpoint blockade (ICB) has become a promising strategy in treating advanced cancers, providing significant survival benefits for patients with various cancer types. However, among the vast population of cancer patients, only a small fraction are able to respond to and derive benefits from ICB therapy. Numerous factors contribute to the diminished efficacy of ICB, with the complex tumor microenvironment (TME) playing an important role. Therefore, comprehensively understanding the intricate composition of the TME is critical for elucidating the mechanisms that underlie distinct responses to ICB in patients. Single-cell RNA sequencing (scRNA-seq) is a novel technique that reveals gene expression profiles of individual cells, facilitating the investigation of TME heterogeneity at a high resolution and the identification of key cell subsets participating in the response to ICB. This review emphasizes the importance of scRNA-seq in studying ICB and summarizes recent findings in the discovery of biomarkers that predict ICB response and novel potential therapeutic targets for immunotherapy. These findings suggest future directions for the clinical implementation of cancer immunotherapy, facilitating further advancements in precision medicine.
Collapse
Affiliation(s)
- Boyu Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Kai Liu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xiangqi Chen
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
61
|
Chen JT, Zhou YW, Han TR, Wei JL, Qiu M. Perioperative immune checkpoint inhibition for colorectal cancer: recent advances and future directions. Front Immunol 2023; 14:1269341. [PMID: 38022667 PMCID: PMC10679411 DOI: 10.3389/fimmu.2023.1269341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
For colorectal cancer (CRC), surgical resection remains essential for achieving good prognoses. Unfortunately, numerous patients with locally advanced CRC and metastatic CRC failed to meet surgical indications or achieve pathological complete response after surgery. Perioperative therapy has been proven to effectively lower tumor staging and reduce recurrence and metastasis. Immune checkpoint inhibitors (ICIs) have shown unprecedented prolongation of survival time and satisfactory safety in patients with high microsatellite instability/deficient mismatch repair (MSI-H/dMMR), while the therapeutic effect obtained by patients with mismatch repair-proficient or microsatellite stable (pMMR/MSS) was considered minimal. However, recent studies found that certain CRC patients with dMMR/MSI-H presented intrinsic or acquired immune resistance, and pMMR/MSS CRC patients can also achieve better efficacy. Therefore, more predictors are required for screening patients with potential clinical benefits. Since the discovery of synergistic effects between immunotherapy, chemotherapy, and radiotherapy, different immunotherapy-based therapies have been applied to the perioperative therapy of CRC in an increasing number of research. This review comprehensively summarized the past and current progress of different combinations of immunotherapy in perioperative clinical trials for CRC, focusing on the efficacy and safety, and points out the direction for future development.
Collapse
Affiliation(s)
- Jiao-Ting Chen
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Rui Han
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun-Lun Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
62
|
Liu K, Yuan S, Wang C, Zhu H. Resistance to immune checkpoint inhibitors in gastric cancer. Front Pharmacol 2023; 14:1285343. [PMID: 38026944 PMCID: PMC10679741 DOI: 10.3389/fphar.2023.1285343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. In the past decade, with the development of early diagnostic techniques, a clear decline in GC incidence has been observed, but its mortality remains high. The emergence of new immunotherapies such as immune checkpoint inhibitors (ICIs) has changed the treatment of GC patients to some extent. However, only a small number of patients with advanced GC have a durable response to ICI treatment, and the efficacy of ICIs is very limited. Existing studies have shown that the failure of immunotherapy is mainly related to the development of ICI resistance in patients, but the understanding of the resistance mechanism is still insufficient. Therefore, clarifying the mechanism of GC immune resistance is critical to improve its treatment and clinical benefit. In this review, we focus on summarizing the mechanisms of primary or acquired resistance to ICI immunotherapy in GC from both internal and external aspects of the tumor. At the same time, we also briefly discuss some other possible resistance mechanisms in light of current studies.
Collapse
Affiliation(s)
- Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hong Zhu
- Cancer Center, Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
63
|
Yang Y, Li Y, Chen Z. Impact of low serum iron on treatment outcome of PD-1 inhibitors in advanced gastric cancer. BMC Cancer 2023; 23:1095. [PMID: 37950201 PMCID: PMC10638799 DOI: 10.1186/s12885-023-11620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the influence of serum iron levels in advanced gastric cancer (GC) patients treated with programmed cell death protein-1 (PD-1) inhibitors. METHODS We retrospectively reviewed 149 GC patients who were treated with PD-1 inhibitors at our center. Clinicopathological characteristics, laboratory data, and clinical outcomes were analyzed. RESULTS Multivariate analysis showed that Eastern Cooperative Oncology Group performance status (ECOG PS), histological subtype, and baseline serum iron levels were independent prognostic factors for overall survival (OS), while ECOG PS, multiple metastatic sites, and baseline serum iron levels were independent prognostic factors for progression-free survival (PFS). Patients with baseline low serum iron levels (LSI) had a significantly shorter median OS and PFS compared to patients with normal serum iron levels (NSI) (Median OS: 7 vs. 14 months, p = 0.001; median PFS: 3 vs. 5 months, p = 0.005). Patients with baseline LSI had a disease control rate (DCR) of 58.3% at 2 months after PD-1 inhibitor initiation (M2), compared to 81.1% in patients with NSI (p = 0.005). Patients with baseline LSI had a DCR of 43.8% at 4 months, compared to 64.2% in patients with NSI (p = 0.017). CONCLUSIONS LSI was associated with worse OS, PFS, and DCR in GC patients treated with PD-1 inhibitors and might be a quick and efficient biomarker to predict the efficacy of PD-1 inhibitors.
Collapse
Affiliation(s)
- Yu Yang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Fu Rong Road, Hefei, 230601, China.
- Department of Oncology, Anhui Medical University, Hefei, 230000, China.
| | - Ya Li
- Department of Oncology, Anhui Medical University, Hefei, 230000, China
| | - Zhendong Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Fu Rong Road, Hefei, 230601, China
- Department of Oncology, Anhui Medical University, Hefei, 230000, China
| |
Collapse
|
64
|
Ding P, Liu P, Meng L, Zhao Q. Mechanisms and biomarkers of immune-related adverse events in gastric cancer. Eur J Med Res 2023; 28:492. [PMID: 37936161 PMCID: PMC10631148 DOI: 10.1186/s40001-023-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs), different from traditional cancer treatment models, have shown unprecedented anti-tumor effects in the past decade, greatly improving the prognosis of many malignant tumors in clinical practice. At present, the most widely used ICIs in clinical immunotherapy for a variety of solid tumors are monoclonal antibodies against cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and their ligand PD-L1. However, tumor patients may induce immune-related adverse events (irAEs) while performing immunotherapy, and irAE is an obstacle to the prospect of ICI treatment. IrAE is a non-specific disease caused by immune system imbalance, which can occur in many tissues and organs. For example, skin, gastrointestinal tract, endocrine system and lung. Although the exact mechanism is not completely clear, related studies have shown that irAE may develop through many ways. Such as excessive activation of autoreactive T cells, excessive release of inflammatory cytokines, elevated levels of autoantibodies, and common antigens between tumors and normal tissues. Considering that the occurrence of severe IrAE not only causes irreversible damage to the patient's body, but also terminates immunotherapy due to immune intolerance. Therefore, accurate identification and screening of sensitive markers of irAE are the main beneficiaries of ICI treatment. Additionally, irAEs usually require specific management, the most common of which are steroids and immunomodulatory therapies. This review aims to summarize the current biomarkers for predicting irAE in gastric cancer and their possible mechanisms.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Pengpeng Liu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
65
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
66
|
Ke L, Li S, Huang D. The predictive value of tumor mutation burden on survival of gastric cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Int Immunopharmacol 2023; 124:110986. [PMID: 37748223 DOI: 10.1016/j.intimp.2023.110986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Tumor mutation burden (TMB) is a complement to traditional biomarkers related to the efficacy of immune checkpoint inhibitors (ICIs). The relationship between TMB and the efficacy of ICIs in gastric cancer was controversial. The systematic review and meta-analysis were conducted to investigate the predictive value of TMB on survival of gastric cancer patients treated with ICIs. METHODS We searched the databases PubMed, Embase, and Web of Science for articles, then screened eligible articles according to inclusion criteria. The effective data were extracted to calculate the pooled effects of hazard ratio (HR) for overall survival (OS) and progression-free survival (PFS), then perform publication bias, sensitivity analysis, and subgroup analysis by STATA 16.0. RESULTS The high TMB patients showed significantly longer survival than the low TMB patients (OS: HR 0.65,95% CI 0.55, 0.77, p < 0.001; PFS: HR 0.51, 95% CI 0.33, 0.77, p = 0.001). In the Asian subgroup, patients with high TMB exhibited better prognosis compared to low TMB (OS: HR 0.56, 95% CI 0.43, 0.72, p < 0.001; PFS: HR 0.45, 95% CI 0.28, 0.72, p = 0.001). In the non-Asian subgroup, the survival benefit was observed to be skewed toward patients with high TMB, but it was not statistically significant (OS:HR 0.61, 95% CI 0.32, 1.16, p = 0.133; PFS:HR 0.68, 95% CI 0.31, 1.48, p = 0.322). CONCLUSIONS This meta-analysis demonstrated that gastric cancer patients with high TMB showed significant benefits from ICIs compared to those with low TMB patients, particularly in Asian populations.
Collapse
Affiliation(s)
- Liyuan Ke
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Danxue Huang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
67
|
Li Q, Yin LK. Comprehensive analysis of disulfidptosis related genes and prognosis of gastric cancer. World J Clin Oncol 2023; 14:373-399. [PMID: 37970110 PMCID: PMC10631345 DOI: 10.5306/wjco.v14.i10.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignant tumor of the digestive system. Disulfidptosis is a new programmed cell death mechanism, although its specific mechanism in GC is incompletely understood. AIM In this study, we used bioinformatics analysis to explore a disulfidptosis-based predictive model related to GC prognosis and to identify potential therapeutic targets and sensitive drugs for GC. METHODS We extracted GC-related data from The Cancer Genome Atlas and Gene Expression Omnibus databases. R software (version 4.2.1) was used for correlation analysis. RESULTS Through the above analysis, we found that the disulfidptosis related gene may be related to the prognosis of GC. Six genes, namely, PLS3, GRP, APOD, SGCE, COL8A1, and VAMP7, were found to constitute a predictive model for GC prognosis. APOD is a potential therapeutic target for treating GC. Bosutinib and other drugs are sensitive for the treatment of GC. CONCLUSION The results of this study indicate that disulfidptosis is related to the prognosis and treatment of GC, while APOD represents a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Qian Li
- Department of Oncology, Fushun Hospital of Traditional Chinese Medicine, Zigong 643200, Sichuan Province, China
| | - Long-Kuan Yin
- Department of Gastrointestinal Surgery, Fushun People’s Hospital, Zigong 643200, Sichuan Province, China
| |
Collapse
|
68
|
Hou W, Zhao Y, Zhu H. Predictive Biomarkers for Immunotherapy in Gastric Cancer: Current Status and Emerging Prospects. Int J Mol Sci 2023; 24:15321. [PMID: 37895000 PMCID: PMC10607383 DOI: 10.3390/ijms242015321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer presents substantial management challenges, and the advent of immunotherapy has ignited renewed hope among patients. Nevertheless, a significant proportion of patients do not respond to immunotherapy, and adverse events associated with immunotherapy also occur on occasion, underscoring the imperative to identify suitable candidates for treatment. Several biomarkers, including programmed death ligand-1 expression, tumor mutation burden, mismatch repair status, Epstein-Barr Virus infection, circulating tumor DNA, and tumor-infiltrating lymphocytes, have demonstrated potential in predicting the effectiveness of immunotherapy in gastric cancer. However, the quest for the optimal predictive biomarker for gastric cancer immunotherapy remains challenging, as each biomarker carries its own limitations. Recently, multi-omics technologies have emerged as promising platforms for discovering novel biomarkers that may help in selecting gastric cancer patients likely to respond to immunotherapy. The identification of reliable predictive biomarkers for immunotherapy in gastric cancer holds the promise of enhancing patient selection and improving treatment outcomes. In this review, we aim to provide an overview of clinically established biomarkers of immunotherapy in gastric cancer. Additionally, we introduce newly reported biomarkers based on multi-omics studies in the context of gastric cancer immunotherapy, thereby contributing to the ongoing efforts to refine patient stratification and treatment strategies.
Collapse
Affiliation(s)
- Wanting Hou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China; (W.H.); (Y.Z.)
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yaqin Zhao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China; (W.H.); (Y.Z.)
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China; (W.H.); (Y.Z.)
| |
Collapse
|
69
|
Luo H, Wang W, Mai J, Yin R, Cai X, Li Q. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol 2023; 14:1267918. [PMID: 37881432 PMCID: PMC10597640 DOI: 10.3389/fimmu.2023.1267918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, that is, using monoclonal antibodies to reinvigorate tumor-reactive, antigen-specific T cells from the inhibitory effects of CTLA-4, PD-1 and PD-L1 immune checkpoints, have revolutionized the therapeutic landscape of modern oncology. However, only a subset of patients can benefit from the ICB therapy. Biomarkers associated with ICB response, resistance and prognosis have been subjected to intensive research in the past decade. Early studies focused on the analysis of tumor specimens and their residing microenvironment. However, biopsies can be challenging to obtain in clinical practice, and do not reflect the dynamic changes of immunological parameters during the ICB therapy. Recent studies have investigated profiles of antigen-specific T cells derived from the peripheral compartment using multi-omics approaches. By tracking the clonotype and diversity of tumor-reactive T cell receptor repertoire, these studies collectively establish that de novo priming of antigen-specific T cells in peripheral blood occurs throughout the course of ICB, whereas preexisting T cells prior to ICB are exhausted to various degrees. Here, we review what is known about ICB-induced T cell phenotypic and functional changes in cancer patients both within the tumor microenvironment and in the peripheral compartment. A better understanding of parameters influencing the response to ICBs will provide rationales for developing novel diagnostics and combinatorial therapeutic strategies to maximize the clinical efficacies of ICB therapies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jia Mai
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
70
|
Westcott PMK, Muyas F, Hauck H, Smith OC, Sacks NJ, Ely ZA, Jaeger AM, Rideout WM, Zhang D, Bhutkar A, Beytagh MC, Canner DA, Jaramillo GC, Bronson RT, Naranjo S, Jin A, Patten JJ, Cruz AM, Shanahan SL, Cortes-Ciriano I, Jacks T. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity. Nat Genet 2023; 55:1686-1695. [PMID: 37709863 PMCID: PMC10562252 DOI: 10.1038/s41588-023-01499-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
DNA mismatch repair deficiency (MMRd) is associated with a high tumor mutational burden (TMB) and sensitivity to immune checkpoint blockade (ICB) therapy. Nevertheless, most MMRd tumors do not durably respond to ICB and critical questions remain about immunosurveillance and TMB in these tumors. In the present study, we developed autochthonous mouse models of MMRd lung and colon cancer. Surprisingly, these models did not display increased T cell infiltration or ICB response, which we showed to be the result of substantial intratumor heterogeneity of mutations. Furthermore, we found that immunosurveillance shapes the clonal architecture but not the overall burden of neoantigens, and T cell responses against subclonal neoantigens are blunted. Finally, we showed that clonal, but not subclonal, neoantigen burden predicts ICB response in clinical trials of MMRd gastric and colorectal cancer. These results provide important context for understanding immune evasion in cancers with a high TMB and have major implications for therapies aimed at increasing TMB.
Collapse
Affiliation(s)
- Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Haley Hauck
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivia C Smith
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathan J Sacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex M Jaeger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary C Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Canner
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel C Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abbey Jin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J J Patten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda M Cruz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
71
|
Bhamidipati D, Subbiah V. Tumor-agnostic drug development in dMMR/MSI-H solid tumors. Trends Cancer 2023; 9:828-839. [PMID: 37517955 DOI: 10.1016/j.trecan.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H) represents a distinct phenotype among solid tumors characterized by frequent frameshift mutations resulting in the generation of neoantigens that are highly immunogenic. Seminal studies identified that dMMR/MSI-H tumors are exquisitely sensitive to immune checkpoint inhibitors, which has dramatically improved outcomes for patients harboring dMMR/MSI-H tumors. Nevertheless, many patients develop resistance to single-agent immune checkpoint blockade, prompting the need for improved therapeutic options for this patient population. In this review, we highlight key studies examining the efficacy of PD1 inhibitors in the metastatic and neoadjuvant setting for patients with dMMR/MSI-H tumors, describe resistance mechanisms to immune checkpoint blockade, and discuss novel treatment approaches that are currently under investigation for dMMR/MSI-H tumors.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
72
|
Jeong YS, Eun YG, Lee SH, Kang SH, Yim SY, Kim EH, Noh JK, Sohn BH, Woo SR, Kong M, Nam DH, Jang HJ, Lee HS, Song S, Oh SC, Lee J, Ajani JA, Lee JS. Clinically conserved genomic subtypes of gastric adenocarcinoma. Mol Cancer 2023; 22:147. [PMID: 37674200 PMCID: PMC10481468 DOI: 10.1186/s12943-023-01796-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/31/2023] [Indexed: 09/08/2023] Open
Abstract
Gastric adenocarcinoma (GAC) is a lethal disease characterized by genomic and clinical heterogeneity. By integrating 8 previously established genomic signatures for GAC subtypes, we identified 6 clinically and molecularly distinct genomic consensus subtypes (CGSs). CGS1 have the poorest prognosis, very high stem cell characteristics, and high IGF1 expression, but low genomic alterations. CGS2 is enriched with canonical epithelial gene expression. CGS3 and CGS4 have high copy number alterations and low immune reactivity. However, CGS3 and CGS4 differ in that CGS3 has high HER2 activation, while CGS4 has high SALL4 and KRAS activation. CGS5 has the high mutation burden and moderately high immune reactivity that are characteristic of microsatellite instable tumors. Most CGS6 tumors are positive for Epstein Barr virus and show extremely high levels of methylation and high immune reactivity. In a systematic analysis of genomic and proteomic data, we estimated the potential response rate of each consensus subtype to standard and experimental treatments such as radiation therapy, targeted therapy, and immunotherapy. Interestingly, CGS3 was significantly associated with a benefit from chemoradiation therapy owing to its high basal level of ferroptosis. In addition, we also identified potential therapeutic targets for each consensus subtype. Thus, the consensus subtypes produced a robust classification and provide for additional characterizations for subtype-based customized interventions.
Collapse
Affiliation(s)
- Yun Seong Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1058, Houston, TX, 77030, USA
| | - Young-Gyu Eun
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Otolaryngology - Head and Neck Surgery, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sung Hwan Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Division of Hepatobiliary and Pancreas, Department of Surgery, CHA Bundang Medical Center, CHA University, Pocheon, Korea
| | - Sang-Hee Kang
- Department of Surgery, Korea University Guro Hospital, Seoul, Korea
| | - Sun Young Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Kyung Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Bo Hwa Sohn
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1058, Houston, TX, 77030, USA
| | - Seon Rang Woo
- Department of Otolaryngology - Head and Neck Surgery, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Korea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Korea
| | - Deok Hwa Nam
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1058, Houston, TX, 77030, USA
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sang Cheul Oh
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1058, Houston, TX, 77030, USA.
| |
Collapse
|
73
|
Huang D, Ma N, Li X, Gou Y, Duan Y, Liu B, Xia J, Zhao X, Wang X, Li Q, Rao J, Zhang X. Advances in single-cell RNA sequencing and its applications in cancer research. J Hematol Oncol 2023; 16:98. [PMID: 37612741 PMCID: PMC10463514 DOI: 10.1186/s13045-023-01494-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Cancers are a group of heterogeneous diseases characterized by the acquisition of functional capabilities during the transition from a normal to a neoplastic state. Powerful experimental and computational tools can be applied to elucidate the mechanisms of occurrence, progression, metastasis, and drug resistance; however, challenges remain. Bulk RNA sequencing techniques only reflect the average gene expression in a sample, making it difficult to understand tumor heterogeneity and the tumor microenvironment. The emergence and development of single-cell RNA sequencing (scRNA-seq) technologies have provided opportunities to understand subtle changes in tumor biology by identifying distinct cell subpopulations, dissecting the tumor microenvironment, and characterizing cellular genomic mutations. Recently, scRNA-seq technology has been increasingly used in cancer studies to explore tumor heterogeneity and the tumor microenvironment, which has increased the understanding of tumorigenesis and evolution. This review summarizes the basic processes and development of scRNA-seq technologies and their increasing applications in cancer research and clinical practice.
Collapse
Affiliation(s)
- Dezhi Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yang Gou
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yishuo Duan
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Bangdong Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jing Xia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xianlan Zhao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
74
|
Qin S, Cao J, Ma X. Function and clinical application of exosome-how to improve tumor immunotherapy? Front Cell Dev Biol 2023; 11:1228624. [PMID: 37670933 PMCID: PMC10476872 DOI: 10.3389/fcell.2023.1228624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
In recent years, immunotherapy has been increasingly used in clinical practice to treat tumors. However, immunotherapy's efficacy varies between tumor types and patient populations, and long-term drug resistance often occurs during treatment. Therefore, it is essential to explore the molecular mechanisms of immunotherapy to improve its efficacy. In this review, we focus on the significance of tumor-derived exosomes in the clinical treatment of tumors and how modifying these exosomes may enhance immune effectiveness. Specifically, we discuss exosome components, such as RNA, lipids, and proteins, and the role of membrane molecules on exosome surfaces. Additionally, we highlight the importance of engineered exosomes for tumor immunotherapy. Our goal is to propose new strategies to improve the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Siwen Qin
- Department of Pediatrics, The Fourth Hospital of China Medical University, Shenyang, China
| | - Jilong Cao
- Party Affairs and Administration Office, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Ma
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
75
|
Koh HH, Park E, Kim HS. Mesonephric-like Adenocarcinoma of the Uterine Corpus: Genomic and Immunohistochemical Profiling with Comprehensive Clinicopathological Analysis of 17 Consecutive Cases from a Single Institution. Biomedicines 2023; 11:2269. [PMID: 37626765 PMCID: PMC10452884 DOI: 10.3390/biomedicines11082269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Data on genetic and immunophenotypical characteristics of uterine mesonephric-like adenocarcinoma (MLA) remain limited. Therefore, we aimed to investigate the clinicopathological, immunohistochemical, and molecular features of uterine MLA. We performed targeted sequencing, array comparative genomic hybridization, and immunostaining in 17, 13, and 17 uterine MLA cases, respectively. Nine patients developed lung metastases. Eleven patients experienced disease recurrences. The most frequently mutated gene was Kirsten rat sarcoma viral oncogene homolog (KRAS; 13/17). Both the primary and matched metastatic tumors harbored identical KRAS (3/4) and phosphatase and tensin homolog deleted on chromosome 10 (1/4) mutations, and did not harbor any additional mutations. A total of 2 of the 17 cases harbored tumor protein 53 (TP53) frameshift insertion and deletion, respectively. Chromosomal gains were detected in 1q (13/13), 10 (13/13), 20 (10/13), 2 (9/13), and 12 (6/13). Programmed cell death-ligand 1 overexpression or mismatch repair deficiency was not observed in any of the cases. Initial serosal extension and lung metastasis independently predicted recurrence-free survival with hazard ratios of 6.30 and 7.31, respectively. Our observations consolidated the clinicopathological and molecular characteristics of uterine MLA. Both clinicians and pathologists should consider these features to make an accurate diagnosis of uterine MLA and to ensure appropriate therapeutic management of this rare entity.
Collapse
Affiliation(s)
- Hyun-Hee Koh
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eunhyang Park
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
76
|
Shin K, Kim J, Park SJ, Kim H, Lee MA, Kim O, Park J, Kang N, Kim IH. Early Increase in Circulating PD-1 +CD8 + T Cells Predicts Favorable Survival in Patients with Advanced Gastric Cancer Receiving Chemotherapy. Cancers (Basel) 2023; 15:3955. [PMID: 37568771 PMCID: PMC10417033 DOI: 10.3390/cancers15153955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The clinical significance of PD-1 expression in circulating CD8+ T cells in patients with gastric cancer (GC) receiving chemotherapy remains unelucidated. Therefore, we aimed to examine its prognostic significance in blood samples of 68 patients with advanced GC who received platinum-based chemotherapy. The correlation between peripheral blood mononuclear cells, measured using fluorescence-activated cell sorting, was evaluated. Patients were divided into two groups according to the changes in PD-1+CD8+ T-cell frequencies between day 0 and 7. They were categorized as increased or decreased PD-1+CD8+ T-cell groups. The increased PD-1+CD8+ T-cell group showed longer progression-free survival (PFS) and overall survival (OS) than the decreased PD-1+CD8+ T-cell group (PFS: 8.7 months vs. 6.1 months, p = 0.007; OS: 20.7 months vs. 10.8 months, p = 0.003). The mean duration of response was significantly different between the groups (5.7 months vs. 2.5 months, p = 0.041). Multivariate analysis revealed that an increase in PD-1+CD8+ T-cell frequency was an independent prognostic factor. We concluded that the early increase in PD-1+CD8+ T-cell frequency is a potential predictor of favorable prognoses and durable responses in patients with advanced GC receiving chemotherapy.
Collapse
Affiliation(s)
- Kabsoo Shin
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Joori Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Se Jun Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Hyunho Kim
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Myung Ah Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Okran Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Juyeon Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Nahyeon Kang
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| |
Collapse
|
77
|
Ratovomanana T, Nicolle R, Cohen R, Diehl A, Siret A, Letourneur Q, Buhard O, Perrier A, Guillerm E, Coulet F, Cervera P, Benusiglio P, Labrèche K, Colle R, Collura A, Despras E, Le Rouzic P, Renaud F, Cros J, Alentorn A, Touat M, Ayadi M, Bourgoin P, Prunier C, Tournigand C, Fouchardière CDL, Tougeron D, Jonchère V, Bennouna J, de Reynies A, Fléjou JF, Svrcek M, André T, Duval A. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability. Ann Oncol 2023; 34:703-713. [PMID: 37269904 DOI: 10.1016/j.annonc.2023.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Mismatch repair-deficient (dMMR) tumors displaying microsatellite instability (MSI) represent a paradigm for the success of immune checkpoint inhibitor (ICI)-based immunotherapy, particularly in patients with metastatic colorectal cancer (mCRC). However, a proportion of patients with dMMR/MSI mCRC exhibit resistance to ICI. Identification of tools predicting MSI mCRC patient response to ICI is required for the design of future strategies further improving this therapy. PATIENTS AND METHODS We combined high-throughput DNA and RNA sequencing of tumors from 116 patients with MSI mCRC treated with anti-programmed cell death protein 1 ± anti-cytotoxic T-lymphocyte-associated protein 4 of the NIPICOL phase II trial (C1, NCT03350126, discovery set) and the ImmunoMSI prospective cohort (C2, validation set). The DNA/RNA predictors whose status was significantly associated with ICI status of response in C1 were subsequently validated in C2. Primary endpoint was progression-free survival by immune RECIST (iRECIST) (iPFS). RESULTS Analyses showed no impact of previously suggested DNA/RNA indicators of resistance to ICI, e.g. MSIsensor score, tumor mutational burden, or specific cellular and molecular tumoral contingents. By contrast, iPFS under ICI was shown in C1 and C2 to depend both on a multiplex MSI signature involving the mutations of 19 microsatellites hazard ratio cohort C2 (HRC2) = 3.63; 95% confidence interval (CI) 1.65-7.99; P = 1.4 × 10-3] and the expression of a set of 182 RNA markers with a non-epithelial transforming growth factor beta (TGFB)-related desmoplastic orientation (HRC2 = 1.75; 95% CI 1.03-2.98; P = 0.035). Both DNA and RNA signatures were independently predictive of iPFS. CONCLUSIONS iPFS in patients with MSI mCRC can be predicted by simply analyzing the mutational status of DNA microsatellite-containing genes in epithelial tumor cells together with non-epithelial TGFB-related desmoplastic RNA markers.
Collapse
Affiliation(s)
- T Ratovomanana
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - R Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris
| | - R Cohen
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Diehl
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - A Siret
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - Q Letourneur
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - O Buhard
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - A Perrier
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - E Guillerm
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - F Coulet
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - P Cervera
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - P Benusiglio
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - K Labrèche
- CinBioS, MS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, Sorbonne Université et SIRIC CURAMUS, Paris
| | - R Colle
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Collura
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - E Despras
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - P Le Rouzic
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - F Renaud
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - J Cros
- Department of Pathology, Beaujon Hospital, AP-HP, Clichy
| | - A Alentorn
- Service de Neurologie 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, 47-83 boulevard de l'Hôpital, Paris
| | - M Touat
- Service de Neurologie 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, 47-83 boulevard de l'Hôpital, Paris
| | - M Ayadi
- Programme "Cartes d'Identité des Tumeurs", Ligue Nationale Contre le Cancer, Paris
| | - P Bourgoin
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - C Prunier
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Signalisation TGFB, plasticité cellulaire et Cancer, Paris
| | - C Tournigand
- Department of Medical Oncology, Hôpital Henri-Mondor, APHP, Université Paris Est Creteil, INSERM U955, Créteil
| | | | - D Tougeron
- ProDicET, UR 24144, University of Poitiers and Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers
| | - V Jonchère
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - J Bennouna
- Centre De Recherche En Cancérologie Et Immunologie Nantes-Angers (CRCINA), INSERM, Université d'Angers, Université De Nantes, Nantes
| | - A de Reynies
- Cartes d'Identité des Tumeurs Program, Ligue Nationale Contre Cancer, Paris, France
| | - J-F Fléjou
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - M Svrcek
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - T André
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Duval
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris.
| |
Collapse
|
78
|
Pužar Dominkuš P, Hudler P. Mutational Signatures in Gastric Cancer and Their Clinical Implications. Cancers (Basel) 2023; 15:3788. [PMID: 37568604 PMCID: PMC10416847 DOI: 10.3390/cancers15153788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gastric cancer is characterised by high inter- and intratumour heterogeneity. The majority of patients are older than 65 years and the global burden of this disease is increasing due to the aging of the population. The disease is usually diagnosed at advanced stages, which is a consequence of nonspecific symptoms. Few improvements have been made at the level of noninvasive molecular diagnosis of sporadic gastric cancer, and therefore the mortality rate remains high. A new field of mutational signatures has emerged in the past decade with advances in the genome sequencing technology. These distinct mutational patterns in the genome, caused by exogenous and endogenous mutational processes, can be associated with tumour aetiology and disease progression, and could provide novel perception on the treatment possibilities. This review assesses the mutational signatures found in gastric cancer and summarises their potential for use in clinical setting as diagnostic or prognostic biomarkers. Associated treatment options and biomarkers already implemented in clinical use are discussed, together with those that are still being explored or are in clinical studies.
Collapse
Affiliation(s)
- Pia Pužar Dominkuš
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
79
|
Deng G, Sun H, Huang R, Pan H, Zuo Y, Zhao R, Du Z, Xue Y, Song H. An oxidative stress biomarkers predict prognosis in gastric cancer patients receiving immune checkpoint inhibitor. Front Oncol 2023; 13:1173266. [PMID: 37546387 PMCID: PMC10400353 DOI: 10.3389/fonc.2023.1173266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective The development and advance of gastric cancer are inextricably linked to oxidative and antioxidant imbalance. Although immunotherapy has been shown to be clinically effective, the link between oxidative stress and gastric cancer patients treated with immune checkpoint inhibitor (ICIs) remains unknown. This study aims at looking into the prognostic value of oxidative stress scores in gastric cancer patients treated with ICIs. Methods By taking the propagation to receiver operating characteristic (ROC) we got the best cut-off values, and divided 265 patients receiving ICIs and chemotherapy into high and low GC-Integrated Oxidative Stress Score (GIOSS) groups. We also used Kaplan-Meier and COX regression models to investigate the relationship between oxidative stress biomarkers and prognosis. Results Through both univariate and multivariate analyses, it's shown that GIOSS severs as an independent prognostic factor for progression-free survival (PFS) and Overall survival (OS). Based on GIOSS cutoff values, patients with high GIOSS levels, compared to those with low levels exhibited shorter PFS and OS, both in the high GIOSS group, which performed poorly in the ICIs subgroup and other subgroup analyses. Conclusion GIOSS is a biomarker that responds to systemic oxidative stress in the body and can predict prognosis in patients with gastric cancer who are taking ICIs. Additionally, it might come to medical professionals' aid in making more effective or more suitable treatment plans for gastric cancer.
Collapse
|
80
|
Manca P, Corti F, Intini R, Mazzoli G, Miceli R, Germani MM, Bergamo F, Ambrosini M, Cristarella E, Cerantola R, Boccaccio C, Ricagno G, Ghelardi F, Randon G, Leoncini G, Milione M, Fassan M, Cremolini C, Lonardi S, Pietrantonio F. Tumour mutational burden as a biomarker in patients with mismatch repair deficient/microsatellite instability-high metastatic colorectal cancer treated with immune checkpoint inhibitors. Eur J Cancer 2023; 187:15-24. [PMID: 37099945 DOI: 10.1016/j.ejca.2023.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are the standard treatment in patients with mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). Tumour mutational burden (TMB) is a promising biomarker for the prediction of treatment outcomes. PATIENTS AND METHODS We screened 203 patients with dMMR/MSI-H mCRC treated with an anti-PD-(L)1 (anti-Programmed-Death-(Ligand)1) plus or minus an anti-Cytotoxic T-Lymphocyte Antigen 4 (anti-CTLA-4) agent at three Italian Academic Centers. TMB was tested by Foundation One Next Generation Sequencing assay and correlated with clinical outcomes, in the overall population and according to ICI regimen. RESULTS We included 110 patients with dMMR/MSI-H mCRC. Eighty patients received anti-PD-(L)1 monotherapy and 30 received anti-CTLA-4 combinations. Median TMB was 49 mut/Mb (range: 8-251 mut/Mb). The optimal prognostic cut-off for progression-free survival (PFS) stratification was 23 mut/Mb. Patients with TMB ≤23 mut/Mb had significantly worse PFS (adjusted Hazard Ratio [aHR] = 4.26, 95% confidence interval [CI]:1.85-9.82, p = 0.001) and overall survival (OS) (aHR = 5.14, 95% CI: 1.76-14.98, p = 0.003). Using a cut-off optimised for predicting treatment outcome, anti-CTLA-4 combination was associated with a significant PFS/OS benefit versus anti-PD-(L)1 monotherapy in patients with TMB>40 mut/Mb (2-year PFS: 100.0% versus 70.7%, p = 0.002; 2-year OS: 100.0% versus 76.0%, p = 0.025), but not in those with TMB ≤40 mut/Mb (2-year PFS: 59.7% versus 68.6%, p = 0.888; 2-year OS: 80.0% versus 81.0%, p = 0.949). CONCLUSION Patients with dMMR/MSI-H mCRC and relatively lower TMB value displayed early disease progression when receiving ICIs, whereas patients with the highest TMB values may obtain the maximal benefit from intensified anti-CTLA-4/PD-1 combination.
Collapse
Affiliation(s)
- Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. https://twitter.com/@paomanca
| | - Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rossana Intini
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giacomo Mazzoli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosalba Miceli
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Maria Germani
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Bergamo
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Margherita Ambrosini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eleonora Cristarella
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Cerantola
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Chiara Boccaccio
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gianmarco Ricagno
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Filippo Ghelardi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Leoncini
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology IOV, IRCCS, Padua, Italy
| | - Chiara Cremolini
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sara Lonardi
- Department of Medical Oncology 3, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
81
|
Leowattana W, Leowattana P, Leowattana T. Immunotherapy for advanced gastric cancer. World J Methodol 2023; 13:79-97. [PMID: 37456977 PMCID: PMC10348086 DOI: 10.5662/wjm.v13.i3.79] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Gastric cancer (GC) is believed to be the fifth most common cancer and the third most common cause of death worldwide. Treatment techniques include radiation, chemotherapy, gastrectomy, and targeted treatments are often employed. Some hopeful results from the development of GC immunotherapy have already changed treatment approaches. Along with previous combination medicines, new immunotherapies have been developed that target distinct molecules. Despite ongoing studies into the current therapeutic options and significant improvements in this field, the prognosis for the ailment is poor. Since there are few treatment options and a delay in detection, the illness actually advances, spreads, and metastasizes. The bulk of immunotherapies in use today rely on cytotoxic immune cells, monoclonal antibodies, and gene-transferred vaccines. Immune checkpoint inhibitors have become more popular. In this review, we sought to examine the viewpoint and development of several immunotherapy treatment modalities for advanced GC, as well as the clinical results thus far reported. Additionally, we outlined tumor immune escape and tumor immunosurveillance.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Wattana 10110, Bangkok, Thailand
| |
Collapse
|
82
|
Pihlak R, Fong C, Starling N. Targeted Therapies and Developing Precision Medicine in Gastric Cancer. Cancers (Basel) 2023; 15:3248. [PMID: 37370858 PMCID: PMC10296575 DOI: 10.3390/cancers15123248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Gastric cancer is an aggressive disease with survival remaining poor in the advanced setting. More than a decade after the first targeted treatment was approved, still only HER2, MSI and PDL-1 status have reached everyday practice in terms of guiding treatment options for these patients. However, various new targets and novel treatments have recently been investigated and have shown promise in improving survival outcomes. In this review, we will summarise previous and currently ongoing studies on predictive biomarkers, possible new targeted treatments, potential reasons for conflicting trial results and hope for the future of precision medicine in gastric cancer.
Collapse
Affiliation(s)
| | | | - Naureen Starling
- Gastrointestinal/Lymphoma Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (R.P.); (C.F.)
| |
Collapse
|
83
|
Randon G, Aoki Y, Cohen R, Provenzano L, Nasca V, Klempner SJ, Maron SB, Cerantola R, Chao J, Fornaro L, Ferrari Bravo W, Ghelardi F, Ambrosini M, Manca P, Salati M, Kawazoe A, Zhu V, Cowzer D, Genovesi V, Lonardi S, Shitara K, André T, Pietrantonio F. Outcomes and a prognostic classifier in patients with microsatellite instability-high metastatic gastric cancer receiving PD-1 blockade. J Immunother Cancer 2023; 11:e007104. [PMID: 37277193 PMCID: PMC10255232 DOI: 10.1136/jitc-2023-007104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Subgroup analyses of randomized trials suggest the superiority of immune checkpoint inhibitor-based therapy over chemotherapy in patients with mismatch-repair deficient (dMMR) and/or microsatellite instability-high (MSI-high) advanced gastric or gastroesophageal junction adenocarcinoma. However, these subgroups are small and studies examining prognostic features within dMMR/MSI-high patients are lacking. METHODS We conducted an international cohort study at tertiary cancer centers and collected baseline clinicopathologic features of patients with dMMR/MSI-high metastatic or unresectable gastric cancer treated with anti-programmed cell death protein-1 (PD-1)-based therapies. The adjusted HRs of variables significantly associated with overall survival (OS) were used to develop a prognostic score. RESULTS One hundred and thirty patients were included. At a median follow-up of 25.1 months, the median progression-free survival (PFS) was 30.3 months (95% CI: 20.4 to NA) and 2-year PFS rate was 56% (95% CI: 48% to 66%). Median OS was of 62.5 months (95% CI: 28.4 to NA) and 2-year OS rate was 63% (95% CI: 55% to 73%). Among the 103 Response Evaluation Criteria in Solid Tumors-evaluable patients, objective response rate was 66% and disease control rate 87% across lines of therapy. In the multivariable models, Eastern Cooperative Oncology Group Performance Status of 1 or 2, non-resected primary tumor, presence of bone metastases and malignant ascites were independently associated with poorer PFS and OS. These four clinical variables were used to build a three-category (ie, good, intermediate, and poor risk) prognostic score. Compared with patients with good risk, patients with intermediate risk score had numerically inferior PFS and OS (2-year PFS rate: 54.3% versus 74.5%, HR 1.90, 95% CI: 0.99 to 3.66; 2-year OS rate: 66.8% versus 81.2%, HR 1.86, 95% CI: 0.87 to 3.98), whereas patients with poor risk score had significantly inferior PFS and OS (2-year PFS rate: 10.6%, HR 9.65, 95% CI: 4.67 to 19.92; 2-year OS rate: 13.3%, HR 11.93, 95% CI: 5.42 to 26.23). CONCLUSIONS Overall outcomes with anti-PD-1-based therapies are favorable in MSI-high gastroesophageal adenocarcinomas. However, within this overall favorable subgroup a more accurate prognostication using baseline clinical characteristics might identify patients at higher risk of rapid disease progression who may deserve intensified immunotherapy combination strategies.
Collapse
Affiliation(s)
- Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Yu Aoki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Romain Cohen
- Department of Medical Oncology, Saint-Antoine Hospital, APHP, Sorbonne University, Paris, France
| | - Leonardo Provenzano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Vincenzo Nasca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Samuel J Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Steven B Maron
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Joseph Chao
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Lorenzo Fornaro
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Walter Ferrari Bravo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Filippo Ghelardi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Margherita Ambrosini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Chiba, Japan
| | - Valerie Zhu
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Darren Cowzer
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Virginia Genovesi
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Sara Lonardi
- Department of Oncology, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Chiba, Japan
| | - Thierry André
- Department of Medical Oncology, Saint-Antoine Hospital, APHP, Sorbonne University, Paris, France
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
84
|
Zhang H, Feng H, Yu T, Zhang M, Liu Z, Ma L, Liu H. Construction of an oxidative stress-related lncRNAs signature to predict prognosis and the immune response in gastric cancer. Sci Rep 2023; 13:8822. [PMID: 37258567 DOI: 10.1038/s41598-023-35167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
Oxidative stress, as a characteristic of cellular aerobic metabolism, plays a crucial regulatory role in the development and metastasis of gastric cancer (GC). Long noncoding RNAs (lncRNAs) are important regulators in GC development. However, research on the prognostic patterns of oxidative stress-related lncRNAs (OSRLs) and their functions in the immune microenvironment is currently insufficient. We identified the OSRLs signature (DIP2A-IT1, DUXAP8, TP53TG1, SNHG5, AC091057.1, AL355001.1, ARRDC1-AS1, and COLCA1) from 185 oxidative stress-related genes in The Cancer Genome Atlas (TCGA) cohort via random survival forest and Cox analyses, and the results were subsequently validated in the Gene Expression Omnibus (GEO) dataset. The patients were divided into high- and low-risk groups by the risk score of the OSRLs signature. Longer overall survival was detected in the low-risk group than in the high-risk group in both the TCGA cohort (P < 0. 001, HR = 0.43, 95% CI 0.31-0.62) and the GEO cohort (P = 0.014, HR = 0.67, 95% CI 0.48-0.93). Next, multivariate Cox analysis identified that the risk model was an independent prognostic characteristic (HR > 1, P = 0.005), and time-dependent receiver operating characteristic (ROC) curve analysis and nomogram analysis were utilized to evaluate the predictive ability of the risk model. Next, gene set enrichment analysis revealed that the immune-related pathway, Wnt/[Formula: see text]-catenin signature, mammalian target of rapamycin complex 1 signature, and cytokine‒cytokine receptor interaction was enriched. High-risk patients were more responsive to CD200, TNFSF4, TNFSF9, and BTNL2 immune checkpoint blockade. The results of qRT‒PCR further proved the accuracy of our bioinformatic analysis. Overall, our study identified a novel OSRLs signature that can serve as a promising biomarker and prognostic indicator, which provides a personalized predictive approach for patient prognosis evaluation and treatment.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Huawei Feng
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, 110036, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, 110036, China
- Key Laboratory for Simulating Computation and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China
| | - Tiansong Yu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Man Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co, Shenyang, 110036, China
| | - Lidan Ma
- Dandong Customs Integrated Technical Service Center, Dandong, 118000, China
| | - Hongsheng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, 110036, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, 110036, China.
- Key Laboratory for Simulating Computation and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China.
| |
Collapse
|
85
|
Deng G, Zhang X, Chen Y, Liang S, Liu S, Yu Z, Lü M. Single-cell transcriptome sequencing reveals heterogeneity of gastric cancer: progress and prospects. Front Oncol 2023; 13:1074268. [PMID: 37305583 PMCID: PMC10249727 DOI: 10.3389/fonc.2023.1074268] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
Gastric cancer is one of the most serious malignant tumor and threatens the health of people worldwide. Its heterogeneity leaves many clinical problems unsolved. To treat it effectively, we need to explore its heterogeneity. Single-cell transcriptome sequencing, or single-cell RNA sequencing (scRNA-seq), reveals the complex biological composition and molecular characteristics of gastric cancer at the level of individual cells, which provides a new perspective for understanding the heterogeneity of gastric cancer. In this review, we first introduce the current procedure of scRNA-seq, and discuss the advantages and limitations of scRNA-seq. We then elaborate on the research carried out with scRNA-seq in gastric cancer in recent years, and describe how it reveals cell heterogeneity, the tumor microenvironment, oncogenesis and metastasis, as well as drug response in to gastric cancer, to facilitate early diagnosis, individualized therapy, and prognosis evaluation.
Collapse
Affiliation(s)
- Gaohua Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yonglan Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
86
|
Liu Y, Hu P, Xu L, Zhang X, Li Z, Li Y, Qiu H. Current Progress on Predictive Biomarkers for Response to Immune Checkpoint Inhibitors in Gastric Cancer: How to Maximize the Immunotherapeutic Benefit? Cancers (Basel) 2023; 15:2273. [PMID: 37190201 PMCID: PMC10137150 DOI: 10.3390/cancers15082273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Gastric cancer is the fifth most prevalent cancer and the fourth leading cause of cancer death globally. Delayed diagnosis and pronounced histological and molecular variations increase the complexity and challenge of treatment. Pharmacotherapy, which for a long time was systemic chemotherapy based on 5-fluorouracil, is the mainstay of management for advanced gastric cancer. Trastuzumab and programmed cell death 1 (PD-1) inhibitors have altered the therapeutic landscape, contributing to noticeably prolonged survivorship in patients with metastatic gastric cancer. However, research has revealed that immunotherapy is only beneficial to some individuals. Biomarkers, such as programmed cell death ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational load (TMB), have been shown to correlate with immune efficacy in numerous studies and are increasingly employed for the selection of patients most likely to respond to immunotherapy. Gut microorganisms, genetic mutations like POLE/POLD1 and NOTCH4, tumor lymphoid infiltrating cells (TILs), and other novel biomarkers have the potential to develop into new predictors. Prospective immunotherapy for gastric cancer should be guided by a biomarker-driven precision management paradigm, and multidimensional or dynamic marker testing could be the way to go.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Qiu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.)
| |
Collapse
|
87
|
Kavun A, Veselovsky E, Lebedeva A, Belova E, Kuznetsova O, Yakushina V, Grigoreva T, Mileyko V, Fedyanin M, Ivanov M. Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2023; 15:cancers15082288. [PMID: 37190216 DOI: 10.3390/cancers15082288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Microsatellite instability (MSI) is one of the most important molecular characteristics of a tumor, which occurs among various tumor types. In this review article, we examine the molecular characteristics of MSI tumors, both sporadic and Lynch-associated. We also overview the risks of developing hereditary forms of cancer and potential mechanisms of tumor development in patients with Lynch syndrome. Additionally, we summarize the results of major clinical studies on the efficacy of immune checkpoint inhibitors for MSI tumors and discuss the predictive role of MSI in the context of chemotherapy and checkpoint inhibitors. Finally, we briefly discuss some of the underlying mechanisms causing therapy resistance in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Egor Veselovsky
- OncoAtlas LLC, 119049 Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, 119049 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya Kuznetsova
- OncoAtlas LLC, 119049 Moscow, Russia
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
| | - Valentina Yakushina
- OncoAtlas LLC, 119049 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, 119049 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Mikhail Fedyanin
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, 142770 Moscow, Russia
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, 105203 Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, 119049 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
88
|
Park S, Karalis JD, Hong C, Clemenceau JR, Porembka MR, Kim IH, Lee SH, Wang SC, Cheong JH, Hwang TH. ACTA2 Expression Predicts Survival and Is Associated with Response to Immune Checkpoint Inhibitors in Gastric Cancer. Clin Cancer Res 2023; 29:1077-1085. [PMID: 36508166 PMCID: PMC10173146 DOI: 10.1158/1078-0432.ccr-22-1897] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE We sought to identify biomarkers that predict overall survival (OS) and response to immune checkpoint inhibitors (ICI) for patients with gastric cancer. EXPERIMENTAL DESIGN This was a retrospective study of multiple independent cohorts of patients with gastric cancer. The association between tumor ACTA2 expression and OS and ICI response were determined in patients whose tumors were analyzed with bulk mRNA sequencing. Single-cell RNA sequencing (scRNA-seq) and digital spatial profiling data were used to compare tumors from patients with gastric cancer who did and did not respond to ICI. RESULTS Increasing tumor ACTA2 expression was independently associated with worse OS in a 567-patient discovery cohort [HR, 1.28 per unit increase; 95% confidence interval (CI), 1.02-1.62]. This finding was validated in three independent cohorts (n = 974; HR, 1.52 per unit increase; 95% CI, 1.34-1.73). Of the 108 patients treated with ICI, 56% of patients with low ACTA2 expression responded to ICI versus 25% of patients with high ACTA2 expression (P = 0.004). In an analysis of a publicly available scRNA-seq dataset of 5 microsatellite instability-high patients treated with ICI, the patient who responded to ICI had lower tumor stromal ACTA2 expression than the 4 nonresponders. Digital spatial profiling of tumor samples from 4 ICI responders and 5 ICI nonresponders revealed that responders may have lower ACTA2 expression in α-SMA-positive cancer-associated fibroblasts (CAF) than nonresponders (median: 5.00 vs. 5.50). CONCLUSIONS ACTA2 expression is associated with survival and ICI response in patients with gastric cancer. ACTA2 expression in CAFs, but not in other cellular compartments, appears to be associated with ICI response.
Collapse
Affiliation(s)
- Sunho Park
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL
| | - John D. Karalis
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL
| | - Jean R. Clemenceau
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL
| | - Matthew R. Porembka
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - In-Ho Kim
- Department of Internal Medicine, Division of Medical Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sam C. Wang
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hyun Hwang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL
- Department of Immunology, Mayo Clinic, Jacksonville, FL
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
89
|
Yamamoto Y, Masuda G, Kushiyama S, Maruo K, Tsujio G, Sera T, Sugimoto A, Nishimura S, Kuroda K, Togano S, Okuno T, Ohira M, Yashiro M. Establishment of a gastric cancer cell line with high microsatellite instability, OCUM-13, derived from Borrmann type-2 primary tumor. Cancer Med 2023; 12:6016-6022. [PMID: 36324252 PMCID: PMC10028156 DOI: 10.1002/cam4.5403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) with microsatellite instability (MSI) has been reported to be sensitive to immunotherapy, however some of GC cases with MSI remain resistant to immunotherapy. Cancer cell lines showing MSI might be useful for the analysis of mechanisms of immunotherapy, while only a few GC cell lines with MSI are available so far. In this study, we established a unique GC cell line with MSI, OCUM-13, from a primary GC with abundant tumor-infiltrating lymphocytes. MSI assay indicated that OCUM-13 cells as well as the primary tumor showed a band shift in more than 3 of 5 microsatellite loci, suggesting that OCUM-13 did have high MSI. The subcutaneous inoculation of OCUM-13 cells into mice performed tumor formation. Insulin-like growth factor 1 receptor inhibitor decreased the growth of OCUM-13 cells. The newly established cell line with MSI, OCUM-13, might be useful for the analysis of cancer therapy for GC with MSI.
Collapse
Affiliation(s)
- Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Go Masuda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Koji Maruo
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shingo Togano
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Okuno
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
90
|
Klempner S, Janjigian Y, Wainberg Z. Claudin18.who? Examining biomarker overlap and outcomes in claudin18.2-positive gastroesophageal adenocarcinomas. ESMO Open 2023; 8:100778. [PMID: 36791669 PMCID: PMC9958250 DOI: 10.1016/j.esmoop.2022.100778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023] Open
Affiliation(s)
- S.J. Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, USA
| | - Y.Y. Janjigian
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA,Department of Medicine, Weill Cornell Medical College, New York, USA
| | - Z.A. Wainberg
- Department of Medicine, Division of Hematology and Oncology, UCLA School of Medicine, Los Angeles, USA
| |
Collapse
|
91
|
Meri-Abad M, Moreno-Manuel A, García SG, Calabuig-Fariñas S, Pérez RS, Herrero CC, Jantus-Lewintre E. Clinical and technical insights of tumour mutational burden in non-small cell lung cancer. Crit Rev Oncol Hematol 2023; 182:103891. [PMID: 36565893 DOI: 10.1016/j.critrevonc.2022.103891] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the durable responses provided by the introduction of checkpoint inhibitors in advanced Non-Small Cell Lung Cancer (NSCLC) without actionable targets in a subset of patients, a large proportion of them will progress after immunotherapy. Programmed Death Ligand 1 (PD-L1) was the first biomarker approved for immunotherapy, although it has multiple limitations, thus the development of novel biomarkers is an urgent need. Tumour Mutational Burden (TMB) is an emerging biomarker defined as the total number of mutations per coding area of tumour genome. Targeted gene panels have emerged as a cost-effective approach to estimate TMB. However, there is still an unmet need to fully standardize sample requirements, panel size, and bioinformatic pipelines to ensure that TMB is calculated appropriately. In addition, researchers are also evaluating TMB calculation in liquid biopsy. In this work, we summarize the relevant advances and the clinical utility of TMB in NSCLC.
Collapse
Affiliation(s)
- Marina Meri-Abad
- Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain
| | - Andrea Moreno-Manuel
- Mixed Unit TRIAL (Príncipe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain; CIBERONC, Valencia, Spain
| | - Sandra Gallach García
- Mixed Unit TRIAL (Príncipe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain; CIBERONC, Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Mixed Unit TRIAL (Príncipe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain; CIBERONC, Valencia, Spain; Pathology Department, Universitat de València, Valencia, Spain
| | - Rafael Sirera Pérez
- CIBERONC, Valencia, Spain; Biotechnology Department, Universitat Politècnica de València, Valencia, Spain; Mixed Unit Nanomedicine, Centro Investigación Príncipe Felipe-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Carlos Camps Herrero
- Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain; Mixed Unit TRIAL (Príncipe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain; CIBERONC, Valencia, Spain; Department of Medicine, Universitat de València, Valencia, Spain
| | - Eloisa Jantus-Lewintre
- Mixed Unit TRIAL (Príncipe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain; CIBERONC, Valencia, Spain; Biotechnology Department, Universitat Politècnica de València, Valencia, Spain; Mixed Unit Nanomedicine, Centro Investigación Príncipe Felipe-Universitat Politècnica de Valencia, 46022 Valencia, Spain.
| |
Collapse
|
92
|
Meng Z, Niu X, Xia L, Chen Y, Wang Z, Wang H, Ji P, Cui W, Wang Y, Lu S. A 3D Ex Vivo Tumor-Immune Coculture System Mimicking In Vivo Tumor Environmental Stress on CD8+ T Cells Exhaustion. Adv Biol (Weinh) 2023:e2200264. [PMID: 36658782 DOI: 10.1002/adbi.202200264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/11/2022] [Indexed: 01/21/2023]
Abstract
Dissection of exhaustion trajectories of immune cells under tumor selection pressure in the tumor microenvironment (TME) elucidates the underlying machinery in anti-tumor immunity, which still lacks easy-to-use models to decipher. Herein, gelatin methacryloyl (GelMA)-poly (ethylene oxide) (PEO) based 3D hydrogel microspheroids are constructed with non-immunogenicity and controllable macroporous structure to establish a tumor-immune cell coculture (3D-HyGTIC) system. In 3D-HyGTIC system, when immune cells embarked, stepwise up-regulation of main immune checkpoints (ICs) molecules is observed with compromised cytokine production in CD8+ T cells, the trajectory of which is in lineage correlation with in vivo grafted tumors. Reinvigoration of CD8+ T cells is more obvious with the addition of an anti-PD-1 regimen at the early time point, which is recapitulated during the coculture of patient-derived tumor fragments (PDTF) and autologous T cells. Moreover, the upregulation of LAG-3 on CD8+ T cells after anti-PD-1 treatment is uncovered. Sequential addition of anti-LAG-3 successfully rescues the otherwise failed reactivation of CD8+ T cells. Therefore, the 3D-HyGTIC system is not only inclined to mimic the early differentiation trajectories of tumor-infiltrating CD8+ T cells but also may facilitate an evaluation of the efficacy of IC blockades and guide the designing of combination immunotherapy.
Collapse
Affiliation(s)
- Zhouwenli Meng
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Liliang Xia
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Yingying Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhen Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
| | - Hui Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
93
|
André T, Tougeron D, Piessen G, de la Fouchardière C, Louvet C, Adenis A, Jary M, Tournigand C, Aparicio T, Desrame J, Lièvre A, Garcia-Larnicol ML, Pudlarz T, Cohen R, Memmi S, Vernerey D, Henriques J, Lefevre JH, Svrcek M. Neoadjuvant Nivolumab Plus Ipilimumab and Adjuvant Nivolumab in Localized Deficient Mismatch Repair/Microsatellite Instability-High Gastric or Esophagogastric Junction Adenocarcinoma: The GERCOR NEONIPIGA Phase II Study. J Clin Oncol 2023; 41:255-265. [PMID: 35969830 PMCID: PMC9839243 DOI: 10.1200/jco.22.00686] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE In patients with resectable gastric/gastroesophageal junction (GEJ) adenocarcinoma, surgery plus perioperative platinum-based chemotherapy is the standard of care. Perioperative chemotherapy remains debatable for gastric/GEJ adenocarcinoma with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H). PATIENTS AND METHODS NEONIPIGA (ClinicalTrials.gov identifier: NCT04006262) phase II study evaluated neoadjuvant nivolumab 240 mg once every two weeks ×6 and ipilimumab 1 mg/kg once every six weeks ×2, followed by surgery and adjuvant nivolumab 480 mg once every four weeks (nine injections) in patients with locally advanced resectable dMMR/MSI-H, clinical (c) tumor (T)2-T4 node (N)x metastasis (M)0 gastric/GEJ adenocarcinoma. The primary end point was a pathological complete response (pCR) rate. RESULTS Between October 2019 and June 2021, 32 patients with dMMR/MSI-H gastric/GEJ adenocarcinoma were enrolled. The median age was 65.5 years (range, 40-80). Clinical stages were cT2-T3N0 (n = 9), cT2-T3N1 (n = 22), and cT3N1M1 (n = 1, wrongly included). With a median follow-up of 14.9 months (95% CI, 10.6 to 17.6), 32 patients received neoadjuvant immunotherapy (27 patients completed all cycles). Neoadjuvant therapy-related grade 3/4 adverse events occurred in six patients (19%). Twenty-nine patients underwent surgery; three did not have surgery and had complete endoscopic response with tumor-free biopsies and a normal computed tomography scan (two refused surgery and one had metastasis at inclusion). The rate of surgical morbidity (Clavien-Dindo classification) was 55% (one postoperative death occurred). All 29 patients had an R0 resection, and 17 (58.6%; 90% CI, 41.8 to 74.1) had pCR (pathological T0N0). Becker tumor regression grades 1a, 1b, 2, and 3 were observed in 17 patients, three (including two pathological T0N1), two, and seven patients, respectively. Of the 29 patients with surgery, 23 received adjuvant nivolumab. At database lock, no patient had relapse and one died without relapse. CONCLUSION Nivolumab and ipilimumab-based neoadjuvant therapy is feasible and associated with no unexpected toxicity and a high pCR rate in patients with dMMR/MSI-H resectable gastric/GEJ adenocarcinoma.
Collapse
Affiliation(s)
- Thierry André
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, INSERM 938, SIRIC CURAMUS, Paris, France
| | - David Tougeron
- Department of Hepatology and Gastroenterology, Poitiers University Hospital, Poitiers, France
| | - Guillaume Piessen
- University of Lille, CNRS, INSERM, CHU Lille, Department of Digestive and Oncological Surgery, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | | | - Christophe Louvet
- Department of Medical Oncology, Institut Mutualiste Montsouris, Paris, France
| | - Antoine Adenis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, University of Montpellier, Montpellier Cancer Institute (ICM), Montpellier, France
| | - Marine Jary
- University Hospital of Besançon, Clinical Investigational Center, CIC-1431, Besançon, France
| | - Christophe Tournigand
- Department of Medical Oncology, Henri Mondor Hospital, AP-HP, Paris-East Créteil University, INSERM, IMRB, Creteil, France
| | - Thomas Aparicio
- Paris Cité University, Department of Gastroenterology, Saint Louis Hospital, Paris, France
| | - Jérôme Desrame
- Cancerology Institute, Jean Mermoz Hospital, Lyon, France
| | - Astrid Lièvre
- Department of Gastroenterology, CHU Pontchaillou, INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", Rennes 1 University, Rennes, France
| | | | - Thomas Pudlarz
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, INSERM 938, SIRIC CURAMUS, Paris, France
| | - Romain Cohen
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, INSERM 938, SIRIC CURAMUS, Paris, France
| | - Salomé Memmi
- Sorbonne University, Department of Pathology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Dewi Vernerey
- Methodology and Quality of Life Unit in Oncology, University of Besançon, Besançon, France
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Julie Henriques
- Methodology and Quality of Life Unit in Oncology, University of Besançon, Besançon, France
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Jérémie H. Lefevre
- Sorbonne University, Department of Digestive Surgery, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Magali Svrcek
- Sorbonne University, Department of Pathology, Saint-Antoine Hospital, AP-HP, Paris, France
| |
Collapse
|
94
|
Kanda M, Terashima M, Kinoshita T, Yabusaki H, Tokunaga M, Kodera Y. A multi-institutional study to evaluate the feasibility of next-generation sequencing and genomic analysis using formalin-fixed, paraffin-embedded biopsies of gastric cancer. Gastric Cancer 2023; 26:108-115. [PMID: 36369312 DOI: 10.1007/s10120-022-01351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Formalin-fixed, paraffin-embedded (FFPE) samples acquired and preserved adequately are expected to faithfully maintain tumor characteristics. Endoscopic biopsy tissues represent an attractive resource for identifying predictive biomarkers to evaluate pretreatment responses of patients with advanced gastric cancer (GC). However, whether genomic profiles obtained through next-generation sequencing (NGS) using biopsy samples match well with those gained from surgical FFPE samples remains a concern. METHODS We collected 50 FFPE samples (26 biopsies and 24 surgical samples) from patients with GC who participated in phase III clinical trial JCOG1509. The quality and quantity of FFPE samples were determined for deep sequencing using NGS. We queried a 435-gene panel CANCERPLEX-JP to generate comprehensive genomic profiling data including the tumor mutation burden (TMB). RESULTS The median DNA yields and NGS success rates of biopsy samples compared with surgical samples were 879 ng and 80.8% vs 8523 ng and 100%, respectively. Epstein-Barr virus and microsatellite instability-high were detected in 9.5% of biopsy samples. Comparing the genomic profiles of 18 paired samples for which NGS data were available, we detected identical somatic mutations in paired biopsy and surgical samples (kappa coefficient, 0.8692). TMB positively correlated between paired biopsy and surgical samples (correlation coefficient, 0.6911). CONCLUSIONS NGS is applicable to the analysis of FFPE samples of GC acquired by the endoscopic biopsy, and the data were highly concordant with those obtained from surgical specimens of the same patients.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | | | - Takahiro Kinoshita
- Department of Gastric Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Yabusaki
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
95
|
Hoskins EL, Samorodnitsky E, Wing MR, Reeser JW, Hopkins JF, Murugesan K, Kuang Z, Vella R, Stein L, Risch Z, Yu L, Adebola S, Paruchuri A, Carpten J, Chahoud J, Edge S, Kolesar J, McCarter M, Nepple KG, Reilley M, Scaife C, Tripathi A, Single N, Huang RS, Albacker LA, Roychowdhury S. Pan-cancer Landscape of Programmed Death Ligand-1 and Programmed Death Ligand-2 Structural Variations. JCO Precis Oncol 2023; 7:e2200300. [PMID: 36623238 PMCID: PMC9928630 DOI: 10.1200/po.22.00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Programmed cell death protein-1 (PD-1) receptor and ligand interactions are the target of immunotherapies for more than 20 cancer types. Biomarkers that predict response to immunotherapy are microsatellite instability, tumor mutational burden, and programmed death ligand-1 (PD-L1) immunohistochemistry. Structural variations (SVs) in PD-L1 (CD274) and PD-L2 (PDCD1LG2) have been observed in cancer, but the comprehensive landscape is unknown. Here, we describe the genomic landscape of PD-L1 and PD-L2 SVs, their potential impact on the tumor microenvironment, and evidence that patients with these alterations can benefit from immunotherapy. METHODS We analyzed sequencing data from cancer cases with PD-L1 and PD-L2 SVs across 22 publications and four data sets, including Foundation Medicine Inc, The Cancer Genome Atlas, International Cancer Genome Consortium, and the Oncology Research Information Exchange Network. We leveraged RNA sequencing to evaluate immune signatures. We curated literature reporting clinical outcomes of patients harboring PD-L1 or PD-L2 SVs. RESULTS Using data sets encompassing 300,000 tumors, we curated 486 cases with SVs in PD-L1 and PD-L2 and observed consistent breakpoint patterns, or hotspots. Leveraging The Cancer Genome Atlas, we observed significant upregulation in PD-L1 expression and signatures for interferon signaling, macrophages, T cells, and immune cell proliferation in samples harboring PD-L1 or PD-L2 SVs. Retrospective review of 12 studies that identified patients with SVs in PD-L1 or PD-L2 revealed > 50% (52/71) response rate to PD-1 immunotherapy with durable responses. CONCLUSION Our findings show that the 3'-UTR is frequently affected, and that SVs are associated with increased expression of ligands and immune signatures. Retrospective evidence from curated studies suggests this genomic alteration could help identify candidates for PD-1/PD-L1 immunotherapy. We expect these findings will better define PD-L1 and PD-L2 SVs in cancer and lend support for prospective clinical trials to target these alterations.
Collapse
Affiliation(s)
- Emily L. Hoskins
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Eric Samorodnitsky
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - Michele R. Wing
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - Julie W. Reeser
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | | | | | | | - Raven Vella
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Leah Stein
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - Zachary Risch
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Serifat Adebola
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Anoosha Paruchuri
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Stephen Edge
- Roswell Park Cancer Institute, University at Buffalo, Buffalo, NY
| | - Jill Kolesar
- University of Kentucky College of Pharmacy, Lexington, KY
| | - Martin McCarter
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO
| | - Kenneth G. Nepple
- Department of Urology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Matthew Reilley
- Emily Couric Clinical Cancer Center, University of Virginia, Charlottesville, VA
| | - Courtney Scaife
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Nancy Single
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | | | | | - Sameek Roychowdhury
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
96
|
de Vries NL, van de Haar J, Veninga V, Chalabi M, Ijsselsteijn ME, van der Ploeg M, van den Bulk J, Ruano D, van den Berg JG, Haanen JB, Zeverijn LJ, Geurts BS, de Wit GF, Battaglia TW, Gelderblom H, Verheul HMW, Schumacher TN, Wessels LFA, Koning F, de Miranda NFCC, Voest EE. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature 2023; 613:743-750. [PMID: 36631610 PMCID: PMC9876799 DOI: 10.1038/s41586-022-05593-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
DNA mismatch repair-deficient (MMR-d) cancers present an abundance of neoantigens that is thought to explain their exceptional responsiveness to immune checkpoint blockade (ICB)1,2. Here, in contrast to other cancer types3-5, we observed that 20 out of 21 (95%) MMR-d cancers with genomic inactivation of β2-microglobulin (encoded by B2M) retained responsiveness to ICB, suggesting the involvement of immune effector cells other than CD8+ T cells in this context. We next identified a strong association between B2M inactivation and increased infiltration by γδ T cells in MMR-d cancers. These γδ T cells mainly comprised the Vδ1 and Vδ3 subsets, and expressed high levels of PD-1, other activation markers, including cytotoxic molecules, and a broad repertoire of killer-cell immunoglobulin-like receptors. In vitro, PD-1+ γδ T cells that were isolated from MMR-d colon cancers exhibited enhanced reactivity to human leukocyte antigen (HLA)-class-I-negative MMR-d colon cancer cell lines and B2M-knockout patient-derived tumour organoids compared with antigen-presentation-proficient cells. By comparing paired tumour samples from patients with MMR-d colon cancer that were obtained before and after dual PD-1 and CTLA-4 blockade, we found that immune checkpoint blockade substantially increased the frequency of γδ T cells in B2M-deficient cancers. Taken together, these data indicate that γδ T cells contribute to the response to immune checkpoint blockade in patients with HLA-class-I-negative MMR-d colon cancers, and underline the potential of γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Natasja L de Vries
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris van de Haar
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vivien Veninga
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Myriam Chalabi
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jitske van den Bulk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jose G van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - John B Haanen
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laurien J Zeverijn
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Birgit S Geurts
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Gijs F de Wit
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Thomas W Battaglia
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Ton N Schumacher
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, The Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Emile E Voest
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
97
|
Relationships of tumor differentiation and immune infiltration in gastric cancers revealed by single-cell RNA-seq analyses. Cell Mol Life Sci 2023; 80:57. [PMID: 36729271 PMCID: PMC9894979 DOI: 10.1007/s00018-023-04702-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Gastric cancers are highly heterogeneous malignant tumors. To reveal the relationship between differentiation status of cancer cells and tumor immune microenvironments in gastric cancer, single-cell RNA-sequencing was performed on normal mucosa tissue, differentiated gastric cancer (DGC) tissue, poorly differentiated gastric cancer (PDGC) tissue and neuroendocrine carcinoma (NEC) tissue sampled from surgically resected gastric cancer specimens. We identified the signature genes for both DGC and PDGC, and found that signature genes of PDGC strongly enriched in the epithelial-mesenchymal transition (EMT) program. Furthermore, we found that DGC tends to be immune-rich type whereas PDGC tends to be immune-poor type defined according to the density of tumor-infiltrating CD8+ T cells. Additionally, interferon alpha and gamma responding genes were specifically expressed in the immune-rich malignant cells compared with immune-poor malignant cells. Through analyzing the mixed adenoneuroendocrine carcinoma, we identified intermediate state malignant cells during the trans-differentiation process from DGC to NEC, which showed double-negative expressions of both DGC marker genes and NEC marker genes. Interferon-related pathways were gradually downregulated along the DGC to NEC trans-differentiation path, which was accompanied by reduced CD8+ cytotoxic T-cell infiltration. In summary, molecular features of both malignant cells and immune microenvironment cells of DGC, PDGC and NEC were systematically revealed, which may partially explain the strong tumor heterogeneities of gastric cancer. Especially along the DGC to NEC trans-differentiation path, immune-evasion was gradually enhanced with the decreasing activities of interferon pathway responses in malignant cells.
Collapse
|
98
|
Wang Q, Xu J, Wang A, Chen Y, Wang T, Chen D, Zhang J, Brismar TB. Systematic review of machine learning-based radiomics approach for predicting microsatellite instability status in colorectal cancer. LA RADIOLOGIA MEDICA 2023; 128:136-148. [PMID: 36648615 PMCID: PMC9938810 DOI: 10.1007/s11547-023-01593-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
This study aimed to systematically summarize the performance of the machine learning-based radiomics models in the prediction of microsatellite instability (MSI) in patients with colorectal cancer (CRC). It was conducted according to the preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guideline and was registered at the PROSPERO website with an identifier CRD42022295787. Systematic literature searching was conducted in databases of PubMed, Embase, Web of Science, and Cochrane Library up to November 10, 2022. Research which applied radiomics analysis on preoperative CT/MRI/PET-CT images for predicting the MSI status in CRC patients with no history of anti-tumor therapies was eligible. The radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) were applied to evaluate the research quality (full score 100%). Twelve studies with 4,320 patients were included. All studies were retrospective, and only four had an external validation cohort. The median incidence of MSI was 19% (range 8-34%). The area under the receiver operator curve of the models ranged from 0.78 to 0.96 (median 0.83) in the external validation cohort. The median sensitivity was 0.76 (range 0.32-1.00), and the median specificity was 0.87 (range 0.69-1.00). The median RQS score was 38% (range 14-50%), and half of the studies showed high risk in patient selection as evaluated by QUADAS-2. In conclusion, while radiomics based on pretreatment imaging modalities had a high performance in the prediction of MSI status in CRC, so far it does not appear to be ready for clinical use due to insufficient methodological quality.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden. .,Department of Radiology, Karolinska University Hospital Huddinge, Room 601, Novum PI 6, Hiss F, Hälsovägen 7, 141 86, Huddinge, Stockholm, Sweden.
| | - Jianhua Xu
- Department of General Surgery, Songshan Hospital, Chongqing, China
| | - Anrong Wang
- grid.452206.70000 0004 1758 417XDepartment of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Department of Interventional Therapy, People’s Hospital of Dianjiang County, Chongqing, China
| | - Yi Chen
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tian Wang
- grid.517910.bDepartment of Gastroenterology, Chongqing General Hospital, Chongqing, China
| | - Danyu Chen
- grid.412536.70000 0004 1791 7851Department of Gastroenterology and Hepatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaxing Zhang
- grid.459540.90000 0004 1791 4503Department of Pharmacy, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Torkel B. Brismar
- grid.4714.60000 0004 1937 0626Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Radiology, Karolinska University Hospital Huddinge, Room 601, Novum PI 6, Hiss F, Hälsovägen 7, 141 86 Huddinge, Stockholm, Sweden
| |
Collapse
|
99
|
Wei S, Sun Q, Chen J, Li X, Hu Z. Bioinformatics analyses for the identification of tumor antigens and immune subtypes of gastric adenocarcinoma. Front Genet 2022; 13:1068112. [PMID: 36579327 PMCID: PMC9791036 DOI: 10.3389/fgene.2022.1068112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Although mRNA vaccines have been effective against multiple cancers, their efficacy against stomach adenocarcinoma (STAD) remains undefined. Immunotyping can indicate the comprehensive immune status in tumors and their immune microenvironment, which is closely associated with therapeutic response and vaccination potential. The aim of this study was to identify potential antigens in STAD for mRNA vaccine development, and further distinguish immune subtypes of STAD to construct an immune landscape for selecting suitable patients for vaccination. Methods: The gene expression and clinicopathological features of patients with gastric cancer were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Program (GTEx). 729 samples from GSE66229 and GSE84437 were downloaded through GEO and were used as the validation cohorts. Differential gene expression, genetic alterations and prognosis were analyzed using the R package, cBioPortal program and Kaplan-Meier. The relationship between tumor antigens and immune cells was evaluated and plotted by TIMER. ConsensusClusterPlus was used for consistency matrix construction and data clustering, and graph learning-based dimensional reduction was used to depict immune landscape. WGCNA was used to estimate the relationship between the color modules and immune subtypes. Results: Two overexpressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in STAD, including RAI14 and NREP. The immune subtypes showed distinct molecular, cellular and clinical characteristics. IS1 and IS2 exhibited immune-activated phenotypes and correlated to better survival compared to IS3, while IS3 tumors was immunologically cold. Immunogenic cell death modulators, immune checkpoints, and CA125, and CEA were also differentially expressed among the three immune subtypes. Finally, the immune landscape of STAD showed a high degree of heterogeneity between individual patients. Conclusion: RAI14 and NREP are potential antigens for developing anti-STAD mRNA vaccine, and patients with IS1 and IS3 tumors may be suitable for vaccination.
Collapse
Affiliation(s)
- Shuxun Wei
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Sun
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinshui Chen
- Department of General Surgery, The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Hubei, China
| | - Xinxing Li
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Xinxing Li, ; Zhiqian Hu,
| | - Zhiqian Hu
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Xinxing Li, ; Zhiqian Hu,
| |
Collapse
|
100
|
Zhang L, Zhuo H, Hong Z, Hou J, Cheng J, Cai J. HSPA6, a novel prognostic and therapeutic biomarker, associated with Ming classification in gastric cancer. J Clin Lab Anal 2022; 37:e24763. [PMID: 36458368 PMCID: PMC9833989 DOI: 10.1002/jcla.24763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE This study aimed to explore the clinical relevance of heat shock protein family A member 6 (HSPA6) in gastric cancer (GC) and its effect on GC cell proliferation. METHODS HSPA6 mRNA and protein levels were analyzed by bioinformatics, RT-qPCR, western blot and immunohistochemistry. HSPA6 was correlated with clinicopathological variables by the Chi-square test. Kaplan-Meier survival analysis and the univariate and multivariate Cox models were used to assess the prognostic value of HSPA6. Nomogram was used to predict overall survival in patients with GC. Knockdown or over-expression of HSPA6 in GC cell lines was constructed by lentiviral transduction. EdU and CCK-8 assay were used to detect cell proliferation. In vivo mouse tumor models were performed to evaluate the effects of HSPA6 on GC growth. RESULTS HSPA6 were significantly upregulated in the GC tissues compared to the normal stomach epithelium and were associated with Ming classification (p < 0.001) and tumor size (p = 0.002). Patients with high expression of HSPA6 showed worse survival compared to the low expression group. HSPA6 was identified to be an independent prognostic biomarker for GC. HSPA6 was functionally annotated with the cell cycle, G2M checkpoint and Hippo pathway. Knockdown of HSPA6 suppressed XGC-1 cell proliferation both in vitro and in vivo. Overexpression of HSPA6 in AGS cells increased proliferation rates, increased the levels of cyclinB1 and YAP and decreased that of phosphorylated YAP. HSPA6 knockdown in the NUGC2 cells had the opposite effect. CONCLUSIONS HSPA6 promotes GC proliferation by the Hippo pathway, as a novel prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina,Institute of Gastrointestinal Oncology, School of MedicineXiamen UniversityXiamenChina,Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Hui‐qin Zhuo
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina,Institute of Gastrointestinal Oncology, School of MedicineXiamen UniversityXiamenChina,Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Zhi‐jun Hong
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina,Institute of Gastrointestinal Oncology, School of MedicineXiamen UniversityXiamenChina,Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Jing‐jing Hou
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina,Institute of Gastrointestinal Oncology, School of MedicineXiamen UniversityXiamenChina,Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Jia Cheng
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina,Institute of Gastrointestinal Oncology, School of MedicineXiamen UniversityXiamenChina,Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Jianchun Cai
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina,Institute of Gastrointestinal Oncology, School of MedicineXiamen UniversityXiamenChina,Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| |
Collapse
|