51
|
Zhang S, Glukhova SA, Caldwell KA, Caldwell GA. NCEH-1 modulates cholesterol metabolism and protects against α-synuclein toxicity in a C. elegans model of Parkinson's disease. Hum Mol Genet 2018; 26:3823-3836. [PMID: 28934392 DOI: 10.1093/hmg/ddx269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disease affecting millions worldwide. Misfolding, oligomerization and accumulation of the human α-synuclein protein is a key pathological hallmark of PD and is associated with the progressive loss of dopaminergic neurons over the course of aging. Lifespan extension via the suppression of IGF-1/insulin-like signaling (IIS) offers a possibility to retard disease onset through induction of metabolic changes that provide neuroprotection. The nceh-1 gene of Caenorhabditis elegans encodes an ortholog of neutral cholesterol ester hydrolase 1 (NCEH-1), an IIS downstream protein that was identified in a screen as a modulator of α-synuclein accumulation in vivo. The mechanism whereby cholesterol metabolism functionally impacts neurodegeneration induced by α-synuclein is undefined. Here we report that NCEH-1 protects dopaminergic neurons from α-synuclein-dependent neurotoxicity in C. elegans via a mechanism that is independent of lifespan extension. We discovered that the presence of cholesterol, LDLR-mediated cholesterol endocytosis, and cholesterol efflux are all essential to NCEH-1-mediated neuroprotection. In protecting from α-synuclein neurotoxicity, NCEH-1 also stimulates cholesterol-derived neurosteroid formation and lowers cellular reactive oxygen species in mitochondria. Collectively, this study augments our understanding of how cholesterol metabolism can modulate a neuroprotective mechanism that attenuates α-synuclein neurotoxicity, thereby pointing toward regulation of neuronal cholesterol turnover as a potential therapeutic avenue for PD.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Samantha A Glukhova
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
52
|
Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis. J Virol 2017; 92:JVI.01196-17. [PMID: 29046459 DOI: 10.1128/jvi.01196-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/28/2017] [Indexed: 01/16/2023] Open
Abstract
Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality.IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses.
Collapse
|
53
|
Singh AK, Aryal B, Zhang X, Fan Y, Price NL, Suárez Y, Fernández-Hernando C. Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins. Semin Cell Dev Biol 2017; 81:129-140. [PMID: 29183708 DOI: 10.1016/j.semcdb.2017.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
Alterations in lipoprotein metabolism enhance the risk of cardiometabolic disorders including type-2 diabetes and atherosclerosis, the leading cause of death in Western societies. While the transcriptional regulation of lipid metabolism has been well characterized, recent studies have uncovered the importance of microRNAs (miRNAs), long-non-coding RNAs (lncRNAs) and RNA binding proteins (RBP) in regulating the expression of lipid-related genes at the posttranscriptional level. Work from several groups has identified a number of miRNAs, including miR-33, miR-122 and miR-148a, that play a prominent role in controlling cholesterol homeostasis and lipoprotein metabolism. Importantly, dysregulation of miRNA expression has been associated with dyslipidemia, suggesting that manipulating the expression of these miRNAs could be a useful therapeutic approach to ameliorate cardiovascular disease (CVD). The role of lncRNAs in regulating lipid metabolism has recently emerged and several groups have demonstrated their regulation of lipoprotein metabolism. However, given the high abundance of lncRNAs and the poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in controlling lipoprotein metabolism. In this review article, we summarize recent findings in the field and highlight the specific contribution of lncRNAs and RBPs in regulating lipid metabolism.
Collapse
Affiliation(s)
- Abhishek K Singh
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Binod Aryal
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Yuhua Fan
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA; College of Pharmacy, Harbin Medical University -Daqing, 163000, PR China
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510, USA.
| |
Collapse
|
54
|
Levy D, de Melo TC, Ruiz JL, Bydlowski SP. Oxysterols and mesenchymal stem cell biology. Chem Phys Lipids 2017; 207:223-230. [DOI: 10.1016/j.chemphyslip.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/08/2023]
|
55
|
Goldman AL, Bhasin S, Wu FCW, Krishna M, Matsumoto AM, Jasuja R. A Reappraisal of Testosterone's Binding in Circulation: Physiological and Clinical Implications. Endocr Rev 2017; 38:302-324. [PMID: 28673039 PMCID: PMC6287254 DOI: 10.1210/er.2017-00025] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
In the circulation, testosterone and other sex hormones are bound to binding proteins, which play an important role in regulating their transport, distribution, metabolism, and biological activity. According to the free hormone hypothesis, which has been debated extensively, only the unbound or free fraction is biologically active in target tissues. Consequently, accurate determination of the partitioning of testosterone between bound and free fractions is central to our understanding of how its delivery to the target tissues and biological activity are regulated and consequently to the diagnosis and treatment of androgen disorders in men and women. Here, we present a historical perspective on the evolution of our understanding of the binding of testosterone to circulating binding proteins. On the basis of an appraisal of the literature as well as experimental data, we show that the assumptions of stoichiometry, binding dynamics, and the affinity of the prevailing models of testosterone binding to sex hormone-binding globulin and human serum albumin are not supported by published experimental data and are most likely inaccurate. This review offers some guiding principles for the application of free testosterone measurements in the diagnosis and treatment of patients with androgen disorders. The growing number of testosterone prescriptions and widely recognized problems with the direct measurement as well as the computation of free testosterone concentrations render this critical review timely and clinically relevant.
Collapse
Affiliation(s)
- Anna L Goldman
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Frederick C W Wu
- Andrology Research Unit, Centre for Endocrinology and Diabetes, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Meenakshi Krishna
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Alvin M Matsumoto
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington 98108
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104
| | - Ravi Jasuja
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
56
|
Luo J, Jiang L, Yang H, Song BL. Routes and mechanisms of post-endosomal cholesterol trafficking: A story that never ends. Traffic 2017; 18:209-217. [DOI: 10.1111/tra.12471] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Luyi Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| |
Collapse
|
57
|
Kraemer FB, Shen WJ, Azhar S. SNAREs and cholesterol movement for steroidogenesis. Mol Cell Endocrinol 2017; 441:17-21. [PMID: 27477781 PMCID: PMC5235947 DOI: 10.1016/j.mce.2016.07.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022]
Abstract
Steroidogenesis is a complex process through which cholesterol traffics to mitochondria and is converted via a series of enzymatic steps to steroid hormones. Although the rate-limiting step in this process is the movement of cholesterol from the outer to the inner mitochondrial membrane via the actions of StAR, a continuous supply of cholesterol must be delivered to the outer mitochondrial membrane during active steroidogenesis and this is derived from multiple sources, including lipoprotein uptake, endogenous cholesterol synthesis and release from stores within cytoplasmic lipid droplets. A number of mechanisms have been suggested to contribute to cholesterol trafficking to mitochondria; however, there is no definitive consensus and this is particularly so in regards to trafficking from cytoplasmic lipid droplets. In this paper we review experiments in which we have surveyed the expression of SNARE proteins in steroidogenic tissue and cells and examined the role of SNAREs in mediating cholesterol movement from lipid droplets to the mitochondria based on multiple studies that identified SNAREs as components of cytoplasmic lipid droplets. We established and characterized an in vitro mitochondria reconstitution assay system that enabled us to examine the impact of adding recombinant SNARE proteins specifically on the movement of cholesterol from model lipid droplets to the outer mitochondrial membrane. Using this reconstitution assay system in combination with siRNA knockdown experiments in rat primary granulosa cells or in steroidogenic cell lines, we showed that several SNARE proteins are important components in the trafficking of cholesterol from lipid droplets to the mitochondria for steroidogenesis.
Collapse
Affiliation(s)
- Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| |
Collapse
|
58
|
Severe neurodegenerative disease in brothers with homozygous mutation in POLR1A. Eur J Hum Genet 2017; 25:315-323. [PMID: 28051070 DOI: 10.1038/ejhg.2016.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 01/11/2023] Open
Abstract
In two brothers born to consanguineous parents, we identified an unusual neurological disease that manifested with ataxia, psychomotor retardation, cerebellar and cerebral atrophy, and leukodystrophy. Via linkage analysis and exome sequencing, we identified homozygous c.2801C>T (p.(Ser934Leu)) in POLR1A (encoding RPA194, largest subunit of RNA polymerase I) and c.511C>T (p.(Arg171Trp)) in OSBPL11 (encoding oxysterol-binding protein-like protein 11). Although in silico analysis, histopathologic evidence and functional verification indicated that both variants were deleterious, segregation with the patient phenotype established that the POLR1A defect underlies the disease, as a clinically unaffected sister also was homozygous for the OSBPL11 variant. Decreased nucleolar RPA194 was observed in the skin fibroblasts of only the affected brothers, whereas intracellular cholesterol accumulation was observed in the skin biopsies of the patients and the sister homozygous for the OSBPL11 variant. Our findings provide the first report showing a complex leukodystrophy associated with POLR1A. Variants in three other RNA polymerase subunits, POLR1C, POLR3A and POLR3B, are known to cause recessive leukodystrophy similar to the disease afflicting the present family but with a later onset. Of those, POLR1C is also implicated in a mandibulofacial dysostosis syndrome without leukodystrophy as POLR1A is. This syndrome is absent in the family we present.
Collapse
|
59
|
McCauliff LA, Storch J. Transport Assays for Sterol-Binding Proteins: Stopped-Flow Fluorescence Methods for Investigating Intracellular Cholesterol Transport Mechanisms of NPC2 Protein. Methods Mol Biol 2017; 1583:97-110. [PMID: 28205170 PMCID: PMC6311532 DOI: 10.1007/978-1-4939-6875-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this chapter we describe the use of stopped flow fluorescence spectroscopy to analyze the kinetic mechanisms of protein mediated cholesterol transfer to, from, and between model membranes. These assays allow for the detection of protein-membrane interactions that may occur during cholesterol transfer by simply modifying donor or acceptor concentrations, membrane composition, or buffer properties, and analyzing resultant transfer rates.
Collapse
Affiliation(s)
- Leslie A McCauliff
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University New Brunswick, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University New Brunswick, 65 Dudley Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
60
|
Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol 2017; 165:18-37. [PMID: 26960203 DOI: 10.1016/j.jsbmb.2016.03.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/29/2022]
Abstract
Steroidogenesis begins with cellular internalization of low-density lipoprotein particles and subsequent intracellular processing of cholesterol. Disorders in these steps include Adrenoleukodystrophy, Wolman Disease and its milder variant Cholesterol Ester Storage Disease, and Niemann-Pick Type C Disease, all of which may present with adrenal insufficiency. The means by which cholesterol is directed to steroidogenic mitochondria remains incompletely understood. Once cholesterol reaches the outer mitochondrial membrane, its delivery to the inner mitochondrial membrane is regulated by the steroidogenic acute regulatory protein (StAR). Severe StAR mutations cause classic congenital lipoid adrenal hyperplasia, characterized by lipid accumulation in the adrenal, adrenal insufficiency, and disordered sexual development in 46,XY individuals. The lipoid CAH phenotype, including spontaneous puberty in 46,XX females, is explained by a two-hit model. StAR mutations that retain partial function cause a milder, non-classic disease characterized by glucocorticoid deficiency, with lesser disorders of mineralocorticoid and sex steroid synthesis. Once inside the mitochondria, cholesterol is converted to pregnenolone by the cholesterol side-chain cleavage enzyme, P450scc, encoded by the CYP11A1 gene. Rare patients with mutations of P450scc are clinically and hormonally indistinguishable from those with lipoid CAH, and may also present as milder non-classic disease. Patients with P450scc defects do not have the massive adrenal hyperplasia that characterizes lipoid CAH, but adrenal imaging may occasionally fail to distinguish these, necessitating DNA sequencing.
Collapse
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143-0556, United States.
| |
Collapse
|
61
|
Venugopal S, Martinez-Arguelles DB, Chebbi S, Hullin-Matsuda F, Kobayashi T, Papadopoulos V. Plasma Membrane Origin of the Steroidogenic Pool of Cholesterol Used in Hormone-induced Acute Steroid Formation in Leydig Cells. J Biol Chem 2016; 291:26109-26125. [PMID: 27815506 DOI: 10.1074/jbc.m116.740928] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/03/2016] [Indexed: 02/05/2023] Open
Abstract
Hormone-sensitive acute steroid biosynthesis requires trafficking of cholesterol from intracellular sources to the inner mitochondrial membrane. The precise location of the intracellular cholesterol and its transport mechanism are uncertain. Perfringolysin O, produced by Clostridium perfringens, binds cholesterol. Its fourth domain (D4) retains cholesterol-binding properties but not cytotoxicity. We transfected steroidogenic MA-10 cells of mouse Leydig cell tumors with the mCherry-D4 plasmid. Tagged D4 with fluorescent proteins enabled us to track cholesterol. The staining was primarily localized to the inner leaflet of the plasma membrane and was partially released upon treatment with dibutyryl-cAMP (Bt2cAMP), a cAMP analog. Inhibitors of cholesterol import into mitochondria blocked steroidogenesis and prevented release of D4 (and presumably cholesterol) from the plasma membrane. We conclude that the bulk of the steroidogenic pool of cholesterol, mobilized by Bt2cAMP for acute steroidogenesis, originates from the plasma membrane. Treatment of the cells with steroid metabolites, 22(R)-hydroxycholesterol and pregnenolone, also reduced D4 release from the plasma membrane, perhaps evidence for a feedback effect of elevated steroid formation on cholesterol release. Interestingly, D4 staining was localized to endosomes during Bt2cAMP stimulation suggesting that these organelles are on the route of cholesterol trafficking from the plasma membrane to mitochondria. Finally, D4 was expressed in primary rat Leydig cells with a lentivirus and was released from the plasma membrane following Bt2cAMP treatment. We conclude that the plasma membrane is the source of cholesterol for steroidogenesis in these cells as well as in MA-10 cells.
Collapse
Affiliation(s)
- Sathvika Venugopal
- From the Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal H4A 3J1, Canada
| | - Daniel Benjamin Martinez-Arguelles
- From the Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal H4A 3J1, Canada
| | - Seimia Chebbi
- From the Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal H4A 3J1, Canada
| | - Françoise Hullin-Matsuda
- the Lipid Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.,INSERM U1060, Université Lyon 1, INSA Lyon, 69621 Villeurbanne, France
| | - Toshihide Kobayashi
- the Lipid Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.,INSERM U1060, Université Lyon 1, INSA Lyon, 69621 Villeurbanne, France.,UMR 7213 CNRS, University of Strasbourg, 67401 Illkirch, France, and
| | - Vassilios Papadopoulos
- From the Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal H4A 3J1, Canada, .,the Departments of Pharmacology and Therapeutics and.,Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| |
Collapse
|
62
|
Intracellular cholesterol transport proteins: roles in health and disease. Clin Sci (Lond) 2016; 130:1843-59. [DOI: 10.1042/cs20160339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
Effective cholesterol homoeostasis is essential in maintaining cellular function, and this is achieved by a network of lipid-responsive nuclear transcription factors, and enzymes, receptors and transporters subject to post-transcriptional and post-translational regulation, whereas loss of these elegant, tightly regulated homoeostatic responses is integral to disease pathologies. Recent data suggest that sterol-binding sensors, exchangers and transporters contribute to regulation of cellular cholesterol homoeostasis and that genetic overexpression or deletion, or mutations, in a number of these proteins are linked with diseases, including atherosclerosis, dyslipidaemia, diabetes, congenital lipoid adrenal hyperplasia, cancer, autosomal dominant hearing loss and male infertility. This review focuses on current evidence exploring the function of members of the ‘START’ (steroidogenic acute regulatory protein-related lipid transfer) and ‘ORP’ (oxysterol-binding protein-related proteins) families of sterol-binding proteins in sterol homoeostasis in eukaryotic cells, and the evidence that they represent valid therapeutic targets to alleviate human disease.
Collapse
|
63
|
Xu X, Zhang A, Halquist MS, Yuan X, Henderson SC, Dewey WL, Li PL, Li N, Zhang F. Simvastatin promotes NPC1-mediated free cholesterol efflux from lysosomes through CYP7A1/LXRα signalling pathway in oxLDL-loaded macrophages. J Cell Mol Med 2016; 21:364-374. [PMID: 27629819 PMCID: PMC5264135 DOI: 10.1111/jcmm.12970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023] Open
Abstract
Statins, 3‐hydroxyl‐3‐methylglutaryl coenzyme A reductase inhibitors, are the first‐line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol‐lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi‐photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low‐density lipoprotein but had little effect in reducing the sizes of cholesteryl ester‐containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome‐compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro‐inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up‐regulation of Niemann‐Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7‐hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up‐regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.,Department of Physiology, Guangzhou Medical University, Guangzhou, China
| | - Aolin Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew S Halquist
- Department of Pharmaceutics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Xinxu Yuan
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Scott C Henderson
- Department of Anatomy & Neurobiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - William L Dewey
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Fan Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
64
|
Pagliassotti MJ, Kim PY, Estrada AL, Stewart CM, Gentile CL. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view. Metabolism 2016; 65:1238-46. [PMID: 27506731 PMCID: PMC4980576 DOI: 10.1016/j.metabol.2016.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is most notable for its central roles in calcium ion storage, lipid biosynthesis, and protein sorting and processing. By virtue of its extensive membrane contact sites that connect the ER to most other organelles and to the plasma membrane, the ER can also regulate diverse cellular processes including inflammatory and insulin signaling, nutrient metabolism, and cell proliferation and death via a signaling pathway called the unfolded protein response (UPR). Chronic UPR activation has been observed in liver and/or adipose tissue of dietary and genetic murine models of obesity, and in human obesity and non-alcoholic fatty liver disease (NAFLD). Activation of the UPR in obesity and obesity-related disorders likely has two origins. One linked to classic ER stress involving the ER lumen and one linked to alterations to the ER membrane environment. This review discusses both of these origins and also considers the role of post-translational protein modifications, such as acetylation and palmitoylation, and ER-mitochondrial interactions to obesity-mediated impairments in the ER and activation of the UPR.
Collapse
Affiliation(s)
| | - Paul Y Kim
- Department of Biological Sciences, Grambling State University
| | - Andrea L Estrada
- Department of Food Science and Human Nutrition, Colorado State University
| | - Claire M Stewart
- Department of Food Science and Human Nutrition, Colorado State University
| | | |
Collapse
|
65
|
Wang S, Peng DQ, Yi Y. The unsolved mystery of apoA-I recycling in adipocyte. Lipids Health Dis 2016; 15:35. [PMID: 26911989 PMCID: PMC4765186 DOI: 10.1186/s12944-016-0203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 01/24/2023] Open
Abstract
As the major storage site for triglycerides and free cholesterol, adipose tissue plays a central role in energy metabolism. ApoA-I is the main constituent of HDL and plays an important role in removal of excess cholesterol from peripheral tissues. Recently, multiple studies have shown beneficial effects of apoA-I on adipose metabolism and function. ApoA-I was reported to improve insulin sensitivity and exert anti-inflammatory, anti-obesity effect in animal studies. Interestingly, Uptake and resecretion of apoA-I by adipocytes has been detected. However, the significance of apoA-I recycling by adipocytes is still not clear. This article reviewed methods used to study cellular recycling of apoA-I and summarized the current knowledge on the mechanisms involved in apoA-I uptake by adipocytes. Since the main function of apoA-I is to mediate reverse cholesterol transport from peripheral tissues, the role of apoA-I internalization and re-secretion by adipocytes in intracellular cholesterol transport under physiological and pathological conditions were discussed. In addition, findings on the correlation between apoA-I recycling and obesity were discussed. Finally, it was proposed that during intracellular transport, apoA-I-protein complex may acquire cargoes other than lipids and deliver regulatory information when they were resecreted into the plasma. Although apoA-I recycling by adipocytes is still an unsolved mystery, it's likely that it is more than a redundant pathway especially under pathological conditions.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dao-quan Peng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Yuhong Yi
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
66
|
Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, Montgomery EN, Mellema MS, Bardini RL, Contreras Z, Hoon M, Bauer G, Fink KD, Fury B, Hendrix KJ, Chedin F, El-Andaloussi S, Hwang B, Mulligan MS, Lehtiö J, Nolta JA. Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem Cells 2016; 34:601-13. [PMID: 26782178 DOI: 10.1002/stem.2298] [Citation(s) in RCA: 398] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSC) are known to facilitate healing of ischemic tissue related diseases through proangiogenic secretory proteins. Recent studies further show that MSC derived exosomes function as paracrine effectors of angiogenesis, however, the identity of which components of the exosome proteome responsible for this effect remains elusive. To address this we used high-resolution isoelectric focusing coupled liquid chromatography tandem mass spectrometry, an unbiased high throughput proteomics approach to comprehensively characterize the proteinaceous contents of MSCs and MSC derived exosomes. We probed the proteome of MSCs and MSC derived exosomes from cells cultured under expansion conditions and under ischemic tissue simulated conditions to elucidate key angiogenic paracrine effectors present and potentially differentially expressed in these conditions. In total, 6,342 proteins were identified in MSCs and 1,927 proteins in MSC derived exosomes, representing to our knowledge the first time these proteomes have been probed comprehensively. Multilayered analyses identified several putative paracrine effectors of angiogenesis present in MSC exosomes and increased in expression in MSCs exposed to ischemic tissue-simulated conditions; these include platelet derived growth factor, epidermal growth factor, fibroblast growth factor, and most notably nuclear factor-kappaB (NFkB) signaling pathway proteins. NFkB signaling was identified as a key mediator of MSC exosome induced angiogenesis in endothelial cells by functional in vitro validation using a specific inhibitor. Collectively, the results of our proteomic analysis show that MSC derived exosomes contain a robust profile of angiogenic paracrine effectors, which have potential for the treatment of ischemic tissue-related diseases.
Collapse
Affiliation(s)
- Johnathon D Anderson
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Henrik J Johansson
- Cancer Proteomics, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Calvin S Graham
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Mattias Vesterlund
- Cancer Proteomics, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Missy T Pham
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Charles S Bramlett
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Elizabeth N Montgomery
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Matt S Mellema
- Surgical and Radiological Sciences, Department of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Renee L Bardini
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Zelenia Contreras
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Madeline Hoon
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Gerhard Bauer
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Kyle D Fink
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Brian Fury
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Kyle J Hendrix
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Frederic Chedin
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, USA
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Billie Hwang
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Michael S Mulligan
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Janne Lehtiö
- Cancer Proteomics, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jan A Nolta
- Stem Cell Program, Department of Internal Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
67
|
El Asmar Z, Terrand J, Jenty M, Host L, Mlih M, Zerr A, Justiniano H, Matz RL, Boudier C, Scholler E, Garnier JM, Bertaccini D, Thiersé D, Schaeffer C, Van Dorsselaer A, Herz J, Bruban V, Boucher P. Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation. J Biol Chem 2016; 291:5116-27. [PMID: 26792864 DOI: 10.1074/jbc.m116.714485] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases.
Collapse
Affiliation(s)
- Zeina El Asmar
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Jérome Terrand
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Marion Jenty
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Lionel Host
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Mohamed Mlih
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Aurélie Zerr
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Hélène Justiniano
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Rachel L Matz
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Christian Boudier
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Estelle Scholler
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Jean-Marie Garnier
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM 964/CNRS UMR 7104, University of Strasbourg, 67401 Illkirch, France
| | - Diego Bertaccini
- CNRS, UMR 7178, University of Strasbourg, 67087 Strasbourg, France, and
| | - Danièle Thiersé
- CNRS, UMR 7178, University of Strasbourg, 67087 Strasbourg, France, and
| | | | | | - Joachim Herz
- Department of Molecular Genetics and Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Véronique Bruban
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| | - Philippe Boucher
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| |
Collapse
|
68
|
Srinivasan P. Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging. APPLIED PHYSICS LETTERS 2016; 108:033702. [PMID: 26869725 PMCID: PMC4723406 DOI: 10.1063/1.4940388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.
Collapse
Affiliation(s)
- P Srinivasan
- Department of Electrical and Computer Engineering, University of California , Santa Barbara, California 93106, USA and Neuroscience Research Institute, University of California , Santa Barbara, California 93106, USA
| |
Collapse
|
69
|
Naren D, Wu J, Gong Y, Yan T, Wang K, Xu W, Yang X, Shi F, Shi R. Niemann-Pick disease type C1(NPC1) is involved in resistance against imatinib in the imatinib-resistant Ph+ acute lymphoblastic leukemia cell line SUP-B15/RI. Leuk Res 2016; 42:59-67. [PMID: 26818574 DOI: 10.1016/j.leukres.2016.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/05/2023]
Abstract
Niemann-Pick disease type C1 (NPC1) is involved in cholesterol trafficking and may normally function as a transmembrane efflux pump. Previous studies showed that its dysfunction can lead to cholesterol and daunorubicin accumulation in the cytoplasmic endosomal/lysosomal system, lead to Niemann-Pick disease and resistance to anticancer drugs. In the present study, NPC1 was shown by microarray analysis to be more highly expressed in the Ph+ acute lymphoblastic leukemia cell line SUP-B15/RI, an imatinib-resistant variant of SUP-B15/S cells without bcr-abl gene mutation established in our lab. Further investigation revealed a defect in the functional capacity of the NPC1 protein demonstrated by filipin staining accompanied by a lower intracellular imatinib mesylate(IM) concentration by high-performance liquid chromatography in SUP-B15/RI compared with SUP-B15/S cells. Furthermore, U18666A, an inhibitor of NPC1 function, was used to block cholesterol trafficking to imitate the NPC1 defect in SUP-B15/S cells, leading to higher NPC1 expression, stronger filipin fluorescence, lower intracellular IM concentrations and greater resistance against IM. Samples from non-mutated relapsed Ph+ ALL patients also showed higher NPC1 expression compared with IM-sensitive patients. Our experiment may reveal a new mechanism of IM resistance in Ph+ ALL.
Collapse
Affiliation(s)
- Duolan Naren
- Department of Hematology, West China Hospital, Sichuan University, 610041, PR China
| | - Jiahui Wu
- Department of Hematology, West China Hospital, Sichuan University, 610041, PR China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, 610041, PR China.
| | - Tianyou Yan
- Department of Hematology, West China Hospital, Sichuan University, 610041, PR China
| | - Ke Wang
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China; Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China; Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xi Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, PR China
| | - Fangfang Shi
- Department of Hematology, West China Hospital, Sichuan University, 610041, PR China
| | - Rui Shi
- Department of Hematology, West China Hospital, Sichuan University, 610041, PR China
| |
Collapse
|
70
|
Kutuzov N, Gulin A, Lyaskovskiy V, Nadtochenko V, Maksimov G. ATP-Mediated Compositional Change in Peripheral Myelin Membranes: A Comparative Raman Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectrometry Study. PLoS One 2015; 10:e0142084. [PMID: 26544552 PMCID: PMC4636249 DOI: 10.1371/journal.pone.0142084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022] Open
Abstract
In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.
Collapse
Affiliation(s)
- Nikolay Kutuzov
- Biophysics Department, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, Russian Federation, 119991
- * E-mail:
| | - Alexander Gulin
- N.N. Semenov Institute of Chemical Physics, RAS, Kosigin str. 4, Moscow, Russian Federation, 119991
- Chemistry Faculty, Moscow State University, Leninskie Gory 1–3, Moscow, Russian Federation, 119991
| | - Vladimir Lyaskovskiy
- All-Russian Research Institute for Optical and Physical Measurements, Ozernaya 46, Moscow, Russian Federation, 119361
| | - Victor Nadtochenko
- N.N. Semenov Institute of Chemical Physics, RAS, Kosigin str. 4, Moscow, Russian Federation, 119991
- Chemistry Faculty, Moscow State University, Leninskie Gory 1–3, Moscow, Russian Federation, 119991
- Moscow Institute of Physics and Technology State University, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russian Federation, 141700
- Institute of Problems of Chemical Physics RAS, Academician Semenov avenue 1, Chernogolovka, Moscow region, Russian Federation, 142432
| | - Georgy Maksimov
- Biophysics Department, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, Russian Federation, 119991
| |
Collapse
|
71
|
Seo HS, Choi MH. Cholesterol homeostasis in cardiovascular disease and recent advances in measuring cholesterol signatures. J Steroid Biochem Mol Biol 2015; 153:72-9. [PMID: 25910582 DOI: 10.1016/j.jsbmb.2015.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/08/2023]
Abstract
Despite the biochemical importance of cholesterol, its abnormal metabolism has serious cellular consequences that lead to endocrine disorders such as cardiovascular disease (CVD). Nevertheless, the impact of blood cholesterol as a CVD risk factor is still debated, and treatment with cholesterol-lowering drugs remains controversial, particularly in older patients. Although, the prevalence of CVD increases with age, the underlying mechanisms for this phenomenon are not well understood, and metabolic changes have not been confirmed as predisposing factors of atherogenesis. The quantification of circulating biomarkers for cholesterol homeostasis is therefore warranted, and reference values for cholesterol absorption and synthesis should be determined in order to establish CVD risk factors. The traditional lipid profile is often derived rather than directly measured and lacks a universal standard to interpret the results. In contrast, mass spectrometry-based cholesterol profiling can accurately measure free cholesterol as a biologically active component. This approach allows to detect alterations in various metabolic pathways that control cholesterol homeostasis, by quantitative analysis of cholesterol and its precursors/metabolites as well as dietary sterols. An overview of the mechanism of cholesterol homeostasis under different physiological conditions may help to identify predictive biomarkers of concomitant atherosclerosis and conventional CVD risk factors.
Collapse
Affiliation(s)
- Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul 152-703, South Korea; Korea University-Korea Institute of Science and Technology Graduated School of Converging Science and Technology, Seoul 152-703, South Korea
| | - Man Ho Choi
- Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 136-791, South Korea.
| |
Collapse
|
72
|
Chen HH, Huang WC, Chiang WH, Liu TI, Shen MY, Hsu YH, Lin SC, Chiu HC. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells. Int J Nanomedicine 2015; 10:5035-48. [PMID: 26346762 PMCID: PMC4531030 DOI: 10.2147/ijn.s86053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs) carrying doxorubicin (DOX) capable of overcoming multidrug resistance (MDR) breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20) with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 μM, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm3 in volume as compared with the free DOX treatment group, 1,140 mm3, and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] solid lipid nanoparticles, 820 mm3. Analysis of the body weight of nude mice and the histology of organs and tumor after the administration of DOX-loaded SLNs show that the SLNs have no observable side effects. These results indicate that the C-PEG-SLN is a promising platform for the delivery of therapeutic agents for MDR cancer chemotherapy.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Chia Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Hsuan Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Te-I Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Yin Shen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan ; Department of Surgery, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Yuan-Hung Hsu
- Pharmaceutical Optimization Technology Division, Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Sung-Chyr Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
73
|
Chistiakov DA, Bobryshev YV, Orekhov AN. Changes in transcriptome of macrophages in atherosclerosis. J Cell Mol Med 2015; 19:1163-73. [PMID: 25973901 PMCID: PMC4459832 DOI: 10.1111/jcmm.12591] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
Macrophages display significant phenotypic heterogeneity. Two growth factors, macrophage colony-stimulating factor and chemokine (C-X-C motif) ligand 4, drive terminal differentiation of monocytes to M0 and M4 macrophages respectively. Compared to M0 macrophages, M4 cells have a unique transcriptome, with expression of surface markers such as S100A8, mannose receptor CD206 and matrix metalloproteinase 7. M4 macrophages did not express CD163, a scavenger receptor for haemoglobin/haptoglobin complex. Depending on the stimuli, M0 macrophages could polarize towards the proinflammatory M1 subset by treatment with lipopolysaccharide or interferon-γ. These macrophages produce a range of proinflammatory cytokines, nitric oxide, reactive oxygen species and exhibit high chemotactic and phagocytic activity. The alternative M2 type could be induced from M0 macrophage by stimulation with interleukin (IL)-4. M2 macrophages express high levels of CD206 and produce anti-inflammatory cytokines IL-10 and transforming growth factor-β. M1, M2 and M4 macrophages could be found in atherosclerotic plaques. In the plaque, macrophages are subjected to the intensive influence not only by cytokines and chemokines but also with bioactive lipids such as cholesterol and oxidized phospholipids. Oxidized phospholipids induce a distinct Mox phenotype in murine macrophages that express a unique panel of antioxidant enzymes under control of the redox-regulated transcription factor Klf2, resistant to lipid accumulation. In unstable human lesions, atheroprotective M(Hb) and HA-mac macrophage subsets could be found. These two subsets are induced by the haemoglobin/haptoglobin complex, highly express haeme oxygenase 1 and CD163, and are implicated in clearance of haemoglobin and erythrocyte remnants. In atherogenesis, the macrophage phenotype is plastic and could therefore be switched to proinflammatory (i.e. proatherogenic) and anti-inflammatory (i.e. atheroprotective). The aim of this review was to characterize changes in macrophage transcriptome in atherosclerosis and discuss key markers that characterize different phenotypes of macrophages present in atherosclerotic lesions.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, Moscow, Russia
| | - Yuri V Bobryshev
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW, Australia.,School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Department of Biophysics, Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
74
|
Gaibelet G, Allart S, Tercé F, Azalbert V, Bertrand-Michel J, Hamdi S, Collet X, Orlowski S. Specific cellular incorporation of a pyrene-labelled cholesterol: lipoprotein-mediated delivery toward ordered intracellular membranes. PLoS One 2015; 10:e0121563. [PMID: 25875769 PMCID: PMC4398402 DOI: 10.1371/journal.pone.0121563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/25/2015] [Indexed: 11/18/2022] Open
Abstract
In the aim of testing tools for tracing cell trafficking of exogenous cholesterol, two fluorescent derivatives of cholesterol, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), with distinctive chemico-physical characteristics, have been compared for their cell incorporation properties, using two cell models differently handling cholesterol, with two incorporation routes. In the Caco-2 cell model, the cholesterol probes were delivered in bile salt micelles, as a model of intestinal absorption. The two probes displayed contrasting behaviors for cell uptake characteristics, cell staining, and efflux kinetics. In particular, Pyr-met-Chol cell incorporation involved SR-BI, while that of NBD-Chol appeared purely passive. In the PC-3 cell model, which overexpresses lipoprotein receptors, the cholesterol probes were delivered via the serum components, as a model of systemic delivery. We showed that Pyr-met-Chol-labelled purified LDL or HDL were able to specifically deliver Pyr-met-Chol to the PC-3 cells, while NBD-Chol incorporation was independent of lipoproteins. Observations by fluorescence microscopy evidenced that, while NBD-Chol readily stained the cytosolic lipid droplets, Pyr-met-Chol labelling led to the intense staining of intracellular structures of membranous nature, in agreement with the absence of detectable esterification of Pyr-met-Chol. A 48 h incubation of PC-3 cells with either Pyr-met-Chol-labelled LDL or HDL gave same staining patterns, mainly colocalizing with Lamp1, caveolin-1 and CD63. These data indicated convergent trafficking downwards their respective receptors, LDL-R and SR-BI, toward the cholesterol-rich internal membrane compartments, late endosomes and multivesicular bodies. Interestingly, Pyr-met-Chol staining of these structures exhibited a high excimer fluorescence emission, revealing their ordered membrane environment, and indicating that Pyr-met-Chol behaves as a fair cholesterol tracer regarding its preferential incorporation into cholesterol-rich domains. We conclude that, while NBD-Chol is a valuable marker of cholesterol esterification, Pyr-met-Chol is a reliable new lipoprotein fluorescent marker which allows to probe specific intracellular trafficking of cholesterol-rich membranes.
Collapse
Affiliation(s)
- Gérald Gaibelet
- INSERM U563/1048, CHU Purpan, 31024, Toulouse, cedex 3, France
- CEA, SB2SM and UMR8221/UMR9198 CNRS, I2BC, IBiTec-Saclay, 91191, Gif-sur-Yvette, cedex, France
- Université Toulouse III, UMR 1048, F-31000, Toulouse, France
| | - Sophie Allart
- Université Toulouse III, UMR 1048, F-31000, Toulouse, France
- Plateau technique d’Imagerie Cellulaire, INSERM U1043, F-31300, Toulouse, France
| | - François Tercé
- Université Toulouse III, UMR 1048, F-31000, Toulouse, France
- INSERM U1048, F-31400, Toulouse, France
| | - Vincent Azalbert
- Université Toulouse III, UMR 1048, F-31000, Toulouse, France
- INSERM U1048, F-31400, Toulouse, France
| | - Justine Bertrand-Michel
- Université Toulouse III, UMR 1048, F-31000, Toulouse, France
- INSERM U1048, Lipidomic Platform Metatoul, F-31400, Toulouse, France
| | - Safouane Hamdi
- INSERM U563/1048, CHU Purpan, 31024, Toulouse, cedex 3, France
| | - Xavier Collet
- Université Toulouse III, UMR 1048, F-31000, Toulouse, France
- INSERM U1048, F-31400, Toulouse, France
| | - Stéphane Orlowski
- INSERM U563/1048, CHU Purpan, 31024, Toulouse, cedex 3, France
- CEA, SB2SM and UMR8221/UMR9198 CNRS, I2BC, IBiTec-Saclay, 91191, Gif-sur-Yvette, cedex, France
- * E-mail:
| |
Collapse
|
75
|
Saito M, Takano T, Nishimura T, Kohara M, Tsukiyama-Kohara K. 3β-hydroxysterol δ24-reductase on the surface of hepatitis C virus-related hepatocellular carcinoma cells can be a target for molecular targeting therapy. PLoS One 2015; 10:e0124197. [PMID: 25875901 PMCID: PMC4395381 DOI: 10.1371/journal.pone.0124197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/26/2015] [Indexed: 12/23/2022] Open
Abstract
In our previous study, we demonstrated that 3β-hydroxysterol Δ24-reductase (DHCR24) was overexpressed in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), and that its expression was induced by HCV. Using a monoclonal antibody against DHCR24 (2-152a MAb), we found that DHCR24 was specifically expressed on the surface of HCC cell lines. Based on these findings, we aimed to establish a novel targeting strategy using 2-152a MAb to treat HCV-related HCC. In the present study, we examined the antitumor activity of 2-152a MAb. In the presence of complement, HCC-derived HuH-7 cells were killed by treatment with 2-152a MAb, which was mediated by complement-dependent cytotoxicity (CDC). In addition, the antigen recognition domain of 2-152a MAb was responsible for the unique anti-HCV activity. These findings demonstrate the feasibility of using 2-152a MAb for antibody therapy against HCV-related HCC. In addition, surface DHCR24 on HCC cells exhibited a functional property, agonist-induced internalization. We showed that 2-152a MAb-mediated binding of a cytotoxic agent (a saponin-conjugated secondary antibody) to surface DHCR24 led to significant cytotoxicity. This suggests that surface DHCR24 on HCC cells can function as a carrier for internalization. Therefore, surface DHCR24 could be a valuable target for HCV-related HCC therapy, and 2-152a MAb appears to be useful for this targeted therapy.
Collapse
Affiliation(s)
- Makoto Saito
- Department of Experimental Phylaxiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo Kumamoto-City, Kumamoto, Japan; Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Takashi Takano
- Department of Experimental Phylaxiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo Kumamoto-City, Kumamoto, Japan; Division of Veterinary Public Health, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo, Japan
| | - Tomohiro Nishimura
- Department of Experimental Phylaxiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo Kumamoto-City, Kumamoto, Japan; Chemo-Sero-Therapeutic Research Institute, Kikuchi Research Center, Kyokushi, Kikuchi, Kumamoto, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Department of Experimental Phylaxiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo Kumamoto-City, Kumamoto, Japan; Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 1-21-24 Korimoto, Kagoshima, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 1-21-24 Korimoto, Kagoshima, Japan
| |
Collapse
|
76
|
Abstract
Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.
Collapse
Affiliation(s)
- Juan Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Qiang Liu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
77
|
Pelton K, Coticchia CM, Curatolo AS, Schaffner CP, Zurakowski D, Solomon KR, Moses MA. Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 184:2099-110. [PMID: 24952430 DOI: 10.1016/j.ajpath.2014.03.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/19/2022]
Abstract
Obesity and metabolic syndrome are linked to an increased prevalence of breast cancer among postmenopausal women. A common feature of obesity, metabolic syndrome, and a Western diet rich in saturated fat is a high level of circulating cholesterol. Epidemiological reports investigating the relationship between high circulating cholesterol levels, cholesterol-lowering drugs, and breast cancer are conflicting. Here, we modeled this complex condition in a well-controlled, preclinical animal model using innovative isocaloric diets. Female severe combined immunodeficient mice were fed a low-fat/no-cholesterol diet and then randomized to four isocaloric diet groups: low-fat/no-cholesterol diet, with or without ezetimibe (cholesterol-lowering drug), and high-fat/high-cholesterol diet, with or without ezetimibe. Mice were implanted orthotopically with MDA-MB-231 cells. Breast tumors from animals fed the high-fat/high-cholesterol diet exhibited the fastest progression. Significant differences in serum cholesterol level between groups were achieved and maintained throughout the study; however, no differences were observed in intratumoral cholesterol levels. To determine the mechanism of cholesterol-induced tumor progression, we analyzed tumor proliferation, apoptosis, and angiogenesis and found a significantly greater percentage of proliferating cells from mice fed the high-fat/high-cholesterol diet. Tumors from hypercholesterolemic animals displayed significantly less apoptosis compared with the other groups. Tumors from high-fat/high-cholesterol mice had significantly higher microvessel density compared with tumors from the other groups. These results demonstrate that hypercholesterolemia induces angiogenesis and accelerates breast tumor growth in vivo.
Collapse
Affiliation(s)
- Kristine Pelton
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts
| | - Christine M Coticchia
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts
| | - Adam S Curatolo
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts
| | - Carl P Schaffner
- Department of Microbiology and Biochemistry, Waksman Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - David Zurakowski
- Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts; Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts
| | - Keith R Solomon
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts; Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts.
| | - Marsha A Moses
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
78
|
Grimm C, Holdt LM, Chen CC, Hassan S, Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, Northoff B, Castonguay J, Luber CA, Moser M, Spahn S, Lüllmann-Rauch R, Fendel C, Klugbauer N, Griesbeck O, Haas A, Mann M, Bracher F, Teupser D, Saftig P, Biel M, Wahl-Schott C. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun 2014; 5:4699. [DOI: 10.1038/ncomms5699] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022] Open
|
79
|
Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments. PLoS One 2014; 9:e98482. [PMID: 25014655 PMCID: PMC4094430 DOI: 10.1371/journal.pone.0098482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
Abstract
It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients.
Collapse
|
80
|
Hendrikx T, Walenbergh SMA, Hofker MH, Shiri-Sverdlov R. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis. Obes Rev 2014; 15:424-33. [PMID: 24629059 DOI: 10.1111/obr.12159] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 12/15/2022]
Abstract
Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with plaque severity during atherosclerosis, recently, a growing body of evidence indicates a causal link between lysosomal cholesterol accumulation and inflammation. These findings make lysosomal cholesterol accumulation an important target for intervention in metabolic diseases that are characterized by the presence of an inflammatory response. In this review, we aim to show the importance of cholesterol trapping inside lysosomes to the development of inflammation by focusing upon cardiovascular disease and non-alcoholic steatohepatitis (NASH) in particular. We summarize current data supporting the hypothesis that lysosomal cholesterol accumulation plays a key role in the development of inflammation during atherosclerosis and NASH. In addition, potential mechanisms by which disturbed lysosomal function can trigger the inflammatory response, the challenges in improving cholesterol trafficking in macrophages and recent successful research directions will be discussed.
Collapse
Affiliation(s)
- T Hendrikx
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
81
|
Thapar R, Titus MA. Recent Advances in Metabolic Profiling And Imaging of Prostate Cancer. ACTA ACUST UNITED AC 2014; 2:53-69. [PMID: 25632377 DOI: 10.2174/2213235x02666140301002510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer is a metabolic disease. Cancer cells, being highly proliferative, show significant alterations in metabolic pathways such as glycolysis, respiration, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, lipid metabolism, and amino acid metabolism. Metabolites like peptides, nucleotides, products of glycolysis, the TCA cycle, fatty acids, and steroids can be an important read out of disease when characterized in biological samples such as tissues and body fluids like urine, serum, etc. The cancer metabolome has been studied since the 1960s by analytical techniques such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Current research is focused on the identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients and distinguish between benign and advanced metastatic forms of the disease. In this review, we discuss the current state of prostate cancer metabolomics, the biomarkers that show promise in distinguishing indolent from aggressive forms of the disease, the strengths and limitations of the analytical techniques being employed, and future applications of metabolomics in diagnostic imaging and personalized medicine of prostate cancer.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | - Mark A Titus
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston TX 77030, USA
| |
Collapse
|
82
|
Kheirollah A, Nagayasu Y, Ueda H, Yokoyama S, Michikawa M, Ito JI. Involvement of cdc42/Rho kinase in ApoA-I-mediated cholesterol efflux through interaction between cytosolic lipid-protein particles and microtubules in rat astrocytes. J Neurosci Res 2014; 92:455-63. [DOI: 10.1002/jnr.23324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Alireza Kheirollah
- Departments of Biochemistry; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
- Cellular and Molecular Research Center; Ahvaz Jundishapur University of Medical Sciences; Iran
| | - Yuko Nagayasu
- Departments of Biochemistry; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Hiroshi Ueda
- Department of Biomolecular Science; Faculty of Engineering; Gifu University; Gifu Japan
| | - Shinji Yokoyama
- Nutritional Health Science Research Center; Chubu University; Kasugai Japan
| | - Makoto Michikawa
- Departments of Biochemistry; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Jin-ichi Ito
- Departments of Biochemistry; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| |
Collapse
|
83
|
Calderon-Dominguez M, Gil G, Medina MA, Pandak WM, Rodríguez-Agudo D. The StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START) domain proteins: new players in cholesterol metabolism. Int J Biochem Cell Biol 2014; 49:64-8. [PMID: 24440759 DOI: 10.1016/j.biocel.2014.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022]
Abstract
Cholesterol levels in the body are maintained through the coordinated regulation of its uptake, synthesis, distribution, storage and efflux. However, the way cholesterol is sorted within cells remains poorly defined. The discovery of the newly described StarD4 subfamily, part of the steroidogenic acute regulatory lipid transfer (START) domain family of proteins, affords an opportunity for the study of intracellular cholesterol movement, metabolism and its disorders. The three members of this intracellular subfamily of proteins (StarD4, StarD5 and StarD6) have a similar lipid binding pocket specific for sterols (cholesterol in particular), but differing regulation and localization. The ability to bind and transport cholesterol through a non-vesicular mean suggests that they play a previously unappreciated role in cholesterol homeostasis.
Collapse
Affiliation(s)
- Maria Calderon-Dominguez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Barcelona, Spain
| | - Gregorio Gil
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Miguel Angel Medina
- Department of Molecular Biology and Biochemistry, Universidad de Malaga, Spain
| | - William M Pandak
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University, Richmond, VA, United States
| | - Daniel Rodríguez-Agudo
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
84
|
Kyrtsos CR, Baras JS. Studying the role of ApoE in Alzheimer's disease pathogenesis using a systems biology model. J Bioinform Comput Biol 2013; 11:1342003. [PMID: 24131052 DOI: 10.1142/s0219720013420031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Even with its well-known symptoms of memory loss and well-characterized pathology of beta amyloid (Aβ) plaques and neurofibrillary tangles, the disease pathogenesis and initiating factors are still not well understood. To tackle this problem, a systems biology model has been developed and used to study the varying effects of variations in the ApoE allele present, as well as the effects of short term and periodic inflammation at low to moderate levels. Simulations showed a late onset peak of Aβ in the ApoE4 case that lead to localized neuron loss which could be ameliorated in part by application of short-term pro-inflammatory mediators. The model that has been developed herein represents one of the first attempts to model AD from a systems approach to study physiologically relevant parameters that may prove useful to physicians in the future.
Collapse
|
85
|
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res 2013; 52:590-614. [PMID: 24007978 DOI: 10.1016/j.plipres.2013.07.002] [Citation(s) in RCA: 651] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
Abstract
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
86
|
Li T, Francl JM, Boehme S, Chiang JYL. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology 2013; 58:1111-21. [PMID: 23536474 PMCID: PMC3735649 DOI: 10.1002/hep.26427] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/25/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Bile acid synthesis not only produces physiological detergents required for intestinal nutrient absorption, but also plays a critical role in regulating hepatic and whole-body metabolic homeostasis. We recently reported that overexpression of cholesterol 7α-hydroxylase (CYP7A1) in the liver resulted in improved metabolic homeostasis in Cyp7a1 transgenic (Cyp7a1-tg) mice. This study further investigated the molecular links between bile acid metabolism and lipid homeostasis. Microarray gene profiling revealed that CYP7A1 overexpression led to marked activation of the steroid response element-binding protein 2 (SREBP2)-regulated cholesterol metabolic network and absence of bile acid repression of lipogenic gene expression in livers of Cyp7a1-tg mice. Interestingly, Cyp7a1-tg mice showed significantly elevated hepatic cholesterol synthesis rates, but reduced hepatic fatty acid synthesis rates, which was accompanied by increased (14) C-glucose-derived acetyl-coenzyme A incorporation into sterols for fecal excretion. Induction of SREBP2 also coinduces intronic microRNA-33a (miR-33a) in the SREBP2 gene in Cyp7a1-tg mice. Overexpression of miR-33a in the liver resulted in decreased bile acid pool, increased hepatic cholesterol content, and lowered serum cholesterol in mice. CONCLUSION This study suggests that a CYP7A1/SREBP2/miR-33a axis plays a critical role in regulation of hepatic cholesterol, bile acid, and fatty acid synthesis. Antagonism of miR-33a may be a potential strategy to increase bile acid synthesis to maintain lipid homeostasis and prevent nonalcoholic fatty liver disease, diabetes, and obesity.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272,Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160
| | - Jessica M. Francl
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272,Corresponding address: John Chiang, Ph.D., Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272; Phone: 330-325-6694; Fax: 330-325-5910;
| |
Collapse
|
87
|
London SE. Genome-brain-behavior interdependencies as a framework to understand hormone effects on learned behavior. Gen Comp Endocrinol 2013; 190:176-81. [PMID: 23684969 DOI: 10.1016/j.ygcen.2013.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/28/2013] [Accepted: 04/30/2013] [Indexed: 12/16/2022]
Abstract
Hormones have profound effects on the maturation and function of the zebra finch song system. Hormones often signal through receptors that directly or indirectly regulate transcription. In this way, hormones and the genome are functionally connected. Genome-brain-behavior interdependencies are often studied on evolutionary timescales but we can now apply and test these relationships on short timescales, relevant to an individual. Here, we begin to place patterns of hormone-related gene expression into the timeframe of an individual's lifespan to consider how hormones contribute to organization of neural systems necessary for learned behavior, and how they might signal during experience in ways that affect future behavior. This framework illustrates both how much investigations into genome and hormone function are intertwined, and how much we still need to learn.
Collapse
Affiliation(s)
- Sarah E London
- Department of Psychology, Institute for Mind and Biology, Committee on Neurobiology, University of Chicago, 129A BPSB, 940 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
88
|
Soto-Acosta R, Mosso C, Cervantes-Salazar M, Puerta-Guardo H, Medina F, Favari L, Ludert JE, del Angel RM. The increase in cholesterol levels at early stages after dengue virus infection correlates with an augment in LDL particle uptake and HMG-CoA reductase activity. Virology 2013; 442:132-47. [DOI: 10.1016/j.virol.2013.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/03/2013] [Accepted: 04/05/2013] [Indexed: 01/26/2023]
|
89
|
Ríos-Marco P, Martín-Fernández M, Soria-Bretones I, Ríos A, Carrasco MP, Marco C. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:1322-34. [PMID: 23707264 DOI: 10.1016/j.bbalip.2013.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 11/27/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
90
|
Flis VV, Daum G. Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb Perspect Biol 2013; 5:5/6/a013235. [PMID: 23732475 DOI: 10.1101/cshperspect.a013235] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitochondria are partially autonomous organelles that depend on the import of certain proteins and lipids to maintain cell survival and membrane formation. Although phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine are synthesized by mitochondrial enzymes, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and sterols need to be imported from other organelles. The origin of most lipids imported into mitochondria is the endoplasmic reticulum, which requires interaction of these two subcellular compartments. Recently, protein complexes that are involved in membrane contact between endoplasmic reticulum and mitochondria were identified, but their role in lipid transport is still unclear. In the present review, we describe components involved in lipid translocation between the endoplasmic reticulum and mitochondria and discuss functional as well as regulatory aspects that are important for lipid homeostasis.
Collapse
Affiliation(s)
- Vid V Flis
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | | |
Collapse
|
91
|
Berisha SZ, Hsu J, Robinet P, Smith JD. Transcriptome analysis of genes regulated by cholesterol loading in two strains of mouse macrophages associates lysosome pathway and ER stress response with atherosclerosis susceptibility. PLoS One 2013; 8:e65003. [PMID: 23705026 PMCID: PMC3660362 DOI: 10.1371/journal.pone.0065003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Cholesterol loaded macrophages in the arterial intima are the earliest histological evidence of atherosclerosis. Studies of mouse models of atherosclerosis have shown that the strain background can have a significant effect on lesion development. We have previously shown that DBA/2 ApoE(-/-) mice have aortic root lesions 10-fold larger than AKR ApoE(-/-) mice. The current study analyzes the response to cholesterol loading of macrophages from these two strains. Macrophages from the atherosclerosis susceptible DBA/2 strain had significantly higher levels of total and esterified cholesterol compared to atherosclerosis resistant AKR macrophages, while free cholesterol levels were higher in AKR cells. Gene expression profiles were obtained and data were analyzed for strain, cholesterol loading, and strain-cholesterol loading interaction effects by a fitted linear model. Pathway and transcriptional motif enrichment were identified by gene set enrichment analysis. In addition to observed strain differences in basal gene expression, we identified many transcripts whose expression was significantly altered in response to cholesterol loading, including P2ry13 and P2ry14, Trib3, Hyal1, Vegfa, Ccr5, Ly6a, and Ifit3. Eight pathways were significantly enriched in transcripts regulated by cholesterol loading, among which the lysosome and cytokine-cytokine receptor interaction pathways had the highest number of significantly regulated transcripts. Of the differentially regulated transcripts with a strain-cholesterol loading interaction effect, we identified three genes known to participate in the endoplasmic reticulum (ER) stress response, Ddit3, Trib3 and Atf4. These three transcripts were highly up-regulated by cholesterol in AKR and either down-regulated or unchanged in loaded DBA/2 macrophages, thus associating a robust ER stress response with atherosclerosis resistance. We identified significant transcripts with strain, loading, or strain-loading interaction effect that reside within previously described quantitative trait loci as atherosclerosis modifier candidate genes. In conclusion, we characterized several strain and cholesterol induced differences that may lead to new insights into cellular cholesterol metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Stela Z. Berisha
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jeffrey Hsu
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Peggy Robinet
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jonathan D. Smith
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
92
|
Pannu PS, Allahverdian S, Francis GA. Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome. Mol Cell Endocrinol 2013; 368:99-107. [PMID: 22884520 DOI: 10.1016/j.mce.2012.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 12/31/2022]
Abstract
Cell cholesterol metabolism is a tightly regulated process, dependent in part on activation of nuclear liver X receptors (LXRs) to increase expression of genes mediating removal of excess cholesterol from cells in the reverse cholesterol transport pathway. LXRs are thought to be activated predominantly by oxysterols generated enzymatically from cholesterol in different cell organelles. Defects resulting in slowed release of cholesterol from late endosomes and lysosomes or reduction in sterol-27-hydroxylase activity lead to specific blocks in oxysterol production and impaired LXR-dependent gene activation. This block does not appear to be compensated by oxysterol production in other cell compartments. The purpose of this review is to summarize current knowledge about oxysterol-dependent activation by LXR of genes involved in reverse cholesterol transport, and what these defects of cell cholesterol homeostasis can teach us about the critical pathways of oxysterol generation for expression of LXR-dependent genes.
Collapse
Affiliation(s)
- Parveer S Pannu
- Department of Medicine, UBC James Hogg Research Centre, Institute of Heart and Lung Health at St. Paul's Hospital, Vancouver, BC, Canada V6Z 1Y6.
| | | | | |
Collapse
|
93
|
Bourbon P, Peng Q, Ferraudi G, Stauffacher C, Wiest O, Helquist P. Synthesis and photochemical behavior of coumarin-caged cholesterol. Bioorg Med Chem Lett 2013; 23:2162-5. [DOI: 10.1016/j.bmcl.2013.01.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 11/27/2022]
|
94
|
Korytowski W, Pilat A, Schmitt JC, Girotti AW. Deleterious cholesterol hydroperoxide trafficking in steroidogenic acute regulatory (StAR) protein-expressing MA-10 Leydig cells: implications for oxidative stress-impaired steroidogenesis. J Biol Chem 2013; 288:11509-19. [PMID: 23467407 DOI: 10.1074/jbc.m113.452151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroidogenic acute regulatory (StAR) proteins in steroidogenic cells are implicated in the delivery of cholesterol (Ch) from internal or external sources to mitochondria (Mito) for initiation of steroid hormone synthesis. In this study, we tested the hypothesis that under oxidative stress, StAR-mediated trafficking of redox-active cholesterol hydroperoxides (ChOOHs) can result in site-specific Mito damage and dysfunction. Steroidogenic stimulation of mouse MA-10 Leydig cells with dibutyryl-cAMP (Bt2cAMP) resulted in strong expression of StarD1 and StarD4 proteins over insignificant levels in nonstimulated controls. During incubation with the ChOOH 3β-hydroxycholest-5-ene-7α-hydroperoxide (7α-OOH) in liposomes, stimulated cells took up substantially more hydroperoxide in Mito than controls, with a resulting loss of membrane potential (ΔΨm) and ability to drive progesterone synthesis. 7α-OOH uptake and ΔΨm loss were greatly reduced by StarD1 knockdown, thus establishing the role of this protein in 7α-OOH delivery. Moreover, 7α-OOH was substantially more toxic to stimulated than nonstimulated cells, the former dying mainly by apoptosis and the latter dying by necrosis. Importantly, tert-butyl hydroperoxide, which is not a StAR protein ligand, was equally toxic to stimulated and nonstimulated cells. These findings support the notion that like Ch itself, 7α-OOH can be transported to/into Mito of steroidogenic cells by StAR proteins and therein induce free radical damage, which compromises steroid hormone synthesis.
Collapse
Affiliation(s)
- Witold Korytowski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
95
|
Biological activities of the LXRα and β agonist, 4β-hydroxycholesterol, and of its isomer, 4α-hydroxycholesterol, on oligodendrocytes: Effects on cell growth and viability, oxidative and inflammatory status. Biochimie 2013; 95:518-30. [DOI: 10.1016/j.biochi.2012.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 11/15/2012] [Indexed: 12/15/2022]
|
96
|
Prabhu AV, Krycer JR, Brown AJ. Overexpression of a key regulator of lipid homeostasis, Scap, promotes respiration in prostate cancer cells. FEBS Lett 2013; 587:983-8. [PMID: 23454642 DOI: 10.1016/j.febslet.2013.02.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
Prostate metabolism is unique, characterised by cholesterol accumulation and reduced respiration. Are these related? We modulated cholesterol levels and despite changes in mitochondrial cholesterol content, we saw no effects on lactate production or respiration. Instead, these features may be related via sterol regulatory element-binding protein 2 (SREBP-2), the master transcriptional regulator of cholesterol synthesis. SREBP-2 diverts acetyl-CoA into cholesterol synthesis and may thus reduce respiration. We examined LNCaP cells overexpressing the SREBP-2 regulator, Scap: although having higher SREBP-2 activity, these cells displayed higher respiration. This striking observation warrants further investigation. Given that SREBP-2 and Scap are regulated by factors driving prostate growth, exploring this observation further could shed light on prostate carcinogenesis.
Collapse
Affiliation(s)
- Anika Vinayak Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
97
|
The Role of Cholesterol in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
98
|
Membrane-Binding Mechanism of a Peripheral Membrane Protein through Microsecond Molecular Dynamics Simulations. J Mol Biol 2012; 423:847-61. [DOI: 10.1016/j.jmb.2012.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 11/22/2022]
|
99
|
Létourneau D, Lorin A, Lefebvre A, Frappier V, Gaudreault F, Najmanovich R, Lavigne P, LeHoux JG. StAR-related lipid transfer domain protein 5 binds primary bile acids. J Lipid Res 2012; 53:2677-89. [PMID: 23018617 DOI: 10.1194/jlr.m031245] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic acute regulatory-related lipid transfer (START) domain proteins are involved in the nonvesicular intracellular transport of lipids and sterols. The STARD1 (STARD1 and STARD3) and STARD4 subfamilies (STARD4-6) have an internal cavity large enough to accommodate sterols. To provide a deeper understanding on the structural biology of this domain, the binding of sterols to STARD5, a member of the STARD4 subfamily, was monitored. The SAR by NMR [(1)H-(15)N heteronuclear single-quantum coherence (HSQC)] approach, complemented by circular dichroism (CD) and isothermal titration calorimetry (ITC), was used. Titration of STARD5 with cholic (CA) and chenodeoxycholic acid (CDCA), ligands of the farnesoid X receptor (FXR), leads to drastic perturbation of the (1)H-(15)N HSQC spectra and the identification of the residues in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Ka values of 1.8·10-(4) M(-1) and 6.3·10(4) M(-1) were measured for CA and CDCA, respectively. This is the first report of a START domain protein in complex with a sterol ligand. Our original findings indicate that STARD5 may be involved in the transport of bile acids rather than cholesterol.
Collapse
Affiliation(s)
- Danny Létourneau
- Département de Biochimie, Faculté de médecine et des sciences de lsanté, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Cabeza-Arvelaiz Y, Schiestl RH. Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and -untied toxicity mechanisms common to neurodegenerative diseases. PLoS One 2012; 7:e44700. [PMID: 22970289 PMCID: PMC3436760 DOI: 10.1371/journal.pone.0044700] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/09/2012] [Indexed: 12/21/2022] Open
Abstract
The pesticide rotenone, a neurotoxin that inhibits the mitochondrial complex I, and destabilizes microtubules (MT) has been linked to Parkinson disease (PD) etiology and is often used to model this neurodegenerative disease (ND). Many of the mechanisms of action of rotenone are posited mechanisms of neurodegeneration; however, they are not fully understood. Therefore, the study of rotenone-affected functional pathways is pertinent to the understanding of NDs pathogenesis. This report describes the transcriptome analysis of a neuroblastoma (NB) cell line chronically exposed to marginally toxic and moderately toxic doses of rotenone. The results revealed a complex pleiotropic response to rotenone that impacts a variety of cellular events, including cell cycle, DNA damage response, proliferation, differentiation, senescence and cell death, which could lead to survival or neurodegeneration depending on the dose and time of exposure and cell phenotype. The response encompasses an array of physiological pathways, modulated by transcriptional and epigenetic regulatory networks, likely activated by homeostatic alterations. Pathways that incorporate the contribution of MT destabilization to rotenone toxicity are suggested to explain complex I-independent rotenone-induced alterations of metabolism and redox homeostasis. The postulated mechanisms involve the blockage of mitochondrial voltage-dependent anions channels (VDACs) by tubulin, which coupled with other rotenone-induced organelle dysfunctions may underlie many presumed neurodegeneration mechanisms associated with pathophysiological aspects of various NDs including PD, AD and their variant forms. Thus, further investigation of such pathways may help identify novel therapeutic paths for these NDs.
Collapse
Affiliation(s)
- Yofre Cabeza-Arvelaiz
- Department of Pathology and Environmental Health Sciences, David Geffen School of Medicine and School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America.
| | | |
Collapse
|